JP2004119352A - Spark gap device of high-voltage power-supply unit - Google Patents

Spark gap device of high-voltage power-supply unit Download PDF

Info

Publication number
JP2004119352A
JP2004119352A JP2002285217A JP2002285217A JP2004119352A JP 2004119352 A JP2004119352 A JP 2004119352A JP 2002285217 A JP2002285217 A JP 2002285217A JP 2002285217 A JP2002285217 A JP 2002285217A JP 2004119352 A JP2004119352 A JP 2004119352A
Authority
JP
Japan
Prior art keywords
electrode
spark gap
voltage
gap device
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002285217A
Other languages
Japanese (ja)
Other versions
JP4173984B2 (en
Inventor
Hideo Ishii
石井 秀雄
Masao Katooka
加藤岡 正男
Kenzo Danjo
檀上 謙三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2002285217A priority Critical patent/JP4173984B2/en
Publication of JP2004119352A publication Critical patent/JP2004119352A/en
Application granted granted Critical
Publication of JP4173984B2 publication Critical patent/JP4173984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply and correctly execute fine adjustment of gap length between discharge electrodes 38 of a spark gap device, and to easily carry out replacement and check work. <P>SOLUTION: A mounting part is so structured that a cylindrical electrode support part 31 is mounted at each end of a cylindrical electrode casing 30 formed of an electric insulating material; and a part of each electrode support part projecting outward from the electrode casing is preferably formed in a diameter smaller than that of the electrode casing. In each electrode support part 31, a screw rod-like conductive electrode holder 36 having a discharge electrode 38 is screwed to and disposed at a tip part positioned in the electrode casing. A heat-resisting elastic O-ring is mounted between each electrode holder 36 and a cylindrical connection part 32 introduced in the electrode casing. By rotating the electrode holder 36 from the outside, the electrode holder is moved forward and backward in the support part 31, so that the spark gap length between the discharge electrodes is adjusted. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えばアーク溶接機、プラズマアーク溶接機、アーク切断機、プラズマアーク切断機等の電源装置における高周波高電圧電源で使用される火花間隙装置に関するものである。
【0002】
【従来の技術】
例えば、ティグ(TIG:Tungsten Inert Gas)溶接機では、タングステン電極を非溶融電極として使用するので、電極が消耗するのを防止するためにアークの起動は電極とワーク(母材)とを接触させないで行なうのが普通である。このため、このような溶接機で使用される溶接用電源装置では、電極とワークとの間に高周波高電圧を印加し、この高周波高電圧によってアークを起動させる方式が採用されている。
【0003】
図6は溶接用電源装置で使用される高周波高電圧電源の構成ならびに原理を極く概略的に示した図で、溶接電圧発生用の溶接電源1は入力端子2a、2bに供給される入力交流電圧を昇圧して直流または交流の溶接電圧を発生する。高周波高電圧電源3は、入力端子2a、2bに供給される入力交流電圧を昇圧変圧器4で昇圧し、火花間隙装置の火花間隙5で放電させることにより高周波高電圧を発生する。この高周波高電圧は、結合コイル6によって上記溶接電源1の溶接電圧に加算(重畳)されてワーク(母材)7とトーチ(電極)8との間に印加され、これによってこれらの間で溶接のためのアーク放電が起動する。図1は高周波高電圧電源3の入力交流電圧が溶接電源1の入力側から供給される例であるが、高周波高電圧電源の入力電圧を溶接電源1の出力側から得るようにすることも勿論可能である。
【0004】
図6のような溶接用電源装置で使用される高周波高電圧電源3としては、例えば図7に示すような回路構成の電源3aが使用される。図7で、入力端子2a、2bに供給された交流入力電圧は入力側整流回路9で整流され、コンデンサ10、抵抗11で平滑されて直流電圧に変換される。12はコンデンサ10の充電用抵抗、13はコンデンサ10に過大な電圧が発生した場合に整流回路9の各ダイオードを保護するための分圧用バイパスコンデンサである。
【0005】
コンデンサ10の両端間の直流電圧がある一定の閾値レベルに達すると、双方向性サイリスタである例えばサイダック(Sidac、SSS)14が導通し、スイッチング素子であるサイリスタ15のゲートにトリガ電圧を供給してこれをターンオンする。サイリスタ15がターンオンすることにより昇圧変圧器16の1次巻線に電圧が供給されて、その2次側巻線に昇圧された電圧が発生する。昇圧された電圧は整流ダイオード17とコンデンサ18を含む出力側整流・平滑回路19で整流され、平滑される。この整流・平滑回路19中のコンデンサ18の充電が停止すると、変圧器16の1次巻線側ではサイダック14を流れる電流がなくなって該サイダック14はターンオフする。このとき変圧器16に残留しているエネルギはサイリスタ15に逆並列接続されたダイオード21を通って逆方向に流れる。このような動作を繰り返すことにより変圧器16の2次側に接続された整流・平滑回路19の出力に直流電圧が発生する。
【0006】
整流・平滑回路19のコンデンサ18が一定の高電圧に充電されて、該整流・平滑回路19の出力直流レベルがある閾値レベルを超過すると、火花間隙5aで火花放電が生じる。これによって出力端子20a、20b間に高周波高電圧が発生し、この電圧は結合コイル6aを介して図1の溶接電源1から供給される溶接電圧に加算(重畳)されてワーク(母材)7とトーチ(電極)8との間に印加される。これによって、この高周波高電圧電源3aは例えば溶接の始動時に上記ワーク7とトーチ8との間でアーク放電を開始させる。高周波高電圧の大きさは、火花間隙5aの間隙長を調整することにより調整される。
【0007】
火花間隙5aを設けるための火花間隙装置として従来は例えば図8に示すような構造の装置27が使用されていた。図8で、22a、22bは電極ホルダで、その先端には例えばタングステン電極23a、23bが取付けられている。電極ホルダ22a、22bは、電気絶縁物で作られた基台24上に設けられた電極取付け金具25a、25bにビス26a、26bで締め付けて固定されている。
【0008】
【発明が解決しようとする課題】
図8に示すような従来の火花間隙装置27では、間隙長を調整するためにはビス26a、26bの少なくとも一方を弛めて電極ホルダ22a、22bの少なくとも一方を前後させ、その後ビス26a、26bを締め付けていた。間隙長をさらに微調整するためには、上記の操作を繰り返す必要があり、所望の高周波高電圧を得るように間隙長を所定の値に微調整することは極めて困難であった。また、電極ホルダ22a、22bの交換、その後の間隙長の調整も同様に非常に面倒で困難であった。
【0009】
本発明は、火花間隙の間隙長の微調整が容易であり、また火花間隙装置の交換も非常に簡単に行なうことができる火花間隙装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の火花間隙装置は、全体の構造が例えばヒューズ・クリップのようなスプリング式の保持金具に着脱自在に装着することができるカートリッジ構造をなしており、耐熱性の電気絶縁性材料、例えば耐熱ガラス製の円筒状の電極ケーシングと、該電極ケーシングの端部に取付けられた導電性の筒状電極支持部とを有している。この電極支持部は、例えば上記電極ケーシングの各端部からその内部に侵入する筒状結合部を有し、その筒状結合部と上記電極ケーシングの内面との間でネジ結合することにより上記電極ケーシングの各端部に取付けられている。電極支持部の上記電極ケーシングから外方に突出する部分は当該火花間隙装置の取付部となっており、好ましくは上記電極ケーシングの径よりも小径に形成されている。これによって、この火花間隙装置は上記取付部をヒューズ・クリップのようなスプリング式の保持金具に挿入することにより回路中に接続される。少なくとも一方の側の筒状電極支持部の内側にはネジが切られていて、このネジと螺合してネジ棒状の電極ホルダが挿入されている。このネジ棒状電極ホルダの上記電極ケーシング内に位置する先端には例えばタングステン放電電極が取付けられており、外側の先端には、このネジ棒状電極ホルダを回転させて前後に移動させるためにスクリュー・ドライバーの差し込み溝を形成することができる。ネジ棒状電極ホルダと電極支持部の筒状結合部との間には、耐熱ゴムのような弾性材料で作られたOリング(オーリング)を装着することができる。これによってネジ棒状電極ホルダが不用意に回転するのを防止している。
【0011】
上記のように構成された本発明の火花間隙装置は、ネジ棒状の電極ホルダを外から例えばスクリュー・ドライバーで回転させて前後に移動させることにより、火花間隙長を容易に且つ極めて正確に微調整することができる。また、火花間隙装置の交換も容易である。
【0012】
【発明の実施の形態】
図1は高周波高電圧電源で使用される本発明の火花間隙装置28の一実施形態を示す一部を断面で示した図で、30は耐熱ガラスその他の耐熱性電気絶縁物で作られた円筒状の電極ケーシングで、その両端には導電性の筒状電極支持部31が取付けられている。電極ケーシング30の両端の内側と、電極支持部31の上記電極ケーシング内に侵入する筒状結合部32の外周にはネジ33が切られていて、両者はネジ結合している。電極支持部31のつば部分34は電極ケーシング30の端部に当接している。
【0013】
電極支持部31の電極ケーシング30の端部から外方に突出する部分は、好ましくは該電極ケーシング30の径よりも小径に作られており、当該火花間隙装置をヒューズ・クリップのようなスプリング式の保持金具に装着するための取付部35を構成している。電極ケーシング30の径の大きさによっては取付部35は電極ケーシング30と同径であってもよい。筒状取付部35の内面にはネジ棒状の電極ホルダ36がネジ37でネジ結合して挿入されている。電極ホルダ36の電極ケーシング30内に位置する先端部には例えばタングステン製の放電電極38が取付けられている。また、外側の先端にはスクリュー・ドライバーが挿入されるプラスまたはマイナスの溝39が形成されている。電極ホルダ36の電極ケーシング内に位置する部分の周囲には浅い環状の溝40が形成されており、この溝40の位置において電極ホルダ36と電極支持部31の筒状結合部32との間に耐熱ゴムのような耐熱性弾性材料で作られたOリング(オーリング)41が装着されている。このOリング41の摩擦力によりネジ棒状電極ホルダ36が不用意に回転するのを防止している。上記の実施の形態では、電極ケーシング30の両端に間隙長の調整を可能にしたネジ棒状の電極ホルダ36が設けられているが電極ケーシング30の一方の端部の電極ホルダのみを上述のような調整可能なネジ棒状電極ホルダ36を設ける構造にして、他方の端部の電極ホルダについてはこれを電極ケーシング30に調整不能に固定する構造にしてもよい。
【0014】
図2の(a)および(b)は本発明の火花間隙装置28が使用された高周波高電圧電源をプリント配線基板のよう回路基板上に組み立てた状態を極く概略的に示した正面図および側面図で、基板42の上面には各種の電子部品43が配置されており、裏面にはこの火花間隙装置28を取付けるためのヒューズ・クリップ形式のスプリング式保持金具44が設置されている。この保持金具44には図3の本発明の火花間隙装置28が、その取付部35を押し込むことにより取付けられている。図には示されていないが、感電を防止するために基板42の上面の全電子部品43を覆って絶縁物がモールドされている。また、基板42の裏面の配線、接続部分、火花間隙装置28が取付けられる部分の面上にも絶縁物が適当な厚みにモールドされている。電子部品43、火花間隙装置28が設けられた基板42は適当な取付け具(図示せず)により電源装置中の所定の個所に取付けられる。
【0015】
上記の火花間隙装置において、電極ホルダ36の溝39にスクリュー・ドライバーを差し込んでこれを回すことにより、電極の間隙長を簡単に且つ極めて正確に微調整することができるまた、Oリング41の弾性により電極ホルダ36は調整済み位置に保持され、間隙長が不用意に変化することはない。さらに、この発明の火花間隙装置は、放電電極38の消耗その他の理由で交換を要するときは、この火花間隙装置をスプリング式保持金具44から取り外して、新しい火花間隙装置をカートリッジ式に上記スプリング式保持金具44に押し込めばよく、交換が極めて容易である。
【0016】
図1及び2に示すような火花間隙装置を備えた高周波高電圧電源が使用された溶接用電源装置の例を図3乃至図5に示す。これらの各溶接用電源装置について簡単に説明する。
【0017】
図3に示す溶接用電源装置は、溶接電源100と図7に示すような構成の高周波高電圧電源3aとからなる。火花間隙装置として図1及び図2に示すものが使用されている。入力端子50a、50bに供給される入力交流電圧は入力側整流回路51で整流され、コンデンサ52a、52bで平滑されて直流電圧が生成される。生成された直流電圧は、直列接続されたIGBT53a、53bと、これらの各IGBTに逆並列接続されたダイオード54a、54bとにより構成された高周波変換器55、および高周波変圧器56により高周波の高電圧に変換される。上記高周波変換器55のIGBT53a、53bのオン−オフのスイッチングは高周波制御器57から供給される制御信号により制御される。高周波変圧器56の2次側巻線から取り出された高周波の高電圧は出力側整流回路58で整流され、生成された溶接用直流電圧はチョーク59、結合コイル60を経て出力端子61a、61bに供給される。結合コイル60には高周波高電圧電源3aからアーク放電起動用の高電圧が供給される。高周波高電圧電源3aには変圧器56の2次側から入力交流電圧が供給される。出力端子61a、61bは図6に示すようにワーク(母材)とトーチ(電極)に接続される。
【0018】
図4は溶接用電源装置の他の例で、この溶接用電源装置で使用される溶接電源200のうち図3の溶接電源100と同じまたは同等部分については同じ参照番号を付してその説明を省略する。高周波変換器55の出力高周波電圧は1対の高周波変圧器64a、64bで昇圧された後、出力側整流回路65で整流される。整流によって生成された直流電圧は例えば2個のIGBTを含む低周波変換器66で低周波電圧に変換される。低周波変換器66の各IGBTのオン−オフのスイッチングは、高周波制御器57によって制御される低周波制御器67から供給される制御信号により制御される。溶接用の低周波電圧は結合コイル60で高周波高電圧電源3aから供給されるアーク放電起動用の高周波高電圧と加算(重畳)されて出力端子61a、61bに供給される。出力端子61a、61bはワーク(母材)とトーチ(電極)に接続されることは図3の例と同様である。
【0019】
図5は溶接用電源装置のさらに他の例で、この溶接用電源装置で使用される溶接電源300のうち図3および図4の各溶接電源と同じまたは同等部分については同じ参照番号を付してその説明を省略する。入力端子70に供給される例えば3相の入力交流電圧は入力側整流回路51で整流され、コンデンサ72a〜74a、72b〜74bを含む各平滑回路で平滑されて直流化される。生成された各直流電圧は、それぞれ直列接続された2個のIGBTとこれらの各IGBTに逆並列接続されたダイオードとにより構成された高周波変換器75a、75b、および高周波変圧器64a、64bにより高周波の高電圧に変換される。各高周波変圧器64a、64bの各出力高周波高電圧は出力側整流回路58で整流され、生成された溶接用直流電圧はチョーク59、結合コイル60を経て、高周波高電圧電源3aから供給されるアーク放電起動用の高周波高電圧と加算(重畳)されて出力端子61a、61bに供給される。出力端子61a、61bはワーク(母材)とトーチ(電極)に接続されることは云うまでもない。
【0020】
【発明の効果】
本発明の高周波高電圧電源で使用される火花間隙装置は、スクリュー・ドライバーでネジ棒状の電極ホルダを回すことにより、放電電極38相互間の間隙長を極めて簡単にしかも正確に微調整することができる。また、この火花間隙装置は、カートリッジ式にヒューズ・クリップのようなスプリング式の保持金具44に簡単に着脱することができるから、交換、点検等の作業が容易である。よって、特に溶接用電源装置で使用される高周波高電圧電源の火花間隙装置として最適である。
【図面の簡単な説明】
【図1】本発明の火花間隙装置の一実施形態を、その一部を断面で示した側面図である。
【図2】図2(a)は図1に示す本発明の火花間隙装置を使用した高周波高電圧電源をプリント配線基板のような基板に構成した状態を概略的に示した正面図であり、図2(b)はその概略側面図である。
【図3】溶接電源と高周波高電圧電源を含む溶接用電源装置の第1の例を示した概略回路図である。
【図4】溶接電源と高周波高電圧電源を含む溶接用電源装置の第2の例を示した概略回路図である。
【図5】溶接電源と高周波高電圧電源を含む溶接用電源装置の第3の例を示した概略回路図である。
【図6】溶接電源と高周波高電圧電源とを含む溶接用電源装置の一例を一部をブロック図の形で示した概略回路図である。
【図7】溶接用電源装置で使用される高周波高電圧電源の一例を示した回路図である。
【図8】図7のような高周波高電圧電源で使用される従来の火花間隙装置の一例を示した側面図である。
【符号の説明】
30 電極ケーシング
31 筒状電極支持部
32 筒状結合部
33 ネジ
35 取付部
36 ネジ棒状電極ホルダ
37 ネジ
38 タングステン電極
39 スクリュー・ドライバー差し込み溝
40 溝
41 Oリング
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a spark gap device used for a high-frequency high-voltage power supply in a power supply device such as an arc welding machine, a plasma arc welding machine, an arc cutting machine, and a plasma arc cutting machine.
[0002]
[Prior art]
For example, in a TIG (Tungsten Inert Gas) welding machine, a tungsten electrode is used as a non-melting electrode, and therefore, in order to prevent the electrode from being worn, the arc is not brought into contact with the electrode and the workpiece (base material). It is usually done with For this reason, a welding power supply device used in such a welding machine employs a method in which a high-frequency high voltage is applied between an electrode and a work, and an arc is started by the high-frequency high voltage.
[0003]
FIG. 6 is a diagram schematically showing the configuration and principle of a high-frequency high-voltage power supply used in a power supply device for welding. A welding power supply 1 for generating a welding voltage includes an input AC supplied to input terminals 2a and 2b. The voltage is boosted to generate a DC or AC welding voltage. The high-frequency high-voltage power supply 3 generates a high-frequency high voltage by boosting an input AC voltage supplied to the input terminals 2a and 2b with a step-up transformer 4 and discharging the voltage in a spark gap 5 of a spark gap device. This high-frequency high voltage is added (superimposed) to the welding voltage of the welding power source 1 by the coupling coil 6 and applied between the work (base material) 7 and the torch (electrode) 8, thereby welding between them. For the arc discharge to start. FIG. 1 shows an example in which the input AC voltage of the high-frequency high-voltage power supply 3 is supplied from the input side of the welding power supply 1, but the input voltage of the high-frequency high-voltage power supply may be obtained from the output side of the welding power supply 1. It is possible.
[0004]
As the high-frequency high-voltage power supply 3 used in the welding power supply device as shown in FIG. 6, for example, a power supply 3a having a circuit configuration as shown in FIG. 7 is used. In FIG. 7, the AC input voltage supplied to the input terminals 2a and 2b is rectified by the input side rectifier circuit 9, is smoothed by the capacitor 10 and the resistor 11, and is converted into a DC voltage. Reference numeral 12 denotes a charging resistor of the capacitor 10, and reference numeral 13 denotes a voltage dividing bypass capacitor for protecting each diode of the rectifier circuit 9 when an excessive voltage is generated in the capacitor 10.
[0005]
When the DC voltage between both ends of the capacitor 10 reaches a certain threshold level, for example, a bidirectional thyristor (Sidac, SSS) 14, for example, conducts and supplies a trigger voltage to the gate of a thyristor 15 as a switching element. Turn it on. When the thyristor 15 is turned on, a voltage is supplied to the primary winding of the step-up transformer 16, and a boosted voltage is generated in the secondary winding. The boosted voltage is rectified and smoothed by an output-side rectification / smoothing circuit 19 including a rectifier diode 17 and a capacitor 18. When the charging of the capacitor 18 in the rectifying / smoothing circuit 19 stops, the current flowing through the Sidac 14 on the primary winding side of the transformer 16 disappears, and the Sidac 14 is turned off. At this time, the energy remaining in the transformer 16 flows in the opposite direction through the diode 21 connected in antiparallel to the thyristor 15. By repeating such an operation, a DC voltage is generated at the output of the rectifying / smoothing circuit 19 connected to the secondary side of the transformer 16.
[0006]
When the capacitor 18 of the rectification / smoothing circuit 19 is charged to a certain high voltage and the output DC level of the rectification / smoothing circuit 19 exceeds a certain threshold level, a spark discharge occurs in the spark gap 5a. As a result, a high-frequency high voltage is generated between the output terminals 20a and 20b, and this voltage is added (superimposed) to the welding voltage supplied from the welding power source 1 in FIG. And torch (electrode) 8. Thereby, the high-frequency high-voltage power supply 3a starts an arc discharge between the work 7 and the torch 8, for example, at the start of welding. The magnitude of the high frequency high voltage is adjusted by adjusting the gap length of the spark gap 5a.
[0007]
Conventionally, as a spark gap device for providing the spark gap 5a, for example, a device 27 having a structure as shown in FIG. 8 has been used. In FIG. 8, reference numerals 22a and 22b denote electrode holders, and for example, tungsten electrodes 23a and 23b are attached to the tips thereof. The electrode holders 22a and 22b are fixed to electrode mounting brackets 25a and 25b provided on a base 24 made of an electrical insulator by tightening screws 26a and 26b.
[0008]
[Problems to be solved by the invention]
In the conventional spark gap device 27 as shown in FIG. 8, in order to adjust the gap length, at least one of the screws 26a, 26b is loosened to move at least one of the electrode holders 22a, 22b back and forth, and then the screws 26a, 26b Had been tightened. In order to further fine-tune the gap length, it is necessary to repeat the above operation, and it has been extremely difficult to fine-tune the gap length to a predetermined value so as to obtain a desired high-frequency high voltage. In addition, replacement of the electrode holders 22a and 22b and subsequent adjustment of the gap length were also very troublesome and difficult.
[0009]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a spark gap device in which fine adjustment of a gap length of a spark gap is easy and replacement of the spark gap device can be performed very easily.
[0010]
[Means for Solving the Problems]
The spark gap device of the present invention has a cartridge structure whose entire structure can be detachably mounted on a spring-type holding bracket such as a fuse clip, and is made of a heat-resistant electrically insulating material such as a heat-resistant material. It has a cylindrical electrode casing made of glass and a conductive tubular electrode support attached to an end of the electrode casing. The electrode support portion has, for example, a cylindrical coupling portion that enters the inside from each end of the electrode casing, and the electrode coupling portion is screw-connected between the cylindrical coupling portion and the inner surface of the electrode casing. Attached to each end of the casing. A portion of the electrode support projecting outward from the electrode casing serves as a mounting portion for the spark gap device, and is preferably formed to have a smaller diameter than the diameter of the electrode casing. The spark gap device is thereby connected into the circuit by inserting the mounting into a spring-type holding fitting such as a fuse clip. A screw is cut inside at least one of the cylindrical electrode support portions, and a screw rod-shaped electrode holder is inserted by screwing with the screw. For example, a tungsten discharge electrode is attached to the tip of the screw rod-shaped electrode holder located in the electrode casing, and a screw driver is mounted on the outer tip to rotate and move the screw rod-shaped electrode holder back and forth. Can be formed. An O-ring (O-ring) made of an elastic material such as heat-resistant rubber can be mounted between the threaded rod-shaped electrode holder and the cylindrical coupling portion of the electrode support. This prevents careless rotation of the screw rod electrode holder.
[0011]
The spark gap device of the present invention configured as described above is capable of finely adjusting the spark gap length easily and extremely accurately by rotating the screw rod-shaped electrode holder from the outside by, for example, a screwdriver and moving it back and forth. can do. In addition, it is easy to replace the spark gap device.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a partial cross-sectional view showing one embodiment of a spark gap device 28 of the present invention used in a high-frequency high-voltage power supply, and 30 is a cylinder made of heat-resistant glass or other heat-resistant electrical insulator. A conductive tubular electrode support 31 is attached to both ends of the electrode casing. Screws 33 are cut on the inside of both ends of the electrode casing 30 and the outer periphery of the cylindrical connecting portion 32 of the electrode supporting portion 31 that enters the electrode casing, and both are screw-connected. The collar portion 34 of the electrode support 31 is in contact with the end of the electrode casing 30.
[0013]
The portion of the electrode support 31 that protrudes outward from the end of the electrode casing 30 is preferably made smaller in diameter than the diameter of the electrode casing 30 so that the spark gap device can be connected to a spring-type device such as a fuse clip. And a mounting portion 35 for mounting on the holding bracket. The mounting portion 35 may have the same diameter as the electrode casing 30 depending on the diameter of the electrode casing 30. A screw rod-shaped electrode holder 36 is inserted into the inner surface of the cylindrical mounting portion 35 by screw connection with screws 37. A discharge electrode 38 made of, for example, tungsten is attached to a tip portion of the electrode holder 36 located inside the electrode casing 30. A plus or minus groove 39 into which a screw driver is inserted is formed at the outer end. A shallow annular groove 40 is formed around the portion of the electrode holder 36 located in the electrode casing, and between the electrode holder 36 and the cylindrical coupling portion 32 of the electrode support 31 at the position of the groove 40. An O-ring 41 made of a heat-resistant elastic material such as heat-resistant rubber is mounted. The frictional force of the O-ring 41 prevents the screw rod-shaped electrode holder 36 from rotating carelessly. In the above-described embodiment, the threaded rod-shaped electrode holder 36 capable of adjusting the gap length is provided at both ends of the electrode casing 30, but only the electrode holder at one end of the electrode casing 30 is provided as described above. The structure may be such that the adjustable screw rod electrode holder 36 is provided, and the electrode holder at the other end is fixed to the electrode casing 30 so as not to be adjustable.
[0014]
2A and 2B are front views schematically showing a high-frequency high-voltage power supply using the spark gap device 28 of the present invention assembled on a circuit board such as a printed wiring board. In the side view, various electronic components 43 are disposed on the upper surface of the substrate 42, and a spring-type holding bracket 44 of a fuse clip type for mounting the spark gap device 28 is provided on the rear surface. The spark gap device 28 of the present invention shown in FIG. 3 is attached to the holding fitting 44 by pushing in the attachment portion 35. Although not shown in the figure, an insulator is molded over all the electronic components 43 on the upper surface of the substrate 42 to prevent electric shock. Also, an insulator is molded to an appropriate thickness on the surface of the wiring and connection portion on the back surface of the substrate 42 and the portion where the spark gap device 28 is attached. The substrate 42 provided with the electronic components 43 and the spark gap device 28 is mounted at a predetermined position in the power supply device by a suitable mounting tool (not shown).
[0015]
In the spark gap device described above, by inserting a screw driver into the groove 39 of the electrode holder 36 and turning the screw driver, the gap length of the electrode can be finely adjusted easily and very accurately. Thus, the electrode holder 36 is held at the adjusted position, and the gap length does not change carelessly. Further, when the spark gap device of the present invention needs to be replaced due to wear of the discharge electrode 38 or other reasons, the spark gap device is detached from the spring-type holding fitting 44, and a new spark gap device is cartridge-type and the above-described spring type device is used. What is necessary is just to push in the holding | maintenance metal fittings 44, and exchange is extremely easy.
[0016]
FIGS. 3 to 5 show examples of a welding power supply device using a high-frequency high-voltage power supply provided with a spark gap device as shown in FIGS. Each of these welding power supply devices will be briefly described.
[0017]
The welding power supply device shown in FIG. 3 includes a welding power supply 100 and a high-frequency high-voltage power supply 3a having a configuration as shown in FIG. The spark gap device shown in FIGS. 1 and 2 is used. The input AC voltage supplied to the input terminals 50a and 50b is rectified by the input side rectifier circuit 51 and smoothed by the capacitors 52a and 52b to generate a DC voltage. The generated DC voltage is applied to a high-frequency high voltage by a high-frequency converter 55 and a high-frequency transformer 56 composed of IGBTs 53a and 53b connected in series and diodes 54a and 54b connected in anti-parallel to these IGBTs. Is converted to The on / off switching of the IGBTs 53a and 53b of the high-frequency converter 55 is controlled by a control signal supplied from the high-frequency controller 57. The high-frequency high voltage extracted from the secondary winding of the high-frequency transformer 56 is rectified by the output-side rectifier circuit 58, and the generated welding DC voltage is supplied to the output terminals 61a and 61b via the choke 59 and the coupling coil 60. Supplied. A high voltage for starting arc discharge is supplied to the coupling coil 60 from the high-frequency high-voltage power supply 3a. An input AC voltage is supplied from the secondary side of the transformer 56 to the high-frequency high-voltage power supply 3a. The output terminals 61a and 61b are connected to a work (base material) and a torch (electrode) as shown in FIG.
[0018]
FIG. 4 shows another example of the welding power supply device. In the welding power supply 200 used in this welding power supply device, the same or equivalent parts as those of the welding power supply 100 of FIG. Omitted. The output high-frequency voltage of the high-frequency converter 55 is boosted by a pair of high-frequency transformers 64a and 64b, and then rectified by an output-side rectifier circuit 65. The DC voltage generated by the rectification is converted to a low frequency voltage by a low frequency converter 66 including, for example, two IGBTs. The on / off switching of each IGBT of the low frequency converter 66 is controlled by a control signal supplied from a low frequency controller 67 controlled by a high frequency controller 57. The low frequency voltage for welding is added (superimposed) with the high frequency high voltage for starting arc discharge supplied from the high frequency high voltage power supply 3a by the coupling coil 60 and supplied to the output terminals 61a and 61b. The output terminals 61a and 61b are connected to a work (base material) and a torch (electrode) as in the example of FIG.
[0019]
FIG. 5 shows still another example of the welding power supply. In the welding power supply 300 used in this welding power supply, the same reference numerals are given to the same or equivalent parts as the welding power supplies in FIGS. 3 and 4. The description is omitted. For example, a three-phase input AC voltage supplied to the input terminal 70 is rectified by the input-side rectifier circuit 51, smoothed by each smoothing circuit including the capacitors 72a to 74a, 72b to 74b, and converted to DC. Each of the generated DC voltages is converted to a high frequency by a high frequency converter 75a, 75b and a high frequency transformer 64a, 64b each composed of two IGBTs connected in series and diodes connected in anti-parallel to each of the IGBTs. Is converted to a high voltage. Each output high frequency high voltage of each high frequency transformer 64a, 64b is rectified by the output side rectifier circuit 58, and the generated welding DC voltage passes through the choke 59 and the coupling coil 60, and is supplied from the high frequency high voltage power supply 3a to the arc. It is added (superimposed) with the high frequency high voltage for starting discharge and supplied to the output terminals 61a and 61b. It goes without saying that the output terminals 61a and 61b are connected to a work (base material) and a torch (electrode).
[0020]
【The invention's effect】
The spark gap device used in the high-frequency high-voltage power supply of the present invention makes it possible to finely adjust the gap length between the discharge electrodes 38 very easily and accurately by turning a screw rod-shaped electrode holder with a screw driver. it can. Further, since the spark gap device can be easily attached to and detached from the spring-type holding bracket 44 such as a fuse clip in a cartridge type, operations such as replacement and inspection are easy. Therefore, it is particularly suitable as a spark gap device for a high-frequency high-voltage power supply used in a power supply device for welding.
[Brief description of the drawings]
FIG. 1 is a side view showing a part of a spark gap device according to an embodiment of the present invention in cross section.
FIG. 2A is a front view schematically showing a state in which a high-frequency high-voltage power supply using the spark gap device of the present invention shown in FIG. 1 is configured on a substrate such as a printed wiring board; FIG. 2B is a schematic side view thereof.
FIG. 3 is a schematic circuit diagram showing a first example of a welding power supply including a welding power supply and a high-frequency high-voltage power supply.
FIG. 4 is a schematic circuit diagram showing a second example of a welding power supply including a welding power supply and a high-frequency high-voltage power supply.
FIG. 5 is a schematic circuit diagram showing a third example of a welding power supply including a welding power supply and a high-frequency high-voltage power supply.
FIG. 6 is a schematic circuit diagram partially showing an example of a welding power supply device including a welding power supply and a high-frequency high-voltage power supply in the form of a block diagram.
FIG. 7 is a circuit diagram showing an example of a high-frequency high-voltage power supply used in a power supply device for welding.
8 is a side view showing an example of a conventional spark gap device used in a high-frequency high-voltage power supply as shown in FIG.
[Explanation of symbols]
Reference Signs List 30 electrode casing 31 cylindrical electrode support part 32 cylindrical coupling part 33 screw 35 mounting part 36 screw rod electrode holder 37 screw 38 tungsten electrode 39 screw driver insertion groove 40 groove 41 O-ring

Claims (7)

アーク放電を生じさせるための電源装置中の高周波高電圧電源で使用される火花間隙装置であって、
耐熱性の電気絶縁性材料で形成された円筒状の電極ケーシングと、
上記電極ケーシングの両端部に取付けられていて、上記電極ケーシングから外方に突出する部分が当該火花間隙装置の取付部を構成する対をなす導電性の筒状電極支持部と、
上記電極支持部の少なくとも一方の内部にネジ結合して配置されていて、その上記電極ケーシング中に位置する先端部に放電電極が取付けられたネジ棒状の導電性電極ホルダと、
からなり、
上記ネジ棒状の電極ホルダを外部から回転させることにより、上記電極ホルダは前進または後退して放電電極相互間の火花間隙長が調整される、上記火花間隙装置。
A spark gap device used in a high-frequency high-voltage power supply in a power supply for generating an arc discharge,
A cylindrical electrode casing formed of a heat-resistant electrically insulating material;
A pair of conductive cylindrical electrode supporting portions that are attached to both ends of the electrode casing and project outward from the electrode casing constitute a mounting portion of the spark gap device,
A threaded rod-shaped conductive electrode holder, which is arranged by screw connection inside at least one of the electrode support portions and a discharge electrode is attached to a tip portion located in the electrode casing,
Consisting of
The spark gap device according to the above spark gap device, wherein by rotating the screw rod-shaped electrode holder from the outside, the electrode holder moves forward or backward to adjust a spark gap length between the discharge electrodes.
上記電極ホルダの外側の端部にはスクリュー・ドライバーが挿入される溝が形成されていることを特徴とする、請求項1に記載の火花間隙装置。The spark gap device according to claim 1, wherein a groove into which a screw driver is inserted is formed at an outer end of the electrode holder. 上記筒状電極支持部は、上記電極ケーシングの各端部からその内部に侵入する筒状結合部を有し、その筒状結合部と上記電極ケーシングの内面との間でネジ結合することにより上記電極ケーシングの各端部に取付けられていることを特徴とする、請求項1または2に記載の火花間隙装置。The cylindrical electrode support portion has a cylindrical coupling portion that enters the inside from each end of the electrode casing, and is screw-connected between the cylindrical coupling portion and the inner surface of the electrode casing. The spark gap device according to claim 1, wherein the spark gap device is attached to each end of the electrode casing. 上記筒状電極支持部の上記電極ケーシングから外方に突出する部分は該電極ケーシングの径よりも小径に形成されていて当該火花間隙装置の取付部を構成していることを特徴とする、請求項1乃至3のいずれかに記載の火花間隙装置。The portion of the cylindrical electrode support projecting outward from the electrode casing is formed to have a diameter smaller than the diameter of the electrode casing, and constitutes a mounting portion of the spark gap device. Item 4. The spark gap device according to any one of Items 1 to 3. 上記電極ホルダの上記電極ケーシング内に位置している部分と上記筒状電極支持部の筒状結合部との間に耐熱性の弾性Oリング(オーリング)が設けられていることを特徴とする、請求項3または4に記載の火花間隙装置。A heat-resistant elastic O-ring (O-ring) is provided between a portion of the electrode holder located in the electrode casing and a cylindrical coupling portion of the cylindrical electrode support. The spark gap device according to claim 3 or 4. 上記高周波高電圧電源は、入力交流電圧を整流・平滑して直流電圧を生成する入力側整流・平滑回路と、生成された直流電圧が所定の一定レベルに達すると導通して、サイリスタとこれに逆並列に接続されたダイオードとを含むスイッチング回路にトリガ信号を供給する双方向性サイリスタと、上記スイッチング回路のオン−オフ動作により生成された交流電圧を昇圧する変圧器と、該変圧器により昇圧された交流電圧を整流・平滑して直流電圧を生成する出力側整流・平滑回路とを有し、
上記出力側整流・平滑回路によって生成された直流電圧が供給される請求項1乃至5のいずれかに記載の火花間隙装置。
The high-frequency high-voltage power supply has an input-side rectification / smoothing circuit that rectifies and smoothes an input AC voltage to generate a DC voltage, and conducts when the generated DC voltage reaches a predetermined constant level, and a thyristor and A bidirectional thyristor for supplying a trigger signal to a switching circuit including a diode connected in anti-parallel; a transformer for boosting an AC voltage generated by the on-off operation of the switching circuit; Rectifying / smoothing circuit that rectifies and smoothes the applied AC voltage to generate a DC voltage,
The spark gap device according to any one of claims 1 to 5, wherein a DC voltage generated by the output-side rectification / smoothing circuit is supplied.
高周波高電圧電源が構成される基板にヒューズ・クリップ形式のスプリング式保持金具が設けられており、この保持金具に取付部を押し込むことにより、上記高周波高電圧電源の回路中に配置される、請求項1乃至6のいずれかに記載の火花間隙装置。A spring-type holding fixture of a fuse / clip type is provided on a substrate on which the high-frequency high-voltage power supply is configured, and the mounting part is pushed into the holding fixture to be arranged in the circuit of the high-frequency high-voltage power supply. Item 7. The spark gap device according to any one of Items 1 to 6.
JP2002285217A 2002-09-30 2002-09-30 High voltage power supply spark gap device Expired - Lifetime JP4173984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285217A JP4173984B2 (en) 2002-09-30 2002-09-30 High voltage power supply spark gap device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285217A JP4173984B2 (en) 2002-09-30 2002-09-30 High voltage power supply spark gap device

Publications (2)

Publication Number Publication Date
JP2004119352A true JP2004119352A (en) 2004-04-15
JP4173984B2 JP4173984B2 (en) 2008-10-29

Family

ID=32278578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285217A Expired - Lifetime JP4173984B2 (en) 2002-09-30 2002-09-30 High voltage power supply spark gap device

Country Status (1)

Country Link
JP (1) JP4173984B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014405A (en) * 2004-06-22 2006-01-12 Sansha Electric Mfg Co Ltd High-frequency starter structure in power unit for welder
GB2471899A (en) * 2009-07-17 2011-01-19 Dynamic Dinosaurs Bv An electrode assembly for an electrical discharge acoustic source.
WO2015015759A1 (en) * 2013-07-31 2015-02-05 パナソニックIpマネジメント株式会社 Electric discharge machining system
CN105191111A (en) * 2013-07-31 2015-12-23 松下知识产权经营株式会社 High-frequency generation device, and electric-discharge-machining power supply device
PL423839A1 (en) * 2017-12-11 2019-06-17 Netrix Spółka Akcyjna Measuring electrode with fastening, for application in the electric impedance tomography

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014405A (en) * 2004-06-22 2006-01-12 Sansha Electric Mfg Co Ltd High-frequency starter structure in power unit for welder
JP4568037B2 (en) * 2004-06-22 2010-10-27 株式会社三社電機製作所 High frequency starter structure in power supply for welding machine
GB2471899A (en) * 2009-07-17 2011-01-19 Dynamic Dinosaurs Bv An electrode assembly for an electrical discharge acoustic source.
WO2015015759A1 (en) * 2013-07-31 2015-02-05 パナソニックIpマネジメント株式会社 Electric discharge machining system
CN105191111A (en) * 2013-07-31 2015-12-23 松下知识产权经营株式会社 High-frequency generation device, and electric-discharge-machining power supply device
CN105431248A (en) * 2013-07-31 2016-03-23 松下知识产权经营株式会社 Electric discharge machining system
CN105191111B (en) * 2013-07-31 2019-04-12 松下知识产权经营株式会社 High frequency generation device and discharge processing power source device
PL423839A1 (en) * 2017-12-11 2019-06-17 Netrix Spółka Akcyjna Measuring electrode with fastening, for application in the electric impedance tomography

Also Published As

Publication number Publication date
JP4173984B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
EP2161801B1 (en) Ablative plasma gun and dual power source pulse generator fo a triggering system
GB2333616A (en) Control of welding
KR920006759B1 (en) System for supplying power
JP4173984B2 (en) High voltage power supply spark gap device
US8129659B2 (en) Apparatus having DC arc start in parallel with welder power supply
KR100264307B1 (en) A method and apparatus for starting the arc
CN107538106B (en) Arc maintaining device of welding machine
JP2004249331A (en) Arc welding machine
JP6221075B2 (en) High frequency generator and electric discharge machining power supply device
US3614373A (en) Method and apparatus for electrically depositing metal
US2558102A (en) Arc welding system
JPS63309373A (en) Arc welding source
JP6260007B2 (en) EDM system
JPH0474112B2 (en)
ATE271950T1 (en) IMPROVED WELDING EQUIPMENT AND WELDING PROCESS
JP3999323B2 (en) Arc processing equipment
JP6958785B2 (en) Shielded metal arc welding system and welding power supply for shielded metal arc welding
JP6712967B2 (en) Welding machine
KR200321780Y1 (en) Power Factor Compensation Circuit of Arc Welding Machine
KR200236717Y1 (en) Portable welding apparatus have a electrode holder
JPS5834833B2 (en) flash device
KR950001779B1 (en) Source of electric power of plasma welding torch
JP2005019266A (en) Power supply circuit for discharge lamp including power factor control circuit
FI89248C (en) Method of providing an auxiliary arc in plasma welding and auxiliary power source for use in the method
KR100257863B1 (en) Plasma torch unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4173984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term