JP2004118467A - Member inclination recognizing method, member inclination recognition control program, readable recording medium, and shape recognizing device - Google Patents

Member inclination recognizing method, member inclination recognition control program, readable recording medium, and shape recognizing device Download PDF

Info

Publication number
JP2004118467A
JP2004118467A JP2002280003A JP2002280003A JP2004118467A JP 2004118467 A JP2004118467 A JP 2004118467A JP 2002280003 A JP2002280003 A JP 2002280003A JP 2002280003 A JP2002280003 A JP 2002280003A JP 2004118467 A JP2004118467 A JP 2004118467A
Authority
JP
Japan
Prior art keywords
inclination
chip
point
recognizing
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002280003A
Other languages
Japanese (ja)
Other versions
JP4201321B2 (en
Inventor
Yoshiyuki Ito
伊藤 嘉之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002280003A priority Critical patent/JP4201321B2/en
Publication of JP2004118467A publication Critical patent/JP2004118467A/en
Application granted granted Critical
Publication of JP4201321B2 publication Critical patent/JP4201321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform much more stable member shape side inclination recognition processing by preventing positional deviation due to the erroneous recognition of the end surface position of a chip shape even when an image is relatively unclear. <P>SOLUTION: A CPU 65 is provided with a point extracting means 651 for extracting n(n is a natural number which is 3 or more) pieces of a plurality of points from each side on the outline shape of a semiconductor chip 2, a primary approximate formula creating means 652 for preparing a primary approximate formula from those n pieces of the plurality of the points, and a primary approximate formula re-creating means 653 for repeating processing to remove the point which is the farthest from the primary approximate formula until the number of remaining points in removing the point which is the farthest from the calculated primary approximate formula is turned to be a predetermined value (n/3 in this case) which is less than n, and for calculating a primary approximate formula from the remaining points again. In this case, inclination (a) of the recreated primary approximate formula Y=aX+b is defined as the inclination of a member shape side (the inclination of the semiconductor chip 2) and the member shape is recognized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体レーザ検査プロセスのうち半導体チップなどの部材形状の傾きを認識する部材傾き認識方法、これを実行させるための部材傾き認識制御プログラム、これを記録した可読記録媒体および、これらを用いた半導体チップ認識装置などの外形認識装置に関する。
【0002】
【従来の技術】
従来、半導体チップ認識装置は、XYθステージ、CCDカメラ光学系および照明装置から構成されており、半導体チップなどの部材外形形状の傾きを認識することができる。
【0003】
そのXYθステージ上の半導体チップに対して照明装置から照明光を照らし、CCDカメラでその半導体チップのチップ外形画像を取り込んだ後に、そのチップ外形画像の端面位置を認識し、XYθステージ駆動部により半導体チップを駆動させて基準位置に移動させるようにしている。
【0004】
その一例として、特開平6−13417号公報「半導体チップ認識装置」が提案されている。
【0005】
図18に示すように、この半導体チップ認識装置では、まず、半導体チップをテレビジョンカメラにより撮像して得られるチップ画像信号を処理して濃淡を表すデジタル信号に変換する二値化処理を行う(ステップS51)。
【0006】
次に、得られるチップ画像信号対する処理を行い、半導体チップの各辺毎にエッジ部分を検出し、検出したエッジ部分の複数点についてチップ画像表示画面上の座標点を検出する座標点検出処理を行う(ステップS52)。
【0007】
さらに、半導体チップの各辺毎についての座標点データの相関係数を比較してエッジ部分の凹凸の程度を検出し、エッジ部分の凹凸の程度が最も小さい一辺を判定する(ステップS53)。
【0008】
最後に、最小二乗法により、ステップS53の判定処理で求めた一辺の傾きを求める(ステップS54)。
【0009】
【特許文献1】
特開平6−13417号公報
【0010】
【発明が解決しようとする課題】
上記従来の半導体チップ認識装置では、半導体チップの外形像が不鮮明時にはチップ外形の端面位置を誤認識するという問題があった。
【0011】
また、照明やチップ表面状態の不安定性がチップ外形の端面位置認識のバラツキ要素として含まれ、それらを補償するためには、基準画像の登録(傾き毎のチップ基準像)と、それにマッチングした位置を検出するための画像エリア内のサーチングとマッチング処理に伴う多大な時間を要するという問題があった。
【0012】
本発明は、上記従来の問題を解決するもので、画像が多少不鮮明でも、チップ外形の端面位置の誤認識による位置ずれを防止してより安定な部材外形辺の傾き認識処理を行うことができる部材傾き認識方法、これを実行させるための部材傾き認識制御プログラム、これを記録した可読記録媒体および、これらを用いた外形認識装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の部材傾き認識方法は、部材形状の傾きを認識する部材傾き認識方法において、部材外形辺上からn個(nは3以上の自然数)の点を抽出し、n個の点から1次近似式を求めた後に、1次近似式から最も離れた点を除いて残った点の数がnよりも少ない所定値以下になるまで、1次近似式から最も離れた点を除く処理を繰り返し、残った点から再度求めた1次近似式Y=a・X+bの傾きaを部材外形辺の傾きとするものであり、そのことにより上記目的が達成される。また、これに対応する装置として、本発明の外形認識装置は、部材形状の傾きを認識する外形認識装置において、部材外形辺上から複数のn点(nは自然数)を抽出する点抽出手段と、このn個の点から1次近似式を求める1次近似式作成手段と、この1次近似式から最も離れた点を除いて残った点の数がnよりも少ない所定値以下になるまで、1次近似式から最も離れた点を除く処理を繰り返し、残った点から1次近似式を再度求める1次近似式再作成手段とを備え、再作成した1次近似式Y=a・X+bの傾きaを部材外形辺の傾きとして部材外形を認識するものであり、そのことにより上記目的が達成される。
【0014】
また、好ましくは、本発明の部材傾き認識方法において、部材は半導体チップであり、所定値はn/3である。
【0015】
さらに、好ましくは、本発明の部材傾き認識方法における1次近似式と点との距離は点の座標を(X,Y)とするときY−Yi(X) (i=0〜n)とする。
【0016】
さらに、好ましくは、本発明の部材傾き認識方法における1次近似式と点との距離は点の座標を(X,Y)、この1次近似式の近似直線と点との距離√(ΔX×ΔX+ΔY×ΔY)、ただし、ΔX=(X−Xi)、ΔY=(Y−Yi)(i=0〜n) とする。
【0017】
さらに、好ましくは、本発明の部材傾き認識方法における1次近似式は、基準線に対して90°傾いている部材辺に対しては90°を予め引き算して求める。
【0018】
さらに、好ましくは、本発明の部材傾き認識方法において、部材外形辺の一辺を複数領域に分割し、各分割領域毎に算出した1次近似式に基づいて部材外形辺の傾きを求める。
【0019】
さらに、好ましくは、本発明の部材傾き認識方法において、部材辺の全てについて1次近似式を算出し、この算出した1次近似式に基づいて部材外形辺の傾きを求める。
【0020】
さらに、好ましくは、本発明の部材傾き認識方法において、部材外形辺を認識するときの部材外形の寸法が所定の寸法に最も近くなる2値化スレッショルドレベルを設定し、部材外形辺傾き認識処理は2値化画像またはカメラの焦点位置で行う。
【0021】
さらに、好ましくは、本発明の部材傾き認識方法における部材外形辺傾き認識処理はチップシート上で行う。
【0022】
さらに、好ましくは、本発明の部材傾き認識方法における部材外形辺傾き認識処理はチップシートからダイボンド位置への搬送中に行う。
【0023】
本発明の部材傾き認識制御プログラムは、請求項1〜10のいずれかに記載の部材外形傾き認識方法の各処理手順をコンピュータに実行させるものであり、そのことにより上記目的が達成される。
【0024】
本発明の可読記録媒体は、請求項11記載の部材傾き認識制御プログラムが記録されたコンピュータ読み出し可能であり、そのことにより上記目的が達成される。
【0025】
上記構成により、以下、本発明の作用について説明する。
【0026】
本発明において、認識対象部材として例えば半導体チップの輪郭上の外形辺からn個の座標点を抽出し、それらから1次近似式を求めた後に、その1次近似式から最も離れた座標点を除いて残った座標点が例えばn/3の所定値以上であれば、上記プロセスを繰り返し、残った点が所定値(所定個数値)であれば(または、傾き変化が所定傾き値以下になるまで)そのときの1次近似式Y(X)の傾きを半導体チップの外形辺の傾きとするので、部材輪郭上の外形画像データのばらつきによる誤認識を防ぐことが可能となり、より安定な傾き測定と処理時間の短縮を図ることが可能となる。
【0027】
また、上記近似式と点との距離は点の座標を(X,Y)とするときY−Yi(X)(i=0〜n)とすることで近似式から離れた点を抽出することが可能となる。
【0028】
さらに、上記近似式と点との距離は点の座標を(X,Y)とするとき、√(ΔX×ΔX+ΔY×ΔY)、ΔX=(X−Xi)、ΔY=(Y−Yi)(i=0〜n)とするため、近似式から離れた点を正確に抽出することが可能となる。
【0029】
さらに、所定値はn/3とするため、傾き認識のばらつき除去と計測精度を向上させることが可能となる。
【0030】
さらに、基準線に対して90°傾いている辺に対しては、90°を予め引き算しておくと、常に計測したい端面を基準にした傾き角度として算出することが可能となる。
【0031】
さらに、請求項1〜5の処理を一辺の複数箇所について行えば、各一辺内の部分の傾きばらつきを抑えることが可能となる。
【0032】
さらに、請求項1〜5の処理を複数辺について行えば、各辺の傾きばらつきを抑えることが可能となる。
【0033】
さらに、部材外形辺を認識するとき例えば半導体チップの寸法が所定寸法に最も近くなる2値化レベル(またはカメラの焦点位置)で行えば、チップ端面の認識ズレが更に防止され得る。
【0034】
さらに、上記部材外形辺傾き認識処理をチップシート上で行えば、位置決めの工程が省け、更なる時間短縮が可能となる。
【0035】
さらに、上記部材外形辺傾き認識処理をチップシートからダイボンド位置への搬送中に行えば、時間短縮が可能となる。
【0036】
【発明の実施の形態】
以下、本発明の外形認識装置の実施形態を半導体チップ認識装置に適用した場合について図面を参照しながら説明する。
【0037】
図1は、本発明の半導体チップ認識装置の実施形態における要部構成を示すブロック図である。
【0038】
図1において、この半導体チップ認識装置1は、半導体チップ2を設置してX軸、Y軸および角度θが補正移動できるXYθステージ3と、半導体チップ2に光を照射する照明装置4と、半導体チップ2を撮像するCCDカメラなどのカメラ装置5と、カメラ装置5で撮像されたチップ画像を画像認識処理する画像演算部6とを有しており、半導体チップ2の部材形状の傾きを認識する。
【0039】
画像演算部6は、チップ傾き認識制御プログラムおよびその各種データが記録された記憶部(例えば光ディスクおよび磁気ディスクなどの可読記録媒体)としてのROM61と、チップ傾き認識制御プログラムの起動時などにデータを一時記憶するワークメモリとして働く一時記憶記憶部としてのRAM62と、初期画面、チップ画像画面、終了画面および各種選択画面の他、画像処理結果画面などの各種画面を表示可能とする液晶表示装置などの表示部63と、ユーザ入力操作を行うためのキーボードやマウスなどの入力部64と、各部を制御する制御部としてのCPU65(中央演算処理装置)とを有している。
【0040】
CPU65は、チップ傾き認識制御プログラムおよびその各種データに基づいて、本発明のチップ傾き認識制御処理全般を制御する。即ち、CPU65は、半導体チップ2の輪郭外形上の各辺からn個(nは3以上の自然数)の複数点を抽出する点抽出手段651と、このn個の複数点から1次近似式を求める1次近似式作成手段652と、求めた1次近似式から最も離れた点を除いて残った点の数がnよりも少ない所定値(ここではn/3)以下になるまで、1次近似式から最も離れた点を除く処理を繰り返し、残った点から1次近似式を再度求める1次近似式再作成手段653とを有しており、再作成した1次近似式Y=a・X+bの傾きaを部材外形辺の傾き(半導体チップ2の傾き)として部材外形を認識するようにしている。
【0041】
上記構成により、以下、本発明の半導体チップ認識装置1の動作手順について説明する。
【0042】
図2に示すように、ステップS1;チップ画像取込処理の準備作業として、まず、XYθステージ3上に半導体チップ2(以下、単にチップという)を取付け、照明装置4によりチップ2に照明光を適度に当てる。その後、カメラ装置5にてチップ外形の画像データを撮像して取り込む。
【0043】
ステップS2;チップ画像の2値化スレッショルドレベル調整処理および2値化処理として、図3に示すように、取込画像データに対して2値化スレッショルドレベルを高い値から順次下げていきながら(または、2値化スレッショルドレベルを低い値から順次上げていきながら)、基準寸法と比較してほぼ一致するような2値化レベルに決めて2値化処理する。即ち、チップ2の外形辺の傾きを認識するときの部材寸法が所定の寸法に最も近くなる2値化スレッショルドレベルを設定し、この傾き認識処理を2値化画像(またはカメラ装置5の焦点位置)で行う。
【0044】
ステップS3;チップ輪郭抽出処理(チップ輪郭抽出手段)として、ステップS2で得た2値化処理画像から、図4(a)および図4(b)に示すように、まず、チップ2の外形輪郭を抽出する。
【0045】
ステップS4;1辺の各分割領域の傾き演算処理(辺部分領域傾き演算手段)として、抽出された輪郭データから上辺、下辺、左辺、右辺の各々の各辺を、図5のように複数箇所(ここでは辺毎に両端部分2箇所と真中部分1箇所の合計3箇所)、全ての辺を合計した12箇所全ての傾きを演算する。この傾き演算は、まず、チップ周囲の四つの辺に対し行うが、まず、一つ目の辺の領域を認識する。図6に示すように、1辺を三つの部分領域例えば▲1▼▲2▼▲3▼に分ける。図7に示すように、その1辺の各部分領域の一つである部分領域▲1▼の1次近似式(近似直線式)を求める。
【0046】
ステップS5;一次近似した直線Aから最も離れたデータD1を除き、再度一次近似演算して一次近似式を求める。この最も離れているデータD1とは、図8(a)および図8(b)に示すように近似直線式の直線AからY方向または直線Aからの差√(Δx×Δx)+(Δy×Δy)が最も大きいデータでありこれを選択する。
【0047】
ステップS6;元のデータ量の1/3になるまで、最も離れたデータを除き、再度一次近似演算するステップS5の再度一次近似演算処理を繰り返す。
【0048】
繰り返した一次近似直線式の結果が辺内(1辺の部分領域▲1▼)の部分傾き値θ1となる。このθ1の求め方は、y=a・x+bのa値より、傾き角度θ1(deg)=arctan(a)となる。但し、左辺・右辺の傾き角度は、90(deg)減算しておく。
【0049】
ステップS7〜S9;ステップS5〜S7の処理と同様にして、部分領域▲2▼の近似直線式を求め(図10参照)、元のデータ量の1/3になるまで、最も離れたデータを除き続け、再度一次近似演算することにより、1辺の部分領域▲2▼の部分傾き値θ2も同様に求める。
【0050】
ステップS10〜S12;ステップS5〜S7,S7〜S9の各処理と同様にして、部分領域▲3▼の近似直線式を求め(図11参照)、元のデータ量の1/3になるまで、最も離れたデータを除き続け、再度一次近似演算することにより、1辺の部分領域▲3▼の部分傾き値θ3も同様に求める。
【0051】
ステップS13;同様にして、残り三つの辺の9箇所の部分領域(1辺あたり3領域)についても、四つの辺の傾き演算が終了するまで、ステップS4〜S12の一連の各処理を繰り返して、残る部分傾き値θ4〜θ12を全て求める。
【0052】
ステップS14;各々算出された12箇所の傾き角度結果θ1〜θ12のうち最も小さいデータから4個と最も大きいデータから4個を除いた中間値4個の平均値を演算する。この演算した傾き角度の平均値をチップ2の傾きとする。このようにして求めた傾き角度θaを最終結果とする。
【0053】
ここで、求めた傾き角度θaを元に測定端面認識用に直線式をたてる場合について説明する。
【0054】
仮に、図12に示すように、チップ傾き角を用いて点(sx,ey)を通る直線式(aX+b)を求め、この直線式の直線上に画素が幾つ重なっているかをカウントする。
【0055】
図13(a)に示すように、求めた直線式の切片bを変化させ、点(sx,ey−n)を通る直線式(aX+b−n)を順次求め、この直線式の直線上に画素が幾つ重なっているかをカウントする。
【0056】
図13(b)に示すように、カウント値がサーチ数の50パーセントを越えたら、そこを端面位置とする。このようにして、チップ2の端面に一致する直線式を求める。
【0057】
図14(a)に示すようにチップ外形の両サイド端面上下センタ付近の両サイドエッジデータから、図14(b)の×印に示す両サイドの各位置平均値を求める。
【0058】
図15(a)に示すように、求めた両サイドの各位置(×印)から端面位置の近似直線Aに垂線を下ろし交点U、Vをチップ端面コーナー位置とし、この2点の平均位置を、図15(b)に示すチップ端面センター位置Cとして求める。
【0059】
チップ端面を移動させるべき基準位置までの移動量を傾き角度θaとXYθステージ3の回転中心からXYθステージ3の補正移動量(Xm、Ym、θm)を算出し、この算出結果に基づいて、XYθステージ3の位置を移動させて補正する。
【0060】
以上により、本実施形態によれば、チップ2の輪郭上からn点を抽出し、それらの1次近似式を求めた後に、その1次近似式から最も離れた点を除いて残った点(図9において×印の点を除いて残った点)の数がn個の1/3(所定値)以上であれば、上記プロセスを繰り返し、残った点の数が所定値(n個よりも小さい値)であるかまたは小さければ(または、図9において1次近似直線式A1〜A4の各傾きaの変化が所定傾き以下になるまで)そのときの1次近似式Yn/3(X)の傾きをチップ2の傾きとする。このため、チップ2の輪郭(外形辺)上の外形画像データのばらつきによる誤認識を防ぐことができ、より安定な傾き測定と処理時間の短縮化を図ることができる。
【0061】
なお、上記実施形態では、XYθステージ3上で半導体チップ2を固定してチップ辺傾き認識処理を行ったが、このチップ辺傾き認識処理は、図16に示すようにチップシート上で行ってもよく、チップシート上で行えばチップ2の位置決めの工程が省け、更なる時間短縮が可能となる。また、このチップ辺傾き認識処理は、図17に示すようにチップシートからダイボンド位置への搬送中に行ってもよい。この場合にも、時間短縮が可能となる。
【0062】
【発明の効果】
以上のように、本発明によれば、半導体レーザ検査プロセスの部材形状、特にチップ形状の傾き認識方法では、チップを照明光で照らし、チップの外形画像が不鮮明な場合にも、チップ外形の端面位置を正確に外形認識することができる。このため、従来方法で用いられる処理時間のかかるマッチング認識に伴う複雑な処理は必要でなく、外形認識は、多少不鮮明でも容易かつ正確に認識することができる。したがって、チップ外形の端面位置の誤認識による位置ずれはなく、より安定したチップ傾き認識を行うことができる。
【0063】
また、部材輪郭、即ち部材外形を抽出するので、輪郭周辺部分に特化した画像データ処理を行うことができて処理時間が短縮される。このように、従来例に比べてシンプルで部分的な認識処理によるチップ傾き認識処理ができて、より安定的にチップ傾き認識処理できかつ処理時間の短縮化も図ることができる。
【図面の簡単な説明】
【図1】本発明の半導体チップ認識装置の実施形態における要部構成を示すブロック図である。
【図2】図1の半導体チップ認識装置によるチップ傾き認識処理の動作手順を示すフローチャートである。
【図3】本発明のチップ傾き認識処理における取込画像の2値化演算方法(その1)の説明図である。
【図4】(a)および(b)は本発明のチップ傾き認識処理における取込画像のチップ輪郭辺の傾き演算方法(その1)の説明図である。
【図5】本発明のチップ傾き認識処理における取込画像の2値化演算方法(その2)の説明図である。
【図6】本発明のチップ傾き認識処理における取込画像のチップ輪郭辺の傾き演算方法(その2)の説明図である。
【図7】本発明のチップ傾き認識処理における取込画像のチップ輪郭辺の傾き演算方法(その3)の説明図である。
【図8】(a)および(b)は本発明のチップ傾き認識処理における取込画像の近似直線Aとデータとの差がY−Yiの場合を説明するための図である。
【図9】本発明のチップ傾き認識処理における取込画像の傾きの近似式間引き演算方法の説明図である。
【図10】本発明のチップ傾き認識処理における取込画像のチップ輪郭辺の傾き演算方法(その4)の説明図である。
【図11】本発明のチップ傾き認識処理における取込画像のチップ輪郭辺の傾き演算方法(その5)の説明図である。
【図12】本発明の実施形態に係るチップ外形認識処理の端面位置演算方法(その1)の説明図である。
【図13】(a)および(b)は本発明の実施形態に係るチップ外形認識処理の端面位置演算方法(その2)の説明図である。
【図14】(a)および(b)は本発明の実施形態に係るチップ外形認識処理の端面位置演算方法(その3)の説明図である。
【図15】(a)および(b)は本発明の実施形態に係るチップ外形認識処理の端面位置演算方法(その4)の説明図である。
【図16】シート外形認識の場合の概略図である。
【図17】裏面外形認識の場合の概略図である。
【図18】従来の外形認識装置によるチップ傾き認識処理の動作手順を示すフローチャートである。
【符号の説明】
1  半導体チップ認識装置(外形認識装置)
2    半導体チップ
3    XYθステージ
4    照明装置
5    カメラ装置
6    画像演算部
61    ROM
62    RAM
63    入力部
64    表示部
65    CPU
651    点抽出手段
652    1次近似式作成手段
653    1次近似式再作成手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a member inclination recognition method for recognizing the inclination of a member shape such as a semiconductor chip in a semiconductor laser inspection process, a member inclination recognition control program for executing the method, a readable recording medium storing the same, and And an external shape recognizing device such as a semiconductor chip recognizing device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a semiconductor chip recognizing device includes an XYθ stage, a CCD camera optical system, and an illuminating device, and can recognize the inclination of the external shape of a member such as a semiconductor chip.
[0003]
The illuminating device illuminates the semiconductor chip on the XYθ stage with illuminating light, captures a chip outline image of the semiconductor chip with a CCD camera, recognizes the end face position of the chip outline image, and uses the XYθ stage driver to drive the semiconductor chip. The chip is driven to move to a reference position.
[0004]
As one example, Japanese Patent Application Laid-Open No. 6-13417 discloses a "semiconductor chip recognition device".
[0005]
As shown in FIG. 18, the semiconductor chip recognition device first performs a binarization process of processing a chip image signal obtained by imaging a semiconductor chip with a television camera and converting the image signal into a digital signal representing shading ( Step S51).
[0006]
Next, a coordinate point detection process of performing processing on the obtained chip image signal, detecting an edge portion for each side of the semiconductor chip, and detecting coordinate points on the chip image display screen for a plurality of detected edge portions is performed. Perform (Step S52).
[0007]
Further, the degree of unevenness of the edge part is detected by comparing the correlation coefficient of the coordinate point data for each side of the semiconductor chip, and one side having the smallest degree of unevenness of the edge part is determined (step S53).
[0008]
Finally, the inclination of one side obtained in the determination processing of step S53 is obtained by the least squares method (step S54).
[0009]
[Patent Document 1]
JP-A-6-13417
[Problems to be solved by the invention]
The conventional semiconductor chip recognition device described above has a problem in that when the outer shape image of the semiconductor chip is unclear, the end face position of the outer shape of the chip is erroneously recognized.
[0011]
In addition, the instability of illumination and chip surface condition is included as a variation factor in recognition of the end face position of the chip outer shape. To compensate for these, registration of a reference image (chip reference image for each inclination) and a position matching the reference image However, there is a problem that a large amount of time is required for searching and matching processing in the image area for detecting the image.
[0012]
The present invention solves the above-described conventional problem. Even if the image is somewhat unclear, it is possible to prevent misalignment of the end surface position of the chip outer shape due to erroneous recognition and perform more stable inclination recognition of the outer shape side of the member. An object of the present invention is to provide a member inclination recognition method, a member inclination recognition control program for executing the method, a readable recording medium on which the program is recorded, and an outer shape recognition device using the same.
[0013]
[Means for Solving the Problems]
The member inclination recognizing method of the present invention is a member inclination recognizing method for recognizing the inclination of a member shape, wherein n points (n is a natural number of 3 or more) are extracted from the outer side of the member, and a primary order is obtained from the n points. After obtaining the approximate expression, the process excluding the point farthest from the primary approximation formula is repeated until the number of remaining points excluding the point farthest from the primary approximation formula becomes a predetermined value smaller than n. The inclination a of the linear approximation Y = a.X + b obtained again from the remaining points is defined as the inclination of the outer side of the member, thereby achieving the above object. Further, as a corresponding device, the contour recognition device of the present invention is a contour recognition device for recognizing the inclination of a member shape, wherein a point extracting means for extracting a plurality of n points (n is a natural number) from a member contour side. A first-order approximation formula generating means for obtaining a first-order approximation formula from the n points, and a process until the number of remaining points excluding the point farthest from the first-order approximation becomes equal to or less than a predetermined value smaller than n. A primary approximation formula regenerating means for repeating a process for removing a point which is farthest from the primary approximation formula and re-calculating the primary approximation formula from the remaining points, wherein the reconstructed primary approximation formula Y = a × X + b Is recognized as the inclination a of the outer side of the member, thereby achieving the above object.
[0014]
Preferably, in the member inclination recognition method of the present invention, the member is a semiconductor chip, and the predetermined value is n / 3.
[0015]
More preferably, the distance between the first-order approximation formula and the point in the member inclination recognition method of the present invention is Y-Yi (X) (i = 0 to n) when the coordinates of the point are (X, Y). .
[0016]
More preferably, the distance between the first-order approximation formula and the point in the member inclination recognition method of the present invention is represented by the coordinates of the point (X, Y), and the distance between the approximation straight line of the first-order approximation formula and the point √ (ΔX × ΔX + ΔY × ΔY) where ΔX = (X−Xi) and ΔY = (Y−Yi) (i = 0 to n).
[0017]
More preferably, the first-order approximation formula in the member inclination recognition method of the present invention is obtained by previously subtracting 90 ° from a member side inclined by 90 ° with respect to the reference line.
[0018]
Still preferably, in a member inclination recognition method according to the present invention, one side of a member outer side is divided into a plurality of regions, and the inclination of the member outer side is obtained based on a linear approximation formula calculated for each of the divided regions.
[0019]
More preferably, in the member inclination recognition method of the present invention, a first-order approximation formula is calculated for all the member sides, and the inclination of the outer shape side of the member is obtained based on the calculated first-order approximation expression.
[0020]
Still preferably, in the member inclination recognizing method of the present invention, a binarized threshold level at which a dimension of a member outline when recognizing a member outline side is closest to a predetermined dimension is set, and the member outline side inclination recognition process is performed. This is performed at the binarized image or the focal position of the camera.
[0021]
Still preferably, in the member inclination recognizing method of the present invention, the member outer side inclination recognition processing is performed on a chip sheet.
[0022]
Still preferably, in the member inclination recognizing method of the present invention, the member outer side inclination recognizing process is performed during conveyance from the chip sheet to the die bonding position.
[0023]
A member inclination recognition control program according to the present invention causes a computer to execute each processing procedure of the member outline inclination recognition method according to any one of claims 1 to 10, thereby achieving the above object.
[0024]
The readable recording medium of the present invention is readable by a computer in which the member inclination recognition control program according to claim 11 is recorded, thereby achieving the above object.
[0025]
The operation of the present invention having the above configuration will be described below.
[0026]
In the present invention, for example, n coordinate points are extracted from a contour side of a contour of a semiconductor chip as a recognition target member, and a first-order approximation formula is obtained therefrom, and then a coordinate point farthest from the first-order approximation formula is determined. If the remaining coordinate points are equal to or more than a predetermined value of, for example, n / 3, the above process is repeated, and if the remaining points are a predetermined value (a predetermined number value) (or the slope change becomes equal to or less than the predetermined slope value). Up to that point), the inclination of the first-order approximation formula Y (X) at that time is defined as the inclination of the outer side of the semiconductor chip. Therefore, it is possible to prevent erroneous recognition due to the variation of the outline image data on the member outline, and to achieve a more stable inclination. Measurement and processing time can be reduced.
[0027]
Further, the distance between the approximate expression and the point is obtained by extracting a point apart from the approximate expression by setting Y-Yi (X) (i = 0 to n) when the coordinates of the point are (X, Y). Becomes possible.
[0028]
Further, when the coordinates of the point are (X, Y), the distance between the approximate expression and the point is √ (ΔX × ΔX + ΔY × ΔY), ΔX = (X−Xi), ΔY = (Y−Yi) (i = 0 to n), it is possible to accurately extract points away from the approximate expression.
[0029]
Further, since the predetermined value is n / 3, it is possible to remove variation in tilt recognition and improve measurement accuracy.
[0030]
Furthermore, if 90 ° is subtracted in advance for a side inclined by 90 ° with respect to the reference line, it is possible to calculate the inclination angle with respect to the end face to be always measured.
[0031]
Further, if the processes of claims 1 to 5 are performed for a plurality of portions on one side, it is possible to suppress the variation in the inclination of the portion within each side.
[0032]
Further, if the processing of claims 1 to 5 is performed for a plurality of sides, it is possible to suppress the variation in the inclination of each side.
[0033]
Further, when the outer shape side of the member is recognized, for example, at a binarization level (or the focal position of the camera) where the size of the semiconductor chip is closest to the predetermined size, the recognition deviation of the chip end face can be further prevented.
[0034]
Further, if the above-described member outer side inclination recognition processing is performed on the chip sheet, the positioning step can be omitted, and the time can be further reduced.
[0035]
Furthermore, if the above-described process of recognizing the inclination of the outer shape of the member is performed during the transportation from the chip sheet to the die bonding position, the time can be reduced.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a case in which an embodiment of the outer shape recognition device of the present invention is applied to a semiconductor chip recognition device will be described with reference to the drawings.
[0037]
FIG. 1 is a block diagram showing a main configuration of an embodiment of the semiconductor chip recognition device of the present invention.
[0038]
In FIG. 1, a semiconductor chip recognizing device 1 includes an XYθ stage 3 on which a semiconductor chip 2 is installed and whose X-axis, Y-axis and angle θ can be corrected, an illumination device 4 for irradiating the semiconductor chip 2 with light, and a semiconductor device. It has a camera device 5 such as a CCD camera for picking up an image of the chip 2 and an image calculation unit 6 for performing image recognition processing of a chip image picked up by the camera device 5, and recognizes the inclination of the member shape of the semiconductor chip 2. .
[0039]
The image calculation unit 6 includes a ROM 61 serving as a storage unit (for example, a readable recording medium such as an optical disk and a magnetic disk) in which a chip inclination recognition control program and various data thereof are recorded, and stores data when starting the chip inclination recognition control program. A RAM 62 serving as a temporary storage unit serving as a work memory for temporarily storing, and a liquid crystal display device capable of displaying various screens such as an image processing result screen in addition to an initial screen, a chip image screen, an end screen, and various selection screens. The display unit 63 includes an input unit 64 such as a keyboard and a mouse for performing a user input operation, and a CPU 65 (central processing unit) as a control unit for controlling each unit.
[0040]
The CPU 65 controls the entire chip inclination recognition control process of the present invention based on the chip inclination recognition control program and various data thereof. That is, the CPU 65 extracts n (n is a natural number of 3 or more) plural points from each side on the outline of the semiconductor chip 2, and obtains a first-order approximation expression from the n plural points. The first-order approximation formula generating means 652 to be obtained and the first-order approximation formula generation unit 652 perform the first-order approximation until the number of remaining points excluding the point farthest from the first-order approximation formula becomes equal to or less than a predetermined value smaller than n (here, n / 3). A primary approximation formula regenerating means 653 for repeating the process of removing the point farthest from the approximation formula and re-obtaining the primary approximation formula from the remaining points; The outer shape of the member is recognized as the inclination a of X + b as the inclination of the outer side of the member (the inclination of the semiconductor chip 2).
[0041]
With the above configuration, the operation procedure of the semiconductor chip recognition device 1 of the present invention will be described below.
[0042]
As shown in FIG. 2, in step S <b>1; as a preparatory work for chip image capturing processing, first, a semiconductor chip 2 (hereinafter simply referred to as a chip) is mounted on an XYθ stage 3, and illumination light is applied to the chip 2 by a lighting device 4. Apply moderately. Thereafter, the camera device 5 captures image data of the chip outer shape.
[0043]
Step S2: As the binarization threshold level adjustment processing and the binarization processing of the chip image, as shown in FIG. 3, the binarization threshold level of the captured image data is sequentially lowered from a higher value (or (While increasing the binarization threshold level sequentially from a lower value), the binarization process is performed by determining a binarization level that substantially matches the reference dimension. That is, a binarized threshold level at which a member dimension when recognizing the inclination of the outer side of the chip 2 is closest to a predetermined dimension is set, and this inclination recognition processing is performed on the binarized image (or the focal position of the camera device 5). ).
[0044]
Step S3: As the chip outline extraction processing (chip outline extraction means), first, as shown in FIGS. 4A and 4B, the outline outline of the chip 2 is obtained from the binarized image obtained in Step S2. Is extracted.
[0045]
Step S4: As the inclination calculation processing of each divided area of one side (side partial area inclination calculation means), each of the upper side, the lower side, the left side, and the right side is extracted from the extracted contour data by a plurality of points as shown in FIG. (Here, a total of three places, two places at both ends and one place in the middle for each side), and the slopes of all twelve places totaling all sides are calculated. This inclination calculation is first performed for the four sides around the chip. First, the area of the first side is recognized. As shown in FIG. 6, one side is divided into three partial areas, for example, (1), (2) and (3). As shown in FIG. 7, a first-order approximation formula (approximate straight-line formula) of a partial region (1), which is one of the partial regions on one side, is obtained.
[0046]
Step S5: Except for the data D1 farthest from the linearly approximated straight line A, the linear approximation is again performed to obtain a primary approximate expression. As shown in FIGS. 8A and 8B, the most distant data D1 is a difference 直線 (Δx × Δx) + (Δy ×) from the straight line A of the approximate straight line formula in the Y direction or from the straight line A. Δy) is the largest data and is selected.
[0047]
Step S6: Until the data amount becomes 1/3 of the original data amount, the first-order approximation calculation process of step S5 for performing the first-order approximation operation again except for the data farthest away is repeated.
[0048]
The result of the repeated linear approximation equation is a partial inclination value θ1 within the side (a partial area (1) of one side). The method of finding θ1 is based on the a value of y = a · x + b, and the inclination angle θ1 (deg) = arctan (a). However, 90 (deg) is subtracted from the inclination angles of the left side and the right side.
[0049]
Steps S7 to S9: In the same manner as in the processing of steps S5 to S7, an approximate straight line equation of the partial area (2) is obtained (see FIG. 10), and the data farthest away from the original data amount is reduced to 1/3 of the original data amount. By continuing the primary approximation calculation again, the partial inclination value θ2 of the partial area (2) on one side is similarly obtained.
[0050]
Steps S10 to S12: In the same manner as steps S5 to S7 and S7 to S9, an approximate straight-line equation for the partial area (3) is obtained (see FIG. 11). By continuing to remove the most distant data and performing a first-order approximation operation again, the partial inclination value θ3 of the partial area (3) on one side is similarly obtained.
[0051]
Step S13: Similarly, for the remaining nine partial regions (three regions per side) of the three remaining sides, a series of processes of steps S4 to S12 are repeated until the inclination calculation of the four sides is completed. , And all remaining partial inclination values θ4 to θ12 are obtained.
[0052]
Step S14: Among the calculated 12 inclination angle results θ1 to θ12, the average of four intermediate values excluding 4 from the smallest data and 4 from the largest data is calculated. The average value of the calculated tilt angles is defined as the tilt of the chip 2. The tilt angle θa obtained in this manner is used as a final result.
[0053]
Here, a case will be described in which a linear equation is established for recognition of the measured end face based on the obtained inclination angle θa.
[0054]
As shown in FIG. 12, a linear equation (aX + b) passing through the point (sx, ey) is obtained using the tip tilt angle, and the number of pixels on the straight line of this linear equation is counted.
[0055]
As shown in FIG. 13A, the intercept b of the obtained linear equation is changed, and a linear equation (aX + b-n) passing through the point (sx, ey-n) is sequentially obtained. Count how many overlap.
[0056]
If the count value exceeds 50% of the number of searches as shown in FIG. In this way, a straight line equation that matches the end face of the chip 2 is obtained.
[0057]
As shown in FIG. 14A, an average value of each position on both sides indicated by a cross in FIG. 14B is obtained from both side edge data near the upper and lower centers of both sides of the chip outer shape.
[0058]
As shown in FIG. 15A, a perpendicular line is drawn from the obtained positions (marked by x) on both sides to an approximate straight line A of the end surface position, intersections U and V are set as chip end surface corner positions, and the average position of these two points is calculated. , As shown in FIG. 15B.
[0059]
The correction amount (Xm, Ym, θm) of the XYθ stage 3 is calculated from the tilt angle θa and the rotation center of the XYθ stage 3 based on the amount of movement to the reference position at which the chip end surface is to be moved. The position of the stage 3 is moved for correction.
[0060]
As described above, according to the present embodiment, after extracting n points from the contour of the chip 2 and obtaining their linear approximations, the remaining points (excluding the points farthest from the linear approximations) ( If the number of remaining points excluding the points marked with a cross in FIG. 9 is equal to or more than ((predetermined value) of n, the above process is repeated, and the number of remaining points is reduced to a predetermined value (n is smaller than n). (Small value) or if it is small (or until the change of each slope a of the first-order approximate linear expressions A1 to A4 in FIG. 9 becomes equal to or less than a predetermined slope), then the first-order approximate expression Yn / 3 (X) Is the inclination of the chip 2. For this reason, it is possible to prevent erroneous recognition due to variations in the outer shape image data on the outline (outer side) of the chip 2, and to achieve more stable tilt measurement and a reduction in processing time.
[0061]
In the above embodiment, the semiconductor chip 2 is fixed on the XYθ stage 3 to perform the chip side inclination recognition processing. However, the chip side inclination recognition processing may be performed on a chip sheet as shown in FIG. If performed on the chip sheet, the step of positioning the chip 2 can be omitted, and the time can be further reduced. The chip side inclination recognition process may be performed during the transfer from the chip sheet to the die bonding position as shown in FIG. Also in this case, time can be reduced.
[0062]
【The invention's effect】
As described above, according to the present invention, in the method for recognizing the inclination of the chip shape, particularly the chip shape, in the semiconductor laser inspection process, the chip is illuminated with illumination light, and even when the chip outline image is unclear, the end face of the chip outline The position can be accurately recognized as the outer shape. For this reason, there is no need for complicated processing associated with the time-consuming matching recognition used in the conventional method, and the external shape can be easily and accurately recognized even if it is somewhat unclear. Therefore, there is no misalignment due to erroneous recognition of the end surface position of the chip outer shape, and more stable chip inclination recognition can be performed.
[0063]
Further, since the member outline, that is, the member outline is extracted, image data processing specialized for the peripheral portion of the outline can be performed, and the processing time can be reduced. As described above, the chip inclination recognition processing can be performed by simple and partial recognition processing as compared with the conventional example, and the chip inclination recognition processing can be performed more stably and the processing time can be shortened.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a main configuration of an embodiment of a semiconductor chip recognition device of the present invention.
FIG. 2 is a flowchart showing an operation procedure of a chip inclination recognition process by the semiconductor chip recognition device of FIG. 1;
FIG. 3 is an explanatory diagram of a binarization calculation method (1) of a captured image in the chip inclination recognition processing of the present invention.
FIGS. 4A and 4B are explanatory diagrams of a method of calculating the inclination of a chip contour side of a captured image (part 1) in the chip inclination recognition processing of the present invention.
FIG. 5 is an explanatory diagram of a binarization calculation method (part 2) of a captured image in the chip inclination recognition processing of the present invention.
FIG. 6 is an explanatory diagram of a method (part 2) of calculating the inclination of a chip contour side of a captured image in the chip inclination recognition processing of the present invention.
FIG. 7 is an explanatory diagram of a method (part 3) of calculating the inclination of a chip contour side of a captured image in the chip inclination recognition processing of the present invention.
FIGS. 8A and 8B are diagrams for explaining the case where the difference between the approximate line A of the captured image and the data in the chip inclination recognition processing of the present invention is Y-Yi.
FIG. 9 is an explanatory diagram of an approximate expression thinning calculation method of the inclination of a captured image in the chip inclination recognition processing of the present invention.
FIG. 10 is an explanatory diagram of a method (part 4) of calculating the inclination of a chip contour side of a captured image in the chip inclination recognition processing of the present invention.
FIG. 11 is an explanatory diagram of a method for calculating the inclination of a chip contour side of a captured image (part 5) in the chip inclination recognition processing of the present invention.
FIG. 12 is an explanatory diagram of an end face position calculation method (part 1) of the chip outer shape recognition processing according to the embodiment of the present invention.
FIGS. 13A and 13B are explanatory diagrams of an end face position calculation method (part 2) of the chip outer shape recognition processing according to the embodiment of the present invention.
FIGS. 14A and 14B are explanatory diagrams of an end face position calculation method (part 3) of the chip outer shape recognition processing according to the embodiment of the present invention.
FIGS. 15 (a) and (b) are explanatory diagrams of an end face position calculating method (part 4) of the chip outer shape recognition processing according to the embodiment of the present invention.
FIG. 16 is a schematic diagram in the case of sheet outline recognition.
FIG. 17 is a schematic diagram in the case of back surface outer shape recognition.
FIG. 18 is a flowchart showing an operation procedure of a chip inclination recognition process by a conventional outer shape recognition device.
[Explanation of symbols]
1 semiconductor chip recognition device (outline recognition device)
2 Semiconductor chip 3 XYθ stage 4 Illumination device 5 Camera device 6 Image operation unit 61 ROM
62 RAM
63 input unit 64 display unit 65 CPU
651 point extracting means 652 first-order approximate expression creating means 653 first-order approximate expression creating means

Claims (13)

部材形状の傾きを認識する部材傾き認識方法において、
部材外形辺上からn個(nは3以上の自然数)の点を抽出し、該n個の点から1次近似式を求めた後に、該1次近似式から最も離れた点を除いて残った点の数がnよりも少ない所定値以下になるまで、該1次近似式から最も離れた点を除く処理を繰り返し、残った点から再度求めた1次近似式Y=a・X+bの傾きaを部材外形辺の傾きとする部材傾き認識方法。
In the member inclination recognition method for recognizing the inclination of the member shape,
After extracting n (n is a natural number of 3 or more) points from the outer side of the member, obtaining a first-order approximation expression from the n points, the remaining points are removed except for the point farthest from the first-order approximation expression. Until the number of points becomes equal to or less than a predetermined value smaller than n, the processing of removing the point farthest from the primary approximation formula is repeated, and the gradient of the primary approximation formula Y = a · X + b obtained again from the remaining points A member inclination recognizing method in which a is the inclination of a member outer side.
前記部材は半導体チップであり、前記所定値はn/3である請求項1記載の部材傾き認識方法。The member inclination recognition method according to claim 1, wherein the member is a semiconductor chip, and the predetermined value is n / 3. 前記1次近似式と点との距離は点の座標を(X,Y)とするときY−Yi(X)(i=0〜n)とする請求項1記載の部材傾き認識方法。The member inclination recognition method according to claim 1, wherein the distance between the first-order approximation formula and the point is Y-Yi (X) (i = 0 to n) when the coordinates of the point are (X, Y). 前記1次近似式と点との距離は点の座標を(X,Y)、該1次近似式の近似直線と点との距離√(ΔX×ΔX+ΔY×ΔY)、ただし、ΔX=(X−Xi)、ΔY=(Y−Yi)(i=0〜n) とする請求項1記載の部材傾き認識方法。The distance between the first-order approximation formula and the point is represented by (X, Y), the coordinate of the point, the distance between the approximation straight line of the first-order approximation formula and the point √ (ΔX × ΔX + ΔY × ΔY), where ΔX = (X− 2. The member inclination recognition method according to claim 1, wherein Xi), ΔY = (Y−Yi) (i = 0 to n)}. 前記1次近似式は、基準線に対して90°傾いている前記部材辺に対しては90°を予め引き算して求める請求項1記載の部材傾き認識方法。The member inclination recognizing method according to claim 1, wherein the first-order approximation expression is obtained by previously subtracting 90 ° from the member side inclined by 90 ° with respect to a reference line. 前記部材外形辺の一辺を複数領域に分割し、各分割領域毎に算出した1次近似式に基づいて前記部材外形辺の傾きを求める請求項1記載の部材傾き認識方法。2. The member inclination recognition method according to claim 1, wherein one side of the member outer side is divided into a plurality of regions, and the inclination of the member outer side is obtained based on a linear approximation formula calculated for each divided region. 前記部材辺の全てについて前記1次近似式を算出し、算出した1次近似式に基づいて前記部材外形辺の傾きを求める請求項1または6記載の部材傾き認識方法。The member inclination recognition method according to claim 1, wherein the first-order approximate expression is calculated for all of the member sides, and the inclination of the member outer side is obtained based on the calculated first-order approximate expression. 前記部材外形辺を認識するときの部材外形の寸法が所定の寸法に最も近くなる2値化スレッショルドレベルを設定し、部材外形辺傾き認識処理は2値化画像またはカメラの焦点位置で行う請求項1記載の部材傾き認識方法。A binarization threshold level at which a dimension of the outer shape of the member when recognizing the outer shape side of the member is closest to a predetermined size is set, and the process of recognizing the inclination of the outer shape of the member is performed on the binarized image or the focal position of the camera. 2. The member inclination recognition method according to 1. 前記部材外形辺傾き認識処理はチップシート上で行う請求項1記載の部材傾き認識方法。The member inclination recognizing method according to claim 1, wherein the member outline side inclination recognition processing is performed on a chip sheet. 前記部材外形辺傾き認識処理はチップシートからダイボンド位置への搬送中に行う請求項1記載の部材傾き認識方法。The member inclination recognition method according to claim 1, wherein the member outline side inclination recognition processing is performed during conveyance from the chip sheet to the die bonding position. 請求項1〜10のいずれかに記載の部材外形傾き認識方法の各処理手順をコンピュータに実行させる部材傾き認識制御プログラム。A member inclination recognition control program for causing a computer to execute each processing procedure of the member outline inclination recognition method according to any one of claims 1 to 10. 請求項11記載の部材傾き認識制御プログラムが記録されたコンピュータ読み出し可能な可読記録媒体。A computer-readable recording medium on which the member inclination recognition control program according to claim 11 is recorded. 部材形状の傾きを認識する外形認識装置において、
部材外形辺上から複数のn点(nは3以上の自然数)を抽出する点抽出手段と、該n個の点から1次近似式を求める1次近似式作成手段と、該1次近似式から最も離れた点を除いて残った点の数がnよりも少ない所定値以下になるまで、該1次近似式から最も離れた点を除く処理を繰り返し、残った点から1次近似式を再度求める1次近似式再作成手段とを備え、再作成した1次近似式Y=a・X+bの傾きaを部材外形辺の傾きとして部材外形を認識する外形認識装置。
In the outline recognition device that recognizes the inclination of the member shape,
Point extracting means for extracting a plurality of n points (n is a natural number of 3 or more) from the outer side of the member, first-order approximation formula creating means for obtaining a first-order approximation equation from the n points, and the first-order approximation equation Until the number of remaining points excluding the point farthest away from is equal to or less than a predetermined value smaller than n, the process of excluding the point farthest from the primary approximate expression is repeated, and the primary approximate expression is calculated from the remaining points. An outer shape recognizing device, comprising: a first approximation formula re-creating means for re-determining, recognizing the outer shape of the member as the inclination a of the re-created first approximation formula Y = a × X + b.
JP2002280003A 2002-09-25 2002-09-25 Member inclination recognition method, member inclination recognition control program, readable recording medium, and outer shape recognition apparatus Expired - Lifetime JP4201321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002280003A JP4201321B2 (en) 2002-09-25 2002-09-25 Member inclination recognition method, member inclination recognition control program, readable recording medium, and outer shape recognition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280003A JP4201321B2 (en) 2002-09-25 2002-09-25 Member inclination recognition method, member inclination recognition control program, readable recording medium, and outer shape recognition apparatus

Publications (2)

Publication Number Publication Date
JP2004118467A true JP2004118467A (en) 2004-04-15
JP4201321B2 JP4201321B2 (en) 2008-12-24

Family

ID=32274846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280003A Expired - Lifetime JP4201321B2 (en) 2002-09-25 2002-09-25 Member inclination recognition method, member inclination recognition control program, readable recording medium, and outer shape recognition apparatus

Country Status (1)

Country Link
JP (1) JP4201321B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071780A (en) * 2006-09-12 2008-03-27 Shibuya Kogyo Co Ltd Method of detecting film pasting status
JP2011164992A (en) * 2010-02-10 2011-08-25 Toyota Motor Corp Image processing apparatus
JP2014153146A (en) * 2013-02-07 2014-08-25 Shimadzu Corp Visual inspection method and visual inspection device
JP2021057437A (en) * 2019-09-30 2021-04-08 日本電気硝子株式会社 Manufacturing method of device
JP7474410B2 (en) 2020-05-21 2024-04-25 京セラドキュメントソリューションズ株式会社 Image reader
JP7474411B2 (en) 2020-05-21 2024-04-25 京セラドキュメントソリューションズ株式会社 Image reader

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071780A (en) * 2006-09-12 2008-03-27 Shibuya Kogyo Co Ltd Method of detecting film pasting status
JP2011164992A (en) * 2010-02-10 2011-08-25 Toyota Motor Corp Image processing apparatus
JP2014153146A (en) * 2013-02-07 2014-08-25 Shimadzu Corp Visual inspection method and visual inspection device
JP2021057437A (en) * 2019-09-30 2021-04-08 日本電気硝子株式会社 Manufacturing method of device
JP7352159B2 (en) 2019-09-30 2023-09-28 日本電気硝子株式会社 Device manufacturing method
JP7474410B2 (en) 2020-05-21 2024-04-25 京セラドキュメントソリューションズ株式会社 Image reader
JP7474411B2 (en) 2020-05-21 2024-04-25 京セラドキュメントソリューションズ株式会社 Image reader

Also Published As

Publication number Publication date
JP4201321B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
US11227405B2 (en) Determining positions and orientations of objects
US8170368B2 (en) Correcting device and method for perspective transformed document images
JP5923824B2 (en) Image processing device
JP6344389B2 (en) Optical character recognition device
CN110288040B (en) Image similarity judging method and device based on topology verification
JP4201321B2 (en) Member inclination recognition method, member inclination recognition control program, readable recording medium, and outer shape recognition apparatus
JP4707249B2 (en) Component position detection method and apparatus
JP5160366B2 (en) Pattern matching method for electronic parts
JPH06241719A (en) Article position detection device
JP2011163823A (en) Object-shape evaluating device
JP3632461B2 (en) Image recognition method
JP4634250B2 (en) Image recognition method and apparatus for rectangular parts
JP4860452B2 (en) Mark positioning method and apparatus using template matching
JP4566686B2 (en) Method and apparatus for determining shape of object
JP3679958B2 (en) License plate recognition device
WO2008002077A2 (en) Method for correcting note image in damaged note
JPH03201454A (en) Aligning method for semiconductor device
JP2000322685A (en) Number plate reader
JP3342171B2 (en) Component position recognition method and position recognition device
JPH10332333A (en) Method for detecting angle of rotation and position of object
JPH0760459B2 (en) Corner detector
JPH06226668A (en) Article position detecting device
JP3680578B2 (en) Image recognition method and inspection method
JP4129354B2 (en) Template registration method and apparatus and defect detection method
JPH0991425A (en) Image processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081006

R150 Certificate of patent or registration of utility model

Ref document number: 4201321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term