JP2004116822A - Solution spraying structure of multiplate type heat exchanger - Google Patents

Solution spraying structure of multiplate type heat exchanger Download PDF

Info

Publication number
JP2004116822A
JP2004116822A JP2002278340A JP2002278340A JP2004116822A JP 2004116822 A JP2004116822 A JP 2004116822A JP 2002278340 A JP2002278340 A JP 2002278340A JP 2002278340 A JP2002278340 A JP 2002278340A JP 2004116822 A JP2004116822 A JP 2004116822A
Authority
JP
Japan
Prior art keywords
plate
space
solution
communication
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002278340A
Other languages
Japanese (ja)
Other versions
JP3995571B2 (en
Inventor
Taiji Sakai
坂井 耐事
Takayuki Suyama
須山 隆行
Tsutomu Wada
和田 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Radiator Co Ltd
Original Assignee
Toyo Radiator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Radiator Co Ltd filed Critical Toyo Radiator Co Ltd
Priority to JP2002278340A priority Critical patent/JP3995571B2/en
Publication of JP2004116822A publication Critical patent/JP2004116822A/en
Application granted granted Critical
Publication of JP3995571B2 publication Critical patent/JP3995571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solution spraying structure of a multiplate type heat exchanger for uniformly spraying a solution, and improving heat exchange efficiency while restraining cost. <P>SOLUTION: In this multiplate type heat exchanger, elements 4 formed by mutually superposing two plate-like bodies 5 and 6 of applying recess-projection work to both surfaces, are superposed in a plurality between a pair of rectangular side plates 2 and 3, and an element inside space 7 inside of the respective elements 4 is formed as a passage for passing one of a heat transfer medium, and an element outside space 8 between the respective elements is formed as a passage for passing the other solution medium. Upper end recessed parts 4a are formed by upwardly extending both ends of an upper end horizontal part having a maximum width of the respective elements 4, and the upper end recessed parts 4a of the respective elements 4 are mutually watertightly joined, and an upper part of the rectangular side plates 2 and 3 and the upper end recessed parts 4a of the outermost side both elements 4 are watertightly joined. An upward opening solution medium storage tank 12 is formed of the respective upper end recessed parts 4a and the upper part of a pair of side plates 2 and 3, and communicating holes 13 and 14 for communicating with the element outside space 8 from the storage tank 12 are arranged in a plurality of rows in the plate-like bodies 5 and 6 for forming the upper end recessed parts 4a. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、多板式熱交換器に関し、特に溶液媒体の散布構造に関する。
【0002】
【従来の技術】
従来の多板式熱交換器における溶液媒体の散布構造としては、同じ出願人が先に出願した例がある(特許文献1参照)。
【0003】
【特許文献1】
特開平10−206063号公報

【0018】、
【0029】、
【0034】、
【0035】、図7、図9)
【0004】
特許文献1の一実施例では、素子を形成する2枚の板状体の上端が開き溝状の媒体通路を形成し、媒体通路の板状体に等間隔に連通口を設けたもので、各素子の媒体通路のそれぞれに上方に配置された媒体供給管から各ノズルが臨んでいる。
【0005】
媒体供給管を通って各ノズルから落下する溶液媒体が、各媒体通路に落下して媒体通路を流れ連通口から素子外空間に流出して素子内空間の媒体と熱交換を行う。
【0006】
また特許文献1の別の実施例では、前記素子を形成する2枚の板状体の上端を開いた溝状の代わりに、閉断面形状の媒体通路を形成し、媒体通路には連通口が列設されている。
【0007】
この閉断面形状の媒体通路に供給された溶液媒体は、連通口から素子外空間に流出して素子内空間の媒体と熱交換を行う。
【0008】
【発明が解決しようとする課題】
上記特許文献1の前者の実施例の場合、各媒体通路に対応した高い寸法精度で位置決めされたノズルを設ける必要がありコスト高となり、媒体通路を溶液媒体が流れる過程で連通口から素子外空間に流出するので、媒体通路の上流側と下流側とでは連通口から流出する溶液媒体の量が異なり、均一な溶液散布が困難であるため熱交換の効率が良くない。
【0009】
また特許文献1の後者の実施例の場合、閉断面形状の媒体通路に列設された連通口から均一で適量の溶液散布をするためには、常に媒体通路に供給される溶液の圧力を一定以上に保たなければならずそのための設備を必要としコスト高となる。
【0010】
本発明は、かかる点に鑑みなされたもので、コストを抑えながら均一な溶液散布が可能で熱交換効率の向上を図ることができる多板式熱交換器の溶液散布構造を供する点にある。
【0011】
【課題を解決するための手段及び作用効果】
上記目的を達成するために、本請求項1記載の発明は、両面に凹凸加工を施した2枚の板状体を互いに重ね合わせて形成した素子を一対の矩形側板間で複数個重ね合わせ、各素子の内側の素子内空間を熱伝達媒体の一方を通過させるための通路とし、各素子間の素子外空間を他方の溶液媒体を通過させるための通路とした多板式熱交換器において、前記各素子の最大幅を有する上端水平部の両端が上方へ延出されて上端凹部が形成され、前記各素子の上端凹部が互いに水密に接合され、前記矩形側板の上部と前記最外側の両素子の上端凹部とが水密に接合され、前記各上端凹部と前記一対の側板の上部により上方に開口した溶液媒体の貯留槽が形成され、前記上端凹部を形成する板状体に前記貯留槽から前記素子外空間に連通する連通孔が複数列設された多板式熱交換器の溶液散布構造とした。
【0012】
各上端凹部と一対の側板の上部により形成された貯留槽に溶液媒体を溜めると、各連通孔から均一で適量の溶液媒体を素子外空間に流出することが簡単にでき、熱交換効率を向上させることができる。
【0013】
各素子と一対の側板で貯留槽が形成され、貯留槽に溶液を供給する手段は、寸法精度が要求される特別なパイプ等を必要とせず単純な構造でよく、コストの削減を図ることができる。
【0014】
請求項2記載の発明は、請求項1記載の多板式熱交換器の溶液散布構造において、前記各素子の上端凹部は、一対の板状体の端部が互いに開いた溝状を形成し、前記連通孔は、前記一対の板状体の溝状を形成する部分に複数列設されたことを特徴とする。
【0015】
貯留槽に貯まった溶液媒体は、貯留槽の底部をなす溝状の複数の連通孔を介して素子外空間に均一に流出することができ熱交換効率の向上を図ることができる。
【0016】
各素子の上端凹部に形成された溝状が複数条接合されて貯留槽が構成されており、各溝状に溶液媒体を供給する必要はなく全体で形成された貯留槽に供給すればよいので、供給手段も単純なものでよくコストを抑えることができる。
【0017】
請求項3記載の発明は、請求項1記載の多板式熱交換器の溶液散布構造において、前記各素子の上端凹部は、一対の板状体の端部が互いに離れる方向に膨出して内側に連通空間をなす閉断面形状が形成され、前記連通孔は、前記連通空間をなす板状体の同連通空間を上方の貯留部に連通する複数列設された上側連通孔と下方の前記素子外空間に連通する複数列設された下側連通孔とからなることを特徴とする。
【0018】
貯留槽に貯まった溶液媒体は、貯留槽の底部をなす上端凹部に複数列設された上側連通孔を介して各素子の上端凹部の連通空間に流入し、さらに各連通空間から複数の下側連通孔を介して素子外空間に流出することになり、溶液媒体の貯留量の変化に影響されずに均等に素子外空間に流出することができ熱交換効率を高く維持することができる。
【0019】
【発明の実施の形態】
以下本発明に係る一実施の形態について図1ないし図3に基づき説明する。
本実施の形態に係る熱交換器は、吸収冷凍機の蒸発器1に適用したもので、該蒸発器1の斜視図を図1に示す。
【0020】
縦長矩形の一対の側板2,3の間に概ね縦長矩形の素子4が複数個順次重ね合わされた状態で挟まれている。
各素子4は、一対の板状体5,6を重ね合わせて構成されており、板状体5,6は、プレス加工により両面に凹凸が形成されている(図2,図3参照)。
【0021】
板状体5,6は、互いに重ね合わされて周縁部がろう付けにより水密に接合され、図3の縦断面図に図示するように、縦方向に連続した波形状が互いに対称に形成され、互いに接近したところで当接し、互いに離れたところに素子内空間7が形成されている。
【0022】
各素子4の互いの間および素子4と板状体5,6との間には素子外空間8が自ずと形成される。
【0023】
各素子4は、上端水平部の両端が上方へ延出されて上方に開いたコ字状の上端凹部4aが形成され、本実施の形態の上端凹部4aは、一対の板状体5,6の上端部が互いに離れる方向に膨出して内側に連通空間9をなす閉断面形状が形成されている(図3参照)。
【0024】
この連通空間9を有する上端凹部4aは、素子4の最大幅を有し、素子4を順次重ね合わせるときに上端凹部4aどうしが当接しろう付けにより互いに水密に接合される。
【0025】
なお一対の板状体5,6の上下2箇所にそれぞれ対向して円孔が形成され、各素子4の円孔が連結されて共通の連通路10,11が形成され、同連通路10,11は各素子内空間7と連通している。
【0026】
こうして重ね合わされた素子4の両側に側板2,3がそれぞれ当てがわれ、側板2,3の上下に形成された円孔が連通路10,11と連結されるとともに、縦長矩形の側板2,3の上部と最外側の両素子4,4の上端凹部4a,4aとがろう付けにより水密に接合される。
【0027】
すなわち複数の素子4の上端凹部4aが順次重ね合わされて形成された上方に開口した断面コ字状の溝の前後を側板2,3の上部が塞ぐような形で上方に開口した貯留槽12が形成されている。
【0028】
そして各板状体5,6の上端凹部4aの連通空間9をなす部分に、上方の貯留槽12と連通空間9とを連通する円形の上側連通孔13が複数列設されるとともに、連通空間9と下方の素子外空間8とを連通する円形の下側連通孔14が複数列設されている。
【0029】
したがって貯留槽12は、上側連通孔13および下側連通孔14により連通空間9を介して素子外空間8と連通している。
なお連通孔13,14は横長の長円孔としてもよい。
【0030】
以上のように構成された本蒸発器1の貯留槽12には、図1に示すように単純な供給パイプ15により冷媒が供給され、貯留槽12に貯留される。
他方下側の連通路11には水が流入され、各素子4の素子内空間7を巡って上側の連通路10から流出される。
場合によっては逆に上側の連通路10から流入し下側の連通路11から流出するようにしてもよい。
【0031】
貯留槽12に貯留された冷媒は、底部を構成する各素子4の上端凹部4aに複数列設された上側連通孔13を通って各上端凹部4aの連通空間9に流入し、さらに各連通空間9から複数の下側連通孔14を通って素子外空間8に流出散布される。
【0032】
冷媒は、一度貯留槽12および連通空間9に貯留され、同じ高さで満遍なく均等に配設された下側連通孔14から均等な圧力で素子外空間8に散布されるので均一に散布される。
【0033】
特に冷媒の均一散布には下側連通孔14の数が多い程よいが、多過ぎると貯留槽12に冷媒が溜まらなくなり却って供給パイプ15により供給される箇所近傍に散布が限定されることになるので限度がある。
【0034】
本蒸発器1の場合、貯留槽12に連通空間9を含めて貯留された冷媒の下側連通孔14までの深さをh(m)、下側連通孔14から流れ出す冷媒流速をv(m/s)、重力加速度をg(m/s)とすると、
h=C1・(v/2g) ………▲1▼
が成り立ち、ここにC1は流動抵抗に関する損失係数で1.0より大きい値のものである。
【0035】
供給パイプ15による冷媒供給量をQ(m/s)、下側連通孔14の1個当りの断面積をA(m)、下側連通孔14の数をxとすると、
Q=v・A・x ………▲2▼
であり、この▲2▼式と前記▲1▼式とから
x=Q/(A・(2・g・h/C1)1/2) ………▲3▼
が導かれる。
ただし、Aは沈殿物等によるつまりのため、最小値径1.0〜0.5mmとする必要がある。
【0036】
▲3▼式から分かるように、損失係数C1を大きくすれば最小値径の限度内において下側連通孔14の数xを増加することが可能であり、本蒸発器1は貯留槽12の底部に上側連通孔13を有し、同上側連通孔13が存在することにより流動抵抗を増し、損失係数C1を大きくしている。
【0037】
したがって損失係数C1が大きい分、下側連通孔14の数xを多くすることができ、多数の下側連通孔14から素子外空間8にむらなく均一に散布される。
多少冷媒供給量Qが少なくなっても冷媒の下側連通孔14までの深さhがある程度確保されれば均一に散布され、冷媒供給量Qの変動にあまり影響を受けない。
【0038】
こうして素子外空間8に均一に散布された冷媒は蒸発し、蒸発の潜熱によって素子内空間7を巡る水を場所による偏りを生じることなく冷却することができ、効率良く熱交換することができ、冷水として連通路10から排出される。
【0039】
本蒸発器1の貯留槽12は、各素子4の上端凹部4aと側板2,3により形成されていて、別途特別な部材を必要としないので、コストを抑えることができる。
【0040】
また貯留槽に溶液を供給する手段は、寸法精度が要求される特別なパイプを必要とせず単純な供給パイプ15を用いることができるので、コストの削減を図ることができる。
【0041】
さらに下側連通孔14から素子外空間8に散布される冷媒の流量は、下側連通孔14の数および大きさによって自由に調整することができる。
【0042】
次に別の実施の形態に係る蒸発器31について図4に基づき説明する。
本蒸発器31は、基本的に前記蒸発器1と同じ構造をしていて、略同じ形状の側板32,33と、その間に挟まれる複数個重ねられた素子34からなり、素子34を構成する一対の板状体35,36が重ね合わされて素子内空間37と素子外空間38が形成されている。
【0043】
そして素子34の上端凹部34aのみが前記蒸発器1のそれと異なる。
すなわち本上端凹部34aは、一対の板状体35,36の端部が互いに開いた溝状39を形成している。
【0044】
この溝状39が形成される上端凹部34aが順次ろう付けにより水密に接合され、一対の側板32,33とともに貯留槽42を形成している。
そして一対の板状体35,36の溝状39を形成する部分に複数の連通孔43が列設されている。
【0045】
貯留槽42に貯まった冷媒は、貯留槽42の底部をなす各溝状39の同じ高さで満遍なく均等に配設された複数の連通孔43を通って素子外空間38に均一に流出することができ、素子外空間38に均一に散布された冷媒の蒸発の潜熱によって素子内空間37を巡る水を場所による偏りを生じることなく冷却することができ、効率良く熱交換することができる。
【0046】
各素子34の上端凹部34aの溝状39がより簡素化されていて、製造コストも低く抑えることができる。
【0047】
以上の実施の形態では、蒸発器に適用したが、蒸発器以外に吸収器その他溶液媒体の散布を伴う熱交換器に適用することができる。
【図面の簡単な説明】
【図1】本発明の一本実施の形態に係る蒸発器の全体斜視図である。
【図2】側板を除いた蒸発器の上部正面図である。
【図3】図2においてIII−III線に沿って切断した断面図である。
【図4】別の実施の形態に係る蒸発器の断面図である。
【符号の説明】
1…蒸発器、2,3…側板、4…素子、4a…上端凹部、5,6…板状体、7…素子内空間、8…素子外空間、9…連通空間、10,11…連通路、12…貯留槽、13…上側連通孔、14…下側連通孔、15…供給パイプ、31…蒸発器、32,33…側板、34…素子、34a…上端凹部、35,36…板状体、37…素子内空間、38…素子外空間、39…溝状、42…貯留槽、43…連通孔。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multi-plate heat exchanger, and more particularly, to a structure for spraying a solution medium.
[0002]
[Prior art]
As a structure for dispersing a solution medium in a conventional multi-plate heat exchanger, there is an example filed by the same applicant earlier (see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-10-206063 (
[0018]
[0029]
[0034]
(FIGS. 7 and 9)
[0004]
In one embodiment of Patent Document 1, the upper ends of two plate-like members forming an element form an open groove-shaped medium passage, and communication holes are provided at equal intervals in the plate-like body of the medium passage. Each nozzle faces a medium supply pipe arranged above each of the medium passages of each element.
[0005]
The solution medium dropping from each nozzle through the medium supply pipe falls into each medium passage, flows through the medium passage, flows out of the communication port into the outside space of the element, and exchanges heat with the medium in the inside space of the element.
[0006]
In another embodiment of Patent Document 1, a medium passage having a closed cross section is formed instead of a groove having an open upper end of two plate-like members forming the element, and a communication port is formed in the medium passage. It is lined up.
[0007]
The solution medium supplied to the medium passage having the closed cross section flows out of the communication port into the external space of the element and exchanges heat with the medium in the internal space of the element.
[0008]
[Problems to be solved by the invention]
In the case of the former embodiment of Patent Document 1, it is necessary to provide a nozzle positioned with high dimensional accuracy corresponding to each medium passage, which increases the cost, and the space outside the element from the communication port in the process of flowing the solution medium through the medium passage. Therefore, the amount of the solution medium flowing out of the communication port differs between the upstream side and the downstream side of the medium passage, and it is difficult to uniformly spray the solution.
[0009]
In the latter embodiment of Patent Document 1, in order to spray a uniform and appropriate amount of the solution from the communication ports arranged in the medium passage having a closed cross section, the pressure of the solution supplied to the medium passage is always kept constant. This must be maintained, and equipment for that purpose is required, resulting in high costs.
[0010]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a solution spraying structure of a multi-plate heat exchanger that enables uniform solution spraying while suppressing costs and improves heat exchange efficiency.
[0011]
Means for Solving the Problems and Functions and Effects
In order to achieve the above object, the invention according to claim 1 includes a plurality of elements each formed by laminating two plate-like bodies having irregularities on both surfaces thereof between a pair of rectangular side plates, In the multi-plate heat exchanger, the internal space inside each element is a passage for passing one of the heat transfer media, and the external space between the elements is a passage for passing the other solution medium. Both ends of the upper end horizontal portion having the maximum width of each element are extended upward to form an upper end recess, and the upper end recesses of the respective elements are joined to each other in a watertight manner, and both the upper part of the rectangular side plate and the outermost elements The upper concave portion is joined in a watertight manner, and a storage tank for the solution medium which is opened upward by the upper portions of the upper concave portions and the pair of side plates is formed, and the plate-like body forming the upper concave portion is formed from the storage tank. Multiple communication holes communicating with the space outside the element It was arrayed by solution sprayed structure of the multi-plate type heat exchanger.
[0012]
When the solution medium is stored in the storage tank formed by each upper concave part and the upper part of the pair of side plates, a uniform and appropriate amount of the solution medium can be easily discharged from each communication hole into the outer space of the element, thereby improving the heat exchange efficiency. Can be done.
[0013]
A storage tank is formed by each element and a pair of side plates, and a means for supplying a solution to the storage tank may have a simple structure without requiring a special pipe or the like requiring dimensional accuracy, and cost reduction may be achieved. it can.
[0014]
According to a second aspect of the present invention, in the solution spraying structure of the multi-plate heat exchanger according to the first aspect, the upper end recess of each element forms a groove shape in which ends of a pair of plate-like bodies are open to each other, The communication holes are provided in a plurality of rows at a portion of the pair of plate-like bodies forming a groove.
[0015]
The solution medium stored in the storage tank can uniformly flow out to the space outside the element through the plurality of groove-shaped communication holes forming the bottom of the storage tank, and the heat exchange efficiency can be improved.
[0016]
A plurality of grooves formed in the upper concave portion of each element are joined to form a storage tank, and it is not necessary to supply a solution medium to each groove, and it is sufficient to supply the solution medium to the storage tank formed as a whole. The supply means is simple and the cost can be reduced.
[0017]
According to a third aspect of the present invention, in the solution spraying structure of the multi-plate type heat exchanger according to the first aspect, the upper end recesses of the respective elements bulge in the direction in which the ends of the pair of plate-like bodies are separated from each other. A closed cross-sectional shape that forms a communication space is formed, and the communication hole has a plurality of rows of upper communication holes that communicate the communication space of the plate-shaped body that forms the communication space with an upper storage portion and the lower outside of the element. It is characterized by comprising a plurality of rows of lower communication holes communicating with the space.
[0018]
The solution medium stored in the storage tank flows into the communication space of the upper end recess of each element through the upper communication holes arranged in a plurality of rows in the upper end recess forming the bottom of the storage tank, and further from the communication space, a plurality of lower sides. As a result, the solution flows out to the space outside the element via the communication hole, so that the solution medium can uniformly flow out to the space outside the element without being affected by a change in the storage amount of the solution medium, and the heat exchange efficiency can be kept high.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment according to the present invention will be described below with reference to FIGS.
The heat exchanger according to the present embodiment is applied to an evaporator 1 of an absorption refrigerator, and a perspective view of the evaporator 1 is shown in FIG.
[0020]
A plurality of substantially vertically rectangular elements 4 are sandwiched between a pair of vertically rectangular side plates 2 and 3 in a state of being sequentially superposed.
Each element 4 is configured by laminating a pair of plate-like bodies 5 and 6, and the plate-like bodies 5 and 6 are formed with irregularities on both surfaces by press working (see FIGS. 2 and 3).
[0021]
The plate-like bodies 5 and 6 are superimposed on each other, and their peripheral edges are joined in a water-tight manner by brazing, and as shown in the longitudinal sectional view of FIG. An in-element space 7 is formed where they come into contact with each other when they approach each other and are separated from each other.
[0022]
An extra-element space 8 is naturally formed between each element 4 and between the element 4 and the plate-like bodies 5 and 6.
[0023]
Each element 4 has a U-shaped upper concave portion 4a formed by extending both ends of an upper horizontal portion upward and opening upward. The upper concave portion 4a of the present embodiment is formed by a pair of plate-shaped members 5, 6. Have a closed cross-sectional shape which bulges in the direction away from each other and forms a communication space 9 inside (see FIG. 3).
[0024]
The upper concave portion 4a having the communication space 9 has the maximum width of the element 4, and the upper concave portions 4a come into contact with each other when the elements 4 are sequentially overlapped, and are joined to each other in a watertight manner by brazing.
[0025]
Circular holes are respectively formed at upper and lower portions of the pair of plate-like bodies 5 and 6 so as to face each other, and the circular holes of each element 4 are connected to form common communication passages 10 and 11. Reference numeral 11 communicates with each element space 7.
[0026]
The side plates 2 and 3 are respectively applied to both sides of the element 4 thus superimposed, and circular holes formed on the upper and lower sides of the side plates 2 and 3 are connected to the communication paths 10 and 11, and the vertically long side plates 2 and 3 are connected. And the upper end recesses 4a of the outermost elements 4 and 4 are joined in a watertight manner by brazing.
[0027]
That is, the storage tank 12 is opened upward so that the upper portions of the side plates 2 and 3 close the upper and lower sides of the U-shaped groove which is formed by superimposing the upper end recesses 4a of the plurality of elements 4 sequentially. Is formed.
[0028]
A plurality of circular upper communication holes 13 for communicating the upper storage tank 12 and the communication space 9 are provided in a plurality of rows at portions of the upper concave portions 4a of the plate-like bodies 5 and 6 forming the communication space 9, and the communication space is formed. Plural rows of circular lower communication holes 14 communicating the element 9 and the lower extra-element space 8 are provided.
[0029]
Therefore, the storage tank 12 communicates with the extra-element space 8 via the communication space 9 through the upper communication hole 13 and the lower communication hole 14.
The communication holes 13 and 14 may be oblong holes that are horizontally long.
[0030]
As shown in FIG. 1, a refrigerant is supplied to the storage tank 12 of the present evaporator 1 configured as described above through a simple supply pipe 15 and stored in the storage tank 12.
On the other hand, water flows into the lower communication path 11 and flows out of the upper communication path 10 around the in-element space 7 of each element 4.
In some cases, conversely, the fluid may flow from the upper communication path 10 and flow out of the lower communication path 11.
[0031]
The refrigerant stored in the storage tank 12 flows into the communication space 9 of each upper end recess 4a through the upper communication holes 13 provided in a plurality of rows in the upper end recess 4a of each element 4 constituting the bottom portion, and further flows into each communication space. From 9 through a plurality of lower communication holes 14, it is discharged and dispersed into the element outer space 8.
[0032]
The refrigerant is once stored in the storage tank 12 and the communication space 9, and is evenly sprayed from the lower communication holes 14, which are uniformly arranged at the same height, with equal pressure to the outer space 8. .
[0033]
In particular, the more the number of the lower communication holes 14 is better for the uniform spraying of the refrigerant, the more the number of the lower communication holes 14 is. There is a limit.
[0034]
In the case of the present evaporator 1, the depth to the lower communication hole 14 of the refrigerant stored in the storage tank 12 including the communication space 9 is h (m), and the flow velocity of the refrigerant flowing out from the lower communication hole 14 is v (m). / S) and the gravitational acceleration is g (m / s 2 ),
h = C1 · (v 2 / 2g) ▲ 1
Where C1 is a loss coefficient relating to flow resistance and is a value larger than 1.0.
[0035]
Assuming that the amount of refrigerant supplied by the supply pipe 15 is Q (m 3 / s), the cross-sectional area of one of the lower communication holes 14 is A (m 2 ), and the number of the lower communication holes 14 is x.
Q = v · A · x ……… ▲ 2 ▼
From the equation (2) and the equation (1), x = Q / (A · (2 · g · h / C1) 1/2 ) (3)
Is led.
However, since A is clogged by a precipitate or the like, it is necessary to set the minimum diameter to 1.0 to 0.5 mm.
[0036]
As can be seen from equation (3), if the loss coefficient C1 is increased, the number x of the lower communication holes 14 can be increased within the limit of the minimum diameter, and the evaporator 1 is located at the bottom of the storage tank 12. Has an upper communication hole 13, and the presence of the upper communication hole 13 increases the flow resistance and increases the loss coefficient C1.
[0037]
Therefore, as the loss coefficient C1 is larger, the number x of the lower communication holes 14 can be increased, and the number of the lower communication holes 14 is evenly and uniformly distributed from the large number of lower communication holes 14 to the external space 8.
Even if the coolant supply amount Q is slightly reduced, if the depth h to the lower communication hole 14 of the coolant is ensured to some extent, the coolant is evenly dispersed, and the coolant supply amount Q is not significantly affected by the fluctuation.
[0038]
In this way, the refrigerant uniformly dispersed in the element outer space 8 evaporates, and the water flowing around the element inner space 7 can be cooled by the latent heat of the evaporation without causing a local deviation, and heat can be efficiently exchanged. It is discharged from the communication passage 10 as cold water.
[0039]
The storage tank 12 of the present evaporator 1 is formed by the upper end recess 4a of each element 4 and the side plates 2 and 3, and does not require any special member, so that the cost can be reduced.
[0040]
In addition, the means for supplying the solution to the storage tank does not require a special pipe requiring dimensional accuracy, and a simple supply pipe 15 can be used, so that the cost can be reduced.
[0041]
Furthermore, the flow rate of the refrigerant sprayed from the lower communication hole 14 to the external space 8 can be freely adjusted by the number and size of the lower communication holes 14.
[0042]
Next, an evaporator 31 according to another embodiment will be described with reference to FIG.
The evaporator 31 basically has the same structure as the evaporator 1 and is composed of side plates 32 and 33 having substantially the same shape, and a plurality of stacked elements 34 sandwiched therebetween. A pair of plate-like bodies 35 and 36 are overlapped to form a space 37 inside the element and a space 38 outside the element.
[0043]
Only the upper end recess 34a of the element 34 is different from that of the evaporator 1.
That is, the upper end recess 34a forms a groove 39 in which the ends of the pair of plate-like bodies 35 and 36 are open to each other.
[0044]
The upper concave portion 34a in which the groove 39 is formed is joined in a water-tight manner by brazing sequentially, and forms a storage tank 42 together with the pair of side plates 32 and 33.
A plurality of communication holes 43 are arranged in a row at portions of the pair of plate-like bodies 35 and 36 where the groove 39 is formed.
[0045]
The refrigerant stored in the storage tank 42 flows out uniformly into the external space 38 through a plurality of communication holes 43 uniformly and uniformly arranged at the same height of each groove 39 forming the bottom of the storage tank 42. Thus, the water flowing around the element inner space 37 can be cooled by the latent heat of the evaporation of the refrigerant uniformly dispersed in the element outer space 38 without causing local deviation, and heat exchange can be performed efficiently.
[0046]
The groove 39 of the upper concave portion 34a of each element 34 is more simplified, and the manufacturing cost can be reduced.
[0047]
In the above embodiment, the present invention is applied to the evaporator. However, the present invention can be applied to an absorber other than the evaporator or a heat exchanger involving spraying of a solution medium.
[Brief description of the drawings]
FIG. 1 is an overall perspective view of an evaporator according to one embodiment of the present invention.
FIG. 2 is an upper front view of the evaporator without a side plate.
FIG. 3 is a sectional view taken along line III-III in FIG. 2;
FIG. 4 is a sectional view of an evaporator according to another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Evaporator, 2, 3 ... Side plate, 4 ... Element, 4a ... Upper end recessed part, 5, 6 ... Plate-shaped body, 7 ... Element inside space, 8 ... Element outside space, 9 ... Communication space, 10, 11 ... Connection Passage, 12: storage tank, 13: upper communication hole, 14: lower communication hole, 15: supply pipe, 31: evaporator, 32, 33: side plate, 34: element, 34a: upper end recess, 35, 36: plate Reference numeral, 37: element internal space, 38: element external space, 39: groove shape, 42: storage tank, 43: communication hole.

Claims (3)

両面に凹凸加工を施した2枚の板状体を互いに重ね合わせて形成した素子を一対の矩形側板間で複数個重ね合わせ、各素子の内側の素子内空間を熱伝達媒体の一方を通過させるための通路とし、各素子間の素子外空間を他方の溶液媒体を通過させるための通路とした多板式熱交換器において、
前記各素子の最大幅を有する上端水平部の両端が上方へ延出されて上端凹部が形成され、
前記各素子の上端凹部が互いに水密に接合され、
前記矩形側板の上部と前記最外側の両素子の上端凹部とが水密に接合され、
前記各上端凹部と前記一対の側板の上部により上方に開口した溶液媒体の貯留槽が形成され、
前記上端凹部を形成する板状体に前記貯留槽から前記素子外空間に連通する連通孔が複数列設されたことを特徴とする多板式熱交換器の溶液散布構造。
A plurality of elements formed by laminating two plate-like bodies having irregularities on both sides are laminated between a pair of rectangular side plates, and one of the heat transfer media passes through a space inside the element inside each element. In the multi-plate heat exchanger as a passage for passing the outside solution space between each device as a passage for passing the other solution medium,
Both ends of the upper end horizontal portion having the maximum width of each element are extended upward to form an upper end recess,
The upper end concave portions of the respective elements are joined to each other in a watertight manner,
The upper portion of the rectangular side plate and the upper end recesses of the outermost elements are joined in a watertight manner,
A storage tank for a solution medium that is opened upward by the upper end recesses and the upper portions of the pair of side plates is formed,
A solution spraying structure for a multi-plate heat exchanger, wherein a plurality of rows of communication holes communicating from the storage tank to the outside space of the element are provided in a plate-like body forming the upper end recess.
前記各素子の上端凹部は、一対の板状体の端部が互いに開いた溝状を形成し、
前記連通孔は、前記一対の板状体の溝状を形成する部分に複数列設されたことを特徴とする請求項1記載の多板式熱交換器の溶液散布構造。
The upper end recess of each of the elements forms a groove shape in which the ends of the pair of plate-like bodies are open to each other,
The solution spray structure for a multi-plate heat exchanger according to claim 1, wherein the communication holes are provided in a plurality of rows at a portion of the pair of plate-like bodies that form the groove.
前記各素子の上端凹部は、一対の板状体の端部が互いに離れる方向に膨出して内側に連通空間をなす閉断面形状が形成され、
前記連通孔は、前記連通空間をなす板状体の同連通空間を上方の貯留部に連通する複数列設された上側連通孔と下方の前記素子外空間に連通する複数列設された下側連通孔とからなることを特徴とする請求項1記載の多板式熱交換器の溶液散布構造。
The upper end concave portion of each of the elements has a closed cross-sectional shape in which the ends of the pair of plate-like bodies bulge away from each other to form a communication space inside,
The communication holes are formed of a plurality of upper communication holes that communicate the communication space of the plate-shaped body that forms the communication space with the upper storage portion and a plurality of lower communication holes that communicate with the lower outer space of the element. The solution spraying structure for a multi-plate heat exchanger according to claim 1, comprising a communication hole.
JP2002278340A 2002-09-25 2002-09-25 Solution spray structure of multi-plate heat exchanger Expired - Fee Related JP3995571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278340A JP3995571B2 (en) 2002-09-25 2002-09-25 Solution spray structure of multi-plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278340A JP3995571B2 (en) 2002-09-25 2002-09-25 Solution spray structure of multi-plate heat exchanger

Publications (2)

Publication Number Publication Date
JP2004116822A true JP2004116822A (en) 2004-04-15
JP3995571B2 JP3995571B2 (en) 2007-10-24

Family

ID=32273632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278340A Expired - Fee Related JP3995571B2 (en) 2002-09-25 2002-09-25 Solution spray structure of multi-plate heat exchanger

Country Status (1)

Country Link
JP (1) JP3995571B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017505419A (en) * 2014-02-06 2017-02-16 アーペーイー・シュミット−ブレッテン・ゲー・エム・ベー・ハー・ウント・コー・カー・ゲーApi Schmidt−Bretten Gmbh & Co.Kg Plate device suitable for heat exchange and / or mass exchange

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017505419A (en) * 2014-02-06 2017-02-16 アーペーイー・シュミット−ブレッテン・ゲー・エム・ベー・ハー・ウント・コー・カー・ゲーApi Schmidt−Bretten Gmbh & Co.Kg Plate device suitable for heat exchange and / or mass exchange

Also Published As

Publication number Publication date
JP3995571B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
US8844611B2 (en) Plate stacking type heat exchanger
US8033326B2 (en) Heat exchanger
US20100181055A1 (en) Plate laminate type heat exchanger
JP2007120941A (en) Heat transfer device of plate sandwich structure
JPH11513785A (en) Plate heat exchanger
JP4555114B2 (en) Heat storage device
US20080190594A1 (en) Heat Exchanger Device for Rapid Heating or Cooling of Fluids
JP2006010130A (en) Multi-fluid heat exchanger
JPWO2006077785A1 (en) Plate heat exchanger
JP4607904B2 (en) Plate heat exchanger
WO2014155839A1 (en) Plate-type heat exchanger
US20070235174A1 (en) Heat exchanger
JP6991954B2 (en) Printed circuit board type heat exchanger and gas-liquid separator including gas-liquid separation structure
TWI470181B (en) Heat exchanger
JP2000337784A (en) Plate type heat exchanger for three liquids
JP2004116822A (en) Solution spraying structure of multiplate type heat exchanger
JP4719642B2 (en) Heat storage device
KR20100122263A (en) Plate-type heat exchanger
JP4012986B2 (en) Evaporator and car air conditioner equipped with the same
JP5993884B2 (en) Plate heat exchanger
JPH11101588A (en) Plate-type heat exchanger
JPH10206063A (en) Multiplate type heat exchanger
JP5933605B2 (en) Plate heat exchanger
JP6934399B2 (en) Plate heat exchanger
JP2011117624A (en) Plate type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140810

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees