JP2004119122A - Hydrogen cutoff device of fuel cell - Google Patents

Hydrogen cutoff device of fuel cell Download PDF

Info

Publication number
JP2004119122A
JP2004119122A JP2002279226A JP2002279226A JP2004119122A JP 2004119122 A JP2004119122 A JP 2004119122A JP 2002279226 A JP2002279226 A JP 2002279226A JP 2002279226 A JP2002279226 A JP 2002279226A JP 2004119122 A JP2004119122 A JP 2004119122A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
pressure
flow path
cutoff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002279226A
Other languages
Japanese (ja)
Other versions
JP4282967B2 (en
Inventor
Kazuyoshi Miyajima
宮島 一嘉
Akifumi Takenawa
竹縄 亮史
Takahiro Kuriiwa
栗岩 貴寛
Kaoru Yamazaki
山崎 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002279226A priority Critical patent/JP4282967B2/en
Publication of JP2004119122A publication Critical patent/JP2004119122A/en
Application granted granted Critical
Publication of JP4282967B2 publication Critical patent/JP4282967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the solid high polymer electrolyte film of a fuel cell from being applied with excessive stress when hydrogen supply is cut off by something abnormal. <P>SOLUTION: This hydrogen cutoff device of the fuel cell 1 is provided with a hydrogen supply passage 21 to supply hydrogen to the solid high polymer electrolyte film type fuel cell 1, a hydrogen cutoff valve 4 to cut off hydrogen supplied to the fuel cell 1 provided in the hydrogen supply passage 21 when something abnormal occurs, a hydrogen storage tank 7 which is disposed on the downstream of the hydrogen cutoff valve 4 and is capable of introducing hydrogen supplied to the fuel cell, and a hydrogen exhaust valve 6 to allow introduction of hydrogen into the hydrogen storage tank 7 by opening when something abnormal occurs. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、異常時に燃料電池への水素供給を遮断する燃料電池の水素遮断装置に関するものである。
【0002】
【従来の技術】
燃料電池には、固体高分子電解質膜の両側にアノードとカソードとを備え、アノードに燃料としての水素を供給し、カソードに酸化剤としての空気を供給して、これらガスの酸化還元反応にかかる化学エネルギを直接電気エネルギとして抽出するようにしたものがある。
この種の燃料電池が車両に搭載され、この燃料電池の発電により得られた電力で駆動モータを駆動し該車両を走行する燃料電池自動車においては、衝突時等の異常時に可燃性ガスである燃料の水素を車外に排出させないように、水素供給流路に設けた緊急遮断弁を閉鎖して水素供給流路を遮断している。(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−119815号公報(段落番号[0006]、[0037])
【0004】
【発明が解決しようとする課題】
しかしながら、従来の異常時対応では、異常検知時に水素供給系は緊急遮断弁の閉鎖により高圧水素タンクからの水素供給は遮断されるものの、緊急遮断弁よりも下流の流路には正圧の水素が残留したままとなる。これに対して、空気供給系は、異常検知時に、空気の供給が停止されるとともに、空気系内の圧力は直ちに大気圧程度まで減圧される。そのため、燃料電池のアノードとカソードの間に過大な極間差圧が生じ、固体高分子電解質膜に過大なストレスがかかるという問題があった。
そこで、この発明は、異常時に水素供給ラインを遮断させた時に燃料電池を保護することができる燃料電池の水素遮断装置を提供するものである。
【0005】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る発明は、燃料電池(例えば、後述する実施の形態における燃料電池1)に水素を供給する水素供給流路(例えば、後述する実施の形態における水素供給流路21)と、前記水素供給流路に設けられ燃料電池に供給される水素を異常時に遮断する水素遮断手段(例えば、後述する実施の形態における水素遮断弁4)と、を備えた燃料電池の水素遮断装置において、前記水素遮断手段よりも下流であって前記燃料電池へ供給される水素を導入可能な水素貯留手段(例えば、後述する実施の形態における水素貯留タンク7)と、異常時に開放して前記水素貯留手段への水素の導入を許可する開閉手段(例えば、後述する実施の形態における水素排出弁6)と、を備えることを特徴とする。
このように構成することにより、異常時には開閉手段が開放されるので、前記水素遮断手段よりも下流であって前記燃料電池へ供給される水素が前記水素貯留手段に導入され、水素遮断手段より下流の水素の圧力を低下させることができる。その結果、前記燃料電池のアノードとカソードの極間差圧を小さくすることができる。
【0006】
請求項2に係る発明は、請求項1に記載の発明において、前記水素貯留手段は水素吸蔵合金を収容したタンクであることを特徴とする。
このように構成することにより、異常時に、水素遮断手段よりも下流であって前記燃料電池へ供給される水素を水素吸蔵合金に吸蔵させることができ、吸蔵した水素を確実に留めておくことができる。
【0007】
請求項3に係る発明は、請求項1または請求項2に記載の発明において、前記開閉手段が開放された後、前記水素遮断手段よりも下流の水素圧力が所定圧力以下になったときに、前記開閉手段が閉鎖されることを特徴とする。
このように構成することにより、異常時に、水素遮断手段より下流の水素の圧力を確実に前記所定圧力以下に低下させることができる。
【0008】
請求項4に係る発明は、燃料電池(例えば、後述する実施の形態における燃料電池1)に水素を供給する水素供給流路(例えば、後述する実施の形態における水素供給流路21)と、前記水素供給流路に設けた水素遮断手段(例えば、後述する実施の形態における水素遮断弁4)と、前記燃料電池から排出される水素を前記水素遮断手段よりも下流の前記水素供給流路に戻して前記燃料電池に循環させる水素循環流路(例えば、後述する実施の形態における水素循環流路23)と、前記水素循環流路内に設けた水素導入可能な水素貯留手段(例えば、後述する実施の形態における水素貯留タンク7)と、を備えた燃料電池の水素遮断装置であって、異常時に前記水素遮断手段を遮断し、前記水素貯留手段によって前記水素循環流路内の水素圧力を所定の圧力まで減圧することを特徴とする燃料電池の水素遮断装置である。
このように構成することにより、異常時に前記水素遮断手段を遮断することにより前記水素循環流路を閉鎖することができ、前記水素貯留手段によって前記水素循環流路内の水素を外部に放出させずに水素循環流路内の水素圧力を所定の圧力まで減圧することができ、前記燃料電池のアノードとカソードの極間差圧を小さくすることができる。
【0009】
【発明の実施の形態】
以下、この発明に係る燃料電池の水素遮断装置の一実施の形態を図1および図2の図面を参照して説明する。なお、以下に説明する実施の形態は、燃料電池自動車に搭載される燃料電池の水素遮断装置の態様である。
図1は、水素遮断装置を備えた燃料電池システムの概略構成図である。
燃料電池1は、例えば固体ポリマーイオン交換膜等からなる固体高分子電解質膜をアノードとカソードとで両側から挟み込んで形成されたセルを複数積層して構成されたスタックからなり、アノードに燃料として水素を供給し、カソードに酸化剤として酸素を含む空気を供給すると、アノードで触媒反応により発生した水素イオンが、固体高分子電解質膜を通過してカソードまで移動して、カソードで酸素と電気化学反応を起こして発電し、水が生成される。
【0010】
水素供給手段としての高圧水素タンク2に収容された水素は、圧力調整弁3、水素遮断弁(水素遮断手段)4、エゼクタ5を備えた水素供給流路21を流通して、燃料電池1の各セルのアノードに供給される。圧力調整弁3は、高圧水素タンク2の水素を減圧して所定圧力に調圧するものである。水素遮断弁4は水素供給流路21に設けられ、遮断することで下流の流路に水素が供給されるのを遮断する。エゼクタ5は燃料電池1から排出される後述する水素オフガスを水素供給流路21に戻すためのものである。なお、エゼクタ5に代えてポンプを用いる場合もある。また、エゼクタ5よりも下流の水素供給流路21には水素圧力を検出する圧力センサ12が設置されている。
【0011】
燃料電池1のアノードに供給された水素のうち発電に供されなかった水素、すなわち未反応の水素は、燃料電池1から水素オフガスとして排出され、水素オフガス流路22を通ってエゼクタ5に吸引され、高圧水素タンク2から供給される新鮮な水素と合流して再び燃料電池1のアノードに供給される。すなわち、燃料電池1から排出される水素(水素オフガス)は、水素オフガス流路22を通って水素遮断弁4よりも下流の水素供給流路21に戻され、燃料電池1に循環せしめられる。ここで、水素遮断弁4よりも下流に位置する水素供給流路21と水素オフガス流路22は、水素循環流路23を構成する。
【0012】
水素循環流路23の一部を構成する水素オフガス流路22は、水素排出弁(開閉手段)6を備えた水素排出流路24によって、水素貯留タンク7に接続されている。水素排出弁6は、正常時には常時閉鎖されていて水素循環流路23内の水素が水素貯留タンク7に導入されるのを阻止し、車両の衝突等の異常時に開放されて水素循環流路23内の水素が水素貯留タンク7に導入されるのを許可する。水素貯留タンク7は、内部に水素吸蔵合金が収容された密閉容器であり、水素吸蔵合金は、周知の如く、所定条件下において水素を吸蔵したり放出したりする機能を有する合金である。
【0013】
一方、空気はコンプレッサ8により所定圧力に加圧され、空気流路31を通って燃料電池1のカソードに供給される。燃料電池1に供給された空気は発電に供された後、燃料電池1から空気オフガスとして空気オフガス流路32に排出され、圧力制御弁9を介して排出される。
また、車両は、車両に加わる衝撃の大きさ(衝撃値)を検出する衝撃センサ(異常検出手段)11を備えている。衝撃センサ11と圧力センサ12の出力信号は電子制御ユニット(ECU)10に入力され、ECU10はこれらセンサ11,12の出力信号等に基づいて、水素遮断弁4と水素排出弁6の開閉を制御する。
【0014】
このように構成された燃料電池システムにおいては、衝撃センサ11で検出された衝撃値が所定値以下の場合にはECU10は異常なしと判定して、水素遮断弁4の開放状態を保持するとともに、水素排出弁6の閉鎖状態を保持する。これにより、高圧水素タンク2の水素と燃料電池1から排出される水素オフガスが所定の圧力で燃料電池1に供給可能とされ、燃料電池1は発電可能な状態に保持される。
【0015】
一方、衝撃センサ11で検出された衝撃値が前記所定値を越えた場合にはECU10は異常ありと判定して、水素遮断弁4を閉鎖するとともに、水素排出弁6を開放する。水素遮断弁4が閉鎖されることにより、高圧水素タンク2の水素が水素遮断弁4よりも下流の水素供給流路21に流入するのが阻止され、水素循環流路23が高圧水素タンク2から遮断される。そして、水素排出弁6が開放されることにより、水素循環流路23内に閉じ込められている所定圧力の水素が、水素排出流路24を通って水素貯留タンク7内に導入され、水素貯留タンク7内に収容されている水素吸蔵合金に吸蔵される。水素循環流路23内の水素が水素貯留タンク7に導入されることにより、水素循環流路23内の圧力が低下していく。そして、圧力センサ12で検出される圧力が所定の設定圧力以下に低下した時に、水素排出弁6を閉鎖する。
【0016】
これにより、車両に大きな衝撃が加わった異常時に、水素循環流路23内に存在する水素を車外に放出することなく水素貯留タンク7に排出することができる。また、水素循環流路23内の水素を排出することで、水素循環流路23内を減圧することができる。特に、この実施の形態では、水素循環流路23内の圧力が前記設定圧力以下に低下した時に水素排出弁6を閉鎖するようにしているので、水素循環流路23内を確実に前記設定圧力以下まで減圧することができる。したがって、この後で燃料電池システムを停止させたときに、燃料電池1のアノード/カソード間の極間差圧を小さくすることができる。その結果、システム停止後に固体高分子電解質膜に過大なストレスがかかるのを防止することができ、燃料電池1を保護することができる。
【0017】
なお、水素排出弁6が開放された時に水素循環流路23内の水素を速やかに水素貯留タンク7内に移動させるためには、水素貯留タンク7内の水素吸蔵合金に対して予め活性化処理および脱水素処理を行っておき、さらに、水素貯留タンク7内を減圧しておくとともに、水素貯留タンク7内に不活性ガスを封入しておくのが好ましい。
【0018】
また、水素吸蔵合金は、水素の吸蔵・放出に熱の出入りを伴い、水素を吸蔵する時には水素吸蔵合金の水素化反応により発熱し、水素を放出する時には吸熱する性質を有している。したがって、水素貯留タンク7に収容する水素吸蔵合金としては、高温でも水素吸蔵圧(水素吸蔵平衡圧)が低い水素吸蔵合金の方が、水素吸蔵に伴う発熱により水素吸蔵合金が高温になっても水素を吸蔵する能力を有するので好ましい。また、このように高温でも水素吸蔵圧が低い水素吸蔵合金を採用した場合、水素吸蔵合金から水素を放出させるにはさらに高温が必要となるので、一旦吸蔵した水素が水素吸蔵合金から放出されにくいという利点もある。
【0019】
次に、この実施の形態における燃料電池の水素遮断制御について、図2のフローチャートに従って説明する。
図2に示すフローチャートは水素遮断制御ルーチンを示すものであり、この水素遮断制御ルーチンはECU10によって実行される
この水素遮断制御はイグニッションスイッチのON信号をトリガーとして実行される。
【0020】
ステップS101においてイグニッションスイッチのON信号を検出すると、ステップS102に進み、イグニッションスイッチがOFFされたか否かを判定する。
ステップS102における判定結果が「YES」(イグニッションSW OFF)である場合は、ステップS108に進み、燃料電池システムを停止して、本ルーチンの実行を終了する。
ステップS102における判定結果が「NO」(イグニッションSW ON)である場合は、ステップS103に進み、衝撃センサ11で検出された衝撃値が予め設定された所定の閾値以上か否かを判定する。
ステップS103における判定結果が「NO」(衝撃値<閾値)である場合は異常なしと判定して、ステップS104に進み、水素遮断弁4の開放状態を維持するとともに、水素排出弁6の閉鎖状態を維持する。
【0021】
一方、ステップS103における判定結果が「YES」(衝撃値≧閾値)である場合は異常ありと判定して、ステップS105に進み、水素遮断弁4を閉鎖するとともに水素排出弁6を開放し、これと同時にコンプレッサ8を停止する。
次に、ステップS106に進み、圧力センサ12で検出された水素循環流路23内の圧力が予め設定された設定値以下か否かを判定する。
ステップS106における判定結果が「NO」(水素循環流路内圧力>設定値)である場合は、水素循環流路23内の圧力がまだ高いので、ステップS105に戻って、水素遮断弁4を閉鎖状態に維持するとともに、水素排出弁6を開放状態に維持する。
【0022】
ステップS106における判定結果が「YES」(水素循環流路内圧力≦設定値)である場合は、水素循環流路23内の圧力が十分に減圧されているので、ステップS107に進み、水素排出弁6を閉鎖する。
この後、ステップS108に進み、燃料電池システムを停止して、本ルーチンの実行を終了する。
【0023】
〔他の実施の形態〕
なお、この発明は前述した実施の形態に限られるものではない。
例えば、前述した実施の形態では、車両に大きな衝撃があった時を異常時として水素遮断弁4を閉鎖し水素排出弁6を開放したが、異常時はこれに限るものではなく、例えば、本来は水素濃度が低い車両の所定領域で水素濃度が所定の閾値を越えた場合を異常と判定し、前述の実施の形態と同様に、水素遮断弁4を閉鎖し水素排出弁6を開放するようにしてもよい。その場合には、前記所定領域に水素センサを設置し、この水素センサの検出値が閾値を越えた時を異常と判定する。
【0024】
また、前述の実施の形態では、異常検知により開放された水素排出弁6を水素循環流路23内の圧力が設定値以下になった時に閉鎖するようにしたが、燃料電池1のアノードとカソードの極間差圧を検出することができるようにしておき、この極間差圧が閾値以下になった時に水素排出弁6を閉鎖するようにしてもよい。
さらに、前述した実施の形態では、水素吸蔵合金を収容したタンクで水素貯蔵手段を構成したが、水素貯留手段は単なるタンクで構成することも可能である。その場合、該タンクには不活性ガスを充填しておくのが好ましい。
【0025】
【発明の効果】
以上説明するように、請求項1に係る発明によれば、異常時には開閉手段が開放され、水素遮断手段よりも下流であって前記燃料電池へ供給される水素が水素貯留手段に導入され、水素遮断手段より下流の水素の圧力を低下させることができるので、異常による燃料電池システムの停止時に前記燃料電池のアノードとカソードの極間差圧を小さくすることができ、その結果、異常時に燃料電池を保護することができるという優れた効果が奏される。
【0026】
請求項2に係る発明によれば、異常時に、水素遮断手段よりも下流であって前記燃料電池へ供給される水素を水素吸蔵合金に吸蔵させることができ、吸蔵した水素を確実に留めておくことができるので、水素の放出を確実に阻止することができるという効果がある。
請求項3に係る発明によれば、異常時に、水素遮断手段より下流の水素の圧力を確実に前記所定圧力以下に低下させることができるので、異常による燃料電池システムの停止時に燃料電池を確実に保護することができるという効果がある。
【0027】
請求項4に係る発明によれば、異常時に前記水素遮断手段を遮断することにより前記水素循環流路を閉鎖することができ、前記水素貯留手段によって前記水素循環流路内の水素を外部に放出させずに水素循環流路内の水素圧力を所定の圧力まで減圧することができ、前記燃料電池のアノードとカソードの極間差圧を小さくすることができるので、異常時に水素が放出されず、且つ、異常による燃料電池システムの停止時に燃料電池を保護することができるという優れた効果が奏される。
【図面の簡単な説明】
【図1】この発明に係る水素遮断装置を備えた燃料電池システムの一実施の形態における構成図である。
【図2】前記実施の形態における水素遮断制御を示すフローチャートである。
【符号の説明】
1 燃料電池
4 水素遮断弁(水素遮断手段)
6 水素排出弁(開閉手段)
7 水素貯留タンク(水素貯留手段)
21 水素供給流路
23 水素循環流路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell hydrogen shutoff device that shuts off hydrogen supply to a fuel cell when an abnormality occurs.
[0002]
[Prior art]
A fuel cell is provided with an anode and a cathode on both sides of a solid polymer electrolyte membrane, supplies hydrogen as a fuel to the anode, and supplies air as an oxidant to the cathode, and performs a redox reaction of these gases. In some cases, chemical energy is directly extracted as electric energy.
In a fuel cell vehicle in which a fuel cell of this type is mounted on a vehicle and drives the drive motor with electric power obtained by power generation of the fuel cell to run the vehicle, a fuel which is a flammable gas at the time of an abnormality such as a collision is used. In order to prevent the hydrogen from being discharged out of the vehicle, the emergency shutoff valve provided in the hydrogen supply channel is closed to shut off the hydrogen supply channel. (For example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-119815 A (paragraph numbers [0006] and [0037])
[0004]
[Problems to be solved by the invention]
However, in the conventional emergency response, when the abnormality is detected, the hydrogen supply system shuts off the hydrogen supply from the high-pressure hydrogen tank by closing the emergency shutoff valve, but the positive pressure hydrogen flows in the flow path downstream of the emergency shutoff valve. Remains. On the other hand, in the air supply system, when an abnormality is detected, the supply of air is stopped, and the pressure in the air system is immediately reduced to about atmospheric pressure. Therefore, there is a problem that an excessive pressure difference between the anode and the cathode of the fuel cell is generated, and an excessive stress is applied to the solid polymer electrolyte membrane.
Therefore, the present invention provides a hydrogen shutoff device for a fuel cell that can protect the fuel cell when the hydrogen supply line is shut off in an abnormal situation.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is directed to a hydrogen supply flow path (for example, hydrogen in an embodiment described later) for supplying hydrogen to a fuel cell (for example, a fuel cell 1 in an embodiment described later). A fuel supply system comprising: a supply flow path 21); and a hydrogen shutoff means (for example, a hydrogen shutoff valve 4 in an embodiment described later) provided in the hydrogen supply flow path and shutting off hydrogen supplied to the fuel cell when an abnormality occurs. A hydrogen storage device (for example, a hydrogen storage tank 7 according to an embodiment described later) that is capable of introducing hydrogen supplied to the fuel cell downstream of the hydrogen shutdown device, Opening / closing means (for example, a hydrogen discharge valve 6 in an embodiment described later) which is opened to permit introduction of hydrogen into the hydrogen storage means.
With this configuration, the opening / closing unit is opened in the event of an abnormality, so that the hydrogen supplied to the fuel cell downstream of the hydrogen shutoff unit and supplied to the fuel cell is introduced into the hydrogen storage unit, and the downstream of the hydrogen shutoff unit. Hydrogen pressure can be reduced. As a result, the pressure difference between the anode and the cathode of the fuel cell can be reduced.
[0006]
According to a second aspect of the present invention, in the first aspect, the hydrogen storage means is a tank containing a hydrogen storage alloy.
With this configuration, in the event of an abnormality, it is possible to cause the hydrogen storage alloy to store the hydrogen supplied to the fuel cell downstream of the hydrogen shutoff means, and to reliably retain the stored hydrogen. it can.
[0007]
According to a third aspect of the present invention, in the first or second aspect of the present invention, when the hydrogen pressure downstream of the hydrogen shut-off means falls below a predetermined pressure after the opening / closing means is opened, The opening and closing means is closed.
With this configuration, it is possible to reliably reduce the pressure of hydrogen downstream of the hydrogen shut-off means to the predetermined pressure or less when an abnormality occurs.
[0008]
The invention according to claim 4 provides a hydrogen supply channel (for example, a hydrogen supply channel 21 in an embodiment described later) that supplies hydrogen to a fuel cell (for example, a fuel cell 1 in an embodiment described below), A hydrogen shutoff means (for example, a hydrogen shutoff valve 4 in an embodiment described later) provided in the hydrogen supply flow path, and returns the hydrogen discharged from the fuel cell to the hydrogen supply flow path downstream of the hydrogen cutoff means. A hydrogen circulation channel (for example, a hydrogen circulation channel 23 in an embodiment described later) for circulating the fuel into the fuel cell, and a hydrogen storage unit (for example, an embodiment described later) capable of introducing hydrogen provided in the hydrogen circulation channel. And a hydrogen storage tank 7) according to the first aspect of the present invention, wherein the hydrogen shutoff means is shut off when an abnormality occurs, and the hydrogen pressure in the hydrogen circulation flow path is reduced by the hydrogen storage means. The hydrogen shut-off device for a fuel cell characterized by reduced to a predetermined pressure.
With this configuration, it is possible to close the hydrogen circulation channel by shutting off the hydrogen shutoff unit when an abnormality occurs, and prevent the hydrogen in the hydrogen circulation channel from being released to the outside by the hydrogen storage unit. Thus, the hydrogen pressure in the hydrogen circulation channel can be reduced to a predetermined pressure, and the pressure difference between the anode and the cathode of the fuel cell can be reduced.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a hydrogen cutoff device for a fuel cell according to the present invention will be described with reference to the drawings of FIGS. The embodiment described below is an embodiment of a hydrogen cutoff device for a fuel cell mounted on a fuel cell vehicle.
FIG. 1 is a schematic configuration diagram of a fuel cell system including a hydrogen cutoff device.
The fuel cell 1 is composed of a stack formed by stacking a plurality of cells formed by sandwiching a solid polymer electrolyte membrane made of, for example, a solid polymer ion exchange membrane between an anode and a cathode from both sides. When air containing oxygen as an oxidant is supplied to the cathode, the hydrogen ions generated by the catalytic reaction at the anode pass through the solid polymer electrolyte membrane to the cathode, and undergo electrochemical reaction with oxygen at the cathode. And water is generated.
[0010]
The hydrogen stored in the high-pressure hydrogen tank 2 as the hydrogen supply means flows through the hydrogen supply flow path 21 provided with the pressure regulating valve 3, the hydrogen cutoff valve (hydrogen cutoff means) 4, and the ejector 5, and It is supplied to the anode of each cell. The pressure adjusting valve 3 is for reducing the pressure of the hydrogen in the high-pressure hydrogen tank 2 to a predetermined pressure. The hydrogen shutoff valve 4 is provided in the hydrogen supply flow path 21 and shuts off the supply of hydrogen to the downstream flow path. The ejector 5 is for returning a hydrogen off-gas described later discharged from the fuel cell 1 to the hydrogen supply flow path 21. In some cases, a pump is used instead of the ejector 5. Further, a pressure sensor 12 for detecting hydrogen pressure is provided in a hydrogen supply flow path 21 downstream of the ejector 5.
[0011]
Among the hydrogen supplied to the anode of the fuel cell 1, hydrogen that has not been used for power generation, that is, unreacted hydrogen, is discharged from the fuel cell 1 as hydrogen off-gas, and is drawn into the ejector 5 through the hydrogen off-gas flow path 22. And the fresh hydrogen supplied from the high-pressure hydrogen tank 2 is supplied to the anode of the fuel cell 1 again. That is, the hydrogen (hydrogen off gas) discharged from the fuel cell 1 is returned to the hydrogen supply flow path 21 downstream of the hydrogen shutoff valve 4 through the hydrogen off gas flow path 22 and circulated to the fuel cell 1. Here, the hydrogen supply passage 21 and the hydrogen off-gas passage 22 located downstream of the hydrogen shutoff valve 4 constitute a hydrogen circulation passage 23.
[0012]
The hydrogen off-gas flow path 22 constituting a part of the hydrogen circulation flow path 23 is connected to the hydrogen storage tank 7 by a hydrogen discharge flow path 24 having a hydrogen discharge valve (opening / closing means) 6. The hydrogen discharge valve 6 is normally closed during normal operation to prevent the hydrogen in the hydrogen circulation passage 23 from being introduced into the hydrogen storage tank 7, and is opened when an abnormality such as a collision of a vehicle occurs and the hydrogen circulation passage 23 is opened. Is allowed to be introduced into the hydrogen storage tank 7. The hydrogen storage tank 7 is a closed container containing a hydrogen storage alloy therein, and the hydrogen storage alloy is an alloy having a function of storing and releasing hydrogen under predetermined conditions, as is well known.
[0013]
On the other hand, the air is pressurized to a predetermined pressure by the compressor 8 and supplied to the cathode of the fuel cell 1 through the air passage 31. After the air supplied to the fuel cell 1 is used for power generation, the air is discharged from the fuel cell 1 to the air off-gas flow path 32 as air off-gas, and is discharged via the pressure control valve 9.
Further, the vehicle is provided with an impact sensor (abnormality detecting means) 11 for detecting the magnitude (impact value) of the impact applied to the vehicle. Output signals of the shock sensor 11 and the pressure sensor 12 are input to an electronic control unit (ECU) 10, which controls the opening and closing of the hydrogen shutoff valve 4 and the hydrogen discharge valve 6 based on the output signals of the sensors 11 and 12. I do.
[0014]
In the fuel cell system configured as described above, when the impact value detected by the impact sensor 11 is equal to or less than a predetermined value, the ECU 10 determines that there is no abnormality, and holds the hydrogen shutoff valve 4 open, The closed state of the hydrogen discharge valve 6 is maintained. Thereby, the hydrogen in the high-pressure hydrogen tank 2 and the hydrogen off-gas discharged from the fuel cell 1 can be supplied to the fuel cell 1 at a predetermined pressure, and the fuel cell 1 is maintained in a state capable of generating power.
[0015]
On the other hand, when the shock value detected by the shock sensor 11 exceeds the predetermined value, the ECU 10 determines that there is an abnormality, and closes the hydrogen cutoff valve 4 and opens the hydrogen discharge valve 6. By closing the hydrogen shutoff valve 4, the hydrogen in the high pressure hydrogen tank 2 is prevented from flowing into the hydrogen supply flow path 21 downstream of the hydrogen shutoff valve 4, and the hydrogen circulation flow path 23 is separated from the high pressure hydrogen tank 2. Will be shut off. When the hydrogen discharge valve 6 is opened, hydrogen of a predetermined pressure confined in the hydrogen circulation flow path 23 is introduced into the hydrogen storage tank 7 through the hydrogen discharge flow path 24, and the hydrogen storage tank The hydrogen is stored in the hydrogen storage alloy housed in 7. When the hydrogen in the hydrogen circulation channel 23 is introduced into the hydrogen storage tank 7, the pressure in the hydrogen circulation channel 23 decreases. Then, when the pressure detected by the pressure sensor 12 falls below a predetermined set pressure, the hydrogen discharge valve 6 is closed.
[0016]
Thus, in the event of an abnormality when a large impact is applied to the vehicle, the hydrogen present in the hydrogen circulation channel 23 can be discharged to the hydrogen storage tank 7 without being released outside the vehicle. Further, by discharging the hydrogen in the hydrogen circulation channel 23, the pressure in the hydrogen circulation channel 23 can be reduced. In particular, in this embodiment, the hydrogen discharge valve 6 is closed when the pressure in the hydrogen circulation flow path 23 falls below the set pressure. The pressure can be reduced to the following. Therefore, when the fuel cell system is stopped thereafter, the pressure difference between the anode and the cathode of the fuel cell 1 can be reduced. As a result, it is possible to prevent an excessive stress from being applied to the solid polymer electrolyte membrane after the system is stopped, and to protect the fuel cell 1.
[0017]
In order to quickly move the hydrogen in the hydrogen circulation channel 23 into the hydrogen storage tank 7 when the hydrogen discharge valve 6 is opened, the hydrogen storage alloy in the hydrogen storage tank 7 must be activated in advance. In addition, it is preferable that a dehydrogenation process is performed, and further, the pressure in the hydrogen storage tank 7 is reduced, and an inert gas is sealed in the hydrogen storage tank 7.
[0018]
Further, the hydrogen storage alloy has a property that heat is taken in and out of the storage and release of hydrogen, generates heat by hydrogenation reaction of the hydrogen storage alloy when storing hydrogen, and absorbs heat when releasing hydrogen. Therefore, as the hydrogen storage alloy to be stored in the hydrogen storage tank 7, a hydrogen storage alloy having a low hydrogen storage pressure (hydrogen storage equilibrium pressure) even at a high temperature can be used even if the temperature of the hydrogen storage alloy becomes high due to heat generated by the hydrogen storage. It is preferable because it has the ability to absorb hydrogen. In addition, when a hydrogen storage alloy having a low hydrogen storage pressure even at such a high temperature is used, a higher temperature is required to release hydrogen from the hydrogen storage alloy, so that once stored hydrogen is hardly released from the hydrogen storage alloy. There is also an advantage.
[0019]
Next, the hydrogen cutoff control of the fuel cell according to this embodiment will be described with reference to the flowchart of FIG.
The flowchart shown in FIG. 2 shows a hydrogen cutoff control routine. The hydrogen cutoff control routine is executed by the ECU 10. The hydrogen cutoff control is executed by using an ON signal of an ignition switch as a trigger.
[0020]
When the ignition switch ON signal is detected in step S101, the process proceeds to step S102, and it is determined whether the ignition switch is turned off.
If the result of the determination in step S102 is "YES" (ignition SW OFF), the process proceeds to step S108, in which the fuel cell system is stopped, and the execution of this routine ends.
If the determination result in step S102 is “NO” (ignition SW ON), the process proceeds to step S103, and it is determined whether or not the shock value detected by the shock sensor 11 is equal to or greater than a predetermined threshold value.
If the determination result in step S103 is "NO" (impact value <threshold value), it is determined that there is no abnormality, and the process proceeds to step S104, where the hydrogen shutoff valve 4 is kept open and the hydrogen discharge valve 6 is closed. To maintain.
[0021]
On the other hand, if the result of the determination in step S103 is “YES” (impact value ≧ threshold), it is determined that there is an abnormality, and the process proceeds to step S105, where the hydrogen shutoff valve 4 is closed and the hydrogen discharge valve 6 is opened. At the same time, the compressor 8 is stopped.
Next, the process proceeds to step S106, and it is determined whether or not the pressure in the hydrogen circulation channel 23 detected by the pressure sensor 12 is equal to or less than a preset value.
If the result of the determination in step S106 is "NO" (pressure in the hydrogen circulation flow path> set value), the pressure in the hydrogen circulation flow path 23 is still high, so the flow returns to step S105 and the hydrogen shutoff valve 4 is closed. While maintaining the state, the hydrogen discharge valve 6 is maintained in the open state.
[0022]
If the result of the determination in step S106 is “YES” (pressure in the hydrogen circulation flow path ≦ set value), the pressure in the hydrogen circulation flow path 23 has been sufficiently reduced, so the flow proceeds to step S107 and the hydrogen discharge valve 6 is closed.
Thereafter, the process proceeds to step S108, in which the fuel cell system is stopped, and the execution of this routine ends.
[0023]
[Other embodiments]
Note that the present invention is not limited to the above-described embodiment.
For example, in the above-described embodiment, the time when a large impact is applied to the vehicle is regarded as an abnormal condition and the hydrogen shutoff valve 4 is closed and the hydrogen discharge valve 6 is opened. However, the present invention is not limited to this. Determines that the case where the hydrogen concentration exceeds a predetermined threshold value in a predetermined region of the vehicle having a low hydrogen concentration is abnormal, and closes the hydrogen cutoff valve 4 and opens the hydrogen discharge valve 6 as in the above-described embodiment. It may be. In such a case, a hydrogen sensor is installed in the predetermined area, and when the detection value of the hydrogen sensor exceeds a threshold value, it is determined that there is an abnormality.
[0024]
Further, in the above-described embodiment, the hydrogen discharge valve 6 opened by the abnormality detection is closed when the pressure in the hydrogen circulation channel 23 becomes equal to or less than the set value. May be detected, and the hydrogen discharge valve 6 may be closed when the pressure difference between the electrodes becomes equal to or less than the threshold value.
Further, in the above-described embodiment, the hydrogen storage unit is configured by the tank containing the hydrogen storage alloy, but the hydrogen storage unit may be configured by a simple tank. In that case, the tank is preferably filled with an inert gas.
[0025]
【The invention's effect】
As described above, according to the first aspect of the invention, in the event of an abnormality, the opening / closing means is opened, and the hydrogen supplied to the fuel cell downstream of the hydrogen shutoff means and supplied to the fuel cell is introduced into the hydrogen storage means. Since the pressure of hydrogen downstream of the shut-off means can be reduced, the pressure difference between the anode and the cathode of the fuel cell can be reduced when the fuel cell system is stopped due to an abnormality. An excellent effect of being able to protect is achieved.
[0026]
According to the second aspect of the present invention, in the event of an abnormality, hydrogen supplied to the fuel cell downstream of the hydrogen shutoff means can be stored in the hydrogen storage alloy, and the stored hydrogen is securely retained. Therefore, there is an effect that release of hydrogen can be reliably prevented.
According to the invention according to claim 3, the pressure of hydrogen downstream of the hydrogen shut-off means can be reliably reduced to the predetermined pressure or less at the time of abnormality, so that the fuel cell can be reliably stopped when the fuel cell system is stopped due to the abnormality. There is an effect that it can be protected.
[0027]
According to the invention according to claim 4, the hydrogen circulation passage can be closed by shutting off the hydrogen interruption unit in the event of an abnormality, and the hydrogen in the hydrogen circulation passage is released to the outside by the hydrogen storage unit. The hydrogen pressure in the hydrogen circulation channel can be reduced to a predetermined pressure without causing the pressure difference between the anode and the cathode of the fuel cell to be reduced. In addition, an excellent effect is provided that the fuel cell can be protected when the fuel cell system is stopped due to an abnormality.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of a fuel cell system including a hydrogen cutoff device according to the present invention.
FIG. 2 is a flowchart showing hydrogen cutoff control in the embodiment.
[Explanation of symbols]
1 fuel cell 4 hydrogen shutoff valve (hydrogen shutoff means)
6 Hydrogen discharge valve (opening / closing means)
7. Hydrogen storage tank (hydrogen storage means)
21 Hydrogen supply channel 23 Hydrogen circulation channel

Claims (4)

燃料電池に水素を供給する水素供給流路と、前記水素供給流路に設けられ燃料電池に供給される水素を異常時に遮断する水素遮断手段と、を備えた燃料電池の水素遮断装置において、
前記水素遮断手段よりも下流であって前記燃料電池へ供給される水素を導入可能な水素貯留手段と、
異常時に開放して前記水素貯留手段への水素の導入を許可する開閉手段と、
を備えることを特徴とする燃料電池の水素遮断装置。
A hydrogen supply device for supplying hydrogen to a fuel cell, and a hydrogen cutoff device provided in the hydrogen supply flow passage and configured to shut off hydrogen supplied to the fuel cell when an abnormality occurs.
Hydrogen storage means capable of introducing hydrogen supplied to the fuel cell downstream of the hydrogen cutoff means,
Opening / closing means which is opened at the time of an abnormality to permit introduction of hydrogen into the hydrogen storage means,
A hydrogen cutoff device for a fuel cell, comprising:
前記水素貯留手段は水素吸蔵合金を収容したタンクであることを特徴とする請求項1に記載の燃料電池の水素遮断装置。The hydrogen shutoff device for a fuel cell according to claim 1, wherein the hydrogen storage means is a tank containing a hydrogen storage alloy. 前記開閉手段が開放された後、前記水素遮断手段よりも下流の水素圧力が所定圧力以下になったときに、前記開閉手段が閉鎖されることを特徴とする請求項1または請求項2に記載の燃料電池の水素遮断装置。3. The opening / closing unit according to claim 1, wherein the opening / closing unit is closed when a hydrogen pressure downstream of the hydrogen shutoff unit becomes lower than a predetermined pressure after the opening / closing unit is opened. Fuel cell hydrogen shut-off device. 燃料電池に水素を供給する水素供給流路と、前記水素供給流路に設けた水素遮断手段と、前記燃料電池から排出される水素を前記水素遮断手段よりも下流の前記水素供給流路に戻して前記燃料電池に循環させる水素循環流路と、前記水素循環流路内に設けた水素導入可能な水素貯留手段と、を備えた燃料電池の水素遮断装置であって、
異常時に前記水素遮断手段を遮断し、前記水素貯留手段によって前記水素循環流路内の水素圧力を所定の圧力まで減圧することを特徴とする燃料電池の水素遮断装置。
A hydrogen supply flow path for supplying hydrogen to the fuel cell, a hydrogen cutoff means provided in the hydrogen supply flow path, and returning hydrogen discharged from the fuel cell to the hydrogen supply flow path downstream of the hydrogen cutoff means. A hydrogen circulation channel circulating through the fuel cell, and a hydrogen storage means provided in the hydrogen circulation channel and capable of introducing hydrogen, a hydrogen cutoff device for a fuel cell,
A hydrogen shutoff device for a fuel cell, wherein the hydrogen shutoff means is shut off when an abnormality occurs, and the hydrogen pressure in the hydrogen circulation channel is reduced to a predetermined pressure by the hydrogen storage means.
JP2002279226A 2002-09-25 2002-09-25 Fuel cell hydrogen shut-off device Expired - Fee Related JP4282967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279226A JP4282967B2 (en) 2002-09-25 2002-09-25 Fuel cell hydrogen shut-off device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279226A JP4282967B2 (en) 2002-09-25 2002-09-25 Fuel cell hydrogen shut-off device

Publications (2)

Publication Number Publication Date
JP2004119122A true JP2004119122A (en) 2004-04-15
JP4282967B2 JP4282967B2 (en) 2009-06-24

Family

ID=32274293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279226A Expired - Fee Related JP4282967B2 (en) 2002-09-25 2002-09-25 Fuel cell hydrogen shut-off device

Country Status (1)

Country Link
JP (1) JP4282967B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108024A (en) * 2004-10-08 2006-04-20 Toyota Motor Corp High pressure gas feeder and fuel cell system using it
JP2016139590A (en) * 2015-01-22 2016-08-04 本田技研工業株式会社 Fuel battery vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108024A (en) * 2004-10-08 2006-04-20 Toyota Motor Corp High pressure gas feeder and fuel cell system using it
JP2016139590A (en) * 2015-01-22 2016-08-04 本田技研工業株式会社 Fuel battery vehicle

Also Published As

Publication number Publication date
JP4282967B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4028544B2 (en) Fuel cell system and fuel gas path failure detection method in the system
JP4372725B2 (en) Fuel cell system
JP4806953B2 (en) FUEL CELL SYSTEM, ITS OPERATION METHOD, AND FUEL CELL VEHICLE
JP4917796B2 (en) Fuel cell system
WO2006109756A1 (en) Fuel cell system
JP2003115317A (en) Stopping method of power generation of fuel cell
JP2009037951A (en) Fuel cell system, and operation method thereof
JP2002324564A (en) Fuel cell device and control method therefor
JP2007184196A (en) Fuel cell system
JP2005032652A (en) Fuel cell system
JP4384401B2 (en) Fuel cell system
JP4028363B2 (en) Method for stopping power generation in fuel cell system
JP2002216813A (en) Fuel cell system for car use, fuel cell and hydrogen storage alloy tank
JP2004179114A (en) Function keeping method of fuel cell system
JP2006278085A (en) Fuel cell mobile body
JP2008004564A (en) Power generation shutdown method of fuel cell system
JP3629949B2 (en) Fuel cell system
JP4675623B2 (en) Fuel cell system and control method thereof
JP4282967B2 (en) Fuel cell hydrogen shut-off device
JP2005197156A (en) Fuel cell system
JP2009004168A (en) Fuel cell system
JP2009123588A (en) Fuel cell system
JP4856398B2 (en) Fuel cell scavenging method and fuel cell system
JPH09213358A (en) Power supply apparatus
JP2009117226A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070501

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees