JP2004115294A - Fluorescent glass and its manufacturing method - Google Patents

Fluorescent glass and its manufacturing method Download PDF

Info

Publication number
JP2004115294A
JP2004115294A JP2002278259A JP2002278259A JP2004115294A JP 2004115294 A JP2004115294 A JP 2004115294A JP 2002278259 A JP2002278259 A JP 2002278259A JP 2002278259 A JP2002278259 A JP 2002278259A JP 2004115294 A JP2004115294 A JP 2004115294A
Authority
JP
Japan
Prior art keywords
glass
fluorescent glass
fluorescent
ions
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002278259A
Other languages
Japanese (ja)
Other versions
JP4022616B2 (en
Inventor
Kohei Fukumi
福味 幸平
Naoyuki Kitamura
北村 直之
Junji Nishii
西井 準治
Akiyoshi Chayahara
茶谷原 昭義
Atsushi Kinomura
木野村 淳
Yuji Horino
堀野 裕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002278259A priority Critical patent/JP4022616B2/en
Publication of JP2004115294A publication Critical patent/JP2004115294A/en
Application granted granted Critical
Publication of JP4022616B2 publication Critical patent/JP4022616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Luminescent Compositions (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent glass of which the fluorescent properties are modified without degrading the chemical durability, and to provide a method for manufacturing the same. <P>SOLUTION: The method for manufacturing the fluorescent glass is characterized by injecting ions of copper element and ions of halogen elements into a substrate of glass containing 70mol% or more of SiO<SB>2</SB>by the ion injection method, and then heat-treating the same. The fluorescent glass having the copper element and the halogen element doped therein is provided by using the method. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、蛍光ガラスおよびその製造方法に関する。
【0002】
【従来の技術】
銅元素をドープした蛍光ガラス材料は、高い量子効率を有し(例えば、非特許文献1参照。)、透明で、且つ加工が容易なことから、紫外光の検出器、表示素子、レーザーへの応用が検討されている。望みの蛍光波長を有するガラス材料を得るためには、銅元素に配位する原子の種類や配位構造を変えることが必要である。このために、従来、蛍光イオンを分散させるガラス母材の組成を変えてきた(例えば、非特許文献1参照。)。しかしながら、母材の組成を変えると、実用上、化学的耐久性劣化の問題があった。
【0003】
【非特許文献1】
シー.パレント(C.Parent)著,「オプティカルマテリアルズ(Opt.Mater.)」,1994年,第4巻,p.107
【0004】
【発明が解決しようとする課題】
本発明は、蛍光ガラスの化学的耐久性を劣化させることなく、蛍光ガラスの蛍光特性を変える技術を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者は、鋭意検討を行った結果、銅元素と銅元素に配位させる元素とを、化学的耐久性の高いガラス母材に分散させ、熱処理することにより、得られたガラスは、蛍光波長が変わるだけでなく、母材と同等の化学的耐久性を保持することを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、下記に示すとおりの蛍光ガラスおよびその製造方法を提供するものである。
項1. イオン注入法により、銅元素のイオンおよびハロゲン元素のイオンを、SiOを70モル%以上含むガラスからなる基板に注入した後、熱処理することを特徴とする蛍光ガラスの製造方法。
項2. 銅元素のイオンおよびハロゲン元素のイオンのそれぞれの注入イオン濃度が、1×1019〜1×1021個/cmであることを特徴とする項1に記載の蛍光ガラスの製造方法。
項3. イオン注入した基板を200〜900℃で熱処理することを特徴とする項1または2に記載の蛍光ガラスの製造方法。
項4. 項1〜3のいずれかに記載の方法により得られる、銅元素およびハロゲン元素をドープした蛍光ガラス。
【0007】
【発明の実施の形態】
本発明方法においては、イオン注入法によって、銅元素のイオンおよびハロゲン元素のイオンを加速して基板となるガラス材料に注入する。
【0008】
基板となるガラス材料は、SiOを70モル%以上含むシリカ系ガラスであり、NaO、CaO、Al、B、GeO等の他の成分を30モル%未満含んでいてもよい。
【0009】
ハロゲン元素としては、F、Cl、Br、Iが挙げられ、これらの少なくとも1種のイオンを注入する。
【0010】
イオン注入法については、それを実施する装置の方式、注入条件(例えば、加速電圧、イオン電流、真空度、基板温度)などは、特に限定されず、常法に従って行うことができる。ただし、基板温度については、後工程の熱処理を行う温度を考慮すると、900℃以下であるのが好ましい。
【0011】
銅元素のイオンおよびハロゲン元素のイオンのそれぞれの注入イオン濃度は、1×1019〜1×1021個/cmであることが好ましい。銅元素のイオンおよびハロゲン元素のイオンのそれぞれの注入イオン濃度が、1×1019個/cm未満の場合、または、1×1021個/cmを超える場合には、十分な蛍光強度が得られ難い傾向がある。銅元素のイオンとハロゲン元素のイオンの濃度比には特に限定はないが、ハロゲン元素のイオン濃度:銅元素のイオン濃度=0.5〜2:1であるのが好ましい。
【0012】
蛍光を発生させるためには、イオン注入後、基板を加熱(熱処理)することが必要である。熱処理を行わない場合には、イオン注入により生じた欠陥からの蛍光が主体となり、銅による十分な蛍光強度は得られない。また、イオン注入により損傷が生じるので、イオン注入前にガラス基板が有していた化学的耐久性・機械的強度を維持するためには、イオン注入後に熱処理を行うことが必要である。熱処理は、200〜900℃の温度範囲で行うのが好ましく、500〜700℃の温度範囲で行うのがより好ましい。900℃を超える温度で熱処理を行った場合には、注入元素からなる結晶が析出し、蛍光が観察され難い傾向がある。熱処理は、5分〜1時間行うのが好ましい。
【0013】
上記のようにして得られた蛍光ガラスは、銅元素およびハロゲン元素がドープされており、蛍光を発する。
【0014】
【発明の効果】
本発明によれば、ガラス基板の化学的耐久性を損なうことなく、蛍光波長を変えることができ、得られた蛍光ガラスは、蛍光材料として紫外線検出装置、表示装置などの多くの製品への実用が可能である。
【0015】
【実施例】
以下に実施例を示し、本発明の特徴とするところをより一層明確にする。
【0016】
実施例1
シリカガラス基板(SiO100モル%)に、Br元素のイオンおよびCu元素のイオンを、それぞれ1×1020個/cm注入した。イオン注入は、タンデム型加速器を用いて、加速電圧がBr=2.4MeV、Cu=2.0MeVで、真空度が10−7Torrで、基板温度が室温で行った。イオン注入した後に、空気中で、600℃で30分熱処理することにより蛍光ガラスを得た。この蛍光ガラスの蛍光スペクトルを、蛍光光度分光計(日立製作所製、F−4500)を用いて、励起波長235nmで測定したところ、図1に示すように、Cu元素のみをドープしたシリカガラスに比べ、蛍光波長が約50nmだけ長波長側にシフトしていた。
【0017】
また、30℃にて1000mlの水に浸漬した1.0グラム試料の重量損失を測定したところ、本実施例の蛍光ガラスは0.0グラムであったのに対し、Cuドープ臭化物ガラスは1.0グラムであった。このことからも、本実施例の蛍光ガラスの化学的耐久性は、Cu元素をドープした臭化物ガラスに比べて著しく向上しているのがわかる。
【0018】
実施例2
シリカガラス基板(SiO100モル%)に、I元素のイオンおよびCu元素のイオンを、それぞれ1×1020個/cm注入した。イオン注入は、タンデム型加速器を用いて、加速電圧がI=3.5MeV、Cu=2.0MeVで、真空度が10−7Torrで、基板温度が室温で行った。イオン注入した後に、空気中で、600℃で30分熱処理することにより蛍光ガラスを得た。この蛍光ガラスの蛍光スペクトルを、蛍光光度分光計(日立製作所製、F−4500)を用いて、励起波長235nmで測定したところ、図2に示すように、Cu元素のみをドープしたシリカガラスに比べ、蛍光波長が約50nmだけ長波長側にシフトしていた。
【0019】
また、30℃にて1000mlの水に浸漬した1.0グラム試料の重量損失を測定したところ、本実施例の蛍光ガラスは0.0グラムであったのに対し、Cuドープ沃化物ガラスは1.0グラムであった。このことからも、本実施例の蛍光ガラスの化学的耐久性は、Cu元素をドープした沃化物ガラスに比べて著しく向上しているのがわかる。
【図面の簡単な説明】
【図1】実施例1で得られた蛍光ガラスの蛍光スペクトルを示す図である。
【図2】実施例2で得られた蛍光ガラスの蛍光スペクトルを示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluorescent glass and a method for manufacturing the same.
[0002]
[Prior art]
A fluorescent glass material doped with a copper element has high quantum efficiency (for example, see Non-Patent Document 1), and is transparent and easy to process, so that it can be used for an ultraviolet light detector, a display element, and a laser. Applications are being considered. In order to obtain a glass material having a desired fluorescence wavelength, it is necessary to change the type of atoms and the coordination structure coordinated to the copper element. For this purpose, conventionally, the composition of the glass base material in which the fluorescent ions are dispersed has been changed (for example, see Non-Patent Document 1). However, when the composition of the base material is changed, there is a problem of practically deteriorating the chemical durability.
[0003]
[Non-patent document 1]
C. Parent, "Optical Materials", 1994, Volume 4, p. 107
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a technique for changing the fluorescent characteristics of a fluorescent glass without deteriorating the chemical durability of the fluorescent glass.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies, and as a result, the glass obtained by dispersing the copper element and the element to be coordinated with the copper element in a glass base material having high chemical durability and performing a heat treatment, The present inventors have found that not only the wavelength is changed, but also the same chemical durability as the base material is maintained, and the present invention has been completed.
[0006]
That is, the present invention provides a fluorescent glass and a method for producing the same as described below.
Item 1. A method for manufacturing a fluorescent glass, comprising: implanting ions of a copper element and ions of a halogen element into a glass substrate containing 70 mol% or more of SiO 2 by an ion implantation method, followed by heat treatment.
Item 2. Item 3. The method for producing a fluorescent glass according to Item 1, wherein the ion concentration of each of the copper element ion and the halogen element ion is 1 × 10 19 to 1 × 10 21 / cm 3 .
Item 3. Item 3. The method for producing a fluorescent glass according to Item 1 or 2, wherein the substrate subjected to the ion implantation is heat-treated at 200 to 900 ° C.
Item 4. Item 4. A fluorescent glass obtained by the method according to any one of Items 1 to 3, doped with a copper element and a halogen element.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method of the present invention, ions of a copper element and ions of a halogen element are accelerated and injected into a glass material to be a substrate by an ion implantation method.
[0008]
The glass material used as the substrate is a silica-based glass containing 70 mol% or more of SiO 2 and contains less than 30 mol% of other components such as Na 2 O, CaO, Al 2 O 3 , B 2 O 3 , and GeO 2. You may go out.
[0009]
Examples of the halogen element include F, Cl, Br, and I, and at least one of these ions is implanted.
[0010]
Regarding the ion implantation method, there are no particular restrictions on the method of the apparatus for performing the ion implantation method, the implantation conditions (eg, acceleration voltage, ion current, degree of vacuum, substrate temperature), and the method can be performed according to a conventional method. However, the temperature of the substrate is preferably 900 ° C. or less in consideration of a temperature at which a heat treatment in a later step is performed.
[0011]
The concentration of each of the implanted ions of the copper element ion and the halogen element ion is preferably 1 × 10 19 to 1 × 10 21 / cm 3 . If the respective implanted ion concentrations of the copper element ion and the halogen element ion are less than 1 × 10 19 / cm 3 or more than 1 × 10 21 / cm 3 , sufficient fluorescence intensity is obtained. It tends to be difficult to obtain. The concentration ratio between the copper element ion and the halogen element ion is not particularly limited, but it is preferable that the halogen element ion concentration: copper element ion concentration = 0.5 to 2: 1.
[0012]
In order to generate fluorescence, it is necessary to heat (heat-treat) the substrate after ion implantation. If the heat treatment is not performed, fluorescence from defects caused by ion implantation is mainly used, and sufficient fluorescence intensity due to copper cannot be obtained. Further, since damage is caused by ion implantation, it is necessary to perform heat treatment after ion implantation in order to maintain the chemical durability and mechanical strength of the glass substrate before ion implantation. The heat treatment is preferably performed in a temperature range of 200 to 900C, more preferably in a temperature range of 500 to 700C. When the heat treatment is performed at a temperature exceeding 900 ° C., crystals made of the implanted element are precipitated, and fluorescence tends to be hardly observed. The heat treatment is preferably performed for 5 minutes to 1 hour.
[0013]
The fluorescent glass obtained as described above is doped with a copper element and a halogen element, and emits fluorescence.
[0014]
【The invention's effect】
According to the present invention, the fluorescent wavelength can be changed without impairing the chemical durability of the glass substrate, and the obtained fluorescent glass can be used as a fluorescent material in many products such as an ultraviolet ray detection device and a display device. Is possible.
[0015]
【Example】
Examples are shown below to further clarify features of the present invention.
[0016]
Example 1
1 × 10 20 ions / cm 3 of Br element ions and Cu element ions were implanted into a silica glass substrate (100 mol% of SiO 2 ). The ion implantation was performed using a tandem accelerator at an acceleration voltage of Br = 2.4 MeV, Cu = 2.0 MeV, a degree of vacuum of 10 −7 Torr, and a substrate temperature of room temperature. After ion implantation, a fluorescent glass was obtained by performing a heat treatment at 600 ° C. for 30 minutes in the air. The fluorescence spectrum of this fluorescent glass was measured at an excitation wavelength of 235 nm using a fluorescence spectrometer (F-4500, manufactured by Hitachi, Ltd.). As shown in FIG. 1, the fluorescence spectrum was higher than that of silica glass doped only with Cu element. The fluorescence wavelength was shifted to the longer wavelength side by about 50 nm.
[0017]
The weight loss of a 1.0 gram sample immersed in 1000 ml of water at 30 ° C. was measured. The fluorescent glass of the present example was 0.0 gram, whereas the Cu-doped bromide glass was 1.0 gram. It was 0 grams. This also indicates that the chemical durability of the fluorescent glass of this example is significantly improved as compared with the bromide glass doped with Cu element.
[0018]
Example 2
1 × 10 20 ions / cm 3 of I element ions and Cu element ions were implanted into a silica glass substrate (100 mol% of SiO 2 ). The ion implantation was performed using a tandem accelerator at an acceleration voltage of I = 3.5 MeV, Cu = 2.0 MeV, a degree of vacuum of 10 −7 Torr, and a substrate temperature of room temperature. After ion implantation, a fluorescent glass was obtained by performing a heat treatment at 600 ° C. for 30 minutes in the air. The fluorescence spectrum of this fluorescent glass was measured at an excitation wavelength of 235 nm using a fluorescence spectrometer (F-4500, manufactured by Hitachi, Ltd.). As shown in FIG. The fluorescence wavelength was shifted to the longer wavelength side by about 50 nm.
[0019]
The weight loss of a 1.0 gram sample immersed in 1000 ml of water at 30 ° C. was measured. The fluorescent glass of this example was 0.0 gram, whereas the Cu-doped iodide glass was 1 gram. Weighed 2.0 grams. From this, it can be seen that the chemical durability of the fluorescent glass of this example is significantly improved as compared with the iodide glass doped with Cu element.
[Brief description of the drawings]
FIG. 1 is a view showing a fluorescence spectrum of a fluorescent glass obtained in Example 1.
FIG. 2 is a view showing a fluorescence spectrum of the fluorescent glass obtained in Example 2.

Claims (4)

イオン注入法により、銅元素のイオンおよびハロゲン元素のイオンを、SiOを70モル%以上含むガラスからなる基板に注入した後、熱処理することを特徴とする蛍光ガラスの製造方法。A method for manufacturing a fluorescent glass, comprising: implanting ions of a copper element and ions of a halogen element into a glass substrate containing 70 mol% or more of SiO 2 by an ion implantation method, followed by heat treatment. 銅元素のイオンおよびハロゲン元素のイオンのそれぞれの注入イオン濃度が、1×1019〜1×1021個/cmであることを特徴とする請求項1に記載の蛍光ガラスの製造方法。Each implanted ion concentration of ions of the ion and the halogen element of the copper element, a manufacturing method of the fluorescent glass according to claim 1, characterized in that a 1 × 10 19 ~1 × 10 21 atoms / cm 3. イオン注入した基板を200〜900℃で熱処理することを特徴とする請求項1または2に記載の蛍光ガラスの製造方法。The method according to claim 1, wherein the ion-implanted substrate is heat-treated at 200 to 900 ° C. 4. 請求項1〜3のいずれかに記載の方法により得られる、銅元素およびハロゲン元素をドープした蛍光ガラス。A fluorescent glass doped with a copper element and a halogen element, obtained by the method according to claim 1.
JP2002278259A 2002-09-25 2002-09-25 Fluorescent glass and method for producing the same Expired - Lifetime JP4022616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278259A JP4022616B2 (en) 2002-09-25 2002-09-25 Fluorescent glass and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278259A JP4022616B2 (en) 2002-09-25 2002-09-25 Fluorescent glass and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004115294A true JP2004115294A (en) 2004-04-15
JP4022616B2 JP4022616B2 (en) 2007-12-19

Family

ID=32273575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278259A Expired - Lifetime JP4022616B2 (en) 2002-09-25 2002-09-25 Fluorescent glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP4022616B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139916A1 (en) * 2007-05-15 2008-11-20 Shin-Etsu Quartz Products Co., Ltd. Copper-containing silica glass, process for producing the same, and xenon flash lamp using the copper-containing silica glass
CN114927632A (en) * 2022-05-16 2022-08-19 湘潭大学 Modified zinc metal sheet and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139916A1 (en) * 2007-05-15 2008-11-20 Shin-Etsu Quartz Products Co., Ltd. Copper-containing silica glass, process for producing the same, and xenon flash lamp using the copper-containing silica glass
US8635886B2 (en) 2007-05-15 2014-01-28 Shin-Etsu Quartz Products Co., Ltd. Copper-containing silica glass, method for producing the same, and xenon flash lamp using the same
CN114927632A (en) * 2022-05-16 2022-08-19 湘潭大学 Modified zinc metal sheet and preparation method and application thereof
CN114927632B (en) * 2022-05-16 2024-01-26 湘潭大学 Modified zinc metal sheet and preparation method and application thereof

Also Published As

Publication number Publication date
JP4022616B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
Chen et al. Influences of Er3+ content on structure and upconversion emission of oxyfluoride glass ceramics containing CaF2 nanocrystals
Mimura et al. Quenching of photoluminescence from Si nanocrystals caused by boron doping
Lai et al. Photoluminescence enhancement of Eu 3+ ions by Ag species in SiO 2 three-dimensionally ordered macroporous materials
Balakrishnaiah et al. Optical and luminescence properties of Nd3+ ions in K–Ba–Al-phosphate and fluorophosphate glasses
Han et al. Annealing effects and radiation damage mechanisms of PbWO 4 single crystals
Samsudin et al. Investigation on Structural and Optical Properties of Willemite Doped Mn2+ Based Glass‐Ceramics Prepared by Conventional Solid‐State Method
Serqueira et al. Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix
Zhang et al. Revealing the effects of defects on ultrafast carrier dynamics of CsPbI3 nanocrystals in glass
Kumar et al. Luminescence of Gd3+ ions doped in oxyfluoroborate glass
Garces et al. Electron paramagnetic resonance and optical absorption study of V4+ centres in YVO4 crystals
Vinh et al. Optical properties of a single type of optically active center in Si∕ Si: Er nanostructures
Lozykowski et al. Cathodoluminescence of GaN doped with Sm and Ho
Zatsepin et al. Mechanism of quantum dot luminescence excitation within implanted SiO2: Si: C films
Kalpana et al. Improving green emission of Tb3+ ions in BaO‐B2O3‐P2O5 glasses by means of Al3+ ions
Dabboussi et al. Excitation process and photoluminescence properties of Tb3+ and Eu3+ ions in SnO2 and in SnO2: porous silicon hosts
JP2004115294A (en) Fluorescent glass and its manufacturing method
Guillevic et al. Synthesis and characterization of chloro-sulphide glass-ceramics containing neodymium (III) ions
Nagata et al. Luminescence in SiO2 induced by MeV energy proton irradiation
Zaldo et al. Optical properties of MgNb2O6 single crystals: a comparison with LiNbO3
Denks et al. Excitonic processes in pure and doped
Hamdy et al. Spectroscopic properties and luminescence behavior of γ-irradiated Sm3+ doped oxy-fluoride phosphate glasses
Niu et al. Single band luminescence of Bi3+ and the intensity modulation in potassium borosilicate glasses
JP2005255498A (en) Fluorescent glass and method for manufacturing the same
He et al. Intense ultraviolet photoluminescence at 314 nm in Gd3+-doped silica
Zhang et al. Silver nanocluster formation in soda-lime silicate glass by X-ray irradiation and annealing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

R150 Certificate of patent or registration of utility model

Ref document number: 4022616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term