JP2004117684A - Radiological image acquisition method and system - Google Patents

Radiological image acquisition method and system Download PDF

Info

Publication number
JP2004117684A
JP2004117684A JP2002279248A JP2002279248A JP2004117684A JP 2004117684 A JP2004117684 A JP 2004117684A JP 2002279248 A JP2002279248 A JP 2002279248A JP 2002279248 A JP2002279248 A JP 2002279248A JP 2004117684 A JP2004117684 A JP 2004117684A
Authority
JP
Japan
Prior art keywords
radiation image
image
light
conversion panel
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002279248A
Other languages
Japanese (ja)
Inventor
Satoru Arakawa
荒川 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002279248A priority Critical patent/JP2004117684A/en
Publication of JP2004117684A publication Critical patent/JP2004117684A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To acquire a radiological image with high quality in which the influence of unevenness of light emission of a stimulating light beam is more exactly eliminated in a radiological image acquisition method and system. <P>SOLUTION: A radiological image conversion panel 1 having a light emission marker for detecting a position for emitting a light beam capable of transmitting an exciting light cut filter is used in a part of the system itself, the stimulating light beam generated from the radiological image conversion panel 1 on receiving irradiation of an exciting light beam Le and a light beam generated from the light emission marker are received by a line sensor 33 through an image formation optical system 31 and image signals indicating the radiological image recorded in the radiological conversion panel 1 as a latent image and an image of the light emission marker are acquired. A position of the radiological image indicated by the image signals is corrected based on a position of the image of the light emission marker indicated by the image signals by an image data correction part 60 and an image signal indicating a radiological image in which the influence of the unevenness of light emission of the stimulating light beam is eliminated is acquired by using the image signal of which the position is corrected. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、励起光の照射を受けて輝尽発光光を発生する放射線像変換パネルに関し、詳しくは、記録された放射線像の位置検出用マーカを備えた放射線像取得方法および装置に関するものである。
【0002】
【従来の技術】
従来より、X線等の放射線を照射するとこの放射線エネルギの一部を蓄積し、その後、可視光等の励起光を照射すると蓄積された放射線エネルギに応じて輝尽発光を示す蓄積性蛍光体(輝尽性蛍光体)を利用して、人体等の被写体の放射線像を蓄積性蛍光体層に一旦潜像として記録し、この蓄積性蛍光体層にレーザ光等の励起光を照射して輝尽発光光を生じせしめ、この輝尽発光光を光電的に検出して被写体の放射線像を表す画像信号を取得する放射線像記録装置および放射線像読取装置等からなる放射線像記録再生システムがCR(Computed Radiography)としてが知られている。
【0003】
また、この放射線像記録再生システムに使用される記録媒体としては、基板上に蓄積性蛍光体層を積層して作成した放射線像変換パネルが知られている。この放射線像変換パネルは、消去光が照射されると残留する放射線エネルギを放出して再度放射線像の記録が可能となり繰り返して使用することが可能である。
【0004】
また、上記放射線像読取装置には、線状の励起光の照射を受けて放射線像変換パネルから発生した輝尽発光光を検出するラインセンサと、放射線像変換パネルに対してラインセンサを上記線状の方向と交わる方向に相対的に移送する移送手段とを備え、放射線像変換パネルに対してラインセンサを相対的に移送しつつ、線状の励起光の照射受けて放射線像変換パネルから発生した輝尽発光光を検出して放射線像を取得する装置が知られている。
【0005】
上記のようにして取得された放射線像には、輝尽発光光の発光ムラの影響を除去するシェーディング補正等が施され、可視画像としてフィルムに記録されて表示されたり高精細なCRTに表示されたりして診断に提供される。
【0006】
上記シェーディング補正は、輝尽発光光の検出に基づいて取得された放射線像に含まれるシェーディングの影響を取り除くものであり、このシェーディングは放射線像変換パネルの特性のムラ等の影響により生じるものである。このシェーディング補正は、被写体を通すことなく放射線が一様に爆射(ベタ露光)された放射線像変換パネルから読み取られた放射線像(以後、補正用放射線像という)を予め装置内に記憶させておき、その後、被写体を通して放射線が爆射された放射線像変換パネルから読み取られた放射線像(以後、被写体放射線像という)を得、この被写体放射線像から上記補正用放射線像を差し引いて、シェーディングの影響を取り除いた放射線像(以後、補正済放射線像という)を得るものである(例えば、特許文献1、特許文献2、特許文献3参照)。
【0007】
また、放射線像変換パネルから放射線像(補正用放射線像や被写体放射線像)が読み取られる毎に、ラインセンサと放射線像変換パネルとが相対的に移動され、さらに、放射線が爆射されるときと放射線像が読み取られるときとで放射線像変換パネルの位置が異なることがあるため、放射線像を読み取る度に放射線像変換パネルとラインセンサとの間に繰り返し再現性にかかわる機械的な位置決めのずれが生じるが、この位置決めに関する修正を施すことなく上記シェーディングの補正を行なうことができる。
【0008】
すなわち、シェーディングの影響を含んだ被写体放射線像に対してシェーディング補正を施すときに、被写体放射線像中のシェーディングの影響を補正用放射線像で相殺するが、このとき被写体放射線像と補正用放射線像との間の位置関係に多少の位置ずれがあっても、シェーディングを示す補正用放射線像を表す画像は画像全体に亘ってなだらかな輝度分布を示すため、被写体放射線像から補正用放射線像を差し引いたときに、被写体放射線像中に残る誤差(以後、補正残差という)は小さく、取得された補正済放射線像を可視画像として観察する際に、この補正残差がノイズとして認識されることはない。
【0009】
より具体的には、図7(a)および図7(b)の縦軸を輝度、横軸を画像中を横断する位置に定めた座標上に示すように、劣化が少ない放射線像変換パネルに放射線を一様に爆射したときに取得された放射線像を表す画像は、例えば、中央部の輝度が周辺部よりやや高くなだらかに変化する輝度分布P1で示され、このときシェーディングの影響を表す補正用放射線像は、輝度分布P1と一定の輝度を示す基準輝度K1との差からなる輝度分布P2を持つものとして取得される。
【0010】
一方、被写体を通して放射線像変換パネルに放射線を照射したときに取得された被写体放射線像を表す画像は、上記被写体が配置されたために中央部の輝度が周辺部より低い輝度分布P3で示され、この輝度分布P3で表される被写体放射線像は、輝度分布P4で示されるシェーディングの影響を受けて中央部の輝度が実際よりやや高く表されている。
【0011】
ここで、輝度分布P4で示されるシェーディングの影響を含み輝度分布P3を持つ被写体放射線像から輝度分布P2を持つ補正用放射線像を差し引くことにより(すなわちシェーディング補正を施すことにより)、輝度分布P4が輝度分布P2で相殺されて補正済放射線像が得られる。なお、図8(a)、および図8(b)に示すように、上記被写体放射線像と補正用放射線像との位置関係に上記位置ずれによる位置誤差Eが生じると、輝度分布P4から輝度分布P2を差し引いたときに補正残差として輝度分布P5が補正済放射線像中に残るが、輝度分布P5で示される補正残差は極めて小さいので、補正済放射線像を可視画像として表示したときにこの補正残差がノイズとして認識されることはない。
【0012】
【特許文献1】
特開2000−013599号公報
【0013】
【特許文献2】
特開平01−086759号公報
【0014】
【特許文献3】
特開平02−058179号公報
【0015】
【発明が解決しようとする課題】
ところで、放射線像変換パネルには、元々、励起光の照射を受けてこの放射線像変換パネルから発生する輝尽発光光の発光特性に場所によるムラがある。また、特にビルトインタイプの装置(放射線像記録装置と放射線像読取装置とを一体化した装置)では、同一の放射線像変換パネルを使用して多数回の放射線像の撮影が行なわれ、放射線像変換パネルへの放射線の爆射が繰り返されるため、元々存在する上記輝尽発光光の発光特性のムラに加えて放射線像変換パネルの劣化による発光特性のムラが生じる。
【0016】
例えば、放射線像変換パネルの繰り返し使用回数が多くなるにつれ、放射線像変換パネル中の、放射線の爆射量が多い領域(例えば、被写体の背景となる周辺部の領域)と、爆射量の少ない領域(例えば、被写体が写し込まれる中央部の領域)との間で劣化度合に差が生じ、この劣化度合いの差により放射線エネルギの蓄積および輝尽発光光の発生に拘る特性の差、すなわち輝尽発光光の発光特性の領域による差が増大する。このように、放射線像変換パネル中の位置によって輝尽発光光の発光特性(以後、省略して発光特性という)が大きく異なる場合には、この放射線像変換パネルに対して作成されたシェーディングを表す補正用放射線像の画像がより急峻な輝度分布を示す。そのため、上記位置ずれ(以後、補正位置ずれという)の影響で生じる補正残差が増大し、取得された補正済放射線像を可視画像として観察する際にこの補正残差がノイズとして認識されることがある。
【0017】
より具体的には、図9(a)および図9(b)の縦軸を輝度、横軸を画像中を横断する位置に定めた座標上に示すように、放射線像変換パネルに放射線を一様に爆射したときに取得された放射線像を表す画像は、例えば、周辺部の輝度が中央部より低い輝度分布Q1で示され、このときシェーディングの影響を表す補正用放射線像は、輝度分布Q1と一定の輝度を示す基準輝度K2との差からなる輝度分布Q2を持つものとして取得される。なお、上記放射線像を表す画像の周辺部の輝度の低下は、放射線像変換パネルの周辺部が中央部より劣化度合いが大きいことによるものである
一方、被写体を通して放射線像変換パネルに放射線を照射したときに取得された被写体放射線像を表す画像は、上記と同様に被写体が配置されたために中央部の輝度が低くなった輝度分布Q3で示され、この輝度分布Q3が表す被写体放射線像は輝度分布Q4で示されるシェーディングの影響を受けて、中央部の輝度が実際より高く表されている。
【0018】
ここで、輝度分布Q3を持つ被写体放射線像から輝度分布Q2を持つ補正用放射線像を差し引くときに(すなわちシェーディング補正を施すときに)、図10(a)および図10(b)に示すように、上記2つの放射線像の位置関係に補正位置ずれによる上記と同様の位置誤差Eが生じると、被写体放射線像中のシェーディングの影響を示す輝度分布Q4から補正用放射線像を示す輝度分布Q2を差し引いたときの補正残差である輝度分布Q5が補正済放射線像中に残る。この輝度分布Q5が示す補正残差は、上記放射線像変換パネルの劣化が少ないときの輝度分布P5(図8(b)参照)より急峻な分布を示し、この補正済放射線像を示す輝度分布P6を可視画像として表示させたときに上記輝度分布Q5で示される補正残差がノイズ(図10(b)中に矢印Vで示す)として認識されることがある。
【0019】
そのため、上記補正残差を小さくし被写体をより正確に表す射線像を取得したいという要請がある。
【0020】
そこで、上記補正残差を小さくするために、被写体放射線像から補正用放射線像を差し引いてシェーディング補正を施すときに、差し引きされる互いの領域が放射線像変換パネル中の同じ位置から取得されたものとなるように両者の位置関係を修正し、補正位置ずれを少なくしてからシェーディング補正を行なうことが考えられる。
【0021】
しかしながら、上記被写体放射線像と補正用放射線像との間で差し引きされる互いの領域の位置を放射線像変換パネル中に特定することが難しいという問題がある。
【0022】
本発明は、上記事情に鑑みてなされたものであり、放射線像が取得された放射線像変換パネル中の位置を特定可能とし、これにより、輝尽発光光の発光ムラの影響をより正確に除去した品質の高い放射線像を取得することができる放射線像取得方法および装置を提供することを目的とするものである。
【0023】
【課題を解決するための手段】
本発明の放射線像取得方法は、励起光の照射を受けて輝尽発光光を発生する放射線像変換パネルであって、放射線像変換パネルの一部に、励起光カットフィルタを透過可能な光を発生する位置検出用の発光マーカを備えた放射線像変換パネルを用い、励起光の照射を受けて前記放射線像変換パネルから発生した輝尽発光光、および発光マーカから発生した光を結像光学系を通して受光し、放射線像変換パネルに潜像として記録された放射線像および発光マーカの像を表す画像信号を取得し、画像信号が表す発光マーカの像の位置に基づいてこの画像信号が表す放射線像の位置補正をした後、位置補正した画像信号を用いて、輝尽発光光の発光ムラの影響を除去した放射線像を示す画像信号を取得することを特徴とするものである。
【0024】
本発明の放射線像取得装置は、励起光の照射を受けて輝尽発光光を発生する放射線像変換パネルであって、放射線像変換パネルの一部に、励起光カットフィルタを透過可能な光を発生する位置検出用の発光マーカを備えた放射線像変換パネルを用い、励起光の照射を受けて放射線像変換パネルから発生した輝尽発光光、および発光マーカから発生した光を結像光学系を通して受光して放射線像変換パネルに潜像として記録された放射線像および発光マーカの像を表す画像信号を取得する検出手段と、画像信号が表す前記発光マーカの像の位置に基づいてこの画像信号が表す放射線像の位置を補正した後、位置補正した画像信号を用いて、輝尽発光光の発光ムラの影響を除去した放射線像を表す画像信号を取得する発光ムラ補正手段を備えたことを特徴とするものである。
【0025】
なお、輝尽発光光の発光ムラとは、放射線像変換パネルの位置による発光特性の差によって生じる輝尽発光光の光強度のムラを意味するものである。
【0026】
前記発光マーカは、励起光により励起されて前記光を発生するものとしたり、あるいは、前記光を自発的に発生するものとすることができる。
【0027】
【発明の効果】
本発明の放射線像取得方法および装置によれば、励起光の照射を受けて輝尽発光光を発生する放射線像変換パネルであって、該放射線像変換パネルの一部に、励起光カットフィルタを透過可能な光を発生する位置検出用の発光マーカを備えた放射線像変換パネルを用い、励起光の照射を受けて放射線像変換パネルから発生した輝尽発光光、および発光マーカから発生した光を結像光学系を通して受光し、放射線像変換パネルに潜像として記録された放射線像および発光マーカの像を表す画像信号を取得し、上記画像信号が表す発光マーカの像の位置に基づいてこの画像信号が表す放射線像の位置補正をした後、位置補正した画像信号を用いて、輝尽発光光の発光ムラの影響を除去した放射線像を示す画像信号を取得するようにしたので、放射線像変換パネルから読み取られる放射線像中に発光マーカの像を写し込むことができ、この発光マーカの像の位置に基づいて放射線像が取得された放射線像変換パネル中の位置を特定することができる。これにより、補正用放射線像中に写し込まれた発光マーカの位置と被写体放射線像中に写し込まれた発光マーカの位置との位置ずれを少なくして、すなわち上記補正位置ずれを少なくしてから輝尽発光光の発光ムラの影響を除去する(例えば、シェーディング補正を施す)ことができるので、補正残差を小さくすることができ、輝尽発光光の発光ムラの影響がより正確に除去された品質の高い放射線像(補正済放射線像)を取得することができる。
【0028】
また、発光マーカを、励起光により励起されて励起光カットフィルタを透過可能な光を発生するものとすれば、例えば、発光マーカから光を発生させるためのエネルギを供給することなくこの光を容易に発生させることができる。
【0029】
また、発光マーカを、励起光カットフィルタを透過可能な光を自発的に発生するものとすれば、例えば、この光を発生させるタイミングや光の発生を継続する時間等を容易に制御することができる。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を用いて説明する。図1は本発明の実施の形態による放射線像変換パネルの概略構成を示す平面図、図2は放射線像変換パネルから放射線像を読み取る放射線像読取装置の概略構成を示す平面図と側面図、図3は光源とラインセンサとが一体的に配設された読取部の内部構成を示す断面図、図4は放射線像変換パネルを放射線像記録位置に位置させた様子を示す側面図、図5は放射線像変換パネルを放射線像読取位置に位置させた様子を示す側面図、図6は発光マーカの像が写し込まれた補正用放射線像および被写体放射線像を示す図である。
【0031】
本発明の実施の形態による、励起光の照射を受けて輝尽発光光を発生する放射線像変換パネル1は、この放射線像変換パネル1の一部に、後述する励起光カットフィルタを透過可能な光を発生する位置検出用の2つの発光マーカ2A、および発光マーカ2Bを一体的に備えている。
【0032】
この発光マーカには、励起光により励起されて励起光カットフィルタを透過可能な光を発生する発光マーカや、上記光を自発的に発生するも発光マーカを用いることができる。ここでは、励起光により励起されて光を発生する発光マーカを用いる。なお、励起光により励起されて光を発生す発光マーカは、非ストークスタイプの蛍光体や赤外蛍光体等で構成することができ、自発的に光を発生する発光マーカは青色LDや赤色LD等で構成すことができる。
【0033】
上記放射線像変換パネル1から放射線像を読み取る放射線像読取装置は、図2(a)、図2(b)および図3に示すように、線状の励起光を射出する光源10、励起光の照射を受けて放射線像変換パネル1から発生した輝尽発光光を受光し光電変換して放射線像を示す画像信号を取得する検出手段であるラインセンサ30、放射線像変換パネル1を放射線像記録位置Wと放射線像読取位置Rとに切り換えて位置させるパネル基台移動部70、上記光源10とラインセンサ30とが一体的に配設された読取部50を上記線状の方向(以後、主走査X方向という)と直交する方向(以後、副走査Y方向という)に移動させるリニアスライドシステム75、およびラインセンサ30で取得した画像信号をデジタル値からなる画像データに変換してシェーディング補正を施す発光ムラ補正手段である画像データ補正部60を備えている。なお、上記シェーディング補正は、輝尽発光光の発光ムラの影響を除去する補正である。
【0034】
光源10は、線状の励起光を発するブロードエリアレーザ11、ブロードエリアレーザ11から発せられた励起光を、後述する反射ミラー13を介して放射線像変換パネル1上の主走査X方向(図3において紙面に垂直な方向)に延びる線状の領域Fに集光させるトーリックレンズ等からなる光学系12、および光学系12を通して射出された線状の励起光を反射して上記励起光の光路を変更させる反射ミラー13等によって構成されている。
【0035】
ラインセンサ30は、結像レンズ31、励起光カットフィルタ32、およびCCD素子33を備え、結像レンズ31は主走査X方向に多数並んだレンズを有し上記線状の励起光が照射された放射線像変換パネル1上の線状の領域FをCCD素子33上に結像させる。CCD素子33は主走査X方向に多数並んだ受光部(光電変換素子)を有し上記結像レンズ31によって結像される上記線状の領域Fから発生する輝尽発光光を検出する。励起光カットフィルタ32は結像レンズ31とCCD素子33との間に挿入され放射線像変換パネル1から発生する輝尽発光光に混入する励起光を遮断し輝尽発光光を透過させる。
【0036】
なお、上記光源10とラインセンサ30とは読取部50に一体的に配設されており、この読取部50は、上記光源10およびラインセンサ30の他に、放射線像変換パネル1から放射線像が読み取られた後に放射線像変換パネル1に残存する放射線エネルギを消去する消去光をこの放射線像変換パネル1に照射する主走査X方向に延びる消去用蛍光灯39を備えている。
【0037】
パネル基台移動部70は、放射線像変換パネル1の向きが略鉛直となるように放射線像変換パネル1を固定するパネル基台71と、このパネル基台71の放射線像変換パネル1の側とは反対側を介してこのパネル基台71を保持し、パネル基台71を放射線像変換パネル1の表面Sに対して垂直な方向(図中矢印Z方向)に平行移動させて、放射線像変換パネル1を放射線像記録位置Wと放射線像読取位置Rとに切り換えて位置させるシリンダ伸縮駆動機構72とからなる。なお、このパネル基台移動部70は装置ベース80上に固定されている。
【0038】
リニアスライドシステム75は、上記パネル基台71の移動に干渉しないようにパネル基台71の副走査Y方向の両側に配置され、装置ベース80上に固定されたレールベース台76A、76Bと、両端部がレールベース台76A、76Bのそれぞれに配設されて副走査Y方向に延びるガイドレール77A、77Bと、上記読取部50を保持し、ガイドレール77A、77Bにガイドされて図示しない駆動手段によって副走査Y方向に移動される読取部移動台78とからなる。
【0039】
画像データ補正部60は、ラインセンサ30で取得された画像信号をアナログ信号からデジタル信号に変換するA/D変換器61、A/D変換器61によってデジタル信号に変換された画像データを一時保存しておく画像バッファ62、一様に放射線が爆射された放射線像変換パネル1から取得されたシェーディングを表す放射線像(補正用放射線像)を示す補正用画像データを記憶する補正用メモリ63、被写体を通して放射線が爆射された放射線像変換パネル1から取得されたシェーディングを含む被写体の放射線像(被写体放射線像)を示す被写体画像データを記憶する被写体メモリ64、および補正用メモリ63から補正用画像データを入力するとともに被写体メモリ64から被写体画像データを入力して、両画像データが表す放射線像の互いの位置を修正した後、上記被写体画像データから補正用画像データを差し引いてシェーディング補正を実行し、シェーディング補正が施された放射線像(補正済放射線像)を示す補正済画像データを取得する補正演算部65を備えている。
【0040】
次に上記実施の形態における作用について説明する。
【0041】
まず始めに、シェーディングを表す補正用放射線像を取得する場合について説明する。
【0042】
パネル基台移動部70によりパネル基台71を装置ベース80の側とは反対側(図2中の+Z方向)に移動させて放射線像変換パネル1を放射線像記録位置Wに位置させる(図4参照)。この位置において被写体を通さずに放射線Xeを放射線像変換パネル1に一様に爆射して放射線像(以後、ベタ露光像という)を記録する。なお、このとき読取部50はレールベース台76B側の待避位置P1に位置している。
【0043】
上記放射線像変換パネル1への上記ベタ露光像の記録が終了した後、パネル基台移動部70により、パネル基台71を装置ベース80側(図中の−Z方向)に移動させて放射線像変換パネル1を放射線像読取位置Rに移動させ、この位置において放射線像変換パネル1に記録されたベタ露光像の読み取りを行なう(図5参照)。
【0044】
読取部移動部75により読取部50を移動させ、この読取部50を放射線像変換パネル1上の読取開始位置P2に位置させる。読取部移動部75により、読取部50をレールベース台76B側からレールベース台76A側に向けて(図5中矢印D1方向)移動させつつ、読取部50により、光源10から線状の励起光Leを照射し、この線状の励起光Leの照射を受けて放射線像変換パネル1から発生した輝尽発光光を励起光カットフィルタ32を通してCCD素子33で受光しA/D変換して放射線像変換パネル1に記録されたベタ露光像を示す画像データを取得し、この画像データから一定の輝度を示す基準バイアスデータを一様に差し引いて補正用放射線像を示す補正用画像データを取得する。なお、このとき、光源10から線状の励起光Leの照射を受けた2つの発光マーカ2Aおよび発光マーカ2Bから発生した光が励起光カットフィルタ32を透過して読み取られ、上記補正用放射線像を示す補正用画像データ中に取り込まれる。また、上記基準バイアスデータを一様に差し引く演算は画像データが画像バッファ62から補正用メモリ63に転送される際に実行される。
【0045】
上記補正用画像データは、主走査X方向の1ライン毎にA/D変換器61、画像バッファ62通して補正用画像メモリ63に逐次記憶される。読取部50がレールベース台76A側の端部位置P3まで移動されると放射線像変換パネル1に記録された放射線像の読取りが終了し、補正用放射線像を示す補正用画像データが補正用メモリ63に記憶される。
【0046】
その後、上記端部位置P3に位置する読取部50に配設されている消去用蛍光灯39は、この読取部50とともにレールベース台76Bに向かって(図5中矢印D2方向に向かって)移動されつつ消去光を放射線像変換パネル1に向けて照射し、この放射線像変換パネル1に残存する放射線エネルギを消去する。これにより、放射線像変換パネル1は再び放射線像の記録が可能となる。
【0047】
次に、シェーディングの影響を含む被写体放射線像を取得する場合について説明する。
【0048】
パネル基台移動部70によりパネル基台71を+Z方向に移動させて放射線像変換パネル1を放射線像記録位置Wに位置させ(図4参照)、この位置において被写体5を通して放射線像変換パネル1に放射線Xeを爆射しこの放射線像変換パネル1に被写体5の放射線像を記録する。
【0049】
上記放射線像変換パネル1への被写体5の放射線像の記録が終了した後、パネル基台移動部70により、パネル基台71を−Z方向に移動させて放射線像変換パネル1を放射線像読取位置Rに移動させ、この位置において上記と同様に放射線像変換パネル1に記録された放射線像の読み取りを行ない、放射線像変換パネル1に記録された被写体5の放射線像を示す画像データ、すなわち被写体放射線像を示す被写体画像データを取得する。
【0050】
なお、このときも、放射線像変換パネル1に配設された2つの発光マーカ2Aおよび発光マーカ2Bから、励起光Leの照射を受けて発生した光が励起光カットフィルタ32を透過して被写体放射線像に写し込まれ、上記被写体画像データ中に取り込まれる。
【0051】
この被写体画像データは、A/D変換器61、画像バッファ62通して被写体メモリ64に記憶される。
【0052】
その後、補正演算部65が、補正用メモリ63から補正用画像データを入力するとともに被写体メモリ64から被写体画像データを入力して、両画像データが示す互いの位置の修正を行なって補正位置ずれを小さくした後、上記被写体画像データから補正用画像データを差し引いてシェーディング補正を施し、補正済放射線像を示す補正済画像データGを取得し出力する。
【0053】
ここで、補正演算部65で行なわれる上記両画像データが示す互いの位置の修正について説明する。
【0054】
図6(a)に示すように、補正用画像データによって示される周辺部より中央部の輝度が高くなるシェーディングを示す補正用放射線像が表す画像85中には2つの発光マーカ2Aおよび2Bの像が写し込まれている。また、図6(b)に示すように、被写体画像データによって示されるシェーディングの影響を受けている被写体放射線像が表す画像86中にも、2つの発光マーカ2Aおよび2Bの像が写し込まれている。したがって、補正用放射線像および被写体放射線像それぞれが取得された放射線像変換パネル1中の位置を、発光マーカ2Aおよび2Bの位置に基づいて特定することができる。
【0055】
さらに、上記2つの発光マーカは常に放射線像変換パネル中の同じ位置を示しているので、被写体放射線像が表す画像86中に写し込まれた発光マーカの像と補正用放射線像が表す画像85中に写し込まれた発光マーカの像との互いの位置を一致させることで、補正位置ずれを小さくすることができる。すなわち、シェーディング補正を施すときに差し引きされる上記2つの放射線像中の互いの領域を放射線像変換パネル中のより近い位置から取得されたものとすることができる。
【0056】
したがって、このように補正位置ずれを小さくして被写体放射線像を示す被写体画像データから補正用放射線像を示す補正用画像データを差し引くことにより補正残差を小さくすることができ、図6(c)に示すように、周辺部より中央部の輝度が高くなるシェーディングの影響が取り除かれ、被写体をより正確に表す画像87を示す補正済画像データを取得することができる。ここで、回転や平行移動による被写体放射線像と補正用放射線像との互いの位置関係の修正はアファイン変換等を用いることができる。
【0057】
なお、放射線像変換パネルに配設する発光マーカの数は2つに限るものではなく、放射線像が取得された放射線像変換パネル中の位置を特定可能とするものであれば発光マーカの数はいくつであってもよい。また、発光マーカから発生する光が示す形状はプラス(+)形状や丸(○)形状が好ましいが、他の形状であってもよい。
【図面の簡単な説明】
【図1】本発明の実施の形態による放射線像変換パネルの概略構成を示す平面図
【図2】放射線像変換パネルから放射線像を読み取る放射線像読取装置の概略構成を示す平面図と側面図
【図3】光源とラインセンサとが一体的に配設された読取部の内部構成を示す断面図
【図4】放射線像変換パネルを放射線像記録位置に位置させた様子を示す側面図
【図5】放射線像変換パネルを放射線像読取位置に位置させた様子を示す側面図
【図6】発光マーカの像が写し込まれた補正用放射線像および被写体放射線像を示す図
【図7】シェーディングを示す輝度分布がなだらかな場合の補正用放射線像と被写体放射線像の輝度分布を示す図
【図8】シェーディングを示す輝度分布がなだらかな場合の補正残差の輝度分布を示す図
【図9】シェーディングを示す輝度分布が急峻な場合の補正用放射線像と被写体放射線像の輝度分布を示す図
【図10】シェーディングを示す輝度分布が急峻な場合の補正残差の輝度分布を示す図
【符号の説明】
1  放射線像変換パネル
31  結像光学系
33  ラインセンサ
60  画像データ補正部
2A、2B  発光マーカ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiation image conversion panel that generates stimulated emission light upon irradiation with excitation light, and more particularly, to a radiation image acquisition method and apparatus including a position detection marker for a recorded radiation image. .
[0002]
[Prior art]
Conventionally, when a radiation such as X-rays is irradiated, a part of this radiation energy is accumulated, and then when a stimulating phosphor such as visible light is irradiated, a stimulable phosphor (stimulated luminescence according to the accumulated radiation energy ( Using a stimulable phosphor), a radiation image of a subject such as a human body is temporarily recorded as a latent image on the stimulable phosphor layer, and this stimulable phosphor layer is irradiated with excitation light such as laser light. A radiation image recording / reproducing system including a radiation image recording device, a radiation image reading device, and the like that generates exhausted light and photoelectrically detects the stimulated emitted light to acquire an image signal representing a radiation image of a subject is a CR ( Known as Computed Radiography).
[0003]
As a recording medium used in this radiation image recording / reproducing system, a radiation image conversion panel prepared by laminating a stimulable phosphor layer on a substrate is known. The radiation image conversion panel emits residual radiation energy when irradiated with erasing light, and can record a radiation image again, and can be used repeatedly.
[0004]
Further, the radiation image reading apparatus includes a line sensor that detects the stimulated emission light generated from the radiation image conversion panel upon irradiation with linear excitation light, and the line sensor that is connected to the radiation image conversion panel. Generated from the radiation image conversion panel upon receiving linear excitation light while moving the line sensor relative to the radiation image conversion panel. An apparatus for detecting a stimulated emission light and acquiring a radiation image is known.
[0005]
The radiographic image acquired as described above is subjected to shading correction or the like that removes the influence of the uneven emission of the stimulated emission light, and is recorded and displayed as a visible image on a film or displayed on a high-definition CRT. Or provided for diagnosis.
[0006]
The shading correction is to remove the influence of shading contained in the radiation image acquired based on the detection of the stimulated emission light, and this shading is caused by the influence of unevenness of the characteristics of the radiation image conversion panel. . In this shading correction, a radiation image (hereinafter referred to as a correction radiation image) read from a radiation image conversion panel in which radiation is uniformly blown (solid exposure) without passing through a subject is stored in the apparatus in advance. Then, a radiation image (hereinafter referred to as a subject radiation image) read from the radiation image conversion panel in which radiation was blown through the subject is obtained, and the above correction radiation image is subtracted from the subject radiation image to influence the shading. Is obtained (hereinafter, referred to as a corrected radiation image) (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).
[0007]
Further, every time a radiation image (correction radiation image or subject radiation image) is read from the radiation image conversion panel, the line sensor and the radiation image conversion panel are relatively moved, and further, when radiation is exploded. Since the position of the radiation image conversion panel may differ depending on when the radiation image is read, there is a mechanical misalignment between the radiation image conversion panel and the line sensor that is repeatedly reproducible each time the radiation image is read. However, the shading can be corrected without correcting the positioning.
[0008]
That is, when performing a shading correction on a subject radiation image including the influence of shading, the influence of the shading in the subject radiation image is canceled by the correction radiation image. At this time, the subject radiation image and the correction radiation image Even if there is a slight misalignment in the positional relationship between the images, the image representing the correction radiation image indicating shading exhibits a gentle luminance distribution over the entire image. Sometimes, an error (hereinafter referred to as a correction residual) remaining in a subject radiographic image is small, and this correction residual is not recognized as noise when the acquired corrected radiographic image is observed as a visible image. .
[0009]
More specifically, in the radiation image conversion panel with little deterioration, the vertical axis of FIGS. 7 (a) and 7 (b) is shown on the coordinates where the vertical axis is the luminance and the horizontal axis is the position crossing the image. The image representing the radiation image acquired when the radiation is uniformly blown is indicated by, for example, a luminance distribution P1 in which the luminance at the central portion changes slightly higher than the peripheral portion, and represents the influence of shading at this time. The correction radiation image is acquired as having a luminance distribution P2 formed by a difference between the luminance distribution P1 and a reference luminance K1 indicating a constant luminance.
[0010]
On the other hand, the image representing the subject radiation image acquired when the radiation image conversion panel is irradiated with radiation through the subject is indicated by a luminance distribution P3 in which the luminance at the central portion is lower than that at the peripheral portion because the subject is arranged. The subject radiation image represented by the luminance distribution P3 has the luminance at the center part slightly higher than the actual luminance under the influence of shading represented by the luminance distribution P4.
[0011]
Here, the luminance distribution P4 is obtained by subtracting the correction radiation image having the luminance distribution P2 from the subject radiation image having the luminance distribution P3 including the influence of the shading indicated by the luminance distribution P4 (that is, by performing shading correction). The corrected radiation image is obtained by canceling with the luminance distribution P2. As shown in FIGS. 8A and 8B, when a positional error E due to the positional deviation occurs in the positional relationship between the subject radiation image and the correction radiation image, the luminance distribution P4 is used as a luminance distribution. Although the luminance distribution P5 remains in the corrected radiation image as a correction residual when P2 is subtracted, the correction residual indicated by the luminance distribution P5 is very small, and this is the case when the corrected radiation image is displayed as a visible image. The correction residual is not recognized as noise.
[0012]
[Patent Document 1]
JP 2000-013599 A
[0013]
[Patent Document 2]
Japanese Patent Application Laid-Open No. 01-086759
[0014]
[Patent Document 3]
Japanese Patent Laid-Open No. 02-058179
[0015]
[Problems to be solved by the invention]
By the way, the radiation image conversion panel originally has unevenness in the emission characteristics of the stimulated emission light generated from the radiation image conversion panel when irradiated with excitation light. In particular, in a built-in type device (a device in which a radiation image recording device and a radiation image reading device are integrated), a plurality of radiation images are captured using the same radiation image conversion panel, and radiation image conversion is performed. Since the radiation of the radiation to the panel is repeated, in addition to the unevenness of the emission characteristics of the above-described stimulable emission light, unevenness of the emission characteristics due to deterioration of the radiation image conversion panel occurs.
[0016]
For example, as the number of repeated use of the radiation image conversion panel increases, the radiation image conversion panel has a region with a large amount of radiation (for example, a peripheral region that is the background of the subject) and a small amount of explosion. There is a difference in the degree of deterioration from the area (for example, the central area where the subject is imaged), and the difference in characteristics due to the accumulation of radiation energy and the generation of stimulated emission light due to the difference in the degree of deterioration, that is, the brightness The difference due to the region of the emission characteristics of the exhaust light increases. Thus, when the emission characteristics of the stimulated emission light (hereinafter referred to as emission characteristics) differ greatly depending on the position in the radiation image conversion panel, the shading created for the radiation image conversion panel is represented. The image of the correction radiation image shows a steeper luminance distribution. For this reason, the correction residual caused by the influence of the positional deviation (hereinafter referred to as the correction positional deviation) increases, and this correction residual is recognized as noise when observing the acquired corrected radiation image as a visible image. There is.
[0017]
More specifically, as shown on the coordinates in FIG. 9 (a) and FIG. 9 (b) on the coordinates where the vertical axis is the luminance and the horizontal axis is the position traversing the image, the radiation image conversion panel is given a single dose of radiation. For example, an image representing a radiographic image acquired at the time of the explosion is indicated by a luminance distribution Q1 in which the luminance of the peripheral portion is lower than that of the central portion. At this time, the correction radiographic image indicating the influence of shading is a luminance distribution. It is acquired as having a luminance distribution Q2 consisting of a difference between Q1 and a reference luminance K2 indicating a certain luminance. Note that the decrease in luminance at the peripheral portion of the image representing the radiation image is due to the fact that the peripheral portion of the radiation image conversion panel is more deteriorated than the central portion.
On the other hand, an image representing the subject radiation image acquired when the radiation image conversion panel is irradiated with radiation through the subject is represented by a luminance distribution Q3 in which the luminance of the central portion is lowered because the subject is arranged as described above. The subject radiation image represented by the luminance distribution Q3 is affected by the shading indicated by the luminance distribution Q4, and the luminance at the center is expressed higher than the actual luminance.
[0018]
Here, when the correction radiation image having the luminance distribution Q2 is subtracted from the subject radiation image having the luminance distribution Q3 (that is, when shading correction is performed), as shown in FIGS. 10 (a) and 10 (b). When a positional error E similar to that described above due to the correction position deviation occurs in the positional relationship between the two radiation images, the luminance distribution Q2 indicating the correction radiation image is subtracted from the luminance distribution Q4 indicating the influence of shading in the subject radiation image. The luminance distribution Q5, which is the correction residual at this time, remains in the corrected radiation image. The correction residual indicated by the luminance distribution Q5 is a steeper distribution than the luminance distribution P5 (see FIG. 8B) when the radiation image conversion panel is less deteriorated, and the luminance distribution P6 indicating the corrected radiation image. Is displayed as a visible image, the correction residual indicated by the luminance distribution Q5 may be recognized as noise (indicated by an arrow V in FIG. 10B).
[0019]
For this reason, there is a demand for obtaining a ray image representing the subject more accurately by reducing the correction residual.
[0020]
Therefore, when the shading correction is performed by subtracting the correction radiation image from the subject radiation image in order to reduce the correction residual, the subtracted areas are acquired from the same position in the radiation image conversion panel. It is conceivable to correct the shading correction after correcting the positional relationship between the two so as to reduce the correction position deviation.
[0021]
However, there is a problem that it is difficult to specify in the radiation image conversion panel the position of each other region that is subtracted between the subject radiation image and the correction radiation image.
[0022]
The present invention has been made in view of the above circumstances, and enables the position in the radiation image conversion panel from which the radiation image is acquired to be specified, thereby more accurately removing the influence of the uneven emission of the stimulated emission light. An object of the present invention is to provide a radiation image acquisition method and apparatus capable of acquiring a high-quality radiation image.
[0023]
[Means for Solving the Problems]
The radiation image acquisition method of the present invention is a radiation image conversion panel that generates stimulated emission light upon irradiation with excitation light, and a part of the radiation image conversion panel is provided with light that can pass through an excitation light cut filter. An imaging optical system that uses a radiation image conversion panel provided with a light emission marker for position detection, and that generates stimulated emission light generated from the radiation image conversion panel upon irradiation of excitation light and light generated from the light emission marker. The radiographic image represented by the image signal is obtained based on the position of the image of the light emitting marker represented by the image signal. After the position correction is performed, an image signal indicating a radiation image from which the influence of the uneven emission of the stimulated emission light is removed is obtained using the position-corrected image signal.
[0024]
The radiation image acquisition apparatus of the present invention is a radiation image conversion panel that generates stimulated emission light upon irradiation with excitation light, and a part of the radiation image conversion panel is provided with light that can pass through an excitation light cut filter. Using a radiation image conversion panel equipped with a light emission marker for position detection, the stimulating light emitted from the radiation image conversion panel upon irradiation with excitation light and the light generated from the light emission marker are passed through the imaging optical system. Detection means for acquiring an image signal representing a radiation image and a light emitting marker image received as a latent image on the radiation image conversion panel, and the image signal based on the position of the light emitting marker image represented by the image signal. After correcting the position of the radiation image to be represented, it is provided with light emission unevenness correcting means for acquiring an image signal representing the radiation image from which the influence of the light emission unevenness of the stimulated emission light is removed using the position-corrected image signal. The one in which the features.
[0025]
Note that the uneven emission of the stimulated emission light means unevenness of the light intensity of the stimulated emission light caused by the difference in emission characteristics depending on the position of the radiation image conversion panel.
[0026]
The light emitting marker can be excited by excitation light to generate the light, or can generate the light spontaneously.
[0027]
【The invention's effect】
According to the radiation image acquisition method and apparatus of the present invention, a radiation image conversion panel that generates stimulated emission light upon irradiation with excitation light, the excitation light cut filter is provided on a part of the radiation image conversion panel. Using a radiation image conversion panel equipped with a light emission marker for position detection that generates light that can be transmitted, stimulated light emitted from the radiation image conversion panel upon irradiation with excitation light, and light emitted from the light emission marker An image signal representing a radiation image and a light emitting marker image received as a latent image on the radiation image conversion panel is obtained through an imaging optical system, and this image is obtained based on the position of the light emitting marker image represented by the image signal. After correcting the position of the radiation image represented by the signal, the image signal indicating the radiation image from which the influence of the uneven emission of the stimulated emission light is removed is acquired using the position-corrected image signal. The image of the luminescent marker can be imprinted in the radiation image read from the image conversion panel, and the position in the radiation image conversion panel from which the radiation image has been acquired can be specified based on the position of the image of the luminescent marker. . Thereby, the positional deviation between the position of the light emitting marker imprinted in the correction radiation image and the position of the light emitting marker imprinted in the subject radiographic image is reduced, that is, the correction positional deviation is reduced. The effect of uneven emission of stimulated emission light can be removed (for example, shading correction can be performed), so that the correction residual can be reduced, and the influence of uneven emission of stimulated emission light can be more accurately removed. A high-quality radiation image (corrected radiation image) can be acquired.
[0028]
Further, if the light emitting marker generates light that can be excited by the excitation light and pass through the excitation light cut filter, for example, the light can be easily transmitted without supplying energy for generating light from the light emitting marker. Can be generated.
[0029]
Further, if the light emitting marker spontaneously generates light that can pass through the excitation light cut filter, for example, it is possible to easily control the timing for generating this light, the time for which light generation is continued, and the like. it can.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing a schematic configuration of a radiation image conversion panel according to an embodiment of the present invention. FIG. 2 is a plan view and a side view showing a schematic configuration of a radiation image reading apparatus that reads a radiation image from the radiation image conversion panel. 3 is a cross-sectional view showing an internal configuration of a reading unit in which a light source and a line sensor are integrally provided, FIG. 4 is a side view showing a state in which a radiation image conversion panel is positioned at a radiation image recording position, and FIG. FIG. 6 is a side view showing a state in which the radiation image conversion panel is positioned at the radiation image reading position, and FIG. 6 is a view showing a correction radiation image and a subject radiation image in which an image of a light emitting marker is imprinted.
[0031]
The radiation image conversion panel 1 that generates stimulated emission light upon irradiation with excitation light according to an embodiment of the present invention can pass through a part of the radiation image conversion panel 1 through an excitation light cut filter described later. Two light emitting markers 2A for detecting the position for generating light and the light emitting marker 2B are integrally provided.
[0032]
As the light emitting marker, a light emitting marker that generates light that is excited by excitation light and can pass through the excitation light cut filter, or a light emitting marker that spontaneously generates the light can be used. Here, a light emitting marker that generates light when excited by excitation light is used. A light emitting marker that generates light when excited by excitation light can be composed of a non-Stokes type phosphor or an infrared phosphor, and a light emitting marker that spontaneously generates light is a blue LD or a red LD. Etc. can be configured.
[0033]
As shown in FIGS. 2 (a), 2 (b) and 3, the radiation image reading apparatus for reading a radiation image from the radiation image conversion panel 1 includes a light source 10 for emitting linear excitation light, The line sensor 30 serving as a detecting unit that receives the stimulated emission light generated from the radiation image conversion panel 1 upon receiving the irradiation and photoelectrically converts it to obtain an image signal indicating the radiation image, and the radiation image conversion panel 1 at the radiation image recording position. A panel base moving unit 70 that is switched between W and a radiation image reading position R, and a reading unit 50 in which the light source 10 and the line sensor 30 are integrally disposed are arranged in the linear direction (hereinafter referred to as main scanning). A linear slide system 75 that moves in a direction (hereinafter referred to as the sub-scanning Y direction) orthogonal to the X direction) and the image signal acquired by the line sensor 30 are converted into image data consisting of digital values and converted to a signal. And an image data correction unit 60 is a light emitting unevenness correcting means for applying over loading correction. Note that the shading correction is correction for removing the influence of light emission unevenness of the stimulated emission light.
[0034]
The light source 10 emits linear excitation light, a broad area laser 11, and excitation light emitted from the broad area laser 11 via the reflection mirror 13 described later on the radiation image conversion panel 1 in the main scanning X direction (FIG. 3). The optical system 12 composed of a toric lens or the like that collects light in a linear region F extending in a direction perpendicular to the paper surface in FIG. 5, and the linear excitation light emitted through the optical system 12 is reflected to change the optical path of the excitation light. The reflecting mirror 13 is changed.
[0035]
The line sensor 30 includes an imaging lens 31, an excitation light cut filter 32, and a CCD element 33. The imaging lens 31 has a large number of lenses arranged in the main scanning X direction and is irradiated with the linear excitation light. A linear region F on the radiation image conversion panel 1 is imaged on the CCD element 33. The CCD element 33 has a large number of light receiving portions (photoelectric conversion elements) arranged in the main scanning X direction, and detects the stimulated emission light generated from the linear region F imaged by the imaging lens 31. The excitation light cut filter 32 is inserted between the imaging lens 31 and the CCD element 33 to block excitation light mixed in the stimulated emission light generated from the radiation image conversion panel 1 and transmit the stimulated emission light.
[0036]
The light source 10 and the line sensor 30 are integrally provided in a reading unit 50. The reading unit 50 receives a radiation image from the radiation image conversion panel 1 in addition to the light source 10 and the line sensor 30. An erasing fluorescent lamp 39 extending in the main scanning X direction for irradiating the radiation image conversion panel 1 with erasing light for erasing radiation energy remaining in the radiation image conversion panel 1 after being read is provided.
[0037]
The panel base moving unit 70 includes a panel base 71 that fixes the radiation image conversion panel 1 so that the orientation of the radiation image conversion panel 1 is substantially vertical, and the radiation image conversion panel 1 side of the panel base 71. Holds the panel base 71 via the opposite side, and translates the panel base 71 in a direction perpendicular to the surface S of the radiation image conversion panel 1 (in the direction of arrow Z in the figure) to convert the radiation image. It comprises a cylinder expansion / contraction drive mechanism 72 for switching the panel 1 between a radiation image recording position W and a radiation image reading position R. The panel base moving unit 70 is fixed on the apparatus base 80.
[0038]
The linear slide system 75 is arranged on both sides of the panel base 71 in the sub-scanning Y direction so as not to interfere with the movement of the panel base 71, and is fixed on the apparatus base 80. The guide rails 77A and 77B are arranged on the rail base bases 76A and 76B, respectively, and extend in the sub-scanning Y direction, hold the reading unit 50, and are guided by the guide rails 77A and 77B and driven by driving means (not shown). It comprises a reading unit moving table 78 moved in the sub-scanning Y direction.
[0039]
The image data correction unit 60 converts an image signal acquired by the line sensor 30 from an analog signal into a digital signal, and temporarily stores the image data converted into a digital signal by the A / D converter 61. An image buffer 62, a correction memory 63 for storing correction image data indicating a radiation image (correction radiation image) representing shading acquired from the radiation image conversion panel 1 uniformly irradiated with radiation, An image for correction from the subject memory 64 for storing subject image data indicating a radiation image (subject radiation image) of a subject including shading acquired from the radiation image conversion panel 1 in which radiation has been blown through the subject, and a correction image from the correction memory 63 Data is inputted and subject image data is inputted from the subject memory 64, and radiation represented by both image data After correcting the positions of the images, shading correction is performed by subtracting the correction image data from the subject image data, and corrected image data indicating a radiation image (corrected radiation image) subjected to the shading correction is obtained. A correction calculation unit 65 is provided.
[0040]
Next, the operation in the above embodiment will be described.
[0041]
First, a case where a correction radiation image representing shading is acquired will be described.
[0042]
The panel base moving unit 70 moves the panel base 71 to the side opposite to the apparatus base 80 side (+ Z direction in FIG. 2) to position the radiation image conversion panel 1 at the radiation image recording position W (FIG. 4). reference). At this position, the radiation Xe is uniformly blown onto the radiation image conversion panel 1 without passing through the subject to record a radiation image (hereinafter referred to as a solid exposure image). At this time, the reading unit 50 is located at the retracted position P1 on the rail base base 76B side.
[0043]
After the recording of the solid exposure image on the radiation image conversion panel 1 is completed, the panel base moving unit 70 moves the panel base 71 to the apparatus base 80 side (the −Z direction in the drawing) to obtain a radiation image. The conversion panel 1 is moved to the radiation image reading position R, and the solid exposure image recorded on the radiation image conversion panel 1 is read at this position (see FIG. 5).
[0044]
The reading unit 50 is moved by the reading unit moving unit 75, and the reading unit 50 is positioned at the reading start position P <b> 2 on the radiation image conversion panel 1. The reading unit 50 is moved from the light source 10 to the linear excitation light by the reading unit 50 while moving the reading unit 50 from the rail base base 76B side to the rail base base 76A side (in the direction of arrow D1 in FIG. 5). The stimulated emission light emitted from the radiation image conversion panel 1 upon irradiation with the linear excitation light Le is received by the CCD element 33 through the excitation light cut filter 32 and A / D converted to obtain a radiation image. Image data indicating a solid exposure image recorded on the conversion panel 1 is acquired, and reference image data indicating a certain luminance is uniformly subtracted from the image data to acquire correction image data indicating a correction radiation image. At this time, the light emitted from the two light emission markers 2A and 2B that have been irradiated with the linear excitation light Le from the light source 10 is read through the excitation light cut filter 32 and read. Is taken into the image data for correction. The calculation for uniformly subtracting the reference bias data is executed when the image data is transferred from the image buffer 62 to the correction memory 63.
[0045]
The correction image data is sequentially stored in the correction image memory 63 through the A / D converter 61 and the image buffer 62 for each line in the main scanning X direction. When the reading unit 50 is moved to the end position P3 on the rail base base 76A side, reading of the radiation image recorded on the radiation image conversion panel 1 is completed, and correction image data indicating the correction radiation image is stored in the correction memory. 63.
[0046]
Thereafter, the erasing fluorescent lamp 39 disposed in the reading unit 50 located at the end position P3 moves together with the reading unit 50 toward the rail base base 76B (in the direction of arrow D2 in FIG. 5). The erasing light is irradiated toward the radiation image conversion panel 1 while being erased, and the radiation energy remaining in the radiation image conversion panel 1 is erased. As a result, the radiation image conversion panel 1 can record a radiation image again.
[0047]
Next, a case where a subject radiation image including the influence of shading is acquired will be described.
[0048]
The panel base 71 is moved in the + Z direction by the panel base moving unit 70 to position the radiation image conversion panel 1 at the radiation image recording position W (see FIG. 4). The radiation Xe is blown off and a radiation image of the subject 5 is recorded on the radiation image conversion panel 1.
[0049]
After the recording of the radiation image of the subject 5 on the radiation image conversion panel 1 is completed, the panel base moving unit 70 moves the panel base 71 in the −Z direction to move the radiation image conversion panel 1 to the radiation image reading position. At this position, the radiation image recorded on the radiation image conversion panel 1 is read in the same manner as described above, and image data indicating the radiation image of the subject 5 recorded on the radiation image conversion panel 1, that is, subject radiation. Subject image data indicating an image is acquired.
[0050]
At this time as well, the light generated by the irradiation of the excitation light Le from the two light emission markers 2A and 2B disposed on the radiation image conversion panel 1 passes through the excitation light cut filter 32 and passes through the subject radiation. The image is imprinted on the image and captured in the subject image data.
[0051]
The subject image data is stored in the subject memory 64 through the A / D converter 61 and the image buffer 62.
[0052]
Thereafter, the correction calculation unit 65 inputs the correction image data from the correction memory 63 and also inputs the subject image data from the subject memory 64, corrects the positions indicated by the two image data, and corrects the correction position deviation. After the reduction, shading correction is performed by subtracting the correction image data from the subject image data, and corrected image data G indicating a corrected radiation image is acquired and output.
[0053]
Here, correction of the mutual positions indicated by the two image data performed by the correction calculation unit 65 will be described.
[0054]
As shown in FIG. 6A, in the image 85 represented by the correction radiation image indicating the shading in which the luminance in the central portion is higher than the peripheral portion indicated by the correction image data, the images of the two light emitting markers 2A and 2B are displayed. Is imprinted. Further, as shown in FIG. 6B, the images of the two light emitting markers 2A and 2B are also imprinted in the image 86 represented by the subject radiation image affected by the shading indicated by the subject image data. Yes. Therefore, the position in the radiation image conversion panel 1 from which the correction radiation image and the subject radiation image are acquired can be specified based on the positions of the light emitting markers 2A and 2B.
[0055]
Further, since the two light emitting markers always indicate the same position in the radiation image conversion panel, the light emitting marker image and the correction radiation image that are captured in the image 86 represented by the subject radiation image are included in the image 85. By making the positions of the light emitting marker imaged in the image coincide with each other, the correction position deviation can be reduced. That is, it can be assumed that the mutual areas in the two radiation images subtracted when the shading correction is performed are acquired from a closer position in the radiation image conversion panel.
[0056]
Therefore, the correction residual can be reduced by reducing the correction position deviation and subtracting the correction image data indicating the correction radiation image from the subject image data indicating the subject radiation image, as shown in FIG. As shown in FIG. 5, the influence of shading that increases the luminance in the central portion from the peripheral portion is removed, and corrected image data indicating the image 87 that more accurately represents the subject can be acquired. Here, affine transformation or the like can be used to correct the positional relationship between the subject radiation image and the correction radiation image by rotation or parallel movement.
[0057]
Note that the number of light emitting markers provided on the radiation image conversion panel is not limited to two, and the number of light emitting markers can be specified as long as the position in the radiation image conversion panel from which the radiation image is acquired can be specified. Any number is possible. Further, the shape indicated by the light generated from the light emitting marker is preferably a plus (+) shape or a round (◯) shape, but may be other shapes.
[Brief description of the drawings]
FIG. 1 is a plan view showing a schematic configuration of a radiation image conversion panel according to an embodiment of the present invention.
FIG. 2 is a plan view and a side view showing a schematic configuration of a radiation image reading apparatus that reads a radiation image from a radiation image conversion panel.
FIG. 3 is a cross-sectional view showing an internal configuration of a reading unit in which a light source and a line sensor are integrally provided.
FIG. 4 is a side view showing the radiation image conversion panel positioned at the radiation image recording position.
FIG. 5 is a side view showing a state in which the radiation image conversion panel is positioned at the radiation image reading position.
FIG. 6 is a view showing a correction radiation image and a subject radiation image on which an image of a light emitting marker is imprinted;
FIG. 7 is a diagram illustrating the luminance distribution of a correction radiation image and a subject radiation image when the luminance distribution indicating shading is gentle;
FIG. 8 is a diagram illustrating a luminance distribution of a correction residual when a luminance distribution indicating shading is gentle.
FIG. 9 is a diagram showing the luminance distribution of a correction radiation image and a subject radiation image when the luminance distribution indicating shading is steep.
FIG. 10 is a diagram illustrating a luminance distribution of a correction residual when a luminance distribution indicating shading is steep.
[Explanation of symbols]
1 Radiation image conversion panel
31 Imaging optics
33 Line sensor
60 Image data correction unit
2A, 2B Luminescent marker

Claims (4)

励起光の照射を受けて輝尽発光光を発生する放射線像変換パネルであって、該放射線像変換パネルの一部に、励起光カットフィルタを透過可能な光を発生する位置検出用の発光マーカを備えた放射線像変換パネルを用い、
励起光の照射を受けて前記放射線像変換パネルから発生した輝尽発光光、および発光マーカから発生した光を結像光学系を通して受光し、前記放射線像変換パネルに潜像として記録された放射線像および前記発光マーカの像を表す画像信号を取得し、前記画像信号が表す前記発光マーカの像の位置に基づいて該画像信号が表す前記放射線像の位置補正をした後、位置補正した画像信号を用いて、前記輝尽発光光の発光ムラの影響を除去した放射線像を示す画像信号を取得することを特徴とする放射線像取得方法。
A radiation image conversion panel that generates stimulated emission light upon irradiation with excitation light, and a position detection light emission marker that generates light that can pass through an excitation light cut filter in a part of the radiation image conversion panel Using a radiation image conversion panel with
A radiation image recorded as a latent image on the radiation image conversion panel by receiving the stimulated emission light emitted from the radiation image conversion panel upon receiving the excitation light and the light generated from the light emission marker through the imaging optical system. The image signal representing the image of the light emitting marker is acquired, and after correcting the position of the radiation image represented by the image signal based on the position of the image of the light emitting marker represented by the image signal, the image signal subjected to position correction is obtained. A radiation image acquisition method comprising: acquiring an image signal indicating a radiation image from which the influence of uneven emission of the stimulated emission light is removed.
励起光の照射を受けて輝尽発光光を発生する放射線像変換パネルであって、該放射線像変換パネルの一部に、励起光カットフィルタを透過可能な光を発生する位置検出用の発光マーカを備えた放射線像変換パネルを用い、
励起光の照射を受けて前記放射線像変換パネルから発生した輝尽発光光、および発光マーカから発生した光を結像光学系を通して受光して前記放射線像変換パネルに潜像として記録された放射線像および前記発光マーカの像を表す画像信号を取得する検出手段と、前記画像信号が表す前記発光マーカの像の位置に基づいて該画像信号が表す前記放射線像の位置を補正した後、位置補正した画像信号を用いて、前記輝尽発光光の発光ムラの影響を除去した放射線像を表す画像信号を取得する発光ムラ補正手段を備えたことを特徴とする放射線像取得装置。
A radiation image conversion panel that generates stimulated emission light upon irradiation with excitation light, and a position detection light emission marker that generates light that can pass through an excitation light cut filter in a part of the radiation image conversion panel Using a radiation image conversion panel with
A radiation image recorded as a latent image on the radiation image conversion panel by receiving the stimulated emission light generated from the radiation image conversion panel upon receiving the excitation light and the light generated from the light emission marker through the imaging optical system. And a detecting means for acquiring an image signal representing the image of the light emitting marker, and correcting the position of the radiation image represented by the image signal based on the position of the image of the light emitting marker represented by the image signal, and then correcting the position A radiation image acquiring apparatus comprising: a light emission unevenness correcting unit that acquires an image signal representing a radiation image from which an influence of light emission unevenness of the stimulated emission light is removed using an image signal.
前記発光マーカが、前記励起光により励起されて前記光を発生するものであることを特徴とする請求項2記載の放射線像取得装置。The radiation image acquisition apparatus according to claim 2, wherein the light emitting marker is excited by the excitation light to generate the light. 前記発光マーカが、前記光を自発的に発生するものであることを特徴とする請求項2記載の放射線像取得装置。The radiation image acquiring apparatus according to claim 2, wherein the light emitting marker spontaneously generates the light.
JP2002279248A 2002-09-25 2002-09-25 Radiological image acquisition method and system Withdrawn JP2004117684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279248A JP2004117684A (en) 2002-09-25 2002-09-25 Radiological image acquisition method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279248A JP2004117684A (en) 2002-09-25 2002-09-25 Radiological image acquisition method and system

Publications (1)

Publication Number Publication Date
JP2004117684A true JP2004117684A (en) 2004-04-15

Family

ID=32274313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279248A Withdrawn JP2004117684A (en) 2002-09-25 2002-09-25 Radiological image acquisition method and system

Country Status (1)

Country Link
JP (1) JP2004117684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780596A2 (en) * 2005-10-28 2007-05-02 Fujifilm Corporation Radiographic image conversion panel and radiographic image acquisition system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780596A2 (en) * 2005-10-28 2007-05-02 Fujifilm Corporation Radiographic image conversion panel and radiographic image acquisition system
JP2007147584A (en) * 2005-10-28 2007-06-14 Fujifilm Corp Radiographic image conversion panel, and radiographic image acquisition system
US7504649B2 (en) 2005-10-28 2009-03-17 Fujifilm Corporation Radiographic image conversion panel and radiographic image acquisition system
EP1780596A3 (en) * 2005-10-28 2010-10-20 Fujifilm Corporation Radiographic image conversion panel and radiographic image acquisition system

Similar Documents

Publication Publication Date Title
US6369402B1 (en) Device and method for reading information stored in a phosphor layer
US7319234B2 (en) Method and apparatus for correcting radiographic images
JPS59228467A (en) Method for correcting reading error of radiant ray picture information
US7057200B2 (en) Storage phosphor erase
JP2004117684A (en) Radiological image acquisition method and system
JP3791680B2 (en) Radiation image signal acquisition method and apparatus
US6653652B2 (en) Radiation image read-out method and apparatus
US7504649B2 (en) Radiographic image conversion panel and radiographic image acquisition system
US6570178B2 (en) Method of and apparatus for reading out radiation image data
EP1168000A2 (en) Radiation image read-out apparatus
JPH0395543A (en) Radiograph information reader
JP2004233448A (en) Radiation image reader
JP2007218719A (en) Marker for position detection, radiation image conversion panel equipped with such marker and radiation image acquisition system using such panel
US6765226B2 (en) Radiation image readout apparatus
JPH02237267A (en) Method for correcting uneven density in picture recorder
JP2003101726A (en) Radiation image-reading method and apparatus thereof
JP2003283770A (en) Shading correction method and apparatus for image processing apparatus
JP2004177490A (en) Radiation image readout apparatus and radiation image conversion panel
JP2004191740A (en) Radiological image reader
JP2004109294A (en) Erasing light quantity control method and device for radiation image information reader
JP2002101269A (en) Radiation image information reading device
JP2002199214A (en) Image read correction method and device
JP2002278005A (en) Radiation image reader
JPH0764218A (en) Radiograph reader
JP2001330917A (en) Radiation image imformation reader

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110