JP2004116661A - Rolling bearing for belt type continuously variable transmission - Google Patents

Rolling bearing for belt type continuously variable transmission Download PDF

Info

Publication number
JP2004116661A
JP2004116661A JP2002281450A JP2002281450A JP2004116661A JP 2004116661 A JP2004116661 A JP 2004116661A JP 2002281450 A JP2002281450 A JP 2002281450A JP 2002281450 A JP2002281450 A JP 2002281450A JP 2004116661 A JP2004116661 A JP 2004116661A
Authority
JP
Japan
Prior art keywords
continuously variable
variable transmission
rolling
type continuously
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002281450A
Other languages
Japanese (ja)
Other versions
JP4239541B2 (en
Inventor
Kenichi Iso
磯 賢一
Hiromichi Takemura
武村 浩道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002281450A priority Critical patent/JP4239541B2/en
Publication of JP2004116661A publication Critical patent/JP2004116661A/en
Application granted granted Critical
Publication of JP4239541B2 publication Critical patent/JP4239541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
    • F16C33/7853Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with one or more sealing lips to contact the inner race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • F16C33/6633Grease properties or compositions, e.g. rheological properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/63Gears with belts and pulleys

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long life rolling bearing for belt type continuously variable transmission hardly causing damage such as peeling on the rolling surfaces of an outer ring race, an inner ring race, and rolling elements forming the rolling contact parts of a rolling bearing for rotatably supporting a pulley. <P>SOLUTION: This rolling bearing for belt type continuously variable transmission comprises an outer ring, an inner ring, a plurality of rolling elements rollingly fitted therebetween, and a seal means closing the both end opening parts of rolling element installation positions. The outer ring is supportedly inserted into a fixed portion and the inner ring is supportedly fitted onto a portion rotating together with the pulley forming the belt type continuously variable transmission, and the pulley is rotatably supported on the fixed portion. Grease composition formed by mixing lubricating oil with thickener is filled in the rolling element installation positions which are sealed by the sealing means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、自動車のベルト式無段変速機の回転軸を支持する為の転がり軸受の改良に関する。具体的には、変速機の効率を向上させて低燃費を実現するとともに、運転時に発生する騒音を抑え、駆動側、従動側各プーリ及び無端ベルトの摩耗を抑えるべく、CVTフルード(ATF兼用油)として低粘度のものを用いた場合でも、十分な耐久性を確保できる構造を実現するものである。
【0002】
【従来の技術】
自軸車用の自動変速機用の変速ユニットとしてベルト式無段変速機が種々開発され、実用化されている。図3は、このようなベルト式無段変速機の基本構造を略示している。このベルト式無段変速機は、互いに平行に配置された入力側回転軸1と出力側回転軸2とを有する。これら各回転軸1、2は、特許請求の範囲に記載した固定の部分である、図示しない変速機ケースの内側に、それぞれ1対ずつの転がり軸受3,3により、回転自在に支持している。
【0003】
これら各転がり軸受3,3は、図4にその基本構造が示されているように、互いに同心に設けられた外輪4と内輪5とを有する。このうちの外輪4は、内周面に外輪軌道6を、内輪5は外周面に内輪軌道7を、それぞれ有する。そして、これら外輪軌道6と内輪軌道7との間に複数の転動体8,8を、保持器9により保持した状態で、転動自在に設けている。それぞれがこのように構成される。上記各転がり軸受3,3は、それぞれの外輪4を上記変速機ケースの一部に内嵌固定し、それぞれの内輪5を上記入力側回転軸1または上記出力側回転軸2に外嵌固定している。そして、この構成により、これら両回転軸1、2を上記変速機ケースの内側に、回転自在に支持している(例えば、特許文献1、特許文献2、特許文献3参照)。
【0004】
上記入力側回転軸1は、エンジン等の駆動源10により、トルクコンバータ或いは電磁クラッチ等の発進クラッチ11を介して回転駆動される。また、上記入力側回転軸1の中間部で1対の転がり軸受3,3の間に位置する部分に駆動側プーリ12を設け、この駆動側プーリ12と上記入力側回転軸1とが同期して回転するようにしている。この駆動側プーリ12を構成する1対の駆動側プーリ板13a,13b同士の間隔は、駆動側アクチュエータ14で一方(図3の左方)の駆動側プーリ板13aを軸方向に変位させることにより調節自在である。即ち、上記駆動側プーリ12の溝幅は、上記駆動側アクチュエータ14により拡縮自在である。
【0005】
一方、上記出力側回転軸2の中間部で1対の転がり軸受3,3の間に位置する部分に従動側プーリ15を設け、この従動側プーリ15と上記出力側回転軸2とが同期して回転するようにしている。この従動側プーリ15を構成する1対の従動側プーリ板16a,16b同士の間隔は、従動側アクチュエータ17で一方(図1の右方)の従動側プーリ板16aを軸方向に変位させることにより調節自在である。即ち、上記従動側プーリ15の溝幅は、上記従動側アクチュエータ17より拡縮自在である。そして、この従動側プーリ15と上記駆動側プーリ12とに、無端ベルト18を掛け渡している。この無端ベルト18としては、金属製のものを使用している。
【0006】
上述のように構成するベルト式無段変速機では、前記駆動源10から上記発進クラッチ11を介して上記入力回転軸1に伝達された動力は、上記駆動側プーリ12から上記無端ベルト18を介して、上記駆動側プーリ15に伝達される。尚、この無端ベルト18として従来から、押し付け方向に動力を伝達するものと、引張方向に動力を伝達するものとが知られている。いずれにしても、上記従動側プーリ15に伝達された動力は、上記出力側回転軸2から減速歯車列19、デファレンシャルギア20を介して駆動輪21,21に伝達される。上記入力側回転軸1と出力側回転軸2との間の変速比を変える場合には、上記両プーリ12,15の溝幅を互いに関連させつつ拡縮する。
【0007】
例えば、上記入力側回転軸1と出力側回転軸2との間の減速比を大きくする場合には、上記駆動側プーリ12の溝幅を大きくするとともに、上記従動側プーリ15の溝幅を小さくする。この結果、上記無端ベルト18の一部でこれら両プーリ12,15に掛け渡された部分の径が、上記駆動側プーリ12部分で小さく、上記従動側プーリ15部分で大きくなり、上記入力側回転軸1と出力側回転軸2の間で減速が行われる。反対に上記入力側回転軸1と出力側回転軸2との間の増速比を大きく(減速比を小さく)する場合には、上記駆動側プーリ12の溝幅を小さくするとともに、上記駆動側プーリ15の溝幅を大きくする。この結果、上記無端ベルト18の一部でこれら両プーリ12,15に掛け渡された部分の径が、上記駆動側プーリ12部分で大きく、上記従動側プーリ15部分で小さくなり、上記入力側回転軸1と出力側回転軸2との間で増速が行われる。
【特許文献1】
特公平8−30526号公報
【特許文献2】
特開平10−292859号公報
【特許文献3】
特開2000−328203号公報
【0008】
【発明が解決しようとする課題】
上述のように構成され作用するベルト式無段変速機の運転時には、各可動部に潤滑油を供給して、これらの各可動部を潤滑する。ベルト式無段変速機の場合に使用する潤滑油としては、CVTフルード(ATF兼用油)を使用している。この理由は、金属製の無端ベルト18と駆動側、従動側両プーリ12,15との摩擦係合部の摩擦係数を増大し、かつ、安定させる為である。そして、上記CVTフルードを300mL/min以上の流量で上記摩擦部に循環させて、この摩擦部を潤滑している。
【0009】
また、上記CVTフルードの一部は、前記各転がり軸受3,3の内部を(例えば、20mL/min以上の流量で)通過して、これら各転がり軸受3,3の転がり接触部も潤滑する。そのため、各転がり軸受3,3は、図4に示したように、内輪5と外輪3との両端開口部が開口した開放型となっている。従って、これら各転がり軸受3,3では、その内部に、上記無端ベルト18と上記両プーリ12,15との摩擦に伴って発生する摩耗粉や前記減速歯車列19部分での摩擦に伴って発生したギア粉等の異物が、CVTフルードに混入した状態で入り込む可能性が高い。このような異物は、上記転がり軸受3,3の転がり接触部を損傷させ、その耐久性を低下させる原因となる。そのため従来では、上記転がり軸受3,3の軸受サイズを大きくしたり、或いは各転動体8,8の直径(玉径)を大きくすること等により、上記各転がり軸受3,3の基本動定格荷重を大きくし、これら各転がり軸受3,3の寿命に余裕を持たせている。
【0010】
また、これら各転がり軸受3,3の内部を流通する上記異物の量を少なく抑える為、これら各転がり軸受3,3として、前記外輪4の内周面と前記内輪5の外周面との間で前記各転動体8,8の転動面を設置した転動体設置部分の両端開口部を防ぐシール手段を有するものを使用することも考えられている。この場合には、上記転動体設置部分にグリースを充填して、上記各転動体8,8の転動面と前記外輪軌道6及び内輪軌道7との転がり接触部の潤滑を行う。ただし、この場合でも、上記転動体設置部分に上記CVTフルードが全く流通しない状態にはならない。即ち、この転動体設置部分には、比較的少量のCVTフルードが流通する。そのため、グリースは主に初期潤滑に寄与し、その後は徐々にCVTフルードに置き換えられ、ある時期からは上記と同様のCVTフルードによる潤滑となり、異物の混入も同様に発生するようになる。
【0011】
本発明は、このような事情に鑑みて、優れた伝達効率と十分な耐久性とを有するベルト式無断変速機を実現すべく、プーリを回転自在に支持する為の転がり軸受3,3の転がり接触部を構成する外輪軌道6、内輪軌道7、転動体8,8の転動面に剥離等の損傷が発生しにくい、長寿命のベルト式無段変速機用転がり軸受を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記の目的を達成するために本発明は、内周面に外輪軌道を有する外輪と、外周面に内輪軌道を有する内輪と、これら外輪軌道と内輪軌道との間に転動自在に設けられた複数個の転動体と、上記外輪の内周面と上記内輪の外周面との間でこれらの各転動体を設置した転動体設置部分の両端開口部を塞ぐシール手段とを備え、上記外輪を固定の部分に内嵌支持し、上記内輪をベルト式無段変速機を構成するプーリとともに回転する部分に外嵌支持して、このプーリを上記固定の部分に回転自在に支持するベルト式無段変速機用転がり軸受において、上記各転動体を設置した部分に、潤滑基油と増ちょう剤とを配合してなるグリース組成物を充填し、上記シール手段で密封したことを特徴とするベルト式無段変速機用転がり軸受を提供する。
【0013】
即ち、本発明のベルト式無段変速機用転がり軸受は、CVTフルード潤滑に代えて密封型のグリース潤滑方式としたものであり、これによりCVTフルードに混入する異物により剥離等の損傷が無くなり、軸受寿命が大幅に向上する。このようなグリース潤滑により軸受寿命の改善を図ったベルト式無段変速機用転がり軸受は、現時点では見出されていない。
【0014】
【発明の実施の形態】
以下、本発明のベルト式無段変速機用転がり軸受に関して図面を参照して詳細に説明する。尚、本実施形態では、図4に対応して転がり軸受を例示して説明する。図示されるように、ベルト式無段変速機用転がり軸受3は、内輪5の内輪軌道7と外輪4の外輪軌道6との間に複数個の転動体8を保持器9により転動自在に保持するとともに、転動体3の設置箇所にグリース(図示せず)を充填し、更にシール部材22で内輪5と外輪4との両端開口部を完全にシールして構成される。シール部材22は「TMシール」と呼ばれる接触型のシール部材であり、図4に拡大して示すようにリップ部が内輪5と強く接するように構成されている。これにより、グリースの漏洩とともにCVTフルードが流入するのを完全に防止する。
【0015】
充填されるグリースは特に制限されるものではないが、以下に好ましいグリース組成を詳述する。
【0016】
[基油]
使用される基油は特に限定されず、通常グリースの基油として使用されている油は全て使用することがでる。好ましくは、低温流動性不足による低温起動時の異音発生や、高温で油膜が形成され不足による焼付きを避けるために、40℃における動粘度が、好ましくは10〜400mm/sec、より好ましくは20〜250mm/sec、更に好ましくは40〜150mm/secである基油が望ましい。
【0017】
更には、同一温度における動粘度が、CVTフルードと同じか、それより高粘度であることが望ましい。更に、40℃における基油の動粘度がCVTフルードの40℃における動粘度より大きい方がより望ましい。
【0018】
具体例としては、鉱油系,合成油系または天然油系の潤滑油等が挙げられる。前記鉱油系潤滑油としては、鉱油を減圧蒸留、油剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、硫酸洗浄、白土精製、水素化精製等を、適宜組み合わせて精製したものを用いることができる。前記合成油系潤滑基油としては、炭化水素系油、芳香族系油、エステル系油、エーテル系油等が挙げられる。前記炭化水素系油としては、ノルマルパラフィン、イソパラフィン、ポリブテン、ポリイソブチレン、1−デセンオリゴマー、1−デセンとエチレンコオリゴマー等のポリ−α−オレフィンまたはこれらの水素化物等が挙げられる。前記芳香族系油としては、モノアルキルベンゼン、ジアルキルベンゼン等のアルキルベンゼン、あるいはモノアルキルナフタレン、ジアルキルナフタレン、ポリアルキルナフタレン等のアルキルナフタレン等が挙げられる。前記エステル系油としては、ジブチルセバケート、ジ−2−エチルヘキシルセバケート、ジオクチルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジトリデシルグルタレート、メチル・アセチルシノレート等のジエステル油、あるいはトリオクチルトリメリテート、トリデシルトリメリテート、テトラオクチルピロメリテート等の芳香族エステル油、更にはトリメチロールプロパンカプリレート、トリメチロールプロパンぺラルゴネート、ペンタエリスリトル−2−エチルヘキサノエート、ペンタエリスリトールペラルゴネート等のポリオールエステル油、更にはまた、多価アルコールと二塩基酸・一塩基酸の混合脂肪酸とのオリゴエステルであるコンプレックスエステル油等が挙げられる。前記エーテル系油としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールモノエーテル、ポリプロピレングリゴールモノエーテル等のポリアルキレングリコール、あるいはモノアルキルトリフェニルエーテル、アルキルジフェニルエーテル、ジアルキルジフェニルエーテル、ペンタフェニルエーテル、テトラフェニルエーテル、モノアルキルテトラフェニルエーテル、ジアルキルテトラフェニルエーテル等のフェニルエーテル油等が挙げられる。その他の合成潤滑基油としてはトリクレジルフォスフェート、シリコーン油、パーフルオロアルキルエーテル等が挙げられる。前記天然油系潤滑基油としては、牛脂、豚脂、大豆油、菜種油、米ぬか油、ヤシ油、パーム油、パーム核油等の油脂系油またはこれらの水素化物が挙げられる。これらの基油は、単独または混合物として用いることができ、上述した好ましい動粘度に調整される。
【0019】
[増ちょう剤]
ゲル構造を形成し、上記の基油をゲル構造中に保持する能力があれば、特に制約はない。例えば、Li、Na等からなる金属石けん、Li、Na、Ba、Ca等から選択される金属コンプレックス石けん等の金属石けん類、ベントン、シリカゲル、ウレア化合物、ウレア・ウレタン化合物、ウレタン化合物等の非石けん類を適宜選択して使用できるが、グリースの耐熱性や音響性を考慮すると金属石けん、金属複合石けん、ウレア化合物、または、これらの混合物が好ましい。更に好ましくは、一般式(1)で表されるジウレア化合物とすることがより望ましい。
【0020】
【化2】

Figure 2004116661
【0021】
式中、Rは炭素数7〜12の芳香族環含有炭化水素基、シクロヘキシル基または炭素数7〜12のアルキルシクロヘキシル基または炭素数8〜20のアルキル基であり、2つのRは同一でも異なっていてもよい。また、Rは炭素数6〜15の2価の芳香族環含有炭化水素基を示す。
【0022】
ジウレア化合物の配合量としては、グリースの初期混和ちょう度をNLGI No.1〜3にするために、グリース全量の8〜30質量%、好ましくは10〜25質量%となるように配合することが望ましい。8質量%未満だとグリースが軽くなりすぎグリース漏れが懸念され、30質量%を超えるとグリースが硬くなりトルクむらや低温時の異音発生の原因となる。
【0023】
[その他添加剤]
上記グリースには、更に優れた性能を高めるため、必要に応じて公知の添加剤を含有することもできる。この添加剤としては例えば、金属石けん、ベントン、シリカゲル等のゲル化剤;アミン系、フェノール系、イオウ系等の酸化防止剤;塩素系、イオウ系、リン系、ジチオリン酸亜鉛、有機モリブデン等の極圧剤;脂肪酸、動植物油等の油性剤;石油スルフォネート、ジノニルナフタレンスルフォネート、ソルビタンエステル等のさび止め剤;ポリメタクリレート、ポリイソブチレン、ポリスチレン等の粘度指数向上剤等が挙げられ、これらを単独または2種以上組み合わせて添加することができる。この際、添加剤等の添加量は、本発明の所期の目的を達成できれば特に限定されるものではないが、グリース全量に対して20質量%以下含有させることができる。
【0024】
[製法]
上記グリースを調製する方法には特に制約はない。しかし、一般的には基油中で増ちょう剤を反応させて得られる。尚、加熱温度や攪拌・混合時間等の製造条件は、使用する基油や増ちよう剤、添加剤等により適宜設定される。また、添加剤を配合後十分攪拌し、均一分散させる必要がある。この処理を行うときは、加熱するのも有効である。
【0025】
[CVTフルード]
上記の如く構成される本発明のベルト式無段変速機用転がり軸受は、従来と同様にベルト式無段変速機に組み込まれ、それに伴ってCVTフルードと接触する。本発明のベルト式無段変速機用転がり軸受は、シール部材によりCVTフルードが流入しない構成にはなっているものの、経時的にリップ部が摩耗して密封性が低下し、CVTフルードが流入しやすくなる。通常、CVTフルード(ATF油も含む)には鉱油や合成炭化水素油が用いられているが、このCVTフルードが軸受に多量に流入すると、特に鉱油や合成炭化水素油を基油とするグリースが封入されている場合、グリースが著しく軟化して軸受外に流出する恐れがある。
【0026】
そこで、本発明のベルト式無段変速機用転がり軸受を用いる場合には、CVTフルードの流入を考慮して、鉱油や合成炭化水素油と相溶性の無いポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールモノエーテル、ポリプロピレングリコールモノエーテル等のポリアルキレングリコールをCVTフルードに使用することがより好ましい。
【0027】
【実施例】
以下に実施例及び比較例を挙げて更に具体的に説明するが、本発明はこれにより何ら限定されるものではない。
【0028】
(試験軸受の作製)
試験軸受として、JIS名番6208(内径φ40mm、外径φ80mm、幅18mm)を用いた。尚、転がり接触部を構成する各面の粗さは、通常の転がり軸受と同様に、算術平均粗さRaで0.01〜0.03μmとした。また、軸受材料は、標準の軸受鋼2種(SUJ2、硬度:HC60〜65)とした。更に、保持器は、鉄製の波型プレス保持器を使用した。そして、表1に実施例1〜3として示すグリースを10g(空間容積の50%)充填し、外輪と内輪との間の両端開口部をTMシールで完全に塞いで実施例1〜3の試験軸受を作製した(図1参照)。
【0029】
また、比較のために、同形状で、内輪と外輪との間の両端開口部が開放され、CVTフルード潤滑方式の試験軸受を用意した(図4参照)。
【0030】
(耐久試験)
図3に示したようなベルト式無段変速機の入力側回転軸1を支持する転がり軸受3として、上記の各試験軸受を組み込んだ。尚、出力側回転軸2の回転支持部に組み込んだ転がり軸受3,3には、十分な量(200mL/min)のCVTフルード(40℃での動粘度:35mm/s、100℃での動粘度:7mm/s)を供給して、試験軸受よりも前に破損が発生しないようにした。また、比較例1の試験軸受には、CVTフルードを10mL/minの割合で流通させた。
【0031】
そして、次述する条件下で、目標1000時間とする耐久試験を行い、試験後に試験軸受を分解して構成部品の破損の有無と軸受内のグリース残存量を確認した。結果を表1に併記する。
・試験装置:図1に示したベルト式無段変速機
・試験個数:各グリースにつき3個
・判定方法:1000時間運転後に分解、ただし、途中で振動値が急上昇した場合にはその時点で打ち切り後、分解
・エンジンからの出力側回転軸1への入力トルク:200N・m
・入力側回転軸1の回転速度:6000min−1
・軸受温度:100〜110℃
【0032】
【表1】
Figure 2004116661
【0033】
表1に示すように、実施例1〜3のようにグリースを封入した試験軸受を用いることにより、比較例1の試験軸受と比較して、格段に剥離寿命が向上していることが確認された。また、実施例2のウレア化合物を増ちょう剤としたグリースや実施例3のポリアルキレングリコール油を基油としたグリースを封入することにより、グリース漏洩が少なくなることも確認された。
【0034】
【発明の効果】
以上説明したように、本発明のベルト式無段変速機用転がり軸受では、グリースを充填密封したことにより、従来のCVTフルード潤滑方式に比べて、転がり接触部を構成する外輪軌道、内輪軌道、転動体の転動面に剥離等の損傷が発生し難く、軸受寿命が大幅に向上する。
【図面の簡単な説明】
【図1】本発明のベルト式無段変速機用転がり軸受の一実施形態を示す断面図である。
【図2】図1に示すベルト式無段変速機用転がり軸受のシール部を示す拡大図である。
【図3】ベルト式無段変速機の構成を示す概略図である。
【図4】従来のベルト式無段変速機用転がり軸受を示す断面図である。
【符号の説明】
3 転がり軸受
4 外輪
5 内輪
6 外輪軌道
7 内輪軌道
8 転動体
9 保持器
22 シール部材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a rolling bearing for supporting a rotating shaft of a belt-type continuously variable transmission of an automobile. Specifically, in order to improve the efficiency of the transmission to achieve low fuel consumption, to reduce noise generated during operation, and to reduce wear on the drive and driven pulleys and the endless belt, CVT fluid (ATF combined oil) was used. The present invention realizes a structure capable of securing sufficient durability even when a low-viscosity material is used.
[0002]
[Prior art]
Various belt-type continuously variable transmissions have been developed and put into practical use as transmission units for automatic transmissions for self-axle vehicles. FIG. 3 schematically shows the basic structure of such a belt-type continuously variable transmission. This belt-type continuously variable transmission has an input-side rotary shaft 1 and an output-side rotary shaft 2 arranged in parallel with each other. Each of the rotating shafts 1 and 2 is rotatably supported by a pair of rolling bearings 3 and 3 inside a transmission case (not shown), which is a fixed portion described in the claims. .
[0003]
Each of these rolling bearings 3, 3 has an outer ring 4 and an inner ring 5 provided concentrically with each other, as shown in FIG. The outer race 4 has an outer raceway 6 on the inner peripheral surface, and the inner race 5 has an inner raceway 7 on the outer peripheral surface. A plurality of rolling elements 8 are rotatably provided between the outer race 6 and the inner race 7 while being held by a retainer 9. Each is configured in this way. In each of the rolling bearings 3, 3, the respective outer ring 4 is internally fixed to a part of the transmission case, and the respective inner ring 5 is externally fixed to the input side rotation shaft 1 or the output side rotation shaft 2. ing. With this configuration, the two rotating shafts 1 and 2 are rotatably supported inside the transmission case (for example, see Patent Literature 1, Patent Literature 2, and Patent Literature 3).
[0004]
The input side rotating shaft 1 is rotationally driven by a driving source 10 such as an engine via a starting clutch 11 such as a torque converter or an electromagnetic clutch. Further, a drive pulley 12 is provided in a portion located between the pair of rolling bearings 3 and 3 at an intermediate portion of the input side rotary shaft 1, and the drive side pulley 12 and the input side rotary shaft 1 are synchronized with each other. To rotate. The distance between the pair of driving pulley plates 13a and 13b constituting the driving pulley 12 is determined by displacing one (left side of FIG. 3) driving pulley plate 13a in the axial direction with the driving actuator 14. It is adjustable. That is, the groove width of the driving pulley 12 can be freely enlarged and reduced by the driving actuator 14.
[0005]
On the other hand, a driven pulley 15 is provided at a portion located between the pair of rolling bearings 3 at an intermediate portion of the output side rotating shaft 2, and the driven pulley 15 and the output side rotating shaft 2 are synchronized with each other. To rotate. The distance between the pair of driven pulley plates 16a and 16b constituting the driven pulley 15 is determined by displacing one (the right side in FIG. 1) driven pulley plate 16a in the axial direction by the driven actuator 17. It is adjustable. That is, the groove width of the driven pulley 15 is larger than that of the driven actuator 17. An endless belt 18 is stretched between the driven pulley 15 and the driving pulley 12. The endless belt 18 is made of metal.
[0006]
In the belt-type continuously variable transmission configured as described above, the power transmitted from the driving source 10 to the input rotary shaft 1 via the starting clutch 11 is transmitted from the driving pulley 12 via the endless belt 18. Then, it is transmitted to the drive side pulley 15. Here, as the endless belt 18, a belt that transmits power in a pressing direction and a belt that transmits power in a pulling direction are conventionally known. In any case, the power transmitted to the driven pulley 15 is transmitted to the drive wheels 21 and 21 from the output rotation shaft 2 via the reduction gear train 19 and the differential gear 20. When changing the gear ratio between the input-side rotary shaft 1 and the output-side rotary shaft 2, the groove widths of the two pulleys 12, 15 are enlarged and reduced while being related to each other.
[0007]
For example, when increasing the reduction ratio between the input side rotation shaft 1 and the output side rotation shaft 2, the groove width of the drive side pulley 12 is increased and the groove width of the driven side pulley 15 is reduced. I do. As a result, the diameter of the portion of the endless belt 18 that is stretched over the pulleys 12 and 15 is small at the drive pulley 12 and large at the driven pulley 15 and the input side rotation is reduced. The deceleration is performed between the shaft 1 and the output side rotating shaft 2. Conversely, when increasing the speed increase ratio (decreasing the reduction ratio) between the input-side rotary shaft 1 and the output-side rotary shaft 2, the groove width of the drive-side pulley 12 is reduced and the drive-side pulley 12 is reduced. Increase the groove width of the pulley 15. As a result, the diameter of the part of the endless belt 18 that is stretched over the two pulleys 12 and 15 is large at the drive pulley 12 and small at the driven pulley 15 and the input side rotation is reduced. The speed increase is performed between the shaft 1 and the output side rotation shaft 2.
[Patent Document 1]
Japanese Patent Publication No. Hei 8-30526 [Patent Document 2]
Japanese Patent Application Laid-Open No. H10-292859 [Patent Document 3]
JP 2000-328203 A
[Problems to be solved by the invention]
During operation of the belt-type continuously variable transmission configured and operated as described above, lubricating oil is supplied to each movable unit to lubricate each of the movable units. As a lubricating oil used in the case of a belt-type continuously variable transmission, CVT fluid (ATF combined oil) is used. The reason for this is to increase and stabilize the friction coefficient of the frictional engagement portion between the metal endless belt 18 and the drive-side and driven-side pulleys 12 and 15. Then, the CVT fluid is circulated through the friction portion at a flow rate of 300 mL / min or more to lubricate the friction portion.
[0009]
In addition, a part of the CVT fluid passes through the inside of each of the rolling bearings 3 (for example, at a flow rate of 20 mL / min or more), and also lubricates the rolling contact portions of the rolling bearings 3 and 3. Therefore, as shown in FIG. 4, each of the rolling bearings 3 and 3 is of an open type in which openings at both ends of the inner ring 5 and the outer ring 3 are open. Therefore, in each of these rolling bearings 3, 3, abrasion powder generated due to friction between the endless belt 18 and the pulleys 12, 15 and friction generated at the reduction gear train 19 are formed therein. There is a high possibility that foreign matter such as gear powder or the like enters into the CVT fluid in a mixed state. Such foreign matter may damage the rolling contact portions of the rolling bearings 3 and 3 and reduce its durability. Therefore, conventionally, the basic dynamic load rating of each of the rolling bearings 3, 3 is increased by increasing the bearing size of the rolling bearings 3, 3 or by increasing the diameter (ball diameter) of each rolling element 8, 8 or the like. Are increased so that the life of each of the rolling bearings 3 and 3 has a margin.
[0010]
Further, in order to reduce the amount of the foreign matter flowing through the inside of each of the rolling bearings 3, between the inner peripheral surface of the outer ring 4 and the outer peripheral surface of the inner ring 5 as each of the rolling bearings 3, 3. It is also conceivable to use a device having sealing means for preventing openings at both ends of a rolling element installation portion where the rolling surfaces of the rolling elements 8 and 8 are installed. In this case, the rolling element installation portion is filled with grease to lubricate the rolling contact portions between the rolling surfaces of the rolling elements 8, 8 and the outer raceway 6 and the inner raceway 7. However, even in this case, the state where the CVT fluid does not flow at all in the rolling element installation portion does not occur. That is, a relatively small amount of CVT fluid flows through the rolling element installation portion. Therefore, the grease mainly contributes to the initial lubrication, and thereafter is gradually replaced by the CVT fluid. From a certain time, the lubrication is performed by the same CVT fluid as described above, and contaminants are similarly generated.
[0011]
The present invention has been made in view of the above circumstances, and in order to realize a belt-type continuously variable transmission having excellent transmission efficiency and sufficient durability, the rolling of the rolling bearings 3, 3 for rotatably supporting the pulleys. It is an object of the present invention to provide a long-life rolling bearing for a belt-type continuously variable transmission in which the outer raceway 6, the inner raceway 7, and the rolling surfaces of the rolling elements 8, 8 constituting the contact portion are less likely to suffer damage such as separation. And
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an outer race having an outer raceway on an inner peripheral surface, an inner racer having an inner raceway on an outer peripheral surface, and a rollably provided between the outer raceway and the inner raceway. A plurality of rolling elements, sealing means for closing the opening at both ends of the rolling element installation portion where these rolling elements are installed between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring; A belt-type continuously variable transmission, which is internally fitted to a fixed portion, and externally supported to a portion rotating with the pulleys constituting the belt-type continuously variable transmission, and rotatably supports the pulley to the fixed portion. In a rolling bearing for a transmission, a portion in which each of the rolling elements is installed is filled with a grease composition obtained by blending a lubricating base oil and a thickener, and sealed with the sealing means. Provided is a rolling bearing for a continuously variable transmission.
[0013]
That is, the rolling bearing for a belt-type continuously variable transmission according to the present invention employs a sealed grease lubrication system instead of CVT fluid lubrication, thereby eliminating damage such as peeling due to foreign matter mixed into CVT fluid, Bearing life is greatly improved. Rolling bearings for belt-type continuously variable transmissions in which the bearing life is improved by such grease lubrication have not been found at present.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a rolling bearing for a belt-type continuously variable transmission according to the present invention will be described in detail with reference to the drawings. In the present embodiment, a rolling bearing will be described with reference to FIG. As shown in the figure, the rolling bearing 3 for a belt-type continuously variable transmission has a plurality of rolling elements 8 which can be rolled by a retainer 9 between an inner raceway 7 of an inner race 5 and an outer raceway 6 of an outer race 4. While holding, the grease (not shown) is filled in the place where the rolling element 3 is installed, and the opening at both ends of the inner ring 5 and the outer ring 4 is completely sealed by the seal member 22. The seal member 22 is a contact-type seal member called a “TM seal”, and is configured such that the lip portion comes into strong contact with the inner ring 5 as shown in an enlarged manner in FIG. This completely prevents the CVT fluid from flowing in with grease leakage.
[0015]
The grease to be charged is not particularly limited, but a preferred grease composition will be described in detail below.
[0016]
[Base oil]
The base oil to be used is not particularly limited, and any oil that is usually used as a base oil for grease can be used. Preferably, the kinematic viscosity at 40 ° C. is preferably 10 to 400 mm 2 / sec, more preferably 10 to 400 mm 2 / sec, in order to avoid generation of abnormal noise at low temperature startup due to lack of low temperature fluidity and oil film formation at high temperature and seizure due to lack. the 20~250mm 2 / sec, more base oil is desired preferably 40~150mm 2 / sec.
[0017]
Further, it is desirable that the kinematic viscosity at the same temperature is the same as or higher than that of CVT fluid. Further, it is more desirable that the kinematic viscosity of the base oil at 40 ° C. is larger than that of CVT fluid at 40 ° C.
[0018]
Specific examples include mineral oil-based, synthetic oil-based, and natural oil-based lubricating oils. As the mineral oil-based lubricating oil, a refined one obtained by appropriately combining mineral oil under reduced pressure distillation, oil removal, solvent extraction, hydrocracking, solvent dewaxing, sulfuric acid washing, clay refining, hydrorefining, and the like is used. it can. Examples of the synthetic oil-based lubricating base oil include a hydrocarbon-based oil, an aromatic-based oil, an ester-based oil, and an ether-based oil. Examples of the hydrocarbon oil include normal paraffin, isoparaffin, polybutene, polyisobutylene, 1-decene oligomer, poly-α-olefin such as 1-decene and ethylene co-oligomer, and hydrides thereof. Examples of the aromatic oil include alkylbenzenes such as monoalkylbenzene and dialkylbenzene, and alkylnaphthalenes such as monoalkylnaphthalene, dialkylnaphthalene, and polyalkylnaphthalene. Examples of the ester-based oil include dibutyl sebacate, di-2-ethylhexyl sebacate, dioctyl adipate, diisodecyl adipate, ditridecyl adipate, ditridecyl glutarate, diester oils such as methyl acetyl sinolate, and trioctyl trimellitate. , Tridecyl trimellitate, aromatic ester oils such as tetraoctyl pyromellitate, and also trimethylolpropane caprylate, trimethylolpropane perargonate, pentaerythritol-2-ethylhexanoate, pentaerythritol perargonate, etc. Examples thereof include polyol ester oils, and complex ester oils which are oligoesters of polyhydric alcohols and mixed fatty acids of dibasic acids / monobasic acids. As the ether-based oil, polyethylene glycol, polypropylene glycol, polyethylene glycol monoether, polyalkylene glycol such as polypropylene glycol monoether, or monoalkyl triphenyl ether, alkyl diphenyl ether, dialkyl diphenyl ether, pentaphenyl ether, tetraphenyl ether, And phenyl ether oils such as monoalkyltetraphenylether and dialkyltetraphenylether. Other synthetic lubricating base oils include tricresyl phosphate, silicone oil, perfluoroalkyl ether and the like. Examples of the natural oil-based lubricating base oil include oils and fats such as beef tallow, lard, soybean oil, rapeseed oil, rice bran oil, coconut oil, palm oil, palm kernel oil, and hydrides thereof. These base oils can be used alone or as a mixture, and are adjusted to the preferable kinematic viscosity described above.
[0019]
[Thickener]
There is no particular limitation as long as it has the ability to form a gel structure and retain the base oil in the gel structure. For example, metal soaps such as Li, Na, etc., metal soaps such as metal complex soaps selected from Li, Na, Ba, Ca, etc., non-soaps such as benton, silica gel, urea compounds, urea / urethane compounds, urethane compounds, etc. Any of these can be appropriately selected and used, but in view of the heat resistance and acoustic properties of grease, metal soap, metal composite soap, urea compound, or a mixture thereof is preferable. More preferably, the compound is a diurea compound represented by the general formula (1).
[0020]
Embedded image
Figure 2004116661
[0021]
In the formula, R 1 is an aromatic ring-containing hydrocarbon group having 7 to 12 carbon atoms, a cyclohexyl group, an alkylcyclohexyl group having 7 to 12 carbon atoms, or an alkyl group having 8 to 20 carbon atoms, and two R 1 are the same. But they may be different. R 2 represents a divalent aromatic ring-containing hydrocarbon group having 6 to 15 carbon atoms.
[0022]
As the compounding amount of the diurea compound, NLGI No. In order to make it 1 to 3, it is desirable to mix the grease in an amount of 8 to 30% by mass, preferably 10 to 25% by mass based on the whole amount. If the amount is less than 8% by mass, the grease becomes too light, and there is a fear of grease leakage.
[0023]
[Other additives]
The grease may further contain a known additive, if necessary, to further enhance the performance. Examples of the additives include gelling agents such as metal soaps, bentones, and silica gels; antioxidants such as amines, phenols, and sulfurs; chlorine-based, sulfur-based, phosphorus-based, zinc dithiophosphate, and organic molybdenum. Extreme pressure agents; oily agents such as fatty acids and animal and vegetable oils; rust inhibitors such as petroleum sulfonates, dinonylnaphthalenesulfonates, sorbitan esters; viscosity index improvers such as polymethacrylate, polyisobutylene, polystyrene and the like. Can be added alone or in combination of two or more. At this time, the amount of the additive or the like is not particularly limited as long as the intended purpose of the present invention can be achieved.
[0024]
[Production method]
There is no particular limitation on the method for preparing the grease. However, it is generally obtained by reacting a thickener in a base oil. The production conditions such as the heating temperature and the stirring / mixing time are appropriately set depending on the base oil used, the thickener, the additives and the like. In addition, it is necessary to sufficiently stir and uniformly disperse the additives after blending. When performing this process, heating is also effective.
[0025]
[CVT fluid]
The rolling bearing for a belt-type continuously variable transmission according to the present invention configured as described above is incorporated in a belt-type continuously variable transmission as in the related art, and comes into contact with the CVT fluid. The rolling bearing for a belt-type continuously variable transmission according to the present invention has a configuration in which the CVT fluid does not flow in due to the seal member, but the lip portion wears down with time, the sealing performance is reduced, and the CVT fluid flows in. It will be easier. Normally, mineral oil and synthetic hydrocarbon oil are used for CVT fluid (including ATF oil). When this CVT fluid flows into a bearing in large quantities, grease using mineral oil or synthetic hydrocarbon oil as a base oil, especially, is used. If sealed, the grease may be significantly softened and flow out of the bearing.
[0026]
Therefore, when the rolling bearing for a belt-type continuously variable transmission of the present invention is used, in consideration of the inflow of CVT fluid, polyethylene glycol, polypropylene glycol, polyethylene glycol monoether which is not compatible with mineral oil or synthetic hydrocarbon oil is used. It is more preferable to use a polyalkylene glycol such as polypropylene glycol monoether for the CVT fluid.
[0027]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[0028]
(Production of test bearing)
JIS No. 6208 (inner diameter φ40 mm, outer diameter φ80 mm, width 18 mm) was used as a test bearing. In addition, the roughness of each surface constituting the rolling contact portion was set to 0.01 to 0.03 μm in terms of arithmetic average roughness Ra, similarly to a normal rolling bearing. The bearing material is a standard bearing steel two (SUJ2, hardness: H R C60~65) was. Further, as the retainer, a corrugated press retainer made of iron was used. Then, 10 g (50% of the space volume) of the grease shown in Examples 1 to 3 in Table 1 was filled, and the openings at both ends between the outer ring and the inner ring were completely closed with a TM seal, and the tests of Examples 1 to 3 were performed. A bearing was manufactured (see FIG. 1).
[0029]
For comparison, a CVT fluid lubricated test bearing having the same shape, with both ends open between the inner ring and the outer ring, was prepared (see FIG. 4).
[0030]
(An endurance test)
Each of the test bearings described above was incorporated as a rolling bearing 3 that supports the input-side rotary shaft 1 of the belt-type continuously variable transmission as shown in FIG. A sufficient amount (200 mL / min) of CVT fluid (kinematic viscosity at 40 ° C .: 35 mm 2 / s, 100 ° C.) was applied to the rolling bearings 3 and 3 incorporated in the rotation supporting portion of the output side rotating shaft 2. (Kinematic viscosity: 7 mm 2 / s) was supplied to prevent breakage before the test bearing. CVT fluid was passed through the test bearing of Comparative Example 1 at a rate of 10 mL / min.
[0031]
Then, an endurance test was performed under the conditions described below, with a target of 1000 hours. After the test, the test bearing was disassembled to check for any damage to the components and the amount of grease remaining in the bearing. The results are also shown in Table 1.
-Test device: Belt-type continuously variable transmission shown in Fig. 1-Number of tests: 3 for each grease-Judgment method: Disassembled after 1000 hours of operation, but if the vibration value suddenly rises on the way, terminate at that point After that, the input torque from the engine to the output side rotating shaft 1 from the engine: 200 N · m
・ Rotation speed of input side rotary shaft 1: 6000 min -1
・ Bearing temperature: 100 to 110 ° C
[0032]
[Table 1]
Figure 2004116661
[0033]
As shown in Table 1, it was confirmed that the use of the test bearing in which grease was sealed as in Examples 1 to 3 significantly improved the peeling life as compared with the test bearing of Comparative Example 1. Was. It was also confirmed that the grease leakage was reduced by enclosing the grease using the urea compound of Example 2 as a thickener or the grease using the polyalkylene glycol oil of Example 3 as a base oil.
[0034]
【The invention's effect】
As described above, in the rolling bearing for a belt-type continuously variable transmission of the present invention, by filling and sealing grease, the outer raceway, the inner raceway, The rolling surface of the rolling element is hardly damaged by peeling or the like, and the life of the bearing is greatly improved.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an embodiment of a rolling bearing for a belt-type continuously variable transmission according to the present invention.
FIG. 2 is an enlarged view showing a seal portion of the rolling bearing for a belt-type continuously variable transmission shown in FIG.
FIG. 3 is a schematic diagram illustrating a configuration of a belt-type continuously variable transmission.
FIG. 4 is a sectional view showing a conventional rolling bearing for a belt-type continuously variable transmission.
[Explanation of symbols]
3 rolling bearing 4 outer ring 5 inner ring 6 outer ring track 7 inner ring track 8 rolling element 9 cage 22 seal member

Claims (4)

内周面に外輪軌道を有する外輪と、外周面に内輪軌道を有する内輪と、これら外輪軌道と内輪軌道との間に転動自在に設けられた複数個の転動体と、上記外輪の内周面と上記内輪の外周面との間でこれらの各転動体を設置した転動体設置部分の両端開口部を塞ぐシール手段とを備え、上記外輪を固定の部分に内嵌支持し、上記内輪をベルト式無段変速機を構成するプーリとともに回転する部分に外嵌支持して、このプーリを上記固定の部分に回転自在に支持するベルト式無段変速機用転がり軸受において、上記各転動体を設置した部分に、潤滑基油と増ちょう剤とを配合してなるグリース組成物を充填し、上記シール手段で密封したことを特徴とするベルト式無段変速機用転がり軸受。An outer ring having an outer raceway on an inner peripheral surface, an inner racer having an inner raceway on an outer peripheral surface, a plurality of rolling elements rotatably provided between the outer raceway and the inner raceway, and an inner periphery of the outer raceway Seal means for closing the opening at both ends of the rolling element installation portion where these rolling elements are installed between the surface and the outer peripheral surface of the inner ring, the inner ring is supported by internally fitting the outer ring to a fixed portion, In a rolling bearing for a belt-type continuously variable transmission that externally fits and supports a part that rotates together with a pulley that constitutes a belt-type continuously variable transmission and that rotatably supports the pulley on the fixed part, each of the rolling elements is A rolling bearing for a belt-type continuously variable transmission, wherein a grease composition obtained by blending a lubricating base oil and a thickener is filled in an installed portion and sealed with the sealing means. 封入するグリース組成物の増ちょう剤がウレア化合物、金属石けんまたは金属コンプレックス石けんであることを特徴とする請求項1記載のベルト式無段変速機用転がり軸受。2. The rolling bearing for a belt-type continuously variable transmission according to claim 1, wherein the thickener of the grease composition to be enclosed is a urea compound, metal soap or metal complex soap. 一般式(1)で表されるジウレア化合物を単独で、もしくは該ウレア化合物同士を混合してグリース組成物全量の8〜30質量%配合したことを特徴とする請求項1または2記載のベルト式無段変速機用転がり軸受。
Figure 2004116661
(式中、Rは炭素数7〜12の芳香族環含有炭化水素基または炭素数7〜12の芳香族環含有炭化水素基、シクロヘキシル基または炭素数7〜12のアルキルシクロヘキシル基または、炭素数8〜20のアルキル基であり、2つのRは同一でも異なっていてもよい。Rは炭素数6〜15の2価の芳香族環含有炭化水素基を示す)
The belt type according to claim 1 or 2, wherein the diurea compound represented by the general formula (1) is used alone, or the urea compounds are mixed with each other and blended in an amount of 8 to 30% by mass of the total amount of the grease composition. Rolling bearing for continuously variable transmission.
Figure 2004116661
(Wherein, R 1 represents an aromatic ring-containing hydrocarbon group having 7 to 12 carbon atoms, an aromatic ring-containing hydrocarbon group having 7 to 12 carbon atoms, a cyclohexyl group, an alkylcyclohexyl group having 7 to 12 carbon atoms, or An alkyl group of 8 to 20 and two R 1 s may be the same or different; R 2 represents a divalent aromatic ring-containing hydrocarbon group having 6 to 15 carbon atoms)
封入するグリース組成物の基油をポリアルキレングリコール油としたことを特徴とする謂求項1〜3の何れか1項に記載のベルト式無段変速機用転がり軸受。The rolling bearing for a belt-type continuously variable transmission according to any one of claims 1 to 3, wherein the base oil of the grease composition to be enclosed is polyalkylene glycol oil.
JP2002281450A 2002-09-26 2002-09-26 Rolling bearing for belt type continuously variable transmission Expired - Fee Related JP4239541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281450A JP4239541B2 (en) 2002-09-26 2002-09-26 Rolling bearing for belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281450A JP4239541B2 (en) 2002-09-26 2002-09-26 Rolling bearing for belt type continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2004116661A true JP2004116661A (en) 2004-04-15
JP4239541B2 JP4239541B2 (en) 2009-03-18

Family

ID=32275890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281450A Expired - Fee Related JP4239541B2 (en) 2002-09-26 2002-09-26 Rolling bearing for belt type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4239541B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170340A (en) * 2004-12-16 2006-06-29 Jtekt Corp V-pulley continuously variable transmission
JP2010019295A (en) * 2008-07-09 2010-01-28 Ntn Corp Bearing for transmission
WO2012121212A1 (en) * 2011-03-04 2012-09-13 協同油脂株式会社 Grease composition and grease-packed rolling bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170340A (en) * 2004-12-16 2006-06-29 Jtekt Corp V-pulley continuously variable transmission
JP2010019295A (en) * 2008-07-09 2010-01-28 Ntn Corp Bearing for transmission
WO2012121212A1 (en) * 2011-03-04 2012-09-13 協同油脂株式会社 Grease composition and grease-packed rolling bearing
JP2012197401A (en) * 2011-03-04 2012-10-18 Kyodo Yushi Co Ltd Grease composition and grease-enclosed rolling bearing
US9410107B2 (en) 2011-03-04 2016-08-09 Kyodo Yushi Co., Ltd. Grease composition and grease-packed rolling bearing

Also Published As

Publication number Publication date
JP4239541B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
WO2013031705A1 (en) Grease composition and rolling device
CN101652456A (en) Grease composition and machine member
JP4461720B2 (en) Lubricant composition
JPWO2006018945A1 (en) Rolling bearing
JP2001234935A (en) Rolling bearing
JP4239541B2 (en) Rolling bearing for belt type continuously variable transmission
JP2006132619A (en) Rotation transmission device with built-in one-way clutch
JP2009108263A (en) Grease composition and rolling bearing
KR102238222B1 (en) Grease composition
JP5040729B2 (en) One-way clutch built-in type rotation transmission device
JPH09217752A (en) Rolling bearing
JP2004323586A (en) Grease composition and grease-sealed rolling bearing
JP2008208174A (en) Grease composition and rolling apparatus
JP2006077967A (en) Rotation transmission device with built-in one-way clutch
JP2006265343A (en) Antifriction bearing
JP2005188557A (en) Rolling bearing
JP2004149620A (en) Grease composition and grease-enclosed roller bearing
JP2004132507A (en) Rolling bearing
JP2004124050A (en) Grease composition and roller ball bearing for alternator
JP2004108440A (en) Linear drive actuator
JPH09169989A (en) Grease composition
JP2005321076A (en) One-way clutch built-in rotation transmitting device
JP2009067888A (en) Grease composition and rolling bearing
JP2007192329A (en) Rotation transmission device with built-in one-way clutch
JP2008120855A (en) One-way clutch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees