JP2004119160A - Separator for storage battery - Google Patents

Separator for storage battery Download PDF

Info

Publication number
JP2004119160A
JP2004119160A JP2002279883A JP2002279883A JP2004119160A JP 2004119160 A JP2004119160 A JP 2004119160A JP 2002279883 A JP2002279883 A JP 2002279883A JP 2002279883 A JP2002279883 A JP 2002279883A JP 2004119160 A JP2004119160 A JP 2004119160A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
separator
glass
storage battery
resin sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002279883A
Other languages
Japanese (ja)
Inventor
Yoshiaki Oishi
大石 嘉明
Tadamasa Wada
和田 忠正
Hidemasa Tomi
富 英正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP2002279883A priority Critical patent/JP2004119160A/en
Publication of JP2004119160A publication Critical patent/JP2004119160A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a storage battery in which oxidation resistance can be improved and yield is superior, and in which manufacturing is easily possible without laminating glass mats with respect to the separator for the storage battery composed of a thermoplastic resin sheet with fine-porosity wherein main components are thermoplastic resin and inorganic powders. <P>SOLUTION: This is the separator for the storage battery composed of the thermoplastic resin sheet with the fine-porosity wherein the main components are the thermoplastic resin and the inorganic powders, and glass flakes are contained in the thermoplastic resin sheet. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、蓄電池用セパレータに関するもので、更に詳しくは、熱可塑性樹脂と無機粉体とを主成分とする微多孔性の熱可塑性樹脂シートからなる蓄電池用セパレータの耐酸化性の改良に関するものである。
【0002】
【従来の技術】
従来、熱可塑性樹脂と無機粉体とを主成分とする微多孔性の熱可塑性樹脂シートからなるリーフ状、袋状等の蓄電池用セパレータは公知であるが、鉛蓄電池に組み込んで使用する間に陽極板から発生する発生期の酸素や陽極活物質である二酸化鉛の酸化力によってセパレータが酸化劣化して、穴あきなどの損傷を受け、その結果、鉛蓄電池が短寿命になる等の問題があり、特に、100〜110℃の高温下で、深い放電が繰り返される場合に、その短寿命化は顕著なものであった。
かかる問題を解消するものとして、例えば、特開昭54−143826号公報に開示されるように、熱可塑性樹脂シートの片面にその溶融状態のうちにガラスマットを貼り合わせることで、耐酸化性を向上させるようにしたものが提案されているが、熱可塑性樹脂とガラスマットの接着性が悪いために、熱可塑性樹脂シートの片面にその溶融状態のうちにガラスマットを貼り合わせる必要があるため、その製造は面倒かつ困難なものであった。また、その接着性もかならずしも十分なものではなく、信頼性の向上が望まれていた。
このような、熱可塑性樹脂とガラスマットの接着性の問題を解決するために、種々提案されているが、特開平4−190554号公報において、熱可塑性樹脂シートにガラス繊維を含ませることで、耐酸化性を向上させることが提案されている。
【0003】
【発明が解決しようとする課題】
特開平4−190554号公報において提案の蓄電池用セパレータは、ガラスマットを用いないため、接着性の問題を根本的に解消することができたが、熱可塑性樹脂シート中にガラス繊維を均一に分散させることは非常に難しく、それでもなお分散性を改善しようとすると製造に手間がかかり生産性を大幅に落とす結果となってしまう。また、分散性の改善と言ってもガラス繊維の分散の均一性には限界があるため、品質の安定したものを供給することはできなかった。また、電池に組み込んだセパレータが寿命に至る場合、セパレータに強い酸化力が加わると、薄肉セパレータの局部的に弱い箇所(通常は、局部的にやや厚さが薄くなっている箇所や、局部的にやや材料の混ざり具合が悪い箇所など)があると、まずそこが最初に傷み始め経時的に穴が空いてその箇所からショートに至る。つまり、セパレータが寿命に至る場合では、セパレータのシート全体の中で1箇所でも局部的に弱い箇所が存在するとそれだけで寿命に至ってしまうのである。このことから、耐酸化性を向上させる目的で、せっかく熱可塑性樹脂シート中にガラス繊維を含ませても、その分散性が均一でないと、つまり、1箇所でも、ガラス繊維が分散されていない箇所が存在すると、その箇所は、局部的に見れば、ガラス繊維を含ませていない従来の熱可塑性樹脂シートと何ら変わらない材質の箇所となることから、シート全体の中の局部的な弱い箇所を作ってしまうことになり、その箇所から穴が空いてショートに至ることになり、せっかくガラス繊維を含ませたにも拘わらずその本来の効果を発揮できないことになる。
そこで、本発明は、このような従来の問題点に鑑みなされた発明であって、熱可塑性樹脂と無機粉体とを主成分とする微多孔性の熱可塑性樹脂シートからなる蓄電池用セパレータに関して、ガラスマットを積層することなく耐酸化性の向上が図れ、しかも歩留まりが良好で容易に製造可能な蓄電池用セパレータを提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者らは、上記課題を解決するべく、鋭意検討の結果、ガラス繊維の代わりにガラスフレークを用いることで、ガラスフレークを熱可塑性樹脂シート中に容易に均一に分散させることが可能であることを見出し本発明を完成するに至った。すなわち、本発明の蓄電池用セパレータは、前記目的を達成するべく、請求項1記載の通り、熱可塑性樹脂と無機粉体とを主成分とする微多孔性の熱可塑性樹脂シートからなる蓄電池用セパレータであって、前記熱可塑性樹脂シートにガラスフレークを含ませてなることを特徴とする。
また、請求項2記載の蓄電池用セパレータは、請求項1記載の蓄電池用セパレータにおいて、前記ガラスフレークを、ガラスフレークを含む前記熱可塑性樹脂シート中の前記無機粉体と前記ガラスフレークとの合計量に対して5〜50質量%含ませてなることを特徴とする。
また、請求項3記載の蓄電池用セパレータは、請求項2記載の蓄電池用セパレータにおいて、前記熱可塑性樹脂が20〜60質量%、前記無機粉体と前記ガラスフレークとの合計量が80〜40質量%であることを特徴とする。
また、請求項4記載の蓄電池用セパレータは、請求項1乃至3の何れかに記載の蓄電池用セパレータにおいて、前記ガラスフレークが、平均粒径1〜50μmでCガラス組成のガラスフレークであることを特徴とする。
【0005】
【発明の実施の形態】
本発明の蓄電池用セパレータは、熱可塑性樹脂と無機粉体とを主成分とする微多孔性の熱可塑性樹脂シートからなる蓄電池用セパレータの、前記熱可塑性樹脂シートにガラスフレークを含ませる必要がある。
ガラスフレークは、ガラス繊維に比して熱可塑性樹脂シートの製造時における分散性に優れることから、熱可塑性樹脂シート中に簡単に、均一に分散させることができるようになる。また、同量を添加した場合にセパレータに与える耐酸化性向上効果も、ガラス繊維に比して、何等遜色のないものが得られる。
【0006】
このような条件を満たす前記ガラスフレークとしては、平均粒径1〜50μmでCガラス組成のガラスフレークが好ましい。
【0007】
本発明の蓄電池用セパレータは、通常、前記熱可塑性樹脂と前記無機粉体と前記ガラスフレークと可塑剤とからなる4者の混合原料組成物を先端にTダイを取り付けた押出機により加熱溶融混練しながら、シート状に押し出すとともにローラ圧延により所望の形状に成形して前記組成物よりなるゲル状フィルムを得、次いで該ゲル状フィルムを適当な溶剤中に浸漬して該ゲル状フィルム中の前記可塑剤の一部または全量を抽出除去して該フィルムに微多孔性を付与せしめた後、溶剤を乾燥除去することによって得られる。なお、可塑剤は、押出機による混練開始前に予め他の原料と混合しておくことが望ましいが、補助的に溶融混練中の押出機の途中で添加する方式も併用することができる。なお、必要に応じて、前記組成物中に親水性付与のための界面活性剤や、耐酸化性向上のための抗酸化剤を添加するようにしてもよい。
【0008】
前記熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等のポリオレフィン中から選択できるが、これらの熱可塑性樹脂を単独で用いてもよいし、2種以上を混合して用いてもよい。これらの中で側鎖を持たず酸化劣化を生じ難い点よりポリエチレン樹脂の単独使用が特に好ましい。前記ポリエチレンとしては、重量平均分子量が50万以上である超高分子量ポリエチレンを用いることができ、特に、重量平均分子量が100万以上の高密度ポリエチレンを使用することが好ましい。この場合、重量平均分子量の異なる樹脂を混合して重量平均分子量が100万以上として使用することも可能である。
【0009】
前記無機粉体としては、シリカ、チタニア、アルミナ等の無機粉体の中より選択される1種または2種以上の混合物が使用できるが、比較的安価で不純物が少ないことよりシリカが好ましい。
【0010】
前記可塑剤としては、パラフィン系、ナフテン系等の工業用潤滑油、あるいは、フタル酸ジオクチル等のエステル系可塑剤が使用できるが、環境負荷が少ない点や入手が容易な点等からパラフィン系オイルの使用が好ましい。なお、該パラフィン系オイルは、前記のように、押出時の混合原料組成物中に可塑剤として添加され、その後ゲル状フィルムの微多孔質化のためにその一部または全量を除去されるが、通常は、微多孔性フィルム中に5〜30質量%を残留させ、微多孔性フィルムの内外表面を被覆させることで耐酸化性を付与させるようにするのがよい。
【0011】
前記熱可塑性樹脂は、ガラスフレークを含む熱可塑性樹脂シート中に、20〜60質量%含ませることが好ましい。これは、20質量%未満であると、セパレータの機械的強度が不足するため好ましくなく、また、60質量%を超えると、相対的に無機粉体の量が少なくなりセパレータの電解液保持力が不足するため好ましくないからである。
【0012】
また、前記ガラスフレークは、ガラスフレークを含む熱可塑性樹脂シート中の前記無機粉体と前記ガラスフレークとの合計量に対して5〜50質量%を含ませるのが好ましい。これは、5質量%未満であると、ガラスフレーク添加による十分な耐酸化性向上効果が得られず、また、50質量%を超えると、ガラスフレークが無機粉体に比べ空隙率が低いことにより、セパレータの空隙率を低下させ電気抵抗を高めることになるため好ましくないからである。
【0013】
また、前記無機粉体と前記ガラスフレークは両者の合計で、ガラスフレークを含む熱可塑性樹脂シート中に、40〜80質量%含ませることが好ましい。これは、40質量%未満であると、セパレータの電解液保持力が不足するため好ましくなく、また、80質量%を超えると、相対的に熱可塑性樹脂の量が少なくなりセパレータの機械的強度が不足するため好ましくないからである。
【0014】
【実施例】
次に、本発明の実施例について比較例とともに詳細に説明するが、本発明はこの例に限定されるものではない。
(実施例1)
熱可塑性樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体40部(質量部、以下同じ)と、無機粉体として平均粒径5μmのシリカ微粉末57部と、ガラスフレークとして平均厚みが5μmで平均粒径が20μmのCガラス組成のガラスフレーク3部と、可塑剤としてパラフィン系オイル140部の4者をヘンシェルミキサで混合し、原料混合物を作製した。次に、該原料混合物を先端にTダイを取り付けた二軸押出機の原料投入口から投入するとともに、該押出機の途中から、前記原料混合物の組成中に前記パラフィン系オイル7部を追加できるような投入速度で前記パラフィン系オイルを添加しながら、加熱溶融混練してシート状に押し出すとともに、成形ロール間を通して加圧成形し、ベース厚さ0.20mmのゲル状フィルムを得た。次に、該フィルムを、トリクロロエチレン中に浸漬して、該フィルム中のパラフィン系オイルの一部を除去し、乾燥してベース厚さが0.20mmの微多孔性セパレータを得た。なお、得られたセパレータの断面を電子顕微鏡で観察したところ、ガラスフレークがセパレータ中に均一に分散されている状態が確認できた。
【0015】
(実施例2)
熱可塑性樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体40部と、無機粉体として平均粒径5μmのシリカ微粉末48部と、ガラスフレークとして平均厚みが5μmで平均粒径が20μmのCガラス組成のガラスフレーク12部と、可塑剤としてパラフィン系オイル112部の4者をヘンシェルミキサで混合し、原料混合物を作製した。次に、該原料混合物を先端にTダイを取り付けた二軸押出機の原料投入口から投入するとともに、該押出機の途中から、前記原料混合物の組成中に前記パラフィン系オイル28部を追加できるような投入速度で前記パラフィン系オイルを添加しながら、加熱溶融混練してシート状に押し出すとともに、成形ロール間を通して加圧成形し、ベース厚さ0.20mmのゲル状フィルムを得た。次に、該フィルムを、トリクロロエチレン中に浸漬して、該フィルム中のパラフィン系オイルの一部を除去し、乾燥してベース厚さが0.20mmの微多孔性セパレータを得た。なお、得られたセパレータの断面を電子顕微鏡で観察したところ、ガラスフレークがセパレータ中に均一に分散されている状態が確認できた。
【0016】
(実施例3)
熱可塑性樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体40部と、無機粉体として平均粒径5μmのシリカ微粉末30部と、ガラスフレークとして平均厚みが5μmで平均粒径が20μmのCガラス組成のガラスフレーク30部と、可塑剤としてパラフィン系オイル70部の4者をヘンシェルミキサで混合し、原料混合物を作製した。次に、該原料混合物を先端にTダイを取り付けた二軸押出機の原料投入口から投入するとともに、該押出機の途中から、前記原料混合物の組成中に前記パラフィン系オイル70部を追加できるような投入速度で前記パラフィン系オイルを添加しながら、加熱溶融混練してシート状に押し出すとともに、成形ロール間を通して加圧成形し、ベース厚さ0.20mmのゲル状フィルムを得た。次に、該フィルムを、トリクロロエチレン中に浸漬して、該フィルム中のパラフィン系オイルの一部を除去し、乾燥してベース厚さが0.20mmの微多孔性セパレータを得た。なお、得られたセパレータの断面を電子顕微鏡で観察したところ、ガラスフレークがセパレータ中に均一に分散されている状態が確認できた。
【0017】
(比較例1)
熱可塑性樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体40部と、無機粉体として平均粒径5μmのシリカ微粉末48部と、平均繊維径が9μmで平均繊維長が3mmのCガラス組成のガラス繊維12部と、可塑剤としてパラフィン系オイル112部の4者をヘンシェルミキサで混合し、原料混合物を作製した。次に、該原料混合物を先端にTダイを取り付けた二軸押出機の原料投入口から投入するとともに、該押出機の途中から、前記原料混合物の組成中に前記パラフィン系オイル28部を追加できるような投入速度で前記パラフィン系オイルを添加しながら、加熱溶融混練してシート状に押し出すとともに、成形ロール間を通して加圧成形し、ベース厚さ0.20mmのゲル状フィルムを得た。
次に、該フィルムを、トリクロロエチレン中に浸漬して、該フィルム中のパラフィン系オイルの一部を除去し、乾燥してベース厚さが0.20mmの微多孔性セパレータを得た。なお、得られたセパレータの断面を電子顕微鏡で観察したところ、セパレータ中におけるガラス繊維の分散は不均一な状態であった。
【0018】
(比較例2)
熱可塑性樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体40部と、無機粉体として平均粒径5μmのシリカ微粉末60部と、可塑剤としてパラフィン系オイル140部の3者をヘンシェルミキサで混合し、原料混合物を作製した。次に、該原料混合物を先端にTダイを取り付けた二軸押出機の原料投入口から投入し、加熱溶融混練してシート状に押し出すとともに、成形ロール間を通して加圧成形し、ベース厚さ0.20mmのゲル状フィルムを得た。次に、該フィルムを、トリクロロエチレン中に浸漬して、該フィルム中のパラフィン系オイルの一部を除去し、乾燥してベース厚さが0.20mmの微多孔性セパレータを得た。
【0019】
次に、実施例1〜3と比較例1、2の各セパレータについて、セパレータ諸特性を評価した。結果を表1に示す。
なお、評価方法については、次のようにした。
[電気抵抗]
SBA S 0402に準拠した方法で行った。
[ガラスフレーク又はガラス繊維の分散性]
セパレータ試料の断面を電子顕微鏡で観察し、均一に分散しているものを「良好」、分散性の悪いものを「悪い」とした。
[耐酸化時間]
試験容器に試料(セパレータ70mm角)を10kPaの圧力がかかるようセットし、比重1.300(20℃)の電解液を1000ml注入し、電解液温度を50±2℃の状態で5.0Aの調整をした。耐酸化時間は、端子電圧が2.6V以下または電圧差が0.2V以上となった時間で表示するようにした。
【0020】
【表1】

Figure 2004119160
【0021】
表1から明らかなように、実施例1〜3のセパレータでは、セパレータ中にガラスフレークを均一に分散できたことから、比較例1〜2のセパレータに比較して耐酸化性を向上させることができた。特に、実施例2と比較例1との比較から、どちらも同量のガラスフレークまたはガラス繊維を含ませたにもかかわらず、その分散性の善し悪しによって、結果的にガラスフレークを含ませたことによって分散性の良好であった実施例2の方が約33%も耐酸化性が優れる結果となった。
【0022】
【発明の効果】
このように、本発明の蓄電池用セパレータによれば、熱可塑性樹脂と無機粉体とを主成分とする微多孔性の熱可塑性樹脂シートにガラスフレークを含ませるようにしたため、このガラスフレークは、ガラス繊維に比して熱可塑性樹脂シートの製造時における分散性に優れ、熱可塑性樹脂シートに簡単に、均一に分散することになり、また、耐酸化性も、ガラス繊維に比して、何等遜色のないものであるため、ガラスマットを用いることなく、耐酸酸化性を向上させた、歩留まりがよく、製造容易な蓄電池用セパレータを提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery separator, and more particularly, to an improvement in the oxidation resistance of a battery separator comprising a microporous thermoplastic resin sheet containing a thermoplastic resin and an inorganic powder as main components. is there.
[0002]
[Prior art]
Conventionally, leaf-shaped, bag-shaped storage battery separators made of a microporous thermoplastic resin sheet containing a thermoplastic resin and an inorganic powder as main components are known, but during use when incorporated into a lead storage battery. Oxidizing power of nascent oxygen generated from the anode plate and lead dioxide, which is the anode active material, oxidizes and degrades the separator, causing damage such as perforation, resulting in problems such as shortening the life of lead-acid batteries. In particular, when deep discharge is repeated at a high temperature of 100 to 110 ° C., the shortening of the life was remarkable.
As a solution to such a problem, for example, as disclosed in Japanese Patent Application Laid-Open No. 54-143826, a glass mat is attached to one surface of a thermoplastic resin sheet in a molten state to thereby improve oxidation resistance. Although it has been proposed to improve, since the adhesiveness between the thermoplastic resin and the glass mat is poor, it is necessary to attach the glass mat in a molten state to one surface of the thermoplastic resin sheet, Its manufacture has been cumbersome and difficult. In addition, the adhesiveness is not always sufficient, and improvement in reliability has been desired.
In order to solve the problem of the adhesiveness between the thermoplastic resin and the glass mat, various proposals have been made. In Japanese Patent Application Laid-Open No. 4-190554, by including glass fibers in a thermoplastic resin sheet, It has been proposed to improve the oxidation resistance.
[0003]
[Problems to be solved by the invention]
The storage battery separator proposed in JP-A-4-190554 does not use a glass mat, so that the problem of adhesiveness could be fundamentally solved. However, glass fibers were uniformly dispersed in a thermoplastic resin sheet. It is very difficult to do so, but still trying to improve the dispersibility requires time and effort in manufacturing and results in a significant drop in productivity. In addition, even if the dispersibility is improved, there is a limit in the uniformity of the dispersion of the glass fibers, so that it was not possible to supply a glass fiber having a stable quality. In addition, when the separator incorporated in the battery reaches the end of its life, if a strong oxidizing force is applied to the separator, a locally weak portion of the thin separator (usually, a locally thinned portion, a locally thin portion, If there is a place where the materials are not well mixed, it will start to be damaged first, and a hole will be opened over time, leading to a short circuit from that place. In other words, in the case where the separator reaches the end of its life, the life will be reached only by the presence of one locally weak spot in the entire separator sheet. From this, even if glass fibers are included in the thermoplastic resin sheet for the purpose of improving oxidation resistance, if the dispersibility is not uniform, that is, even in one place, the glass fiber is not dispersed. When there is, when viewed from a local point, it is a portion of a material that is no different from a conventional thermoplastic resin sheet that does not contain glass fiber, so that a local weak portion in the entire sheet is In this case, a hole is opened from that location, resulting in a short circuit, and despite the fact that glass fiber is included, the original effect cannot be exhibited.
Thus, the present invention is an invention in view of such conventional problems, and relates to a battery separator comprising a microporous thermoplastic resin sheet containing a thermoplastic resin and an inorganic powder as main components. An object of the present invention is to provide a storage battery separator that can improve oxidation resistance without laminating a glass mat, has a good yield, and can be easily manufactured.
[0004]
[Means for Solving the Problems]
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and as a result, by using glass flakes instead of glass fibers, it is possible to easily and uniformly disperse glass flakes in a thermoplastic resin sheet. This led to the completion of the present invention. That is, the storage battery separator of the present invention comprises a microporous thermoplastic resin sheet containing a thermoplastic resin and an inorganic powder as main components as described in claim 1, in order to achieve the above object. Wherein the thermoplastic resin sheet contains glass flakes.
The storage battery separator according to claim 2 is the storage battery separator according to claim 1, wherein the glass flakes are a total amount of the inorganic powder and the glass flakes in the thermoplastic resin sheet containing glass flakes. 5 to 50% by mass with respect to
Further, the storage battery separator according to claim 3 is the storage battery separator according to claim 2, wherein the thermoplastic resin is 20 to 60% by mass, and the total amount of the inorganic powder and the glass flake is 80 to 40% by mass. %.
The storage battery separator according to claim 4 is the storage battery separator according to any one of claims 1 to 3, wherein the glass flakes are glass flakes having an average particle diameter of 1 to 50 μm and a C glass composition. Features.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The storage battery separator of the present invention is required to include glass flakes in the thermoplastic resin sheet of the storage battery separator composed of a microporous thermoplastic resin sheet containing a thermoplastic resin and an inorganic powder as main components. .
Since glass flakes are more excellent in dispersibility during the production of a thermoplastic resin sheet than glass fibers, they can be easily and uniformly dispersed in a thermoplastic resin sheet. Further, when the same amount is added, the effect of improving the oxidation resistance given to the separator can be obtained which is not inferior to glass fiber.
[0006]
As the glass flake satisfying such conditions, a glass flake having an average particle diameter of 1 to 50 μm and a C glass composition is preferable.
[0007]
The separator for a storage battery of the present invention is usually heated and melt-kneaded by an extruder equipped with a T-die at the tip of a mixed raw material composition comprising the thermoplastic resin, the inorganic powder, the glass flakes, and a plasticizer. While being extruded into a sheet and formed into a desired shape by roller rolling to obtain a gel film made of the composition, then the gel film is immersed in an appropriate solvent and It is obtained by extracting and removing part or all of the plasticizer to impart microporosity to the film, and then removing the solvent by drying. It is desirable that the plasticizer is mixed with other raw materials before starting kneading by the extruder. However, a method of adding the plasticizer in the middle of the extruder during melt-kneading can be used together. If necessary, a surfactant for imparting hydrophilicity or an antioxidant for improving oxidation resistance may be added to the composition.
[0008]
The thermoplastic resin can be selected from polyolefins such as polyethylene, polypropylene, polybutene, and polymethylpentene.These thermoplastic resins may be used alone, or two or more kinds may be used in combination. . Of these, it is particularly preferable to use a polyethylene resin alone because it has no side chain and is unlikely to cause oxidative degradation. As the polyethylene, an ultrahigh molecular weight polyethylene having a weight average molecular weight of 500,000 or more can be used, and particularly, a high density polyethylene having a weight average molecular weight of 1,000,000 or more is preferably used. In this case, it is also possible to mix resins having different weight average molecular weights and use the resin having a weight average molecular weight of 1,000,000 or more.
[0009]
As the inorganic powder, one or a mixture of two or more selected from inorganic powders such as silica, titania, and alumina can be used, but silica is preferable because it is relatively inexpensive and has few impurities.
[0010]
As the plasticizer, paraffinic or naphthenic industrial lubricating oils, or ester plasticizers such as dioctyl phthalate can be used. The use of is preferred. As described above, the paraffin-based oil is added as a plasticizer to the mixed raw material composition at the time of extrusion, and then a part or all of the paraffin-based oil is removed to make the gel-like film microporous. Usually, it is preferable to leave 5 to 30% by mass in the microporous film and coat the inner and outer surfaces of the microporous film so as to impart oxidation resistance.
[0011]
The thermoplastic resin is preferably contained in the thermoplastic resin sheet containing glass flakes in an amount of 20 to 60% by mass. If the amount is less than 20% by mass, the mechanical strength of the separator is insufficient, and if it is more than 60% by mass, the amount of the inorganic powder is relatively small, and the electrolytic solution holding power of the separator is low. It is not preferable because it is insufficient.
[0012]
The glass flakes preferably contain 5 to 50% by mass of the total amount of the inorganic powder and the glass flakes in the thermoplastic resin sheet containing the glass flakes. If the amount is less than 5% by mass, a sufficient effect of improving the oxidation resistance by adding glass flakes cannot be obtained, and if it exceeds 50% by mass, the porosity of the glass flakes is lower than that of the inorganic powder. This is because the porosity of the separator is reduced and the electrical resistance is increased, which is not preferable.
[0013]
In addition, it is preferable that the total amount of the inorganic powder and the glass flake is 40 to 80% by mass in the thermoplastic resin sheet containing the glass flake. If the amount is less than 40% by mass, the electrolyte holding power of the separator is insufficient, which is not preferable. If the amount exceeds 80% by mass, the amount of the thermoplastic resin is relatively reduced, and the mechanical strength of the separator is reduced. It is not preferable because it is insufficient.
[0014]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples, but the present invention is not limited to these examples.
(Example 1)
40 parts of high-density polyethylene resin powder having a weight average molecular weight of 2,000,000 as a thermoplastic resin (parts by mass, the same applies hereinafter), 57 parts of silica fine powder having an average particle diameter of 5 μm as an inorganic powder, and 5 μm of average thickness as glass flakes Then, 3 parts of glass flakes having a C glass composition having an average particle diameter of 20 μm and 140 parts of paraffinic oil as a plasticizer were mixed with a Henschel mixer to prepare a raw material mixture. Next, the raw material mixture can be introduced from a raw material inlet of a twin-screw extruder having a T-die attached to the tip, and 7 parts of the paraffinic oil can be added to the composition of the raw material mixture from the middle of the extruder. While adding the paraffin-based oil at such a charging speed, the mixture was heated and melt-kneaded, extruded into a sheet shape, and pressed and formed through a forming roll to obtain a gel-like film having a base thickness of 0.20 mm. Next, the film was immersed in trichlorethylene to remove a part of the paraffinic oil in the film, and dried to obtain a microporous separator having a base thickness of 0.20 mm. In addition, when the cross section of the obtained separator was observed with an electron microscope, it was confirmed that glass flakes were uniformly dispersed in the separator.
[0015]
(Example 2)
40 parts of high-density polyethylene resin powder having a weight average molecular weight of 2,000,000 as a thermoplastic resin, 48 parts of silica fine powder having an average particle diameter of 5 μm as an inorganic powder, and glass flake having an average thickness of 5 μm and an average particle diameter of 20 μm 12 parts of glass flakes having a C glass composition and 112 parts of paraffinic oil as a plasticizer were mixed with a Henschel mixer to prepare a raw material mixture. Next, the raw material mixture can be introduced from a raw material inlet of a twin-screw extruder having a T-die attached to the tip, and 28 parts of the paraffinic oil can be added to the composition of the raw material mixture from the middle of the extruder. While adding the paraffin-based oil at such a charging speed, the mixture was heated and melt-kneaded, extruded into a sheet shape, and pressed and formed through a forming roll to obtain a gel-like film having a base thickness of 0.20 mm. Next, the film was immersed in trichlorethylene to remove a part of the paraffinic oil in the film, and dried to obtain a microporous separator having a base thickness of 0.20 mm. In addition, when the cross section of the obtained separator was observed with an electron microscope, it was confirmed that glass flakes were uniformly dispersed in the separator.
[0016]
(Example 3)
40 parts of high-density polyethylene resin powder having a weight average molecular weight of 2,000,000 as a thermoplastic resin, 30 parts of silica fine powder having an average particle diameter of 5 μm as an inorganic powder, and glass flakes having an average thickness of 5 μm and an average particle diameter of 20 μm 30 parts of glass flakes having a C glass composition and 70 parts of paraffinic oil as a plasticizer were mixed with a Henschel mixer to prepare a raw material mixture. Next, the raw material mixture can be introduced from a raw material input port of a twin-screw extruder having a T-die attached to the tip, and 70 parts of the paraffin-based oil can be added to the composition of the raw material mixture in the middle of the extruder. While adding the paraffin-based oil at such a charging speed, the mixture was heated and melt-kneaded, extruded into a sheet shape, and pressed and formed through a forming roll to obtain a gel-like film having a base thickness of 0.20 mm. Next, the film was immersed in trichlorethylene to remove a part of the paraffinic oil in the film, and dried to obtain a microporous separator having a base thickness of 0.20 mm. In addition, when the cross section of the obtained separator was observed with an electron microscope, it was confirmed that glass flakes were uniformly dispersed in the separator.
[0017]
(Comparative Example 1)
40 parts of high-density polyethylene resin powder having a weight average molecular weight of 2,000,000 as a thermoplastic resin, 48 parts of silica fine powder having an average particle diameter of 5 μm as an inorganic powder, and C glass having an average fiber diameter of 9 μm and an average fiber length of 3 mm 12 parts of glass fiber having the composition and 112 parts of paraffinic oil as a plasticizer were mixed with a Henschel mixer to prepare a raw material mixture. Next, the raw material mixture can be introduced from a raw material inlet of a twin-screw extruder having a T-die attached to the tip, and 28 parts of the paraffinic oil can be added to the composition of the raw material mixture from the middle of the extruder. While adding the paraffin-based oil at such a charging speed, the mixture was heated and melt-kneaded, extruded into a sheet shape, and pressed and formed through a forming roll to obtain a gel-like film having a base thickness of 0.20 mm.
Next, the film was immersed in trichlorethylene to remove a part of the paraffinic oil in the film, and dried to obtain a microporous separator having a base thickness of 0.20 mm. In addition, when the cross section of the obtained separator was observed with an electron microscope, the dispersion of the glass fibers in the separator was in a non-uniform state.
[0018]
(Comparative Example 2)
40 parts of high-density polyethylene resin powder having a weight average molecular weight of 2,000,000 as a thermoplastic resin, 60 parts of silica fine powder having an average particle diameter of 5 μm as an inorganic powder, and 140 parts of paraffinic oil as a plasticizer were converted into a Henschel mixer. To prepare a raw material mixture. Next, the raw material mixture is charged from a raw material input port of a twin-screw extruder having a T-die attached to the tip, heated and kneaded, extruded into a sheet shape, and formed into a sheet with a base thickness of 0 by pressing between forming rolls. A .20 mm gel film was obtained. Next, the film was immersed in trichlorethylene to remove a part of the paraffinic oil in the film, and dried to obtain a microporous separator having a base thickness of 0.20 mm.
[0019]
Next, with respect to the separators of Examples 1 to 3 and Comparative Examples 1 and 2, various properties of the separator were evaluated. Table 1 shows the results.
The evaluation method was as follows.
[Electrical resistance]
The measurement was performed according to a method based on SBA S 0402.
[Dispersibility of glass flake or glass fiber]
The cross section of the separator sample was observed with an electron microscope, and the sample which was uniformly dispersed was evaluated as “good”, and the sample with poor dispersibility was evaluated as “bad”.
[Oxidation resistance time]
A sample (separator 70 mm square) was set in a test container so as to apply a pressure of 10 kPa, 1000 ml of an electrolyte having a specific gravity of 1.300 (20 ° C.) was injected, and the electrolyte temperature was set to 5.0 A at a temperature of 50 ± 2 ° C. Adjusted. The oxidation resistance time is indicated by the time when the terminal voltage becomes 2.6 V or less or the voltage difference becomes 0.2 V or more.
[0020]
[Table 1]
Figure 2004119160
[0021]
As is clear from Table 1, in the separators of Examples 1 to 3, since the glass flakes were uniformly dispersed in the separator, the oxidation resistance was improved as compared with the separators of Comparative Examples 1 and 2. did it. In particular, from the comparison between Example 2 and Comparative Example 1, although both contained the same amount of glass flakes or glass fibers, the fact that the glass flakes were included as a result of their good and poor dispersibility. As a result, Example 2 which had good dispersibility exhibited a result that the oxidation resistance was excellent by about 33%.
[0022]
【The invention's effect】
As described above, according to the storage battery separator of the present invention, the glass flakes are contained in the microporous thermoplastic resin sheet containing a thermoplastic resin and an inorganic powder as main components. Excellent dispersibility during the production of thermoplastic resin sheet compared to glass fiber, will be easily and uniformly dispersed in thermoplastic resin sheet, and oxidation resistance, compared to glass fiber Since it is comparable, it is possible to provide a storage battery separator with improved acid oxidation resistance, good yield, and easy production without using a glass mat.

Claims (4)

熱可塑性樹脂と無機粉体とを主成分とする微多孔性の熱可塑性樹脂シートからなる蓄電池用セパレータであって、前記熱可塑性樹脂シートにガラスフレークを含ませてなることを特徴とする蓄電池用セパレータ。A storage battery separator comprising a microporous thermoplastic resin sheet containing a thermoplastic resin and an inorganic powder as main components, wherein the thermoplastic resin sheet contains glass flakes. Separator. 前記ガラスフレークを、ガラスフレークを含む前記熱可塑性樹脂シート中の前記無機粉体と前記ガラスフレークとの合計量に対して5〜50質量%含ませてなることを特徴とする請求項1記載の蓄電池用セパレータ。2. The glass flake according to claim 1, wherein the glass flake is contained in an amount of 5 to 50 mass% with respect to a total amount of the inorganic powder and the glass flake in the thermoplastic resin sheet containing the glass flake. 3. Storage battery separator. 前記熱可塑性樹脂が20〜60質量%、前記無機粉体と前記ガラスフレークとの合計量が80〜40質量%であることを特徴とする請求項2記載の蓄電池用セパレータ。The storage battery separator according to claim 2, wherein the thermoplastic resin is 20 to 60% by mass, and the total amount of the inorganic powder and the glass flakes is 80 to 40% by mass. 前記ガラスフレークが、平均粒径1〜50μmでCガラス組成のガラスフレークであることを特徴とする請求項1乃至3の何れかに記載の蓄電池用セパレータ。4. The storage battery separator according to claim 1, wherein the glass flakes are glass flakes having an average particle diameter of 1 to 50 [mu] m and a C glass composition.
JP2002279883A 2002-09-25 2002-09-25 Separator for storage battery Withdrawn JP2004119160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279883A JP2004119160A (en) 2002-09-25 2002-09-25 Separator for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279883A JP2004119160A (en) 2002-09-25 2002-09-25 Separator for storage battery

Publications (1)

Publication Number Publication Date
JP2004119160A true JP2004119160A (en) 2004-04-15

Family

ID=32274761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279883A Withdrawn JP2004119160A (en) 2002-09-25 2002-09-25 Separator for storage battery

Country Status (1)

Country Link
JP (1) JP2004119160A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513590A (en) * 2006-12-14 2010-04-30 エスケー エナジー カンパニー リミテッド Method for producing polyolefin microporous membrane by efficient extrusion
CN106797007A (en) * 2014-10-15 2017-05-31 日本板硝子株式会社 Lead accumulator dividing plate and lead accumulator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513590A (en) * 2006-12-14 2010-04-30 エスケー エナジー カンパニー リミテッド Method for producing polyolefin microporous membrane by efficient extrusion
CN106797007A (en) * 2014-10-15 2017-05-31 日本板硝子株式会社 Lead accumulator dividing plate and lead accumulator
JPWO2016059739A1 (en) * 2014-10-15 2017-08-31 日本板硝子株式会社 Lead-acid battery separator and lead-acid battery
EP3208868A4 (en) * 2014-10-15 2018-05-23 Nippon Sheet Glass Company, Limited Separator for lead-acid batteries, and lead-acid battery
US10270136B2 (en) * 2014-10-15 2019-04-23 Nippon Sheet Glass Company, Limited Separator for lead-acid battery, and lead-acid battery
CN106797007B (en) * 2014-10-15 2020-06-16 日本板硝子株式会社 Separator for lead-acid battery and lead-acid battery

Similar Documents

Publication Publication Date Title
KR101479822B1 (en) Multilayer porous membrane and method for producing the same
TWI643388B (en) Process for preparing an electrode composition or composition with magnetic properties, mixture and composition obtained by means of said process and said electrode
JP5984307B2 (en) Method for producing polyolefin microporous stretched film with cellulose nanofibers
JP5841478B2 (en) Separator for liquid lead acid battery and liquid lead acid battery
JP5525193B2 (en) Multilayer porous membrane and coating solution
JP2008186721A (en) Porous membrane having high thermal resistance and high permeability, and its manufacturing method
JP2008210794A (en) Multilayer porous membrane and method for producing the same
KR20110038115A (en) Electrode for lithium ion secondary battery
JP6030194B2 (en) Liquid lead-acid battery separator and liquid lead-acid battery
JP5601681B2 (en) Polyolefin microporous membrane containing inorganic particles and separator for non-aqueous electrolyte battery
JP4177929B2 (en) Porous film and method for producing the same
JP5645342B2 (en) Porous membrane having both high heat resistance and high permeability and its production method
JP2001338631A (en) Separator with ribs for lead acid storage battery and its manufacturing method
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2019102400A (en) Multilayer separator, and its wound body and manufacturing method
JP2007095440A (en) Separator for electric storage device, and electric storage device
WO2020218583A1 (en) Heat-resistant polyolefin-based microporous film and method for producing same
JP5020449B2 (en) Sealed separator for sealed lead-acid battery
JP2004119160A (en) Separator for storage battery
JPH01318049A (en) Microporous polyolefin film
JP6122941B2 (en) Method for producing extruded product for use in production of polyolefin microporous stretched film containing cellulose nanofiber
JP6347801B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
JP2013144442A (en) Porous film including both high heat resistance and high transmittance, and method for manufacturing the same
JP2015136809A (en) Method for producing polyolefin microporous film, battery separator and nonaqueous electrolyte secondary battery
JP4737936B2 (en) Capacitor separator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080409