JP2004117218A - Tap density measurement vessel, tap density measurement tool and tap density measurement method - Google Patents

Tap density measurement vessel, tap density measurement tool and tap density measurement method Download PDF

Info

Publication number
JP2004117218A
JP2004117218A JP2002281861A JP2002281861A JP2004117218A JP 2004117218 A JP2004117218 A JP 2004117218A JP 2002281861 A JP2002281861 A JP 2002281861A JP 2002281861 A JP2002281861 A JP 2002281861A JP 2004117218 A JP2004117218 A JP 2004117218A
Authority
JP
Japan
Prior art keywords
container
tap density
measuring
sample
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002281861A
Other languages
Japanese (ja)
Other versions
JP3937435B2 (en
Inventor
Atsushi Watanabe
渡邉 篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002281861A priority Critical patent/JP3937435B2/en
Publication of JP2004117218A publication Critical patent/JP2004117218A/en
Application granted granted Critical
Publication of JP3937435B2 publication Critical patent/JP3937435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tap density measurement vessel, a tap density measurement tool and a tap density measurement method for repeatably and accurately measuring a tap density. <P>SOLUTION: The measurement vessel is provided with a first vessel 2 and a second vessel 3 disposed on the first vessel 2 and communicating with the first vessel 2. The second vessel 3 can be detached from the first vessel 2. The measurement vessel includes a sample. After the sample is attached to a tapping apparatus and tapped, the second vessel 3 slides on an upper end face of the first vessel 2, a level of the sample is limited by a lower end face of the second vessel 3, mass of the sample remaining in the first vessel 2 is measured and divided by sample storing volume of the first vessel 2 and the tap density of the sample is measured. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、粉体の物性を評価する値の一つであるタップ密度を測定するために使用されるタップ密度測定用容器、及びタップ密度測定具、並びにタップ密度測定方法に関する。
【0002】
【従来の技術】
従来、粉体のタップ密度は、JPMA(日本粉体冶金工業会)の定める規格「金属粉のタップ密度試験方法 JPMA P 08−1992」(非特許文献1)に従って測定されている。
【0003】
この規格に基づくタップ密度の測定は、まず、天秤を用いて質量を計り取った試料(粉体)をガラス製のメスシリンダに入れ、当該試料の表層部(上表面)を平坦にした後、このメスシリンダをタッピング装置に取り付け、メスシリンダ内の試料の体積が一定になるまでタッピングを行う。このタッピングが終了した時点で、試料の表層部が平滑であれば、直接メスシリンダの目盛で試料の体積を読み取り、これをタップ体積値とする。一方、試料の表層部が平滑でない場合は、表層部の一番高い所と一番低い所の目盛を読み取り、平均値を算出してタップ体積値とする。次に、下記に示す式によりタップ密度を計算する。
【0004】
ρ=m/V
但し、ρはタップ密度(g/cm)、mは試料の質量(g)、Vはタップ体積値(cm
すなわち、タップ密度の定義は、「振動させた容器内の粉末の体積当たりの質量」である。
(非特許文献1)
金属粉のタップ密度試験方法 JPMA P 08−1992、1992年(平成4年)3月1日制定
【発明が解決しようとする課題】
しかしながら、前記従来のタップ密度測定方法は、タッピング後の試料の表層部(上表面)が十分に平滑でなく、タップ体積を正確に読み取ることが困難である。また、測定者によってメスシリンダの目盛の読み取り値が異なるため、測定の再現性が低く、測定精度が悪いという問題もある。
【0005】
また、タップ密度の測定には、ガラス製のメスシリンダを使用するため、タッピング時の衝撃や、人為的なミス等により破損する虞もある。そしてまた、ガラス製のため、メスシリンダの個体差が大きく、容積目盛の信頼性が低いという問題もある。このため、メスシリンダを変更すると、測定値が変わってしまい、これも測定の再現性を低下させ、測定精度が悪くなる要因の一つであった。
【0006】
本発明は、このような従来の問題点を解決することを課題とするものであり、測定に再現性があり、高い測定精度でタップ密度を測定することが可能なタップ密度測定用容器、及びタップ密度測定具、並びにタップ密度測定方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
この目的を達成するため、本発明は、タップ密度の測定に使用され、試料を収容する測定用容器であって、第1の容器と、当該第1の容器上に配設され且つ当該第1の容器に連通する第2の容器を備え、当該第2の容器は、前記第1の容器に対し取外し可能であるタップ密度測定用容器を提供するものである。
【0008】
このタップ密度測定用容器を使用することで、この測定用容器に試料を入れ、これをタッピングした後、第2の容器を第1の容器の上端面に対し摺動させて、第2の容器の下端面で前記試料を摺り切って、当該試料が第1の容器の上端面と同じ高さで満たされるようにすることができる。ここで、第1の容器の試料収容容積は、予め設定しておくことが可能であり、この値は、タップ密度を測定する測定者が測定するのではないため、正確な値となる。また、タッピング後に第1の容器内に残る試料は、第2の容器の下端面にて摺り切ることで、試料の摺り切り面(第2の容器の下端面によって摺り切られた試料の上面、以下これを「摺り切り面」という)が平滑となると共に、その質量は、例えば、電子天秤等の測定機器で測定することができるため、測定者にかかわらず正確な値が得られる。したがって、第2の容器が取外された第1の容器内に充填されている試料の質量を測定し、この質量を、第1の容器の試料収容容積で除すれば、試料のタップ密度を、再現性よく高精度で測定することができる。
【0009】
前記第1の容器及び第2の容器は非磁性金属から構成することができる。このようにすることで、例えば、タッピング時の衝撃や人為的なミスにより測定用容器が破損することを防止することができる。また、測定用容器の個体差が少ないため、測定用容器を別のロットに変更しても、測定値が変更することが極めて少なくなる。
【0010】
また、前記第2の容器は、第1の容器の近傍に形成された開口部と、当該開口部を開閉可能な開閉部と、を備えることができる。ここで、例えば、凝集性が高い試料のタップ密度を測定する場合、第1の容器の上端面に対し、第2の容器を摺動させ、当該第2の容器の下端面で試料を摺り切る際に、第2の容器の下端面で除去される試料と、第2の容器の下端面との付着力が高く、第1の容器内に残るべき試料の一部が、第2の容器の下端面にもっていかれ、試料の摺り切り面が平坦にならない可能性もある。そこで、第2の容器に前記開口部と開閉部を設ければ、開閉部を開放して開口部から試料の一部を露出させ、第2の容器の下端面近傍に位置している試料をある程度崩し、前記試料と、第2の容器の下端面との付着力を低下させることができる。その後、第2の容器の下端面で試料を摺り切れば、平坦な摺り切り面を得ることができる。なお、この開口部は、前記第2の容器の下端から切欠かれていてもよい。
【0011】
また、本発明は、タップ密度の測定に使用される測定具であって、前述した構造を備えたタップ密度測定用容器を支持すると共に、前記タップ密度測定用容器を支持する支持部の近傍に、前記第1の容器の上端面と同じ高さの平面部を有する支持台を備えたタップ密度測定具を提供するものである。
【0012】
このタップ密度測定具によれば、第2の容器を第1の容器の上端面に対し摺動させて、第2の容器の下端面によって試料を摺り切る際に、第2の容器は、支持台の平面部を摺動することができる。したがって、第2の容器を水平に移動(スライド)させることができ、さらに安定して試料を摺り切ることができる。また、測定者による測定のばらつきが発生することを一層防止することができる。
【0013】
前記支持台は、前記平面部の略中央部に、前記第1の容器を貫通可能な貫通穴を備えることができる。
【0014】
また、本発明にかかるタップ密度測定具は、前記第2の容器を支持して当該第2の容器と共に前記平面部上を移動可能な支持具をさらに備えることができる。このようにすることで、第2の容器を、第1の容器の上端面に対し、さらに安定して摺動させることができ、試料をより正確に摺り切ることができる。
【0015】
そしてまた、前記支持具は、前記第2の容器を貫通可能な貫通穴を備えて構成することができる。
【0016】
また、本発明は、試料のタップ密度を測定する方法であって、第1の容器と、当該第1の容器上に配設され且つ当該第1の容器に連通すると共に、前記第1の容器に対し取外し可能な第2の容器を備えたタップ密度測定用容器に、試料を入れる工程と、前記試料を入れたタップ密度測定用容器をタッピング装置に取り付けてタッピングを行う工程と、前記タッピング後、前記第1の容器の上端面に対し第2の容器を摺動させ、当該第2の容器の下端面で前記試料を摺り切る工程と、前記摺り切りによって第1の容器内に残留した試料の質量を測定する工程と、前記第1の容器内に残留した試料の質量を、第1の容器の試料収容容積で除する工程と、を備えたタップ密度の測定方法を提供するものである。
【0017】
このタップ密度の測定方法によれば、予めタッピングされた試料を、第2の容器の下端面で摺り切って、当該試料が第1の容器の上端面と同じ高さで満たされるようにすることができる。ここで、第1の容器の試料収容容積は、予め設定しておくことが可能であり、この値は、タップ密度を測定する測定者が測定するのではないため、正確な値となる。また、タッピング後に第1の容器内に残る試料は、第2の容器の下端面にて摺り切ることで、試料の摺り切り面が平滑となると共に、その質量は測定機器で測定することができるため、測定者にかかわらず正確な値が得られる。したがって、第2の容器が取外された第1の容器内に充填されている試料の質量を測定し、この質量を、第1の容器の試料収容容積で除すれば、試料のタップ密度を、再現性よく高精度で測定することができる。
【0018】
また、本発明にかかるタップ密度の測定方法では、前記第2の容器の、前記第1の容器の近傍に開口部を設け、当該開口部を開閉可能な開閉部により封鎖したタップ密度測定用容器を使用し、前記タッピング後、前記開閉部を開放して前記試料を露出させ、当該露出した試料を崩した後、前記第2の容器の下端面で前記試料を摺り切る工程を行うことができる。
【0019】
この工程により、例えば、凝集性が高い試料のタップ密度を測定する場合であっても、第2の容器の下端面で除去される試料と、第2の容器の下端面との付着力を低下させることができる。したがって、第2の容器の下端面で試料を摺り切った際に、平坦な摺り切り面を得ることができる。前記開口部は、第2の容器の下端から切欠かれていてもよい。
【0020】
そしてまた、本発明は、前記タップ密度測定用容器を支持すると共に、当該タップ密度測定用容器を支持する支持部の近傍に、前記第1の容器の上端面と同じ高さの平面部を有する支持台に、前記タッピング後のタップ密度測定用容器をセットした後、前記平面部上面に対し前記第2の容器を摺動させながら、前記第2の容器の下端面で前記試料を摺り切る工程を行うことができる。
【0021】
また、前記タップ密度測定用容器を支持すると共に、当該タップ密度測定用容器を支持する支持部の近傍に、前記第1の容器の上端面と同じ高さの平面部を有する支持台に、前記タッピング後のタップ密度測定用容器をセットし、前記露出した試料を崩した後、前記平面部上面に対し前記第2の容器を摺動させながら、前記第2の容器の下端面で前記試料を摺り切る工程を行うことができる。
【0022】
これらの工程により、第2の容器を第1の容器の上端面に対し摺動させる際に、第2の容器は支持台の平面部を摺動するため、第2の容器をより安定した状態で水平に移動(スライド)させることができる。したがって、測定者による測定のばらつきを抑え、平坦な摺り切り面をより正確に得ることができる。
【0023】
また、本発明にかかるタップ密度の測定方法では、前記タッピング後のタップ密度測定用容器を前記支持台にセットした後、前記第2の容器を支持して当該第2の容器と共に前記平面部上を摺動可能な支持具を、当該第2の容器にセットし、前記平面部上面に対し前記支持具と共に前記第2の容器を摺動させながら、前記第2の容器の下端面で前記試料を摺り切る工程を行うこともできる。
【0024】
さらにまた、本発明にかかるタップ密度の測定方法では、前記露出した試料を崩した後、前記第2の容器を支持して当該第2の容器と共に前記平面部上を摺動可能な支持具を、当該第2の容器にセットし、前記平面部上面に対し前記支持具と共に前記第2の容器を摺動させながら、前記第2の容器の下端面で前記試料を摺り切る工程を行うこともできる。
【0025】
これらの工程により、第2の容器を、第1の容器の上端面に対し、さらに安定して摺動させることができ、試料をより正確に摺り切ることができる。
【0026】
【発明の実施の形態】
次に、本発明の実施の形態にかかるタップ密度測定用容器及びタップ密度測定具並びにタップ密度測定方法について図面を参照して説明する。
(実施の形態1)
図1は、本発明の実施の形態1にかかる測定用容器を示す斜視図、図2は、図1に示す測定用容器を分割させた状態を示す斜視図、図3は、図1に示す測定用容器を用いて、タップ密度を測定する方法の一部を示す断面図である。
【0027】
図1〜図3に示すように、実施の形態1にかかる測定用容器1は、底面9が閉鎖された中空の円筒形を有する第1の容器2と、第1の容器2上に配設され、軸方向両端面が開放された中空の円筒形を有する第2の容器3を備えて構成されている。
【0028】
第2の容器3は、第1の容器2と同じ内径及び外径を備え、第1の容器2の上に配設された際に、第1の容器2の中空部分に、第2の容器3の中空部分が連通するよう構成されている。この第1の容器2及び第2の容器3は、非磁性金属から構成される。この非磁性金属としては、例えば、SUS304L等が好適に使用される。
【0029】
なお、実施の形態1では、第1の容器2及び第2の容器3の内径を31mm、外径を35mm(すなわち厚み2mm)に設定した。また、第1の容器2の試料収容部の容積を50mlに設定した。ここで、第1の容器2の試料収容部の容積は、第1の容器2を製造する段階で予め設定されており、正確な値となっている。
【0030】
次に、実施の形態1にかかる測定用容器1を使用したタップ密度測定方法について説明する。
【0031】
まず、第1の容器2上に第2の容器3を配置し、両者の接合部分を固定する。なお、実施の形態1では、セロハンテープを用いて両者の接合部分を固定した。この時、接合部分から試料が漏れ出ないようにセロハンテープは、接合部分全体を外周面に沿って覆うように貼り付けた。このようにして、測定用容器1を組み立てた。
【0032】
次に、図3(1)に示すように、測定用容器1にタップ密度を測るべき試料を第2の容器3の約半分の高さまで入れる。なお、実施の形態1では、試料として、ステンレス鋼粉末製品(SUS316L:株式会社アトミックス製)、平均粒径約8μmを使用した。次いで、前記試料が入れられた測定用容器1を、充填密度測定装置(ミネルバ機器株式会社製)にセットし、300回のタッピングを行った。このタッピング後、試料は、図3(2)に示すように、体積が減少したが、第1の容器2の上端面を越えて上まで充填された。
【0033】
次に、第1の容器2と第2の容器3の接合部分に貼り付けてあるセロハンテープをカッターナイフ等でカットし、第1の容器2から第2の容器3を取外し可能な状態にする。その後、図3(3)に示すように、第1の容器2の上端面に対し、第2の容器3を摺動させ、第2の容器3の下端面で、試料を摺り切った。これにより、第1の容器2内には、前記試料が第1の容器2の上端面と同じ高さで満たされた。このように、試料は、第1の容器2の上端面に沿って、第2の容器3の下端面で摺り切られるため、試料の摺り切り面は平滑になる。したがって、例えば、測定者が異なっても正確に計り取ることができる。
【0034】
次いで、第2の容器3が取外された第1の容器2内に充填されている試料の質量(W)を電子天秤により測定した。次に、この試料の質量(W)を第1の容器2の試料収容容積(V)で除して、タップ密度を測定した。
【0035】
なお、実施の形態1では、測定用容器1として、中空の円筒形の容器を使用した場合について説明したが、これに限らず、測定用容器は、充填密度測定装置(タッピング装置)にてタッピングを行うことが可能であり、第1の容器に対して第2の容器を摺動して試料を摺り切りことが可能であれば、多角柱等、その形状は任意に決定することができる。
【0036】
また、実施の形態1では、測定用容器1を非磁性金属から構成することで、測定用容器1がタッピングの衝撃や人為的ミス等によって破損することを防止するという効果が得られるようにしたが、測定用容器1を非磁性金属から構成することは、本発明に必須な構成要件ではなく、測定用容器1は、例えば、ガラス等によって構成してもよい。
(実施の形態2)
次に、本発明の実施の形態2にかかるタップ密度測定具及びタップ密度測定方法について図面を参照して説明する。
【0037】
図4は、図1に示す測定用容器を支持する支持台の斜視図、図5は、図1に示す測定用容器を構成する第2の容器を支持する支持具の斜視図、図6は、図1に示す測定用容器を図4に示す支持台にセットした状態を示す斜視図、図7は、図6に示す状態から第2の容器を摺動(スライド)させた状態を示す斜視図、図8は、図6に示す状態の測定用容器に図5に示す支持具をセットした状態を示す斜視図、図9は、図8に示す状態から、支持具と共に第2の容器を摺動(スライド)させた状態を示す斜視図である。
【0038】
なお、実施の形態2では、実施の形態1で説明した部材と同様の部材には、同一の符号を付し、その詳細な説明は省略する。
【0039】
実施の形態2にかかるタップ密度測定具は、実施の形態1で説明した測定用容器1を支持すると共に、第1の容器2の上端面と同じ高さの平面部15を備えた支持台11と、第2の容器3を支持して第2の容器3と共に、平面部15上を移動可能な支持具12を備えて構成されている。
【0040】
支持台11は、ベース13と、ベース13の上面の四隅に各々立設された脚部14を介してベース13上に配置された平面部15を備えている。平面部15の上面は、第1の容器2の上端面と同じ高さ(つらいち)となる高さを備えている。この平面部15の略中央部には、第1の容器2を貫通可能な貫通穴16が開口されている。この貫通穴16を画定する内壁が、第1の容器2を支持する支持部の役割を果たす。貫通穴16の径は、貫通させた第1の容器2を安定して支持することが可能な範囲内で、第1の容器2の外径より若干大きく設定されている。なお、実施の形態2では、貫通穴16の径が35.2±0.05mmとなるように設定した。
【0041】
支持具12は、中央部に第2の容器3が貫通する貫通穴21が形成された中空の円柱形状を備えている。この貫通穴21の径は、貫通させた第2の容器3を安定して支持することが可能な範囲内で、第2の容器3の外径より若干大きく設定されている。なお、実施の形態2では、貫通穴21の径が38mmとなるように設定した。
【0042】
次に、実施の形態2にかかる支持台11を使用したタップ密度測定方法と、支持台11及び支持具12を使用したタップ密度測定方法について説明する。
(支持台11を使用したタップ密度測定方法)
まず、実施の形態1と同様の工程を経てタッピングを行った測定用容器1を支持台11の貫通穴16内に挿入して、支持台11にセットする。(図6参照)。次に、第1の容器2と第2の容器3の接合部分に貼り付けてあるセロハンテープをカッターナイフ等でカットし、第1の容器2から第2の容器3を取外し可能な状態にする。
【0043】
次に、図7に示すように、第2の容器3を第1の容器2の上端面及び支持台11の平面部15の上面に対し摺動(スライド)させ、第2の容器3の下端面で、試料を摺り切った。この時、第1の容器2は、支持台11の貫通穴16の内壁に支持されており、さらに第2の容器3は、平面部15によって支持されて、より安定した状態で水平に摺動する。したがって、より平坦で正確に試料を摺り切ることができる。このようにして、第1の容器2内には、前記試料が第1の容器2の上端面と同じ高さで満たされた。
【0044】
次いで、実施の形態1と同様に、第1の容器2内に充填された試料の質量(W)を第1の容器2の試料収容容積(V)で除して、タップ密度を測定した。
(支持台11及び支持具12を使用したタップ密度測定方法)
前記と同様に、タッピングを行った測定用容器1を支持台11の貫通穴16内に挿入して、支持台11にセットする。(図6参照)。次に、第1の容器2と第2の容器3の接合部分に貼り付けてあるセロハンテープをカッターナイフ等でカットし、第1の容器2から第2の容器3を取外し可能な状態にする。
【0045】
次に、図8に示すように、支持具12の貫通穴21を第2の容器3に挿入する。この状態から、図9に示すように、支持具12と共に第2の容器3を第1の容器2の上端面及び支持台11の平面部15の上面に対し摺動(スライド)させ、第2の容器3の下端面で、試料を摺り切った。この時、第1の容器2は、支持台11の貫通穴16の内壁に支持されており、さらに第2の容器3は、支持具12及び平面部15によって支持されて、さらに安定した状態で水平に摺動する。したがって、より一層正確に試料を摺り切ることができる。このようにして、第1の容器2内には、前記試料が第1の容器2の上端面と同じ高さで満たされた。
【0046】
次いで、実施の形態1と同様に、第1の容器2内に充填された試料の質量(W)を第1の容器2の試料収容容積(V)で除して、タップ密度を測定した。
【0047】
なお、支持台11の貫通穴16及び支持具12の貫通穴21は、第1の容器2及び第2の容器3が円筒形であるため、この形状に相補した円筒形とした。すなわち、貫通穴16及び21の形状は円筒形に限定されず、それぞれ第1の容器2及び第2の容器3の形状に相補した形状にすればよい。
(実施の形態3)
次に、本発明の実施の形態3にかかるタップ密度測定用容器及びタップ密度測定方法について図面を参照して説明する。
【0048】
図10は、本発明の実施の形態3にかかる測定用容器を示す斜視図、図11は、図10に示す測定用容器を構成する第2の容器から開閉部を取外した状態を示す斜視図、図12は、図10に示す測定用容器を用いて、タップ密度を測定する方法の一部を示す斜視図である。
【0049】
なお、実施の形態3では、実施の形態1及び2で説明した部材と同様の部材には、同一の符号を付し、その詳細な説明は省略する。
【0050】
図10〜図12に示すように実施の形態3にかかる測定用容器4は、第1の容器2と、第1の容器2上に配設され、軸方向両端面が開放された中空の円筒形状を有する第2の容器5を備えて構成されている。なお、第1の容器2及び第2の容器5は、実施の形態1と同様の非磁性金から構成される。
【0051】
第2の容器5は、第1の容器2と同じ内径及び外径を備え、第1の容器2の上に配設された際に、第1の容器2の中空部に第2の容器5の中空部が連通するよう構成されている。この第2の容器5は、本体31と、本体31の下端から略長方形上に切欠かれた開口部32を開閉可能な開閉部33を備えている。
【0052】
次に、実施の形態3にかかる測定用容器4を使用したタップ密度測定方法について説明する。
【0053】
まず、本体31の開口部32に開閉部33を嵌め込み、開口部32を開閉部33で閉鎖し、両者の接合部分を固定する。なお、実施の形態3では、セロハンテープを用いて両者の接合部分を固定した。この時、接合部分から試料が漏れ出ないようにセロハンテープは、接合部分全体を覆うように貼り付けた。このようにして、第2の容器5を組み立てた。次に、実施の形態1と同様に、第1の容器2上に第2の容器5を配置し、両者の接合部分を固定し、測定用容器4を組み立てた。
【0054】
次に、測定用容器4にタップ密度を測るべき試料を第2の容器5の約半分の高さまで入れる。なお、実施の形態3では、試料として、粉体としての凝集性が高いコバルト(平均粒径約8μm)を使用した。次いで、実施の形態1と同様の工程を経てタッピングを行った。このタッピング後、試料は、タッピング前より体積が減少したが、第1の容器2の上端面を越えて上まで充填された。
【0055】
次に、本体31と開閉部33の接合部分に貼り付けてあるセロハンテープをカッターナイフ等でカットし、図12に示すように、本体31から開閉部33を取外した。ここで、タップ密度を測定すべき試料は、凝集性が高い粉体である。したがって、試料と、第2の容器5の下端面との付着力が高く、第1の容器2内に残るべき試料の一部が、第2の容器5の下端面にもっていかれ、試料の摺り切り面が平坦にならない可能性もある。そこで、開放された開口部32によって試料の一部を露出させ、第2の容器5の下端面近傍に位置している試料をある程度崩し、前記試料と、第2の容器の下端面との付着力を低下させる。
【0056】
次に、第1の容器2と本体31の接合部分に貼り付けてあるセロハンテープをカッターナイフ等でカットし、実施の形態1と同様に、第1の容器2の上端面に対し、第2の容器5を摺動させ、第2の容器5の下端面で、試料を摺り切った。これにより、第1の容器2内には、前記試料が第1の容器2の上端面と同じ高さで満たされた。この試料の摺り切り面は平坦であった。このように、試料は、第1の容器2の上端面に沿って、第2の容器5の下端面で摺り切られるため、例えば、測定者が異なっても正確に計り取ることができる。
【0057】
次いで、実施の形態1と同様にして試料のタップ密度を測定した。
【0058】
なお、実施の形態3にかかる測定用容器3についても、実施の形態2で説明したタップ密度測定具を使用して、タップ密度を測定することができる。
【0059】
また、実施の形態3では、本体31の下端から略長方形上に切欠かれた開口部32としたが、これに限らず、開口部は、図13に示すように、本体31の下端から若干上部に形成してもよい。
(実施例1)
実施の形態1にかかる測定用容器1を使用し、実施の形態1で説明したタップ密度測定方法により、粉体としての凝集性が低い、ステンレス鋼粉末製品(SUS316L:株式会社アトミックス製)、平均粒径約8μmのタップ密度を測定した。なお、測定は10回行ない、その結果から平均値及び標準偏差を求めた。この結果を表1に示す。
(実施例2)
実施の形態1にかかる測定用容器1を使用し、実施の形態2で説明した「支持台を使用したタップ密度測定方法」により、実施例1と同様の試料のタップ密度を測定した。なお、測定は10回行ない、その結果から平均値及び標準偏差を求めた。この結果を表1に示す。
(実施例3)
実施の形態1にかかる測定用容器1を使用し、実施の形態2で説明した「支持台及び支持具を使用したタップ密度測定方法」により、実施例1と同様の試料のタップ密度を測定した。なお、測定は10回行ない、その結果から平均値及び標準偏差を求めた。この結果を表1に示す。
(実施例4)
次に、実施例3と同様の方法で、粉体としての凝集性が高い、コバルト(平均粒径約8μm)のタップ密度を使用した。なお、測定は10回行ない、その結果から平均値及び標準偏差を求めた。この結果を表1に示す。
(実施例5)
次に、実施の形態3にかかる測定用容器4を使用し、実施の形態3で説明したタップ密度測定方法により、実施例4と同様の試料のタップ密度を使用した。なお、測定は10回行ない、その結果から平均値及び標準偏差を求めた。この結果を表1に示す。
(実施例6)
実施の形態3にかかる測定用容器4と、実施の形態2で説明した支持台11及び支持具12を使用し、実施例4と同様の試料のタップ密度を使用した。なお、測定は10回行ない、その結果から平均値及び標準偏差を求めた。この結果を表1に示す。
(比較例1)
次に、比較として、JPMA(日本粉体冶金工業会)の定める規格「金属粉のタップ密度試験方法 JPMA P 08−1992」に基づいて、実施例1と同様の試料のタップ密度を使用した。なお、測定は10回行ない、その結果から平均値及び標準偏差を求めた。この結果を表1に示す。
(比較例2)
比較として、JPMA(日本粉体冶金工業会)の定める規格「金属粉のタップ密度試験方法 JPMA P 08−1992」に基づいて、実施例4と同様の試料のタップ密度を使用した。なお、測定は10回行ない、その結果から平均値及び標準偏差を求めた。この結果を表1に示す。
【0060】
【表1】

Figure 2004117218
表1から、本発明にかかる実施例1〜6は、比較例1及び2に比べ、標準偏差が大幅に小さくなったことが判る。この結果、本発明にかかるタップ密度の測定方法は、再現性が高く、優れた測定精度を有していることが立証された。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかる測定用容器を示す斜視図である。
【図2】図1に示す測定用容器を分割させた状態を示す斜視図である。
【図3】図1に示す測定用容器を用いて、タップ密度を測定する方法の一部を示す断面図である。
【図4】図1に示す測定用容器を支持する支持台の斜視図である。
【図5】図5は、図1に示す測定用容器を構成する第2の容器を支持する支持具の斜視図である。
【図6】図1に示す測定用容器を図4に示す支持台にセットした状態を示す斜視図である。
【図7】図6に示す状態から第2の容器を摺動(スライド)させた状態を示す斜視図である。
【図8】図6に示す状態の測定用容器に図5に示す支持具をセットした状態を示す斜視図である。
【図9】図8に示す状態から、支持具と共に第2の容器を摺動(スライド)させた状態を示す斜視図である。
【図10】本発明の実施の形態3にかかる測定用容器を示す斜視図である。
【図11】図10に示す測定用容器を構成する第2の容器から開閉部を取外した状態を示す斜視図である。
【図12】図10に示す測定用容器を用いて、タップ密度を測定する方法の一部を示す斜視図である。
【図13】本発明の他の実施の形態にかかる測定用容器を構成する第2の容器から開閉部を取外した状態を示す斜視図である。
【符号の説明】
1、4 測定用容器、  2 第1の容器、  3、5 第2の容器、  11支持台、  12 支持具、  15 平面部、  16、21 貫通穴、
31 本体、  32 開口部、  33開閉部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a tap density measuring container, a tap density measuring instrument, and a tap density measuring method used for measuring tap density, which is one of the values for evaluating the physical properties of powder.
[0002]
[Prior art]
Conventionally, the tap density of powder has been measured in accordance with the standard "Metal powder tap density test method JPMA P 08-1992" specified by JPMA (Japan Powder Metallurgy Association) (Non-Patent Document 1).
[0003]
The tap density measurement based on this standard is as follows. First, a sample (powder) weighed using a balance is placed in a glass measuring cylinder, and the surface layer (upper surface) of the sample is flattened. The measuring cylinder is attached to a tapping device, and tapping is performed until the volume of the sample in the measuring cylinder becomes constant. At the time when the tapping is completed, if the surface layer of the sample is smooth, the volume of the sample is directly read on the scale of the measuring cylinder, and this is set as the tap volume value. On the other hand, when the surface portion of the sample is not smooth, the scales at the highest portion and the lowest portion of the surface portion are read, and the average value is calculated to be the tap volume value. Next, the tap density is calculated by the following equation.
[0004]
ρ t = M / V
Where ρ t Is the tap density (g / cm 3 ), M is the mass (g) of the sample, V is the tap volume value (cm) 3 )
That is, the definition of the tap density is “mass per volume of the powder in the vibrated container”.
(Non-Patent Document 1)
Test method for tap density of metal powder JPMA P 08-1992, established March 1, 1992
[Problems to be solved by the invention]
However, in the conventional tap density measuring method, the surface layer (upper surface) of the sample after tapping is not sufficiently smooth, and it is difficult to accurately read the tap volume. In addition, there is a problem that the reproducibility of measurement is low and the measurement accuracy is low because the reading value of the scale of the measuring cylinder differs depending on the measurer.
[0005]
In addition, since a measuring cylinder made of glass is used for measuring the tap density, the tapping density may be damaged by an impact at the time of tapping, a human error, or the like. Further, since the measuring cylinder is made of glass, there is a problem that individual differences between the measuring cylinders are large and the reliability of the volume scale is low. For this reason, when the measuring cylinder is changed, the measured value changes, which is also one of the factors that reduce the reproducibility of the measurement and deteriorate the measurement accuracy.
[0006]
The present invention has been made to solve such a conventional problem, and has a reproducibility of measurement, a tap density measurement container capable of measuring tap density with high measurement accuracy, and It is an object to provide a tap density measuring tool and a tap density measuring method.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the present invention provides a measuring container used for measuring tap density and containing a sample, comprising: a first container; a first container disposed on the first container; A second container communicating with the first container, wherein the second container provides a tap density measuring container that is detachable from the first container.
[0008]
By using this container for tap density measurement, a sample is put in this container for measurement, and after tapping, the second container is slid against the upper end surface of the first container to form the second container. At the lower end surface of the first container so that the sample is filled at the same height as the upper end surface of the first container. Here, the sample accommodation volume of the first container can be set in advance, and this value is an accurate value because the person who measures the tap density does not measure it. Further, the sample remaining in the first container after tapping is scraped off at the lower end surface of the second container, so that the sample is cut off (the upper surface of the sample which is cut off by the lower end surface of the second container, Hereinafter, this will be referred to as a “sliding surface”), and its mass can be measured with a measuring device such as an electronic balance, so that an accurate value can be obtained regardless of the user. Therefore, by measuring the mass of the sample filled in the first container from which the second container has been removed, and dividing this mass by the sample storage volume of the first container, the tap density of the sample can be reduced. The measurement can be performed with high reproducibility and high accuracy.
[0009]
The first container and the second container may be made of a non-magnetic metal. By doing so, it is possible to prevent the measurement container from being damaged due to, for example, an impact at the time of tapping or a human error. Further, since there is little individual difference between the measurement containers, even if the measurement container is changed to another lot, the change in the measured value is extremely reduced.
[0010]
The second container may include an opening formed near the first container, and an opening / closing unit that can open and close the opening. Here, for example, when measuring the tap density of a sample having high cohesion, the second container is slid with respect to the upper end surface of the first container, and the sample is slid off the lower end surface of the second container. At this time, the sample to be removed at the lower end face of the second container and the lower end face of the second container have a high adhesive force, and a part of the sample to be left in the first container is There is a possibility that the cut surface of the sample is not flattened by the lower end surface. Therefore, if the opening and the opening / closing section are provided in the second container, the opening / closing section is opened to expose a part of the sample from the opening, and the sample located near the lower end surface of the second container is moved. It can be broken down to some extent, and the adhesive force between the sample and the lower end surface of the second container can be reduced. Thereafter, if the sample is cut off at the lower end surface of the second container, a flat cut-off surface can be obtained. This opening may be cut out from the lower end of the second container.
[0011]
Further, the present invention is a measuring instrument used for measuring the tap density, which supports the tap density measuring container having the above-described structure, and in the vicinity of a supporting portion that supports the tap density measuring container. The present invention also provides a tap density measuring tool provided with a support having a flat portion having the same height as the upper end surface of the first container.
[0012]
According to the tap density measuring instrument, when the second container is slid with respect to the upper end surface of the first container and the sample is slid off by the lower end surface of the second container, the second container is supported. The flat part of the table can slide. Therefore, the second container can be moved (slid) horizontally, and the sample can be slid off more stably. In addition, it is possible to further prevent the occurrence of measurement variation by the measurer.
[0013]
The support base may include a through hole that can penetrate the first container at a substantially central part of the plane part.
[0014]
In addition, the tap density measuring instrument according to the present invention may further include a support that supports the second container and is movable on the flat surface together with the second container. By doing so, the second container can be slid more stably with respect to the upper end surface of the first container, and the sample can be more accurately slid off.
[0015]
In addition, the support may include a through hole that can penetrate the second container.
[0016]
Further, the present invention is a method for measuring the tap density of a sample, wherein the first container is provided on the first container and communicates with the first container. A step of placing a sample in a tap density measuring container provided with a second container that is removable with respect to, a step of attaching the tap density measuring container containing the sample to a tapping device and performing tapping, and after the tapping, Moving the second container against the upper end surface of the first container, and sliding the sample on the lower end surface of the second container; and removing the sample remaining in the first container by the sliding operation. Measuring the mass of the sample, and dividing the mass of the sample remaining in the first container by the volume of the sample accommodated in the first container. .
[0017]
According to this tap density measuring method, a sample that has been previously tapped is cut off at the lower end surface of the second container so that the sample is filled at the same height as the upper end surface of the first container. Can be. Here, the sample accommodation volume of the first container can be set in advance, and this value is an accurate value because the person who measures the tap density does not measure it. Further, the sample remaining in the first container after tapping is rubbed off at the lower end surface of the second container, so that the slicing surface of the sample becomes smooth and its mass can be measured by a measuring instrument. Therefore, an accurate value can be obtained regardless of the measurer. Therefore, by measuring the mass of the sample filled in the first container from which the second container has been removed, and dividing this mass by the sample storage volume of the first container, the tap density of the sample can be reduced. The measurement can be performed with high reproducibility and high accuracy.
[0018]
In the tap density measuring method according to the present invention, an opening is provided in the second container in the vicinity of the first container, and the tap density measuring container is closed by an opening / closing portion capable of opening and closing the opening. After the tapping, a step of opening the opening / closing unit to expose the sample, breaking the exposed sample, and sliding the sample at the lower end surface of the second container can be performed. .
[0019]
By this step, for example, even when the tap density of a sample having high cohesiveness is measured, the adhesive force between the sample removed on the lower end surface of the second container and the lower end surface of the second container is reduced. Can be done. Therefore, when the sample is cut off at the lower end surface of the second container, a flat cut surface can be obtained. The opening may be cut out from a lower end of the second container.
[0020]
In addition, the present invention supports the tap density measurement container, and has a flat portion having the same height as the upper end surface of the first container in the vicinity of the support portion supporting the tap density measurement container. After setting the tap density measuring container after tapping on a support base, sliding the sample on the lower end surface of the second container while sliding the second container against the upper surface of the flat portion. It can be performed.
[0021]
Further, while supporting the container for measuring the tap density, in the vicinity of a support portion for supporting the container for measuring the tap density, a support having a flat portion having the same height as the upper end surface of the first container, After setting the tap density measuring container after tapping and breaking the exposed sample, sliding the second container against the upper surface of the flat portion, the sample is held at the lower end surface of the second container. A grinding step can be performed.
[0022]
According to these steps, when the second container is slid with respect to the upper end surface of the first container, the second container slides on the flat portion of the support base, so that the second container is in a more stable state. To move (slide) horizontally. Therefore, it is possible to suppress the variation in the measurement by the measurer, and to obtain a flat sliding cut surface more accurately.
[0023]
Further, in the tap density measuring method according to the present invention, the tap density measuring container after the tapping is set on the support table, and then the second container is supported and the second container is supported on the flat portion. Is set on the second container, and the sample is held at the lower end surface of the second container while sliding the second container together with the support with respect to the upper surface of the flat portion. Can be performed.
[0024]
Still further, in the tap density measuring method according to the present invention, after the exposed sample is disintegrated, a supporting member that supports the second container and slides on the flat portion together with the second container is provided. Setting the sample in the second container and sliding the sample on the lower end surface of the second container while sliding the second container together with the support with respect to the upper surface of the flat portion. it can.
[0025]
By these steps, the second container can be slid more stably with respect to the upper end surface of the first container, and the sample can be more accurately slid off.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a container for measuring tap density, a tap density measuring instrument, and a tap density measuring method according to an embodiment of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a perspective view showing the measuring container according to the first embodiment of the present invention, FIG. 2 is a perspective view showing a state where the measuring container shown in FIG. 1 is divided, and FIG. 3 is shown in FIG. It is sectional drawing which shows a part of method of measuring tap density using a measuring container.
[0027]
As shown in FIGS. 1 to 3, the measuring container 1 according to the first embodiment is provided on a first container 2 having a hollow cylindrical shape with a closed bottom surface 9 and a first container 2. And a second container 3 having a hollow cylindrical shape with both axial end surfaces open.
[0028]
The second container 3 has the same inner diameter and outer diameter as the first container 2, and when disposed on the first container 2, the second container 3 is provided in the hollow portion of the first container 2. 3 are configured to communicate with each other. The first container 2 and the second container 3 are made of a non-magnetic metal. As this non-magnetic metal, for example, SUS304L is preferably used.
[0029]
In the first embodiment, the inner diameter of the first container 2 and the second container 3 is set to 31 mm, and the outer diameter is set to 35 mm (that is, the thickness is 2 mm). In addition, the volume of the sample container of the first container 2 was set to 50 ml. Here, the volume of the sample container of the first container 2 is set in advance at the stage of manufacturing the first container 2 and is an accurate value.
[0030]
Next, a method for measuring tap density using the measuring container 1 according to the first embodiment will be described.
[0031]
First, the second container 3 is placed on the first container 2 and the joint between them is fixed. In the first embodiment, the joint between the two was fixed using cellophane tape. At this time, a cellophane tape was applied so as to cover the entire joint along the outer peripheral surface so that the sample did not leak from the joint. Thus, the measuring container 1 was assembled.
[0032]
Next, as shown in FIG. 3A, a sample whose tap density is to be measured is put into the measuring container 1 to a height approximately half that of the second container 3. In the first embodiment, a stainless steel powder product (SUS316L: manufactured by Atmix Co., Ltd.) having an average particle size of about 8 μm was used as a sample. Next, the measuring container 1 in which the sample was placed was set in a packing density measuring device (manufactured by Minerva Kiki Co., Ltd.), and tapping was performed 300 times. After this tapping, the sample was reduced in volume as shown in FIG. 3 (2), but was filled up beyond the upper end surface of the first container 2.
[0033]
Next, the cellophane tape adhered to the joint between the first container 2 and the second container 3 is cut with a cutter knife or the like so that the second container 3 can be removed from the first container 2. . Thereafter, as shown in FIG. 3 (3), the second container 3 was slid with respect to the upper end surface of the first container 2, and the sample was slid off the lower end surface of the second container 3. As a result, the sample was filled in the first container 2 at the same height as the upper end surface of the first container 2. As described above, the sample is abraded at the lower end surface of the second container 3 along the upper end surface of the first container 2, so that the cut surface of the sample becomes smooth. Therefore, for example, even if the measurers differ, accurate measurement can be performed.
[0034]
Next, the mass (W) of the sample filled in the first container 2 from which the second container 3 was removed was measured by an electronic balance. Next, the mass (W) of the sample was divided by the sample storage volume (V) of the first container 2, and the tap density was measured.
[0035]
In the first embodiment, a case where a hollow cylindrical container is used as the measuring container 1 has been described. However, the present invention is not limited to this. If the sample can be slid off by sliding the second container with respect to the first container, the shape of the polygonal prism or the like can be arbitrarily determined.
[0036]
In the first embodiment, the measurement container 1 is made of a non-magnetic metal, so that the effect of preventing the measurement container 1 from being damaged by the impact of tapping, a human error, or the like can be obtained. However, it is not essential that the measuring container 1 is made of a non-magnetic metal, and the measuring container 1 may be made of, for example, glass.
(Embodiment 2)
Next, a tap density measuring instrument and a tap density measuring method according to a second embodiment of the present invention will be described with reference to the drawings.
[0037]
FIG. 4 is a perspective view of a support for supporting the measurement container shown in FIG. 1, FIG. 5 is a perspective view of a support for supporting the second container constituting the measurement container shown in FIG. 1, and FIG. FIG. 7 is a perspective view showing a state where the measurement container shown in FIG. 1 is set on the support table shown in FIG. 4, and FIG. 7 is a perspective view showing a state where the second container is slid from the state shown in FIG. FIG. 8 is a perspective view showing a state in which the support shown in FIG. 5 is set in the measuring container shown in FIG. 6, and FIG. 9 is a view showing a state in which the second container is put together with the support from the state shown in FIG. It is a perspective view showing the state where it slid (slid).
[0038]
In the second embodiment, the same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0039]
The tap density measuring instrument according to the second embodiment supports the measuring container 1 described in the first embodiment, and has a support base 11 having a flat portion 15 having the same height as the upper end surface of the first container 2. And a support member 12 that supports the second container 3 and is movable together with the second container 3 on the flat portion 15.
[0040]
The support base 11 includes a base 13 and a flat portion 15 disposed on the base 13 via legs 14 erected at four corners of the upper surface of the base 13. The upper surface of the flat portion 15 has a height that is the same as the height of the upper end surface of the first container 2. At a substantially central portion of the flat portion 15, a through hole 16 that can penetrate the first container 2 is opened. The inner wall that defines the through hole 16 serves as a support that supports the first container 2. The diameter of the through hole 16 is set to be slightly larger than the outer diameter of the first container 2 within a range in which the first container 2 penetrated can be stably supported. In the second embodiment, the diameter of the through hole 16 is set to 35.2 ± 0.05 mm.
[0041]
The support tool 12 has a hollow cylindrical shape in which a through hole 21 through which the second container 3 penetrates is formed in the center. The diameter of the through hole 21 is set to be slightly larger than the outer diameter of the second container 3 within a range where the penetrated second container 3 can be stably supported. In the second embodiment, the diameter of the through hole 21 is set to be 38 mm.
[0042]
Next, a method for measuring tap density using the support 11 and a method for measuring tap density using the support 11 and the support 12 according to the second embodiment will be described.
(Method of measuring tap density using support base 11)
First, the measuring container 1 that has been subjected to tapping through the same process as in the first embodiment is inserted into the through hole 16 of the support base 11 and set on the support base 11. (See FIG. 6). Next, the cellophane tape adhered to the joint between the first container 2 and the second container 3 is cut with a cutter knife or the like so that the second container 3 can be removed from the first container 2. .
[0043]
Next, as shown in FIG. 7, the second container 3 is slid with respect to the upper end surface of the first container 2 and the upper surface of the flat portion 15 of the support base 11, and At the end face, the sample was scraped off. At this time, the first container 2 is supported by the inner wall of the through hole 16 of the support base 11, and the second container 3 is supported by the flat portion 15, and slides horizontally in a more stable state. I do. Therefore, the sample can be more evenly and accurately slid off. Thus, the sample was filled in the first container 2 at the same height as the upper end surface of the first container 2.
[0044]
Next, as in Embodiment 1, the tap density was measured by dividing the mass (W) of the sample filled in the first container 2 by the sample storage volume (V) of the first container 2.
(Method of measuring tap density using support base 11 and support tool 12)
In the same manner as described above, the tapping measurement container 1 is inserted into the through hole 16 of the support base 11 and set on the support base 11. (See FIG. 6). Next, the cellophane tape adhered to the joint between the first container 2 and the second container 3 is cut with a cutter knife or the like so that the second container 3 can be removed from the first container 2. .
[0045]
Next, as shown in FIG. 8, the through hole 21 of the support 12 is inserted into the second container 3. From this state, as shown in FIG. 9, the second container 3 is slid together with the support 12 with respect to the upper end surface of the first container 2 and the upper surface of the flat portion 15 of the support base 11, and At the lower end face of the container 3, the sample was scraped off. At this time, the first container 2 is supported by the inner wall of the through hole 16 of the support base 11, and the second container 3 is further supported by the support 12 and the flat portion 15, so that the first container 2 is in a more stable state. Slide horizontally. Therefore, the sample can be more accurately slid off. Thus, the sample was filled in the first container 2 at the same height as the upper end surface of the first container 2.
[0046]
Next, as in Embodiment 1, the tap density was measured by dividing the mass (W) of the sample filled in the first container 2 by the sample storage volume (V) of the first container 2.
[0047]
In addition, the through-hole 16 of the support base 11 and the through-hole 21 of the support tool 12 were formed in a cylindrical shape complementary to this shape because the first container 2 and the second container 3 were cylindrical. That is, the shapes of the through holes 16 and 21 are not limited to the cylindrical shape, and may be shapes that are complementary to the shapes of the first container 2 and the second container 3, respectively.
(Embodiment 3)
Next, a tap density measuring container and a tap density measuring method according to a third embodiment of the present invention will be described with reference to the drawings.
[0048]
FIG. 10 is a perspective view showing a measuring container according to a third embodiment of the present invention, and FIG. 11 is a perspective view showing a state where an opening / closing portion is removed from a second container constituting the measuring container shown in FIG. FIG. 12 is a perspective view showing a part of a method for measuring tap density using the measuring container shown in FIG.
[0049]
In the third embodiment, the same members as those described in the first and second embodiments are denoted by the same reference numerals, and the detailed description thereof will be omitted.
[0050]
As shown in FIGS. 10 to 12, the measurement container 4 according to the third embodiment includes a first container 2 and a hollow cylinder disposed on the first container 2 and having both axial end surfaces open. It comprises a second container 5 having a shape. The first container 2 and the second container 5 are made of the same nonmagnetic gold as in the first embodiment.
[0051]
The second container 5 has the same inner diameter and outer diameter as the first container 2, and when disposed on the first container 2, the second container 5 is placed in the hollow portion of the first container 2. Are configured to communicate with each other. The second container 5 includes a main body 31 and an opening / closing section 33 that can open and close an opening 32 cut out in a substantially rectangular shape from the lower end of the main body 31.
[0052]
Next, a method of measuring tap density using the measuring container 4 according to the third embodiment will be described.
[0053]
First, the opening / closing section 33 is fitted into the opening section 32 of the main body 31, the opening section 32 is closed by the opening / closing section 33, and the joint portion between them is fixed. In the third embodiment, the joining portion between the two was fixed using cellophane tape. At this time, a cellophane tape was attached so as to cover the entire joint so that the sample did not leak from the joint. Thus, the second container 5 was assembled. Next, similarly to Embodiment 1, the second container 5 was arranged on the first container 2, the joint portion between them was fixed, and the measurement container 4 was assembled.
[0054]
Next, the sample whose tap density is to be measured is put into the measuring container 4 up to about half the height of the second container 5. In the third embodiment, cobalt having a high cohesiveness as a powder (average particle size of about 8 μm) was used as a sample. Next, tapping was performed through the same steps as in the first embodiment. After this tapping, the sample had a smaller volume than before the tapping, but was filled up beyond the upper end surface of the first container 2.
[0055]
Next, the cellophane tape attached to the joint between the main body 31 and the opening / closing section 33 was cut with a cutter knife or the like, and the opening / closing section 33 was removed from the main body 31 as shown in FIG. Here, the sample whose tap density is to be measured is a powder having high cohesiveness. Therefore, the adhesive force between the sample and the lower end surface of the second container 5 is high, and a part of the sample to be left in the first container 2 is moved to the lower end surface of the second container 5 to slide the sample. The cut surface may not be flat. Therefore, a part of the sample is exposed by the opened opening 32, the sample located near the lower end surface of the second container 5 is broken to some extent, and the sample is attached to the lower end surface of the second container. Decrease strength.
[0056]
Next, the cellophane tape adhered to the joint between the first container 2 and the main body 31 is cut with a cutter knife or the like, and the second container is placed on the upper end surface of the first container 2 in the same manner as in the first embodiment. The container 5 was slid, and the sample was cut off at the lower end surface of the second container 5. As a result, the sample was filled in the first container 2 at the same height as the upper end surface of the first container 2. The cut surface of this sample was flat. As described above, the sample is slid off along the upper end surface of the first container 2 at the lower end surface of the second container 5, so that, for example, even if the measurer is different, the sample can be accurately measured.
[0057]
Next, the tap density of the sample was measured in the same manner as in the first embodiment.
[0058]
The tap density of the measuring container 3 according to the third embodiment can also be measured using the tap density measuring tool described in the second embodiment.
[0059]
Further, in the third embodiment, the opening 32 is cut out in a substantially rectangular shape from the lower end of the main body 31. However, the present invention is not limited to this, and the opening may be slightly above the lower end of the main body 31 as shown in FIG. May be formed.
(Example 1)
A stainless steel powder product (SUS316L: manufactured by Atmix Co., Ltd.) having low cohesiveness as a powder by the tap density measuring method described in the first embodiment using the measuring container 1 according to the first embodiment. The tap density at an average particle size of about 8 μm was measured. The measurement was performed 10 times, and the average value and standard deviation were determined from the results. Table 1 shows the results.
(Example 2)
Using the measuring container 1 according to the first embodiment, the tap density of the same sample as in the first example was measured by the “method of measuring tap density using a support” described in the second embodiment. The measurement was performed 10 times, and the average value and standard deviation were determined from the results. Table 1 shows the results.
(Example 3)
Using the measuring container 1 according to the first embodiment, the tap density of a sample similar to that in the first example was measured by the “method of measuring tap density using a support and a support” described in the second embodiment. . The measurement was performed 10 times, and the average value and standard deviation were determined from the results. Table 1 shows the results.
(Example 4)
Next, in the same manner as in Example 3, a tap density of cobalt (average particle size of about 8 μm) having high cohesiveness as a powder was used. The measurement was performed 10 times, and the average value and standard deviation were determined from the results. Table 1 shows the results.
(Example 5)
Next, using the measuring container 4 according to the third embodiment, the same tap density of the sample as that of the fourth example was used by the tap density measuring method described in the third embodiment. The measurement was performed 10 times, and the average value and standard deviation were determined from the results. Table 1 shows the results.
(Example 6)
Using the measuring container 4 according to the third embodiment, the support 11 and the support 12 described in the second embodiment, the same tap density of the sample as in the fourth embodiment was used. The measurement was performed 10 times, and the average value and standard deviation were determined from the results. Table 1 shows the results.
(Comparative Example 1)
Next, as a comparison, the same tap density of the sample as in Example 1 was used based on the standard “Metal powder tap density test method JPMA P08-1992” specified by JPMA (Japan Powder Metallurgy Association). The measurement was performed 10 times, and the average value and standard deviation were determined from the results. Table 1 shows the results.
(Comparative Example 2)
For comparison, the same tap density of the sample as in Example 4 was used based on the standard “Metal powder tap density test method JPMA P08-1992” specified by JPMA (Japan Powder Metallurgy Association). The measurement was performed 10 times, and the average value and standard deviation were determined from the results. Table 1 shows the results.
[0060]
[Table 1]
Figure 2004117218
Table 1 shows that Examples 1 to 6 according to the present invention have significantly smaller standard deviations than Comparative Examples 1 and 2. As a result, it was proved that the tap density measuring method according to the present invention has high reproducibility and excellent measurement accuracy.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a measuring container according to a first embodiment of the present invention.
FIG. 2 is a perspective view showing a state where the measuring container shown in FIG. 1 is divided.
FIG. 3 is a cross-sectional view showing a part of a method of measuring a tap density using the measuring container shown in FIG.
FIG. 4 is a perspective view of a support table that supports the measurement container shown in FIG.
FIG. 5 is a perspective view of a support for supporting a second container constituting the measurement container shown in FIG. 1;
FIG. 6 is a perspective view showing a state where the measuring container shown in FIG. 1 is set on the support table shown in FIG. 4;
7 is a perspective view showing a state where the second container is slid (slid) from the state shown in FIG. 6;
8 is a perspective view showing a state in which the support shown in FIG. 5 is set in the measuring container in the state shown in FIG. 6;
9 is a perspective view showing a state in which the second container is slid together with the support from the state shown in FIG.
FIG. 10 is a perspective view showing a measuring container according to a third embodiment of the present invention.
11 is a perspective view showing a state where an opening / closing unit is removed from a second container constituting the measuring container shown in FIG. 10;
12 is a perspective view showing a part of a method for measuring tap density using the measuring container shown in FIG.
FIG. 13 is a perspective view showing a state in which an opening / closing unit is removed from a second container constituting a measuring container according to another embodiment of the present invention.
[Explanation of symbols]
1, 4 measurement container, 2 first container, 3, 5 second container, 11 support base, 12 support tool, 15 plane portion, 16, 21 through hole,
31 body, 32 opening, 33 opening and closing part

Claims (15)

タップ密度の測定に使用され、試料を収容する測定用容器であって、
第1の容器と、当該第1の容器上に配設され且つ当該第1の容器に連通する第2の容器を備え、当該第2の容器は、前記第1の容器に対し取外し可能であるタップ密度測定用容器。
A measuring container used for measuring tap density and containing a sample,
A first container disposed on the first container and in communication with the first container, the second container being removable with respect to the first container; Container for tap density measurement.
前記第1の容器及び第2の容器が非磁性金属からなる請求項1記載のタップ密度測定用容器。The container for measuring tap density according to claim 1, wherein the first container and the second container are made of a non-magnetic metal. 前記第2の容器は、第1の容器の近傍に形成された開口部と、当該開口部を開閉可能な開閉部と、を備えてなる請求項1または請求項2記載のタップ密度測定用容器。The container for measuring tap density according to claim 1 or 2, wherein the second container includes an opening formed near the first container, and an opening / closing unit that can open and close the opening. . 前記開口部は、前記第2の容器の下端から切欠かれてなる請求項3記載のタップ密度測定用容器。4. The container for measuring tap density according to claim 3, wherein the opening is cut out from a lower end of the second container. タップ密度の測定に使用される測定具であって、
請求項1ないし請求項4のいずれか一項に記載のタップ密度測定用容器を支持すると共に、前記タップ密度測定用容器を支持する支持部の近傍に、前記第1の容器の上端面と同じ高さの平面部を有する支持台を備えたタップ密度測定具。
A measuring instrument used for measuring tap density,
The same as the upper end surface of the first container, in the vicinity of a support portion that supports the tap density measurement container according to any one of claims 1 to 4, and that supports the tap density measurement container. A tap density measuring tool provided with a support having a flat surface portion at a height.
前記支持台は、前記平面部の略中央部に、前記第1の容器を貫通可能な貫通穴を備えてなる請求項5記載のタップ密度測定具。The tap density measuring device according to claim 5, wherein the support base includes a through hole that can penetrate the first container at a substantially central portion of the plane portion. 前記第2の容器を支持して当該第2の容器と共に前記平面部上を移動可能な支持具をさらに備えた請求項5または請求項6記載のタップ密度測定具。The tap density measuring device according to claim 5, further comprising a support that supports the second container and is movable on the flat portion together with the second container. 前記支持具は、前記第2の容器を貫通可能な貫通穴を備えてなる請求項7記載のタップ密度測定具。The tap density measuring tool according to claim 7, wherein the support tool has a through hole that can penetrate the second container. 試料のタップ密度を測定する方法であって、
第1の容器と、当該第1の容器上に配設され且つ当該第1の容器に連通すると共に、前記第1の容器に対し取外し可能な第2の容器を備えたタップ密度測定用容器に、試料を入れる工程と、
前記試料を入れたタップ密度測定用容器をタッピング装置に取り付けてタッピングを行う工程と、
前記タッピング後、前記第1の容器の上端面に対し第2の容器を摺動させ、当該第2の容器の下端面で前記試料を摺り切る工程と、
前記摺り切りによって第1の容器内に残留した試料の質量を測定する工程と、前記第1の容器内に残留した試料の質量を、第1の容器の試料収容容積で除する工程と、
を備えたタップ密度の測定方法。
A method for measuring a tap density of a sample, comprising:
A first container and a tap density measuring container provided on the first container and communicating with the first container, and having a second container detachable from the first container; , The step of placing the sample,
A step of performing tapping by attaching the container for tap density measurement containing the sample to a tapping device,
After the tapping, sliding the second container against the upper end surface of the first container, and sliding the sample off the lower end surface of the second container,
Measuring the mass of the sample remaining in the first container by the sliding-off, and dividing the mass of the sample remaining in the first container by the sample storage volume of the first container;
The method for measuring tap density provided with:
前記第2の容器の、前記第1の容器の近傍に開口部を設け、当該開口部を開閉可能な開閉部により封鎖したタップ密度測定用容器を使用し、前記タッピング後、前記開閉部を開放して前記試料を露出させ、当該露出した試料を崩した後、前記第2の容器の下端面で前記試料を摺り切る工程を行う請求項9記載のタップ密度の測定方法。An opening is provided in the second container in the vicinity of the first container, and a tap density measuring container closed by an opening / closing portion capable of opening / closing the opening is used, and after the tapping, the opening / closing portion is opened. The method for measuring tap density according to claim 9, wherein the step of exposing the sample and breaking the exposed sample and then sliding the sample off at the lower end surface of the second container is performed. 前記開口部は、前記第2の容器の下端から切欠かれてなる請求項10記載のタップ密度の測定方法。The tap density measuring method according to claim 10, wherein the opening is cut out from a lower end of the second container. 前記タップ密度測定用容器を支持すると共に、当該タップ密度測定用容器を支持する支持部の近傍に、前記第1の容器の上端面と同じ高さの平面部を有する支持台に、前記タッピング後のタップ密度測定用容器をセットした後、前記平面部上面に対し前記第2の容器を摺動させながら、前記第2の容器の下端面で前記試料を摺り切る工程を行う請求項9記載のタップ密度の測定方法。Along with supporting the container for measuring tap density, near the support portion supporting the container for measuring tap density, a supporting table having a flat portion having the same height as the upper end surface of the first container, after the tapping, 10. The step of sliding the sample at the lower end surface of the second container while sliding the second container against the upper surface of the flat portion after setting the container for measuring the tap density of the above. How to measure tap density. 前記タップ密度測定用容器を支持すると共に、当該タップ密度測定用容器を支持する支持部の近傍に、前記第1の容器の上端面と同じ高さの平面部を有する支持台に、前記タッピング後のタップ密度測定用容器をセットし、前記露出した試料を崩した後、前記平面部上面に対し前記第2の容器を摺動させながら、前記第2の容器の下端面で前記試料を摺り切る工程を行う請求項10または請求項11記載のタップ密度の測定方法。Along with supporting the container for measuring tap density, near the support portion supporting the container for measuring tap density, a supporting table having a flat portion having the same height as the upper end surface of the first container, after the tapping, After setting the tap density measuring container and breaking the exposed sample, the sample is slid off at the lower end surface of the second container while sliding the second container against the upper surface of the flat portion. The method for measuring tap density according to claim 10 or 11, wherein the step is performed. 前記タッピング後のタップ密度測定用容器を前記支持台にセットした後、前記第2の容器を支持して当該第2の容器と共に前記平面部上を摺動可能な支持具を、当該第2の容器にセットし、前記平面部上面に対し前記支持具と共に前記第2の容器を摺動させながら、前記第2の容器の下端面で前記試料を摺り切る工程を行う請求項12記載のタップ密度の測定方法。After setting the tap density measuring container after tapping on the support table, the second container is supported, and a support tool that is slidable on the flat portion together with the second container is provided in the second container. The tap density according to claim 12, wherein the step of setting the sample in a container and sliding the sample on the lower end surface of the second container while sliding the second container together with the support with respect to the upper surface of the flat portion is performed. Measurement method. 前記露出した試料を崩した後、前記第2の容器を支持して当該第2の容器と共に前記平面部上を摺動可能な支持具を、当該第2の容器にセットし、前記平面部上面に対し前記支持具と共に前記第2の容器を摺動させながら、前記第2の容器の下端面で前記試料を摺り切る工程を行う請求項13記載のタップ密度の測定方法。After disintegrating the exposed sample, a support that supports the second container and slides on the flat portion together with the second container is set in the second container, and the upper surface of the flat portion is set. 14. The method for measuring tap density according to claim 13, wherein the step of sliding the sample at the lower end surface of the second container is performed while sliding the second container together with the support.
JP2002281861A 2002-09-26 2002-09-26 Tap density measuring container, tap density measuring instrument, and tap density measuring method Expired - Fee Related JP3937435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281861A JP3937435B2 (en) 2002-09-26 2002-09-26 Tap density measuring container, tap density measuring instrument, and tap density measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281861A JP3937435B2 (en) 2002-09-26 2002-09-26 Tap density measuring container, tap density measuring instrument, and tap density measuring method

Publications (2)

Publication Number Publication Date
JP2004117218A true JP2004117218A (en) 2004-04-15
JP3937435B2 JP3937435B2 (en) 2007-06-27

Family

ID=32276196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281861A Expired - Fee Related JP3937435B2 (en) 2002-09-26 2002-09-26 Tap density measuring container, tap density measuring instrument, and tap density measuring method

Country Status (1)

Country Link
JP (1) JP3937435B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535052A (en) * 2018-05-28 2018-09-14 超威电源有限公司 Powder raw material whiteness detects sampling method and sampler
KR20180106048A (en) * 2017-03-17 2018-10-01 한양대학교 에리카산학협력단 Device for measuring density of film layer and method for measuring density of film layer using same
CN109187269A (en) * 2018-09-28 2019-01-11 中国石油大学(华东) A method of tap density is measured using low dose of active carbon
CN110274847A (en) * 2019-07-29 2019-09-24 山东农业大学 A kind of vibration capacity tube and the active method of MgO is detected based on vibration capacity tube
CN112067497A (en) * 2020-08-31 2020-12-11 中铁大桥局集团第四工程有限公司 Method and auxiliary tool for detecting compactness of sand filling in steel pipe pile
CN112504913A (en) * 2020-12-22 2021-03-16 天能电池(芜湖)有限公司 Quick type lead plaster apparent density detection device
CN114018757A (en) * 2021-11-09 2022-02-08 黑龙江普莱德新材料科技有限公司 Automatic device and method for accurately measuring tap density

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180106048A (en) * 2017-03-17 2018-10-01 한양대학교 에리카산학협력단 Device for measuring density of film layer and method for measuring density of film layer using same
KR101948416B1 (en) * 2017-03-17 2019-04-29 한양대학교 에리카산학협력단 Device for measuring density of film layer and method for measuring density of film layer using same
CN108535052A (en) * 2018-05-28 2018-09-14 超威电源有限公司 Powder raw material whiteness detects sampling method and sampler
CN108535052B (en) * 2018-05-28 2024-02-27 超威电源集团有限公司 Powder raw material whiteness detection sampling method and sampler
CN109187269A (en) * 2018-09-28 2019-01-11 中国石油大学(华东) A method of tap density is measured using low dose of active carbon
CN110274847A (en) * 2019-07-29 2019-09-24 山东农业大学 A kind of vibration capacity tube and the active method of MgO is detected based on vibration capacity tube
CN110274847B (en) * 2019-07-29 2024-03-08 山东农业大学 Vibration capacity cylinder and method for detecting MgO activity based on vibration capacity cylinder
CN112067497A (en) * 2020-08-31 2020-12-11 中铁大桥局集团第四工程有限公司 Method and auxiliary tool for detecting compactness of sand filling in steel pipe pile
CN112504913A (en) * 2020-12-22 2021-03-16 天能电池(芜湖)有限公司 Quick type lead plaster apparent density detection device
CN114018757A (en) * 2021-11-09 2022-02-08 黑龙江普莱德新材料科技有限公司 Automatic device and method for accurately measuring tap density
CN114018757B (en) * 2021-11-09 2023-10-13 中建材黑龙江石墨新材料有限公司 Automatic device and method for accurately measuring tap density

Also Published As

Publication number Publication date
JP3937435B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP2004117218A (en) Tap density measurement vessel, tap density measurement tool and tap density measurement method
CN108871998A (en) Powder water absorbing properties detection method and device
US4747295A (en) Test piece for ultrasonic testing
JP4905895B2 (en) Apparatus and method for measuring apparent density of porous parts
CN205919773U (en) Cell -phone protective housing flatness inspection appearance
CN114354442A (en) Device for measuring density of snow accumulation layer
Richter et al. Densimetry for the quantification of sorption phenomena on nonporous media near the dew point of fluid mixtures
US2878444A (en) Method for measuring magnetic susceptibilities
CN213239981U (en) A test subassembly for measuring powder sample chemical composition
CN210664748U (en) Static electricity removal auxiliary weighing device for high-precision weighing
CN209513583U (en) A kind of positioning device of direct reading spectrometry sample
CN208282713U (en) Measure jig
Evans et al. A simplification of the ‘step’method for estimating mean section thickness
CN112595241A (en) Method for measuring thickness of rubidium hydride anti-relaxation film layer on inner wall of atomic gas chamber
CN105300776A (en) Sample settling method for fusion dripping experiment
CN219608695U (en) Corn fineness quick-measuring cup
US20220349743A1 (en) Systems and methods for gas pycnometer and gas adsorption analyzer calibration
KR100217858B1 (en) Density measuring method of magnetic powder
JP2003303741A (en) Machine and method for handling electronic component
CN208021973U (en) Liquefied natural gas sampler pallet
CN212963127U (en) Pre-detection equipment for inner packing material of injection
US8617491B2 (en) Device for receiving a solid in a measuring cell
CN211682020U (en) Measurement detects toolbox
CN218546547U (en) Urine detection device
CN220230350U (en) Detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees