JP2004114062A - Hydrostatic forming method and structure for supporting end of work used in hydrostatic forming - Google Patents

Hydrostatic forming method and structure for supporting end of work used in hydrostatic forming Download PDF

Info

Publication number
JP2004114062A
JP2004114062A JP2002277817A JP2002277817A JP2004114062A JP 2004114062 A JP2004114062 A JP 2004114062A JP 2002277817 A JP2002277817 A JP 2002277817A JP 2002277817 A JP2002277817 A JP 2002277817A JP 2004114062 A JP2004114062 A JP 2004114062A
Authority
JP
Japan
Prior art keywords
work
tubular
pressure receiving
pressure
shaft end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002277817A
Other languages
Japanese (ja)
Other versions
JP3848909B2 (en
Inventor
Yoshiyuki Uchikawa
内川 義幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2002277817A priority Critical patent/JP3848909B2/en
Publication of JP2004114062A publication Critical patent/JP2004114062A/en
Application granted granted Critical
Publication of JP3848909B2 publication Critical patent/JP3848909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrostatic forming method by which excessive pulling-in of the end part of a tubular work in toward the middle area in the length direction of the axis of a work is restrained when performing hydrostatic forming and the supporting structure of the end of the work used in the hydrostatic forming. <P>SOLUTION: A means for transmitting the direction change of pressure receiving force is arranged on the side of the inside wall surface 20i of the end part 20 of the tubular work 2 by using the means for transmitting the direction change of pressure receiving force having a pressure receiving body 3 having a pressure receiving surface 34 and a work restraining body 4 having a restraining surface 42. The restraining property of the end part 20 of the tubular work 2 is raised by pressurizing the restraining surface 42 of the work restraining body 4 along the outward direction ( the direction of the arrow Y1 ) of the diameter of the tubular work 2 against the inside wall surface of the end part of the tubular work 2 by receiving the liquid pressure of the hollow chamber 21 of the tubular work 2 by the pressure receiving surface 34 of the pressure receiving body 3 and also changing the direction of the receiving force received by the pressure receiving surface 34 as force in the outward direction of the diameter of the tubular work 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、管状ワークの中空室の液圧を利用して管状ワークの成形を行う液圧成形方法、液圧成形に用いるワーク端末支持構造に関する。
【0002】
【従来の技術】
近年、管状ワークの中空室に液圧を作用させて管状ワークの成形を行う液圧成形方法の開発が進められている。このような液圧成形によれば、従来、図11に示すように、シール部材101を外周部に有すると共に液注入孔102を有する栓部材100を管状ワーク2の軸端部20の内壁面側に配置した状態で、管状ワーク2の中空室21に液体注入孔102から圧力液体Lを供給し、管状ワーク2の中空室21の液圧を利用して管状ワーク2の成形を行う技術が知られている。栓部材100のシール部材101は、管状ワーク2の中空室21からの液漏れを抑えることができる。
【0003】
また、図12に示すように、管状ワーク2を成形するための成形型面301と成形型面301の端から拡開する円錐面形状の拡開面302とをもつ成形型300と、拡開面302に係合する円錐面形状の係合面401をもつ口金400とを用い、成形型300に管状ワーク2をセットする際に、成形型300の成形型面301から管状ワーク2の軸端部20を突き出させ、その状態で口金400の係合面401を管状ワーク2の軸端部20にあてがい、管状ワーク2の軸端部20を円錐形状に拡開させて端末を支持する液圧バルジ加工における端末シール方法も知られている(特許文献1参照)。
【0004】
【特許文献1】
特開平6−23441号公報
【0005】
【発明が解決しようとする課題】
図11に示す従来技術によれば、液圧成形の際に、管状ワーク2の軸端部20が管状ワーク2の軸長方向の中央域の方向(矢印X2方向)に引き込まれることがある。しかも引き込み量は管状ワーク2の材質や真円度等によってばらつく傾向にある。このため液圧成形の成形精度の更なる高精度化には限界があった。
【0006】
また図12に示す従来技術によれば、管状ワーク2の中空室21に供給された圧力液体の液圧は、口金400を管状ワーク2から離脱させる方向(矢印X1方向)に付勢させる。故に、管状ワーク2の中空室21の液圧が増加すればするほど、口金400が管状ワーク2から離脱する方向(矢印X1方向)に付勢され、口金400が管状ワーク2の軸端部20を保持する力が緩むおそれがある。このため管状ワーク2の中空室21の液圧が増加すると、筒状ワーク2の成形に支障をきたすおそれがある。
【0007】
本発明は上記した実情に鑑みてなされたものであり、液圧成形の際に管状ワークの軸端部がワークの軸長方向の中央域に向けて過剰に引き込まれることを抑制することができ、成形を良好になし得る液圧成形方法、及び、液圧成形に用いるワーク端末支持構造を提供することを課題とする。
【0008】
【課題を解決するための手段】
(1)本発明に係る液圧成形方法は、管状ワークの中空室に液圧を作用させて前記管状ワークの成形を行う液圧成形方法において、
前記管状ワークの前記中空室に対向する受圧面と前記管状ワークの軸端部の内壁面に対向する拘束面とを有すると共に、前記受圧面が受圧した受圧力を前記管状ワークの径外方向に沿った力として方向変換させて伝達させる受圧力方向変換伝達手段を用い、
前記受圧力方向変換伝達手段を前記管状ワークの前記軸端部の内壁面側に配置し、
前記管状ワークの成形の際に、前記管状ワークの前記中空室の液圧を前記受圧力方向変換伝達手段の前記受圧面で受圧すると共に、前記受圧面が受圧した受圧力を前記管状ワークの径外方向に沿った力として方向変換させ、前記受圧力方向変換伝達手段の前記拘束面を前記管状ワークの前記軸端部の内壁面に前記管状ワークの径外方向に沿って加圧させて前記管状ワークの前記軸端部の拘束性を高めることを特徴とするものである。
【0009】
本発明に係る液圧成形方法によれば、管状ワークの成形の際に、管状ワークの中空室の液圧を受圧力方向変換伝達手段の受圧面で受圧する。そして受圧面で受圧した受圧力の方向を管状ワークの径外方向に沿って変換させ、受圧力方向変換伝達手段の拘束面を管状ワークの軸端部の内壁面に管状ワークの径外方向に沿って加圧させる。これにより管状ワークの軸端部の拘束性が高められ、管状ワークの軸端部の過剰な引き込みが抑制される。
【0010】
(2)本発明に係る液圧成形に用いるワーク端末支持構造は、管状ワークの軸端部の内壁面側に配置され、前記管状ワークの中空室の液圧を受圧する受圧面と、前記管状ワークの軸長方向の軸先端に向かうにつれて縮径するテーパをもつ外側傾斜面とを有する受圧体と、
前記管状ワークの前記軸端部の内周面側に配置され、前記受圧体の前記外側傾斜面に係合すると共に前記管状ワークの軸長方向の軸先端に向かうにつれて縮径するテーパをもつ内側傾斜面と、前記管状ワークの前記軸端部の内壁面に対向すると共に前記管状ワークの前記軸端部の内壁面を径外方向に沿って加圧して拘束する拘束面とを有するワーク拘束体とを具備することを特徴とするものである。
【0011】
本発明に係る液圧成形に用いるワーク端末支持構造によれば、管状ワークの成形の際に、管状ワークの中空室の液圧を受圧体の受圧面で受圧するため、受圧に伴い受圧体は管状ワークの軸先端に向けて付勢される。受圧体の外側傾斜面はワーク拘束体の内側傾斜面に係合するため、いわゆるくさびの原理により、受圧体が液圧を受圧した受圧力は、ワーク拘束体の拘束面を管状ワークの径外方向に沿って付勢させる力として方向変換される。この結果、ワーク拘束体の拘束面が管状ワークの軸端部の内壁面を管状ワークの径外方向に沿って加圧する。これにより管状ワークの軸端部の拘束性が高められ、管状ワークの軸端部の過剰な引き込みが抑制される。
【0012】
【発明の実施の形態】
本発明によれば、受圧力方向変換伝達手段は、管状ワークの中空室に対向する受圧面と管状ワークの軸端部の内壁面に対向する拘束面とを有しており、受圧面が受圧した受圧力を管状ワークの径外方向に沿った力として方向変換させて伝達させるものである。受圧力方向変換伝達手段としては、複数の部品で形成することができる。例えば、受圧力方向変換伝達手段としては、管状ワークの中空室の液圧を受圧する受圧面を有する受圧体と、ワークの軸端部の内壁面を加圧して拘束する拘束面を有するワーク拘束体とで形成することができる。
【0013】
本発明によれば、好ましくは、ワーク拘束体が管状ワークの軸先端に向けて移動することを規制する規制部材が設けられている形態を採用できる。この場合、ワーク拘束体が管状ワークの軸先端に向けて移動することが規制部材により規制される。このためワーク拘束体が管状ワークの径外方向に沿って良好に付勢され、ひいてはワーク拘束体の拘束面を管状ワークの軸端部の内壁面に管状ワークの径外方向に沿って良好に加圧させることができる。
【0014】
本発明によれば、好ましくは、受圧体の外側傾斜面は受圧体の軸芯の周りで周方向に形成されており、ワーク拘束体の内側傾斜面はワーク拘束体の軸芯の周りで周方向に形成されている形態を採用できる。これによりワーク拘束体が管状ワークの径外方向に沿って良好に付勢され、ひいてはワーク拘束体の拘束面を管状ワークの軸端部の内壁面に管状ワークの径外方向に沿って良好に加圧させることができる。
【0015】
本発明によれば、好ましくは、ワーク拘束体はワーク拘束体の周方向において複数個に分割された分割体で形成されており、各分割体は内側傾斜面及び拘束面をそれぞれ有する形態を採用できる。各分割体は周方向において分割されているため、互いに独立して径外方向に沿って動作することができる。故に管状ワークの横断面形状の真円度が低いときであっても、また、真円形状でないときであっても、ワーク拘束体を構成する各分割体を独立して径外方向に沿って付勢させることができ、これによりワーク拘束体を構成する分割体の拘束面を管状ワークの軸端部の内壁面に管状ワークの径外方向に沿って良好に加圧させることができる。
【0016】
本発明によれば、好ましくは、ワーク拘束体の各分割体に伸縮可能な索条体が付設され、各分割体は索条体により互いに接続されている形態を採用できる。これにより各分割体の離脱が抑制され、分割体の保管や取付に適する。索条体としては、ゴム輪、伸縮可能なロープ、伸縮可能なワイヤを例示できる。
【0017】
本発明によれば、好ましくは、ワーク拘束体の拘束面は、管状ワークの軸端部の内壁面との係合性を増加させる係合度増加部を有する形態を採用できる。これにより管状ワークの軸端部の引き込みが一層抑制される。係合度増加部としては凹及び凸のうちの少なくとも一方を採用できる。係合度増加部としては、管状ワークの軸端部の内壁面に噛み込む形態を例示できる。
【0018】
本発明によれば、ワーク拘束体としては金属材料またはセラミックス材料で形成することができる。場合によっては、ワーク拘束体としては、ゴムや樹脂を基材とする弾性変形可能な材料で形成することができる。
【0019】
【実施例】
以下、本発明の第1実施例について図1〜図4を参照して具体的に説明する。本実施例は、金属製の管状ワーク2に対して曲げ成形つまりベンド成形を行う場合に適用したものである。プリベンド成形はハイドロフォーム成形と同様に、液圧成形の1種である。プリベンド成形は、管状ワーク2の中空室21に液圧を作用させることにより管状ワーク2の周壁2aを拡管させるハイドロフォーム成形に先だって行われる。プリベンド成形は、成形型1の第1成形型11の第1型面15と第2成形型12の第2型面16とで形成された成形キャビティ13に管状ワーク2を配置した状態で、管状ワーク2の軸長方向の途中部(図示せず)を曲げ成形することにより行われる。
【0020】
まず説明の便宜上、装置から説明する。本実施例によれば、図1に示すように、受圧体3及びワーク拘束体4が設けられている。受圧体3及びワーク拘束体4は、受圧体3の受圧力を径外方向に沿った力として変換させる受圧力方向変換伝達手段を構成するものである。受圧体3は金属材料またはセラミックス材料で形成されており、管状ワーク2の軸端部20の内壁面20i側に配置されるように、成形型1の成形キャビティ13にセットされる。
【0021】
受圧体3は、管状ワーク2の軸端部20の内壁面20i側に配置されるものであり、管状ワーク2の中空室21に供給された圧力液体L(水や油)の液圧Pを受圧するものである。受圧体3は、管状ワーク2の中空室21に対向すると共に相対的に外径が大きい大径部30と、管状ワーク2の中空室21に背向する側に形成され大径部30よりも相対的に外径が小さい小径部32とをもつ。
【0022】
受圧体3の大径部30の先端は、管状ワーク2の中空室21に対向すると共に中空室21の液圧Pを受圧する受圧面34とされている。受圧面34は、受圧体3の軸直角方向に沿っている。なお、受圧面34の外縁には、管状ワーク2の中空室21に向かうにつれて縮径する縮径面34cが受圧面34の一部として受圧体3の軸芯の周りを1周するようにリング状に形成されている。管状ワーク2の中空室21の液圧Pが受圧体3の縮径面34cに作用すると、受圧体3にはこれの求心方向への力が作用するため、受圧体3の調芯作用を期待できる。
【0023】
図2は受圧体3の側面を示す。図2に示すように、受圧体3の小径部32は受圧体3の軸長方向において同径とされている。受圧体3のうち大径部30と小径部32との間に外側傾斜面33が形成されている。図1に示すように、外側傾斜面33は、管状ワーク2の軸長方向の軸先端2eに向かうにつれて縮径する直状のテーパをもつ円錐面形状とされている。なお受圧体3には、管状ワーク2の中空室21に連通する通路35が形成されていると共に、管状ワーク2の中空室21と反対方向に突出する突出部36が連結されている。
【0024】
図1に示すように、ワーク拘束体4は金属材料またはセラミックス材料を基材として形成されており、管状ワーク2の軸端部20の内壁面20i側に配置され、管状ワーク2の周壁2aを拘束するためのものである。ワーク拘束体4は、受圧体3の外側傾斜面33に対向する内側傾斜面41と、外周面に形成された拘束面42と、大径部30に対向する第1軸端面43と、管状ワーク2の中空室21の反対側に位置する第2軸端面44とを有する。ワーク拘束体4の内側傾斜面41は、受圧体3の外側傾斜面33と係合するものであり、管状ワーク2の軸長方向の軸先端2eに向かうにつれて縮径するテーパをもつ。ワーク拘束体4の内側傾斜面41は、受圧体3の外側傾斜面33と基本的には同じテーパ角とされている。ワーク拘束体4の拘束面42は、管状ワーク2の軸端部20の内壁面20iに対向するものであり、ワーク拘束体4の軸芯方向に沿って延設されている。拘束面42は、管状ワーク2の軸端部20の内壁面20iを径外方向(矢印Y1方向)に沿って加圧して拘束するためのものである。
【0025】
本実施例によれば、図1に示すように、ワーク拘束体4が管状ワーク2の軸先端2eに向けて(矢印X1方向)移動することを規制する規制部材5が設けられている。規制部材5は、第1成形型11(上型)と第2成形型12(下型)との間に装入される。規制部材5は、管状ワーク2の軸端部20の軸端開口20rに挿入される挿入先端部51と、中央域に形成され軸長方向にのびる空洞部52とをもつ。挿入先端部51は、受圧体3の小径部32を案内して摺動させる案内壁面53aを有する案内孔53と、ワーク拘束体4の第2軸端面44に対向する先端規制面54とを有する。先端規制面54はリング形状をなしており、ワーク拘束体4の軸直角方向に沿っている。案内壁面53aはワーク拘束体4の軸長方向に沿っている。規制部材5のリング形状の先端規制面54にワーク拘束体4の第2軸端面44が当接している状態では、ワーク拘束体4は規制部材5の側(矢印X1方向)にそれ以上後退できないため、径外方向(矢印Y1方向)に動作することになる。
【0026】
図1に示すように、規制部材5の空洞部52にはバネ部材38及び突出部36が装備されている。バネ部材38は、突出部36の着座部36cを介して受圧体3を管状部材2の中空室21に向けて(矢印X2方向)付勢して受圧体3をこれの原位置に設定するものである。
【0027】
図3はワーク拘束体4の正面図を示す。図3に示すように、ワーク拘束体4は、ワーク拘束体4の周方向において複数個(6個)に分割された分割体46で形成されている。分割体46は基本的には扇形状とされている。各分割体46は、内側傾斜面41及び拘束面42をそれぞれ有すると共に、放射状の分割面47を有する。通常の状態では、ワーク拘束体4を構成する互いに隣設する各分割体46の分割面47は、後述の索条体49の弾性縮径力により引き寄せられ、互いに接触しているか、あるいは接近している。しかし各分割体46に径外方向(矢印Y1方向)の力が作用したときには、各分割体46が径外方向(矢印Y1方向)に動作するため、隣設する各分割体46の分割面47は、索条体49の弾性縮径力に抗して互いに離間する。
【0028】
図4はワーク拘束体4の断面図を示す。図4,図3に示すように、ワーク拘束体4の外周面である拘束面42には、周方向に延設されたリング溝49aが形成されている。リング溝49aには、伸縮可能なゴムや樹脂等のリング形状をなす弾性材料を基材とするロープ状の索条体49が巻回されて付設されている。索条体49の弾性縮径力により各分割体46は互いに接続されて一体化されており、保管時や取付時等に互いに離脱しないようにされている。
【0029】
本実施例によれば、図1に示すように、受圧体3の大径部30の外周面にはリング状の第1シール溝61cが形成されており、第1シール溝61cにはリング状の第1シール部材61が装備されている。また受圧体3の小径部32の外周面にはリング状の第2シール溝62cが形成されており、第2シール溝62cにはリング状の第2シール部材62が装備されている。第1シール部材61及び第2シール部材62は、ワーク拘束体4の軸長方向において、ワーク拘束体4の前後に配置されている。この結果、ワーク拘束体4の軸長方向において、ワーク拘束体4の前後は第1シール部材61及び第2シール部材62によりシールされている。このため管状ワーク2の中空室21の圧力液体Lがワーク拘束体4の側に流入することが抑制されている。
【0030】
次に、液圧成形する場合について説明する。まず、図1に示すように成形型1の第1成形型11と第2成形型12の成形キャビティ13に管状ワーク2をセットすると共に、管状ワーク2の軸長方向の軸端部20の内壁面20i側に受圧体3及びワーク拘束体4を配置させる。この場合、図1に示す構造は、管状ワーク2の軸長方向の一方の軸端部20にのみ採用されていても良いし、管状ワーク2の軸長方向の双方の軸端部20に採用されていても良い。前者の場合には、管状ワーク2の軸長方向の他方の軸端部20には、一般的な栓部材を取り付ける。
【0031】
上記したように受圧体3及びワーク拘束体4を管状ワーク2の軸長方向の軸端部20の内壁面20i側に取り付けた状態で、液体供給源7(ポンプ等)から圧力液体L(水や油等)を規制部材5の空洞部52、受圧体3の通路35を経て管状ワーク2の中空室21に供給する。この場合、管状ワーク2の中空室21の空気を脱気させることが好ましい。このようにして管状ワーク2の中空室21が所定の液圧Pとされた状態で、管状ワーク2に曲げ成形を加える。このとき管状ワーク2の軸端部20は、管状ワーク2の軸長方向の中央域に向けて矢印X2方向に引き込まれんとする。
【0032】
この点本実施例によれば、受圧体3の受圧面34が管状ワーク2の中空室21の液圧Pを受圧するため、バネ部材38の弾発力に抗して、受圧体3が管状ワーク2の軸先端2eに向けて(矢印X1方向)付勢されて変位する。この場合、受圧体3の小径部32は案内孔53の案内壁面53aに沿って矢印X1方向へ変位する。ここで、受圧体3の外側傾斜面33はワーク拘束体4の内側傾斜面41に係合しているため、受圧体3の受圧面34が管状ワーク2の中空室21の液圧Pを受圧した受圧力は、いわゆるくさびの原理により、ワーク拘束体4の拘束面42を管状ワーク2の径外方向(矢印Y1方向)に付勢させる力として方向変換される。このためワーク拘束体4の拘束面42は管状ワーク2の径外方向(矢印Y1方向)に加圧される。この結果、管状ワーク2の軸端部20の拘束性が高められ、管状ワーク2の軸端部20の矢印X2方向への過剰な引き込みが抑制される。管状ワーク2の中空室21の液体が増加すればするほど、受圧体3の受圧面34の受圧力は増加するため、拘束面42による拘束力が増加し、管状ワーク2の軸端部20の拘束性が高められる。
【0033】
本実施例によれば、成形の際に、上記したように管状ワーク2の軸端部20の過剰の引き込みが抑えられると共に、引き込みするとしても一定量に抑えることができるため、引き込み量のバラツキを抑制でき、管状ワーク2の液圧成形を良好に行うことができる。本実施例によれば、ワーク拘束体4の拘束面42による拘束力は、受圧体3の外側傾斜面33,ワーク拘束体4の内側傾斜面41のテーパの角度により調整することができる。
【0034】
工業製品である管状ワーク2はパイプ状であるとはいえ、その横断面形状の真円度の高精度化には限界がある。この点本実施例によれば、前述したように、ワーク拘束体4はワーク拘束体4の周方向において複数個に分割された分割体46で形成されており、互いに独立して径外方向(矢印Y1方向)に沿って移動することができる。故に管状ワーク2の横断面形状の真円度が低いときであっても、各分割体46を独立して径外方向に沿って付勢させることができ、これによりワーク拘束体4を構成する分割体46の拘束面42を管状ワーク2の軸端部20の内壁面20iに管状ワーク2の径外方向(矢印Y1方向)に沿って良好に加圧させることができ、管状ワーク2の軸端部20の拘束性を確保することができる。
【0035】
本実施例によれば、規制部材5の案内孔53にも圧力液体Lが流入する。案内孔53に流入した圧力液体Lは、受圧体3の小径部32の小径端面32kに作用して矢印X2方向に向かう力を発生させることがある。この点本実施例によれば、受圧体3の大径部30の受圧面34の受圧面積をS1とし、受圧体3の小径部32の小径端面32kの受圧面積をS2とすると、S1はS2よりもかなり大きく設定されている(S1>S2)。このため規制部材5の案内孔53にも圧力液体Lが流入するとしても、受圧体3をワーク拘束体4に向けて(矢印X1方向)良好に移動させることができる。
【0036】
なお本実施例によれば、ワーク拘束体4の拘束面42による拘束力としては、受圧体3の大径部30の受圧面34の受圧面積S1と小径部32の小径端面32kの受圧面積S2との比率を変化させることによっても調整することができる。
【0037】
また本実施例によれば、図1に示すように、ワーク拘束体4の前後には第1シール部材61及び第2シール部材62が設けられており、ワーク拘束体4の軸長方向においてワーク拘束体4の前後は第1シール部材61及び第2シール部材62によりシールされている。このため管状ワーク2の中空室21及び案内孔53の圧力液体Lがワーク拘束体4の側に流入することが抑制される。このためワーク拘束体4の分割体46が径外方向(矢印Y1方向)へ動作することは良好に確保される。ひいては管状ワーク2の軸端部20の拘束性が良好に確保される。
【0038】
更に本実施例によれば、ワーク拘束体4が管状ワーク2の軸先端2eに向けて移動することを規制する規制部材5が設けられているため、ワーク拘束体4が管状ワーク2の軸先端2eに向けて(矢印X1方向)移動することが規制部材5により規制される。このため受圧体3が矢印X1方向へ変位すると、ワーク拘束体4が管状ワーク2の径外方向(矢印Y1方向)に沿って良好に付勢され、ひいてはワーク拘束体4の拘束面42を管状ワーク2の軸端部20の内壁面20iに管状ワーク2の径外方向(矢印Y1方向)に沿って良好に加圧させることができる。
【0039】
更に本実施例によれば、ワーク拘束体4の各分割体46に伸縮可能な索条体49が巻回され、各分割体46は索条体49により互いに接続されている。これにより各分割体46の離脱が抑制され、分割体46の保管や取付に適する。
【0040】
(第2実施例)
図5は本発明の第2実施例を示す。本実施例は前記した第1実施例と基本的には同様の構成であり、基本的には同様の作用効果を奏する。以下、第1実施例と相違する部分を中心として説明する。本実施例によれば、ワーク拘束体4の外周面である拘束面42には、管状ワーク2の軸端部20の内壁面20iとの係合性を増加させる係合度増加部64が形成されている。係合度増加部64は凹凸部で形成されている。凹凸部はワーク拘束体4の拘束面42の周方向に沿って延設されている。このためワーク拘束体4の拘束面42を管状ワーク2の径外方向(矢印Y1方向)に加圧させるとき、係合度増加部64が管状ワーク2の軸端部20の内壁面20iへ係合する係合性が高まる。このため、管状ワーク2の軸端部20の拘束性が高められ、管状ワーク2の軸端部20の引き込みが一層抑制される。
【0041】
(第3実施例)
図6は本発明の第3実施例を示す。本実施例は前記した第1実施例と基本的には同様の構成であり、基本的には同様の作用効果を奏する。以下、第1実施例と相違する部分を中心として説明する。本実施例によれば、ワーク拘束体4の拘束面42には、管状ワーク2の軸端部20の内壁面20iとの係合性を増加させる係合度増加部64Bが形成されている。係合度増加部64Bは外端が尖った凸部をもつ凹凸部で形成されている。凹凸部はワーク拘束体4の拘束面42の周方向に沿って延設されている。ワーク拘束体4の拘束面42を管状ワーク2の径外方向(矢印Y1方向)に加圧させるとき、係合度増加部64Bが管状ワーク2の軸端部20の内壁面20iへ係合する係合性が高まるため、管状ワーク2の軸端部20の拘束性が高められ、管状ワーク2の軸端部20の引き込みが一層抑制される。引き込みが仮に発生するとしても一定量に抑えることができるため、引き込み量のバラツキを抑制でき、管状ワーク2の成形を良好に行うことができる。
【0042】
(第4実施例)
図7は本発明の第4実施例を示す。本実施例は前記した第1実施例と基本的には同様の構成であり、基本的には同様の作用効果を奏する。以下、第1実施例と相違する部分を中心として説明する。本実施例によれば、管状ワーク2Bの横断面は真円状ではなく、長円形状とされている。従って管状ワーク2Bの軸端部20の内壁面20i側に配置されるワーク拘束体4Bの正面形状も、管状ワーク2Bに相応する長円形状とされている。
【0043】
本実施例においても、ワーク拘束体4Bはワーク拘束体4Bの周方向において複数個に分割された分割体46Bで形成されている。各分割体46Bは互いに独立して径外方向に沿って移動することができる。故にワーク拘束体4Bを構成する各分割体46Bを独立して径外方向に沿って付勢させることができるため、管状ワーク2Bの横断面形状が長円形状であるときであっても、各分割体46Bの拘束面42を管状ワーク2Bの軸端部20の内壁面20iに良好に加圧させることができ、管状ワーク2Bの軸端部20の拘束性を確保することができる。
【0044】
(第5実施例)
図8は本発明の第5実施例を示す。本実施例は前記した第1実施例と基本的には同様の構成であり、基本的には同様の作用効果を奏する。以下、第1実施例と相違する部分を中心として説明する。本実施例によれば、管状ワーク2Cの横断面は四角形状とされている。従って管状ワーク2Cの軸端部20の内壁面20i側に配置されるワーク拘束体4Cの正面形状も、管状ワーク2Cに相応して四角形状とされている。
【0045】
本実施例においても、ワーク拘束体4Cはワーク拘束体4Cの周方向において複数個に分割された分割体46Cで形成されており、互いに独立して径外方向に沿って移動することができる。故にワーク拘束体4Cを構成する各分割体46Cを独立して径外方向に沿って付勢させることができるため、管状ワーク2Cの横断面形状が四角形状であるときであっても、各分割体46Cの拘束面42を管状ワーク2Cの軸端部20の内壁面20iに良好に加圧させることができ、管状ワーク2Cの軸端部20の拘束性を確保することができる。
【0046】
(第6実施例)
図9は本発明の第6実施例を示す。本実施例は前記した第1実施例と基本的には同様の構成であり、基本的には同様の作用効果を奏する。以下、第1実施例と相違する部分を中心として説明する。本実施例によれば、ワーク拘束体4Dは、ゴムや樹脂を基材として一体的にリング形状に形成されており、これの周方向において1周するように連続している。ワーク拘束体4Dは、内側傾斜面41、拘束面42を有すると共に、第1軸端面43、第2軸端面44を有する。ワーク拘束体4Dは一体成形されており周方向に連続しているため、第1実施例と異なり、リング状の索条体49で一体化する必要がないため、索条体49は装備されていない。
【0047】
本実施例においても、受圧体3及びワーク拘束体4Dを管状ワーク2の軸長方向の軸端部20の内壁面20i側に取り付けた状態で、液体供給源7から圧力液体L(水や油等)を規制部材5の空洞部52、受圧体3の通路35を経て管状ワーク2の中空室21に供給する。このようにして管状ワーク2の中空室21が所定の液圧Pとされた状態で、管状ワーク2に曲げ成形を加える。このとき管状ワーク2の軸端部20は、管状ワーク2の軸長方向の中央域に向けて矢印X2方向に引き込まれんとする。
【0048】
この点本実施例によれば、第1実施例と同様に受圧体3の受圧面34が管状ワーク2の中空室21の液圧Pを受圧するため、バネ部材38の弾発力に抗して、受圧体3が管状ワーク2の軸先端2eに向けて(矢印X1方向)付勢されて変位する。第1実施例と同様に、受圧体3の小径部32は案内孔53の案内壁面53aに沿って変位する。ここで、受圧体3の外側傾斜面33はワーク拘束体4Dの内側傾斜面41に係合しているため、受圧体3の受圧面34が管状ワーク2の中空室21の液圧Pを受圧した受圧力は、いわゆるくさびの原理により、ワーク拘束体4Dの拘束面42を管状ワーク2の径外方向(矢印Y1方向)に付勢させる力として方向変換される。このためワーク拘束体4Dの拘束面42は、管状ワーク2の径外方向(矢印Y1方向)に沿って管状ワーク2の軸端部20の内壁面20iを加圧させる。
【0049】
この結果、管状ワーク2の軸端部20の拘束性が高められ、管状ワーク2の軸端部20の矢印X2方向への過剰な引き込みが抑制される。引き込みが仮に発生するとしても一定量に抑えることができるため、引き込み量のバラツキを抑制でき、管状ワーク2の成形を良好に行うことができる。
【0050】
なお、管状ワーク2の中空室21の液体が増加すればするほど、受圧体3の受圧面34の受圧力は増加するため、管状ワーク2の軸端部20の拘束性が高められる。
【0051】
本実施例によれば、ワーク拘束体4Dは、ゴムや樹脂を基材として形成されているため、ワーク拘束体4Dの内側傾斜面41が受圧体3の外側傾斜面33により押圧されると、ワーク拘束体4Dは径外方向(矢印Y1方向)に弾性変形できるため、第1実施例で用いられる第1シール部材61及び第2シール部材62の少なくとも一方を省略しても良い。
【0052】
(第7実施例)
図10は本発明の第7実施例を示す。本実施例は前記した第1実施例と基本的には同様の構成であり、基本的には同様の作用効果を奏する。以下、第1実施例と相違する部分を中心として説明する。本実施例は、管状ワーク2の中空室21に供給した圧力液体Lの液体により管状ワーク2の周壁2aを拡開成形させるハイドロフォーム成形に適用したものである。第1成形型11Eは、拡開成形された管状ワーク2の周壁2aが密着する第1型面15Eをもち、第2成形型12Eは拡開成形された管状ワーク2の周壁2aが密着する第2型面16Eをもつ。
【0053】
本実施例においても、受圧体3E及びワーク拘束体4Eを管状ワーク2の軸長方向の軸端部20の内壁面20i側に取り付けた状態で、液体供給源7から圧力液体L(水や油等)を規制部材5の空洞部52、受圧体3Eの通路35を経て管状ワーク2の中空室21に供給する。このようにして管状ワーク2の中空室21の液圧Pを増加させることにより、管状ワーク2の周壁2aを拡開方向(矢印Y3方向)に塑性変形させて第1型面15E及び第2型面16Eに密着させ、ハイドロフォーム成形を行う。このとき規制部材5を管状ワーク2の軸長方向の中間域に向けて(矢印X2方向)移動させ、管状ワーク2の軸端部20を同方向に押圧しつつ、ハイドロフォーム成形を行う。
【0054】
本実施例においても、受圧体3Eの受圧面34が管状ワーク2の中空室21の液圧Pを受圧するため、バネ部材38の弾発力に抗して、受圧体3Eが管状ワーク2の軸先端2eに向けて(矢印X1方向)付勢されて変位する。受圧体3Eの小径部32は案内孔53の案内壁面53aに沿って変位する。ここで、受圧体3Eの外側傾斜面33はワーク拘束体4Eの内側傾斜面41に係合しているため、受圧体3Eの受圧面34が管状ワーク2の中空室21の液圧Pを受圧した受圧力は、いわゆるくさびの原理により、ワーク拘束体4Eの拘束面42を管状ワーク2の径外方向(矢印Y1方向)に付勢させる力として方向変換される。このためワーク拘束体4Eの拘束面42は管状ワーク2の径外方向つまり矢印Y1方向に加圧される。この結果、管状ワーク2の軸端部20の拘束性が高められ、管状ワーク2の軸端部20の矢印X2方向への過剰な引き込みが抑制される。管状ワーク2の中空室21の液体が増加すればするほど、受圧体3Eの受圧面34の受圧力は増加するため、管状ワーク2の軸端部20の拘束性が高められる。
【0055】
(その他)
ワーク拘束体4は、ワーク拘束体4の周方向において6個に分割されているが、これに限らず、分割数は2個、3個、4個、5個、7個、8個、またはそれ以上に分割されていても良い。第1実施例に係る分割体46は金属材料またはセラミックス材料で形成されているが、これに限らず、硬質ゴムまたは硬質樹脂で形成しても良い。その他、本発明は上記した実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できるものである。
【0056】
【発明の効果】
以上説明したように本発明によれば、液圧成形の際に、管状ワークの軸端部がワークの軸長方向の中央域に向けて過剰に引き込まれることを抑制することができ、引き込みが仮に発生するとしても一定量に抑えることができ、引き込み量のバラツキを抑制でき、管状ワークの成形を良好に行うことができる液圧成形方法、及び、液圧成形に用いるワーク端末支持構造を提供することができる。
【図面の簡単な説明】
【図1】第1実施例に係り、液圧成形に用いるワーク端末支持構造を示す断面図である。
【図2】第1実施例に係り、第1シール部材及び第2シール部材を外した状態の受圧体の側面図である。
【図3】第1実施例に係り、ワーク拘束体の正面図である。
【図4】第1実施例に係り、図3のIV−IV線に沿った矢視を示し、ワーク拘束体の断面図である。
【図5】第2実施例に係り、ワーク拘束体の断面図である。
【図6】第3実施例に係り、ワーク拘束体の断面図である。
【図7】(A)第4実施例に係り、管状ワークの正面図であり、(B)は第4実施例に係り、液圧成形に用いるワーク端末支持構造の一部を示す断面図である。
【図8】第5実施例に係り、管状ワークの正面図である。
【図9】第6実施例に係り、液圧成形に用いるワーク端末支持構造を示す断面図である。
【図10】第7実施例に係り、液圧成形に用いるワーク端末支持構造を示す断面図である。
【図11】従来技術に係り、液圧成形に用いるワーク端末支持構造を示す断面図である。
【図12】従来技術に係り、液圧成形に用いるワーク端末支持構造を示す断面図である。
【符号の説明】
図中、1は成形型、2は管状ワーク、20は軸端部、21は中空室、3は受圧体(受圧力方向変換伝達手段)、33は外側傾斜面、34は受圧面、4はワーク拘束体(受圧力方向変換伝達手段)、41は内側傾斜面、42は拘束面、46は分割体、49は索条体、5は規制部材、64,64Bは係合度増加部を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydraulic forming method for forming a tubular workpiece by using a hydraulic pressure in a hollow chamber of the tubular workpiece, and a work terminal support structure used for the hydraulic forming.
[0002]
[Prior art]
In recent years, development of a hydraulic forming method for forming a tubular work by applying a hydraulic pressure to a hollow chamber of the tubular work has been advanced. According to such hydraulic forming, conventionally, as shown in FIG. 11, a plug member 100 having a seal member 101 on an outer peripheral portion and having a liquid injection hole 102 is connected to the inner wall surface of the shaft end portion 20 of the tubular workpiece 2. In this state, the pressure liquid L is supplied from the liquid injection hole 102 to the hollow chamber 21 of the tubular workpiece 2 and the tubular workpiece 2 is formed using the liquid pressure of the hollow chamber 21 of the tubular workpiece 2. Have been. The sealing member 101 of the plug member 100 can suppress liquid leakage from the hollow chamber 21 of the tubular workpiece 2.
[0003]
As shown in FIG. 12, a forming die 300 having a forming die surface 301 for forming the tubular workpiece 2 and a conical expanding surface 302 expanding from an end of the forming die surface 301 is provided. When the tubular work 2 is set on the mold 300 using the base 400 having a conical engaging surface 401 that engages with the surface 302, the shaft end of the tubular work 2 is moved from the mold surface 301 of the mold 300. In this state, the engaging surface 401 of the base 400 is applied to the shaft end 20 of the tubular work 2, and the shaft end 20 of the tubular work 2 is expanded in a conical shape to support the terminal. A terminal sealing method in bulging is also known (see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-6-23441
[0005]
[Problems to be solved by the invention]
According to the conventional technique shown in FIG. 11, the shaft end 20 of the tubular workpiece 2 may be pulled in the direction of the central region in the axial direction of the tubular workpiece 2 (the direction of arrow X2) during the hydroforming. Moreover, the amount of pull-in tends to vary depending on the material of the tubular workpiece 2, the roundness, and the like. For this reason, there is a limit to further increasing the molding accuracy of the hydraulic molding.
[0006]
Further, according to the conventional technique shown in FIG. 12, the liquid pressure of the pressure liquid supplied to the hollow chamber 21 of the tubular work 2 urges the base 400 in a direction of detaching the base 400 from the tubular work 2 (the direction of the arrow X1). Therefore, as the liquid pressure in the hollow chamber 21 of the tubular work 2 increases, the base 400 is urged in a direction in which the base 400 separates from the tubular work 2 (the direction of the arrow X1), and the base 400 is moved toward the shaft end 20 of the tubular work 2. May be loosened. For this reason, if the liquid pressure in the hollow chamber 21 of the tubular work 2 increases, there is a possibility that the forming of the tubular work 2 may be hindered.
[0007]
The present invention has been made in view of the above-described circumstances, and it is possible to suppress the shaft end of a tubular workpiece from being excessively drawn toward a central region in the axial direction of the workpiece during hydraulic forming. It is an object of the present invention to provide a hydraulic molding method capable of favorably performing molding, and a work terminal support structure used for hydraulic molding.
[0008]
[Means for Solving the Problems]
(1) A hydraulic forming method according to the present invention is directed to a hydraulic forming method for forming a tubular workpiece by applying a hydraulic pressure to a hollow chamber of the tubular workpiece.
The tubular work has a pressure receiving surface facing the hollow chamber and a constraining surface facing the inner wall surface of the shaft end of the tubular work, and receives the pressure received by the pressure receiving surface in a radially outward direction of the tubular work. Using a pressure-receiving direction change transmission means that changes direction and transmits as a force along,
The receiving pressure direction change transmission means is disposed on the inner wall surface side of the shaft end of the tubular work,
During the forming of the tubular work, the liquid pressure in the hollow chamber of the tubular work is received by the pressure receiving surface of the pressure receiving direction change transmission unit, and the pressure received by the pressure receiving surface is reduced by the diameter of the tubular work. The direction is changed as a force along the outward direction, and the constraining surface of the pressure receiving direction change transmitting means is pressed against the inner wall surface of the shaft end of the tubular work along the radially outward direction of the tubular work. The present invention is characterized in that the restricting property of the shaft end of the tubular work is enhanced.
[0009]
ADVANTAGE OF THE INVENTION According to the hydraulic forming method which concerns on this invention, at the time of shaping | molding a tubular workpiece, the hydraulic pressure of the hollow chamber of a tubular workpiece is received by the pressure receiving surface of the pressure receiving direction change transmission means. The direction of the pressure received by the pressure receiving surface is changed along the radial direction of the tubular work, and the restraining surface of the pressure receiving direction change transmission means is formed on the inner wall surface of the shaft end of the tubular work in the radial direction of the tubular work. Pressurized along. Thereby, the constraint of the shaft end of the tubular work is enhanced, and excessive pulling of the shaft end of the tubular work is suppressed.
[0010]
(2) The work terminal supporting structure used for hydraulic forming according to the present invention is disposed on the inner wall surface side of the shaft end of the tubular work, and receives a hydraulic pressure in the hollow chamber of the tubular work; A pressure-receiving body having an outer inclined surface having a taper whose diameter decreases as it goes toward the shaft tip in the axial direction of the work,
An inner side which is disposed on the inner peripheral surface side of the shaft end of the tubular work, engages with the outer inclined surface of the pressure receiving body, and has a taper whose diameter decreases toward an axial front end of the tubular work in the axial direction. A work restraint body having an inclined surface and a restraint surface that faces the inner wall surface of the shaft end of the tubular work and presses and restrains the inner wall surface of the shaft end of the tubular work in a radially outward direction. And characterized in that:
[0011]
According to the work terminal support structure used in the hydraulic forming according to the present invention, in forming the tubular work, the pressure in the hollow chamber of the tubular work is received by the pressure receiving surface of the pressure receiving body. It is urged toward the shaft tip of the tubular workpiece. Since the outer inclined surface of the pressure receiver engages with the inner inclined surface of the work restraint, the pressure applied by the pressure receiver to the hydraulic pressure by the so-called wedge principle causes the restraining surface of the work restraint to move outside the diameter of the tubular workpiece. The direction is changed as a force for urging along the direction. As a result, the restraining surface of the work restraint presses the inner wall surface at the axial end of the tubular work along the radially outward direction of the tubular work. Thereby, the constraint of the shaft end of the tubular work is enhanced, and excessive pulling of the shaft end of the tubular work is suppressed.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the present invention, the pressure-receiving direction change transmitting means has a pressure-receiving surface facing the hollow chamber of the tubular work and a restraining surface facing the inner wall surface of the shaft end of the tubular work. The received pressure is changed in direction as the force along the radial direction of the tubular workpiece and transmitted. The pressure receiving direction change transmission means can be formed by a plurality of components. For example, the pressure receiving direction change transmitting means includes a pressure receiving body having a pressure receiving surface for receiving the liquid pressure in the hollow chamber of the tubular work, and a work restraining surface having a restraining surface for pressing and restraining the inner wall surface of the shaft end of the work. It can be formed with the body.
[0013]
According to the present invention, preferably, a form in which a regulating member for regulating movement of the work restricting body toward the shaft tip of the tubular work can be adopted. In this case, the movement of the work restricting member toward the shaft tip of the tubular work is restricted by the restricting member. For this reason, the work restraint is satisfactorily urged along the radial direction of the tubular work, and thus the restraining surface of the work restraint is satisfactorily placed on the inner wall surface of the shaft end of the tubular work along the radial direction of the tubular work. It can be pressurized.
[0014]
According to the present invention, preferably, the outer inclined surface of the pressure receiving member is formed in a circumferential direction around the axis of the pressure receiving member, and the inner inclined surface of the work restraint is preferably formed around the axis of the work restricting member. The form formed in the direction can be adopted. As a result, the work restraint is satisfactorily urged along the radially outward direction of the tubular work, and thus the restraining surface of the work restraint is favorably placed on the inner wall surface of the shaft end of the tubular work along the radially outward direction of the tubular work. It can be pressurized.
[0015]
According to the present invention, preferably, the work restraining body is formed of a plurality of divided bodies in the circumferential direction of the work restraining body, and each divided body adopts a form having an inner inclined surface and a restraining surface. it can. Since each divided body is divided in the circumferential direction, it can operate independently of each other along the radially outward direction. Therefore, even when the roundness of the cross-sectional shape of the tubular workpiece is low, or even when it is not a perfect circular shape, each of the divided bodies constituting the work restraint is independently formed along the radial direction. It can be urged, whereby the restraining surface of the divided body constituting the work restraining body can be satisfactorily pressed against the inner wall surface of the shaft end of the tubular work along the radially outward direction of the tubular work.
[0016]
According to the present invention, preferably, a form in which a stretchable cord is attached to each of the divided bodies of the work restraining body and the divided bodies are connected to each other by the cord can be adopted. Thereby, separation of each divided body is suppressed, and the divided bodies are suitable for storage and attachment. Examples of the cord body include a rubber ring, a stretchable rope, and a stretchable wire.
[0017]
According to the present invention, preferably, the restraint surface of the work restraint body may have a form having an engagement degree increasing portion for increasing the engagement with the inner wall surface of the shaft end of the tubular work. Thereby, the retraction of the shaft end of the tubular work is further suppressed. At least one of a concave and a convex can be adopted as the engagement degree increasing portion. Examples of the engagement degree increasing portion include a mode in which the engagement portion is engaged with the inner wall surface of the shaft end of the tubular work.
[0018]
According to the present invention, the work restraint can be formed of a metal material or a ceramic material. In some cases, the work restraint can be formed of an elastically deformable material based on rubber or resin.
[0019]
【Example】
Hereinafter, a first embodiment of the present invention will be specifically described with reference to FIGS. This embodiment is applied to a case where bending forming, that is, bend forming is performed on a metal tubular workpiece 2. Prebend molding is a type of hydraulic molding, similar to hydroform molding. The prebend molding is performed prior to the hydroform molding in which the peripheral wall 2a of the tubular work 2 is expanded by applying a hydraulic pressure to the hollow chamber 21 of the tubular work 2. In the pre-bend molding, the tubular workpiece 2 is placed in a molding cavity 13 formed by the first mold surface 15 of the first mold 11 of the mold 1 and the second mold surface 16 of the second mold 12. This is performed by bending an intermediate portion (not shown) of the work 2 in the axial length direction.
[0020]
First, the device will be described for convenience of description. According to the present embodiment, as shown in FIG. 1, the pressure receiving body 3 and the work restraining body 4 are provided. The pressure receiving body 3 and the work restraining body 4 constitute a pressure receiving direction change transmission unit that converts the pressure received by the pressure receiving body 3 as a force along the radial direction. The pressure receiving member 3 is formed of a metal material or a ceramic material, and is set in the molding cavity 13 of the molding die 1 so as to be disposed on the inner wall surface 20i side of the shaft end portion 20 of the tubular workpiece 2.
[0021]
The pressure receiving member 3 is disposed on the inner wall surface 20i side of the shaft end portion 20 of the tubular work 2, and controls the pressure P of the pressure liquid L (water or oil) supplied to the hollow chamber 21 of the tubular work 2. It receives pressure. The pressure receiving body 3 is opposed to the hollow chamber 21 of the tubular workpiece 2 and has a relatively large outer diameter. A large-diameter section 30 is formed on the side of the tubular workpiece 2 opposite to the hollow chamber 21 and is larger than the large-diameter section 30. The small diameter portion 32 has a relatively small outer diameter.
[0022]
The distal end of the large-diameter portion 30 of the pressure receiving body 3 is a pressure receiving surface 34 that faces the hollow chamber 21 of the tubular workpiece 2 and receives the hydraulic pressure P in the hollow chamber 21. The pressure receiving surface 34 extends along a direction perpendicular to the axis of the pressure receiving body 3. A ring 34 is formed on the outer edge of the pressure-receiving surface 34 such that a diameter-reduced surface 34c whose diameter decreases toward the hollow chamber 21 of the tubular workpiece 2 makes a round around the axis of the pressure-receiving body 3 as a part of the pressure-receiving surface 34. It is formed in a shape. When the hydraulic pressure P in the hollow chamber 21 of the tubular workpiece 2 acts on the reduced-diameter surface 34c of the pressure receiving body 3, a force in the centripetal direction acts on the pressure receiving body 3, so that the centering action of the pressure receiving body 3 is expected. it can.
[0023]
FIG. 2 shows a side surface of the pressure receiver 3. As shown in FIG. 2, the small diameter portion 32 of the pressure receiving body 3 has the same diameter in the axial direction of the pressure receiving body 3. An outer inclined surface 33 is formed between the large diameter portion 30 and the small diameter portion 32 of the pressure receiving body 3. As shown in FIG. 1, the outer inclined surface 33 has a conical surface shape having a straight taper whose diameter decreases toward the axial end 2 e of the tubular workpiece 2 in the axial direction. In addition, a passage 35 communicating with the hollow chamber 21 of the tubular workpiece 2 is formed in the pressure receiving body 3, and a projection 36 projecting in a direction opposite to the hollow chamber 21 of the tubular workpiece 2 is connected to the pressure receiving body 3.
[0024]
As shown in FIG. 1, the work restricting body 4 is formed using a metal material or a ceramic material as a base material, is disposed on the inner wall surface 20i side of the shaft end portion 20 of the tubular work 2, and fixes the peripheral wall 2 a of the tubular work 2. It is for restraint. The work restraining body 4 includes an inner inclined surface 41 facing the outer inclined surface 33 of the pressure receiving body 3, a restraining surface 42 formed on the outer peripheral surface, a first shaft end surface 43 facing the large diameter portion 30, and a tubular workpiece. And a second shaft end face 44 located on the opposite side of the second hollow chamber 21. The inner inclined surface 41 of the work restricting body 4 is engaged with the outer inclined surface 33 of the pressure receiving body 3 and has a taper whose diameter decreases toward the axial end 2 e of the tubular work 2 in the axial direction. The inner inclined surface 41 of the work restricting body 4 has basically the same taper angle as the outer inclined surface 33 of the pressure receiving body 3. The restraining surface 42 of the work restraint 4 faces the inner wall surface 20i of the shaft end 20 of the tubular work 2, and extends along the axis of the work restraint 4. The constraining surface 42 is for pressing and constraining the inner wall surface 20i of the shaft end 20 of the tubular workpiece 2 along the radially outward direction (the direction of the arrow Y1).
[0025]
According to the present embodiment, as shown in FIG. 1, the regulating member 5 that regulates the movement of the work restricting body 4 toward the shaft tip 2 e of the tubular work 2 (the direction of the arrow X <b> 1) is provided. The regulating member 5 is inserted between the first molding die 11 (upper die) and the second molding die 12 (lower die). The regulating member 5 has an insertion tip 51 inserted into the shaft end opening 20r of the shaft end 20 of the tubular workpiece 2, and a hollow portion 52 formed in the center region and extending in the axial direction. The insertion distal end portion 51 has a guide hole 53 having a guide wall surface 53 a for guiding and sliding the small-diameter portion 32 of the pressure receiving body 3, and a distal end regulating surface 54 facing the second shaft end surface 44 of the work restricting body 4. . The tip regulating surface 54 has a ring shape, and extends along a direction perpendicular to the axis of the work restricting body 4. The guide wall surface 53a extends along the axial direction of the work restricting body 4. In a state where the second shaft end surface 44 of the work restricting member 4 is in contact with the ring-shaped tip restricting surface 54 of the restricting member 5, the work restricting member 4 cannot further retreat toward the restricting member 5 (in the direction of the arrow X <b> 1). Therefore, the operation is performed in the radially outward direction (the direction of the arrow Y1).
[0026]
As shown in FIG. 1, a spring member 38 and a protrusion 36 are provided in the hollow portion 52 of the regulating member 5. The spring member 38 urges the pressure receiver 3 toward the hollow chamber 21 of the tubular member 2 (in the direction of the arrow X2) via the seat 36c of the projection 36 to set the pressure receiver 3 at its original position. It is.
[0027]
FIG. 3 shows a front view of the work restraint 4. As shown in FIG. 3, the work restraint 4 is formed of a plurality of (six) divided bodies 46 in the circumferential direction of the work restraint 4. The divided body 46 is basically shaped like a fan. Each of the divided bodies 46 has an inner inclined surface 41 and a restraining surface 42, respectively, and has a radially divided surface 47. In a normal state, the divided surfaces 47 of the adjacent divided bodies 46 constituting the work restricting body 4 are attracted by the elastic contracting force of the below-described cord 49, and are in contact with each other or approach each other. ing. However, when a force in the radially outward direction (direction of arrow Y1) acts on each of the divided bodies 46, each of the divided bodies 46 operates in the radially outward direction (direction of arrow Y1). Are separated from each other against the elastic contraction force of the cord body 49.
[0028]
FIG. 4 shows a cross-sectional view of the work restraint 4. As shown in FIGS. 4 and 3, a ring groove 49 a extending in the circumferential direction is formed on the constraint surface 42, which is the outer peripheral surface of the work constraint body 4. In the ring groove 49a, a rope-shaped cord 49 made of a ring-shaped elastic material such as elastic rubber or resin as a base material is wound and attached. The divided bodies 46 are connected to each other and integrated by the elastic contracting force of the cord body 49, and are not separated from each other during storage or mounting.
[0029]
According to the present embodiment, as shown in FIG. 1, a ring-shaped first seal groove 61c is formed on the outer peripheral surface of the large diameter portion 30 of the pressure receiving member 3, and the ring-shaped first seal groove 61c is formed in the first seal groove 61c. The first seal member 61 is provided. A ring-shaped second seal groove 62c is formed on the outer peripheral surface of the small-diameter portion 32 of the pressure receiving member 3, and a ring-shaped second seal member 62 is provided in the second seal groove 62c. The first seal member 61 and the second seal member 62 are arranged before and after the work restrictor 4 in the axial direction of the work restrictor 4. As a result, the first and second seal members 61 and 62 seal the front and rear of the work restrictor 4 in the axial direction of the work restrictor 4. Therefore, the flow of the pressure liquid L in the hollow chamber 21 of the tubular workpiece 2 toward the workpiece constraint 4 is suppressed.
[0030]
Next, the case of performing hydraulic forming will be described. First, as shown in FIG. 1, the tubular workpiece 2 is set in the molding cavities 13 of the first molding tool 11 and the second molding tool 12 of the molding tool 1. The pressure receiving body 3 and the work restricting body 4 are arranged on the wall surface 20i side. In this case, the structure shown in FIG. 1 may be employed only at one axial end 20 of the tubular workpiece 2 in the axial direction, or may be employed at both axial ends 20 of the tubular workpiece 2 in the axial direction. It may be. In the former case, a general plug member is attached to the other shaft end 20 in the axial direction of the tubular workpiece 2.
[0031]
With the pressure receiving member 3 and the work restricting member 4 attached to the inner wall surface 20i side of the shaft end portion 20 in the axial direction of the tubular work 2 as described above, the pressure liquid L (water) is supplied from the liquid supply source 7 (pump or the like). Or the like) is supplied to the hollow chamber 21 of the tubular workpiece 2 through the cavity 52 of the regulating member 5 and the passage 35 of the pressure receiving body 3. In this case, it is preferable to deaerate the air in the hollow chamber 21 of the tubular workpiece 2. With the hollow chamber 21 of the tubular workpiece 2 kept at the predetermined hydraulic pressure P in this manner, the tubular workpiece 2 is subjected to bending. At this time, the axial end portion 20 of the tubular work 2 is not drawn in the direction of the arrow X2 toward the central region of the tubular work 2 in the axial direction.
[0032]
In this respect, according to the present embodiment, the pressure receiving surface 3 of the pressure receiving member 3 receives the hydraulic pressure P in the hollow chamber 21 of the tubular workpiece 2, so that the pressure receiving member 3 has a tubular shape against the elastic force of the spring member 38. The work 2 is displaced by being urged toward the shaft tip 2e (in the direction of arrow X1). In this case, the small diameter portion 32 of the pressure receiving body 3 is displaced in the direction of the arrow X1 along the guide wall surface 53a of the guide hole 53. Here, since the outer inclined surface 33 of the pressure receiver 3 is engaged with the inner inclined surface 41 of the work restraining member 4, the pressure receiving surface 34 of the pressure receiver 3 receives the hydraulic pressure P of the hollow chamber 21 of the tubular workpiece 2. The received pressure is changed in direction as a force for urging the constraining surface 42 of the work restricting body 4 in a radially outward direction of the tubular work 2 (direction of the arrow Y1) according to a so-called wedge principle. Therefore, the restraining surface 42 of the work restraining body 4 is pressed in a radially outward direction of the tubular workpiece 2 (the direction of the arrow Y1). As a result, the restraining property of the shaft end 20 of the tubular work 2 is enhanced, and excessive pulling of the shaft end 20 of the tubular work 2 in the direction of arrow X2 is suppressed. As the liquid in the hollow chamber 21 of the tubular workpiece 2 increases, the pressure received by the pressure receiving surface 34 of the pressure receiving body 3 increases, so that the restraining force by the restraining surface 42 increases, and the shaft end 20 of the tubular workpiece 2 Restraint is enhanced.
[0033]
According to the present embodiment, during molding, as described above, excessive retraction of the shaft end 20 of the tubular workpiece 2 can be suppressed, and even if the retraction is performed, it can be suppressed to a constant amount. Can be suppressed, and the hydraulic forming of the tubular workpiece 2 can be favorably performed. According to the present embodiment, the restraining force of the restraint surface 42 of the work restraint 4 can be adjusted by the taper angle of the outer inclined surface 33 of the pressure receiving body 3 and the inner slope 41 of the work restraint 4.
[0034]
Although the tubular workpiece 2 which is an industrial product is in the shape of a pipe, there is a limit to improving the roundness of the cross-sectional shape with high accuracy. In this regard, according to the present embodiment, as described above, the work restricting body 4 is formed by the divided bodies 46 divided into a plurality in the circumferential direction of the work restricting body 4, and is independent of each other in the radially outward direction ( (Along arrow Y1). Therefore, even when the roundness of the cross-sectional shape of the tubular work 2 is low, each of the divided bodies 46 can be independently urged along the radially outward direction, thereby constituting the work restraining body 4. The constraining surface 42 of the divided body 46 can be satisfactorily pressed against the inner wall surface 20i of the shaft end 20 of the tubular work 2 along the radially outward direction of the tubular work 2 (the direction of the arrow Y1). The restraint of the end 20 can be ensured.
[0035]
According to this embodiment, the pressure liquid L also flows into the guide hole 53 of the regulating member 5. The pressure liquid L flowing into the guide hole 53 may act on the small-diameter end surface 32k of the small-diameter portion 32 of the pressure receiving body 3 to generate a force directed in the direction of the arrow X2. In this regard, according to the present embodiment, if the pressure receiving area of the pressure receiving surface 34 of the large diameter portion 30 of the pressure receiving member 3 is S1, and the pressure receiving area of the small diameter end surface 32k of the small diameter portion 32 of the pressure receiving member 3 is S2, S1 is S2 It is set to be much larger than (S1> S2). For this reason, even if the pressure liquid L flows into the guide hole 53 of the regulating member 5, the pressure receiver 3 can be favorably moved toward the work restricting member 4 (in the direction of the arrow X <b> 1).
[0036]
According to the present embodiment, as the restraining force by the restraining surface 42 of the work restraining body 4, the pressure receiving area S1 of the pressure receiving surface 34 of the large diameter portion 30 of the pressure receiving member 3 and the pressure receiving area S2 of the small diameter end surface 32k of the small diameter portion 32 are used. It can also be adjusted by changing the ratio.
[0037]
According to the present embodiment, as shown in FIG. 1, the first seal member 61 and the second seal member 62 are provided before and after the work restricting body 4, and the work restricting body 4 extends in the axial direction. The front and rear sides of the restricting body 4 are sealed by a first seal member 61 and a second seal member 62. Therefore, the flow of the pressure liquid L in the hollow chamber 21 and the guide hole 53 of the tubular work 2 toward the work restricting body 4 is suppressed. Therefore, it is ensured that the divided body 46 of the work restricting body 4 moves outward in the radial direction (the direction of the arrow Y1). Consequently, good restraint of the shaft end 20 of the tubular workpiece 2 is ensured.
[0038]
Further, according to the present embodiment, since the regulating member 5 for regulating the movement of the work restricting member 4 toward the shaft tip 2e of the tubular work 2 is provided, the work restricting member 4 is moved to the axial end of the tubular work 2. The movement toward 2e (in the direction of arrow X1) is restricted by the restriction member 5. Therefore, when the pressure receiving body 3 is displaced in the direction of the arrow X1, the work restraining body 4 is urged satisfactorily along the radially outward direction of the tubular work 2 (the direction of the arrow Y1), and the restraining surface 42 of the work restraining body 4 is thus tubular. The inner wall surface 20i of the shaft end 20 of the work 2 can be satisfactorily pressed along the radially outward direction of the tubular work 2 (the direction of the arrow Y1).
[0039]
Further, according to the present embodiment, a stretchable cord 49 is wound around each of the divided bodies 46 of the work restraining body 4, and the divided bodies 46 are connected to each other by the cord 49. Thereby, detachment of each divided body 46 is suppressed, and the divided body 46 is suitable for storage and attachment.
[0040]
(Second embodiment)
FIG. 5 shows a second embodiment of the present invention. This embodiment has basically the same configuration as the above-described first embodiment, and basically has the same operation and effect. Hereinafter, a description will be given focusing on portions different from the first embodiment. According to the present embodiment, the engagement surface increasing portion 64 that increases the engagement with the inner wall surface 20i of the shaft end portion 20 of the tubular workpiece 2 is formed on the constraint surface 42 that is the outer peripheral surface of the workpiece constraint body 4. ing. The engagement degree increasing portion 64 is formed by an uneven portion. The concave and convex portions extend along the circumferential direction of the constraint surface 42 of the work constraint body 4. Therefore, when the restraining surface 42 of the work restraining body 4 is pressed in a radially outward direction (the direction of the arrow Y1) of the tubular work 2, the engagement degree increasing portion 64 engages with the inner wall surface 20 i of the shaft end 20 of the tubular work 2. Engaging performance is increased. For this reason, the restraining property of the shaft end 20 of the tubular work 2 is enhanced, and the drawing in of the shaft end 20 of the tubular work 2 is further suppressed.
[0041]
(Third embodiment)
FIG. 6 shows a third embodiment of the present invention. This embodiment has basically the same configuration as the above-described first embodiment, and basically has the same operation and effect. Hereinafter, a description will be given focusing on portions different from the first embodiment. According to the present embodiment, the engagement surface increasing portion 64 </ b> B that increases the engagement with the inner wall surface 20 i of the shaft end portion 20 of the tubular workpiece 2 is formed on the constraint surface 42 of the workpiece constraint body 4. The engagement degree increasing portion 64B is formed of a concave-convex portion having a convex portion with a sharp outer end. The concave and convex portions extend along the circumferential direction of the constraint surface 42 of the work constraint body 4. When the restraining surface 42 of the work restraining body 4 is pressed in a radially outward direction (the direction of the arrow Y1) of the tubular work 2, the engagement degree increasing portion 64B engages with the inner wall surface 20i of the shaft end 20 of the tubular work 2. Since the compatibility is enhanced, the restraining property of the shaft end 20 of the tubular work 2 is enhanced, and the drawing in of the shaft end 20 of the tubular work 2 is further suppressed. Even if the drawing-in occurs, even if the drawing-in occurs, it can be suppressed to a constant amount, so that the variation in the drawing-in amount can be suppressed, and the tubular workpiece 2 can be formed favorably.
[0042]
(Fourth embodiment)
FIG. 7 shows a fourth embodiment of the present invention. This embodiment has basically the same configuration as the above-described first embodiment, and basically has the same operation and effect. Hereinafter, a description will be given focusing on portions different from the first embodiment. According to the present embodiment, the cross section of the tubular workpiece 2B is not a perfect circle but an ellipse. Therefore, the front shape of the work restricting body 4B arranged on the inner wall surface 20i side of the shaft end portion 20 of the tubular work 2B is also an oval shape corresponding to the tubular work 2B.
[0043]
Also in the present embodiment, the work restricting body 4B is formed by a divided body 46B divided into a plurality in the circumferential direction of the work restricting body 4B. Each of the divided bodies 46B can move along the radial direction independently of each other. Therefore, since each of the divided bodies 46B constituting the work restricting body 4B can be independently biased in the radially outward direction, even when the cross-sectional shape of the tubular work 2B is an elliptical shape, The constraining surface 42 of the divided body 46B can be satisfactorily pressed against the inner wall surface 20i of the shaft end 20 of the tubular work 2B, and the restraint of the shaft end 20 of the tubular work 2B can be ensured.
[0044]
(Fifth embodiment)
FIG. 8 shows a fifth embodiment of the present invention. This embodiment has basically the same configuration as the above-described first embodiment, and basically has the same operation and effect. Hereinafter, a description will be given focusing on portions different from the first embodiment. According to the present embodiment, the cross section of the tubular workpiece 2C has a square shape. Therefore, the front shape of the work restricting body 4C disposed on the inner wall surface 20i side of the shaft end portion 20 of the tubular work 2C is also a square shape corresponding to the tubular work 2C.
[0045]
Also in the present embodiment, the work restricting body 4C is formed of a plurality of divided bodies 46C divided in the circumferential direction of the work restricting body 4C, and can move independently of each other along the radial direction. Therefore, since each of the divided bodies 46C constituting the work restricting body 4C can be independently urged in the radially outward direction, even when the cross-sectional shape of the tubular work 2C is a quadrangular shape, each divided body 46C is divided into squares. The restraining surface 42 of the body 46C can be satisfactorily pressed against the inner wall surface 20i of the shaft end 20 of the tubular work 2C, and the restraint of the shaft end 20 of the tubular work 2C can be ensured.
[0046]
(Sixth embodiment)
FIG. 9 shows a sixth embodiment of the present invention. This embodiment has basically the same configuration as the above-described first embodiment, and basically has the same operation and effect. Hereinafter, a description will be given focusing on portions different from the first embodiment. According to the present embodiment, the work restricting body 4D is integrally formed in a ring shape using rubber or resin as a base material, and is continuous so as to make one round in the circumferential direction. The work restraining body 4D has an inner inclined surface 41 and a restraining surface 42, and has a first shaft end surface 43 and a second shaft end surface 44. Since the work restraining body 4D is formed integrally and is continuous in the circumferential direction, unlike the first embodiment, there is no need to integrate the work restraining body 4 with the ring-shaped cable body 49. Therefore, the cable body 49 is provided. Absent.
[0047]
Also in this embodiment, when the pressure receiving body 3 and the work restraining body 4D are attached to the inner wall surface 20i side of the shaft end portion 20 in the axial direction of the tubular work 2, the liquid supply source 7 supplies the pressurized liquid L (water or oil). ) Is supplied to the hollow chamber 21 of the tubular workpiece 2 through the hollow portion 52 of the regulating member 5 and the passage 35 of the pressure receiving body 3. With the hollow chamber 21 of the tubular workpiece 2 kept at the predetermined hydraulic pressure P in this manner, the tubular workpiece 2 is subjected to bending. At this time, the axial end portion 20 of the tubular work 2 is not drawn in the direction of the arrow X2 toward the central region of the tubular work 2 in the axial direction.
[0048]
In this respect, according to the present embodiment, the pressure receiving surface 34 of the pressure receiving body 3 receives the hydraulic pressure P in the hollow chamber 21 of the tubular workpiece 2 as in the first embodiment, so that it opposes the elastic force of the spring member 38. Then, the pressure receiving body 3 is urged toward the shaft tip 2e of the tubular workpiece 2 (in the direction of the arrow X1) to be displaced. As in the first embodiment, the small diameter portion 32 of the pressure receiving body 3 is displaced along the guide wall surface 53 a of the guide hole 53. Here, since the outer inclined surface 33 of the pressure receiver 3 is engaged with the inner inclined surface 41 of the work restraining member 4D, the pressure receiving surface 34 of the pressure receiver 3 receives the hydraulic pressure P of the hollow chamber 21 of the tubular workpiece 2. The direction of the received pressure is changed as a force for urging the constraining surface 42 of the work restricting body 4D in the radially outward direction of the tubular work 2 (the direction of the arrow Y1) by the so-called wedge principle. For this reason, the constraint surface 42 of the workpiece constraint body 4D presses the inner wall surface 20i of the shaft end 20 of the tubular workpiece 2 along the radial direction (the direction of the arrow Y1) of the tubular workpiece 2.
[0049]
As a result, the restraining property of the shaft end 20 of the tubular work 2 is enhanced, and excessive pulling of the shaft end 20 of the tubular work 2 in the direction of arrow X2 is suppressed. Even if the drawing-in occurs, even if the drawing-in occurs, it can be suppressed to a constant amount, so that the variation in the drawing-in amount can be suppressed, and the tubular workpiece 2 can be formed favorably.
[0050]
The more the liquid in the hollow chamber 21 of the tubular workpiece 2 increases, the more the pressure received on the pressure receiving surface 34 of the pressure receiving body 3 increases, so that the constraint on the shaft end 20 of the tubular workpiece 2 is enhanced.
[0051]
According to the present embodiment, since the work restraint 4D is formed using rubber or resin as a base material, when the inner inclined surface 41 of the work restraint 4D is pressed by the outer inclined surface 33 of the pressure receiving body 3, Since the work restraint 4D can be elastically deformed in a radially outward direction (direction of arrow Y1), at least one of the first seal member 61 and the second seal member 62 used in the first embodiment may be omitted.
[0052]
(Seventh embodiment)
FIG. 10 shows a seventh embodiment of the present invention. This embodiment has basically the same configuration as the above-described first embodiment, and basically has the same operation and effect. Hereinafter, a description will be given focusing on portions different from the first embodiment. This embodiment is applied to hydroform molding in which the peripheral wall 2a of the tubular work 2 is expanded and formed by the liquid of the pressure liquid L supplied to the hollow chamber 21 of the tubular work 2. The first mold 11E has a first mold surface 15E to which the peripheral wall 2a of the expanded tubular work 2 is in close contact, and the second molding die 12E is a second mold surface to which the peripheral wall 2a of the expandable tubular work 2 is in close contact. It has a type 2 surface 16E.
[0053]
Also in this embodiment, when the pressure receiving body 3E and the work restraining body 4E are attached to the inner wall surface 20i side of the shaft end portion 20 in the axial direction of the tubular work 2, the liquid supply source 7 supplies the pressurized liquid L (water or oil). ) Is supplied to the hollow chamber 21 of the tubular workpiece 2 through the cavity 52 of the regulating member 5 and the passage 35 of the pressure receiving body 3E. By increasing the hydraulic pressure P in the hollow chamber 21 of the tubular workpiece 2 in this way, the peripheral wall 2a of the tubular workpiece 2 is plastically deformed in the expanding direction (the direction of the arrow Y3), and the first mold surface 15E and the second mold Hydroform molding is performed by closely contacting the surface 16E. At this time, the regulating member 5 is moved toward the intermediate region of the tubular workpiece 2 in the axial direction (in the direction of the arrow X2), and hydroforming is performed while pressing the shaft end 20 of the tubular workpiece 2 in the same direction.
[0054]
Also in the present embodiment, since the pressure receiving surface 34 of the pressure receiving body 3E receives the hydraulic pressure P of the hollow chamber 21 of the tubular workpiece 2, the pressure receiving body 3E is pressed against the elastic force of the spring member 38. It is urged toward the shaft tip 2e (in the direction of arrow X1) and displaced. The small diameter portion 32 of the pressure receiving body 3E is displaced along the guide wall surface 53a of the guide hole 53. Here, since the outer inclined surface 33 of the pressure receiving member 3E is engaged with the inner inclined surface 41 of the work restraining member 4E, the pressure receiving surface 34 of the pressure receiving member 3E receives the hydraulic pressure P of the hollow chamber 21 of the tubular workpiece 2. The direction of the received pressure is changed as a force for urging the restraining surface 42 of the work restraining body 4E in a radially outward direction of the tubular work 2 (direction of the arrow Y1) by a so-called wedge principle. Therefore, the restraint surface 42 of the work restraint 4E is pressed in the radial direction of the tubular work 2, that is, in the direction of arrow Y1. As a result, the restraining property of the shaft end 20 of the tubular work 2 is enhanced, and excessive pulling of the shaft end 20 of the tubular work 2 in the direction of arrow X2 is suppressed. As the liquid in the hollow chamber 21 of the tubular workpiece 2 increases, the pressure received on the pressure receiving surface 34 of the pressure receiving body 3E increases, so that the constraint on the shaft end 20 of the tubular workpiece 2 is enhanced.
[0055]
(Other)
The work restraint 4 is divided into six pieces in the circumferential direction of the work restraint 4, but is not limited thereto, and the number of divisions is two, three, four, five, seven, eight, or It may be divided further. Although the divided body 46 according to the first embodiment is formed of a metal material or a ceramic material, it is not limited thereto, and may be formed of a hard rubber or a hard resin. In addition, the present invention is not limited to only the above-described embodiments, and can be implemented with appropriate modifications without departing from the gist.
[0056]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent the shaft end of the tubular work from being excessively drawn toward the central region in the axial direction of the work during the hydroforming, and the drawing is performed. Provided is a hydraulic forming method capable of suppressing the variation of the drawing-in amount even if it occurs even if it occurs, suppressing the variation of the drawn-in amount, and favorably forming the tubular work, and a work terminal supporting structure used for the hydraulic forming. can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a work terminal supporting structure used for hydroforming according to a first embodiment.
FIG. 2 is a side view of the pressure receiving member according to the first embodiment with a first seal member and a second seal member removed.
FIG. 3 is a front view of a work restraint body according to the first embodiment.
FIG. 4 is a cross-sectional view of the work restraint according to the first embodiment, as viewed from the direction of arrows along line IV-IV in FIG. 3;
FIG. 5 is a sectional view of a work restraint body according to a second embodiment.
FIG. 6 is a sectional view of a work restraint body according to a third embodiment.
FIG. 7A is a front view of a tubular workpiece according to the fourth embodiment, and FIG. 7B is a cross-sectional view showing a part of a work terminal supporting structure used for hydroforming according to the fourth embodiment. is there.
FIG. 8 is a front view of a tubular workpiece according to a fifth embodiment.
FIG. 9 is a cross-sectional view showing a work terminal supporting structure used for hydroforming according to a sixth embodiment.
FIG. 10 is a sectional view showing a work terminal support structure used for hydraulic forming according to a seventh embodiment.
FIG. 11 is a cross-sectional view showing a work terminal support structure used for hydroforming according to the related art.
FIG. 12 is a cross-sectional view showing a work terminal supporting structure used for hydroforming according to the related art.
[Explanation of symbols]
In the figure, 1 is a molding die, 2 is a tubular workpiece, 20 is a shaft end, 21 is a hollow chamber, 3 is a pressure receiving body (pressure receiving direction conversion transmitting means), 33 is an outer inclined surface, 34 is a pressure receiving surface, and 4 is a pressure receiving surface. Reference numeral 41 denotes an inner inclined surface, reference numeral 42 denotes a restricting surface, reference numeral 46 denotes a divided body, reference numeral 49 denotes a cord, reference numeral 5 denotes a regulating member, and reference numerals 64 and 64B denote engagement degree increasing portions.

Claims (8)

管状ワークの中空室に液圧を作用させて前記管状ワークの成形を行う液圧成形方法において、
前記管状ワークの前記中空室に対向する受圧面と前記管状ワークの軸端部の内壁面に対向する拘束面とを有すると共に、前記受圧面が受圧した受圧力を前記管状ワークの径外方向に沿った力として方向変換させて伝達させる受圧力方向変換伝達手段を用い、
前記受圧力方向変換伝達手段を前記管状ワークの前記軸端部の内壁面側に配置し、
前記管状ワークの成形の際に、前記管状ワークの前記中空室の液圧を前記受圧力方向変換伝達手段の前記受圧面で受圧すると共に、前記受圧面が受圧した受圧力を前記管状ワークの径外方向に沿った力として方向変換させ、前記受圧力方向変換伝達手段の前記拘束面を前記管状ワークの前記軸端部の内壁面に前記管状ワークの径外方向に沿って加圧させて前記管状ワークの前記軸端部の拘束性を高めることを特徴とする液圧成形方法。
In a hydraulic forming method of forming the tubular work by applying a hydraulic pressure to the hollow chamber of the tubular work,
The tubular work has a pressure receiving surface facing the hollow chamber and a constraining surface facing the inner wall surface of the shaft end of the tubular work, and receives the pressure received by the pressure receiving surface in a radially outward direction of the tubular work. Using a pressure-receiving direction change transmission means that changes direction and transmits as a force along,
The receiving pressure direction change transmission means is disposed on the inner wall surface side of the shaft end of the tubular work,
During the forming of the tubular work, the liquid pressure in the hollow chamber of the tubular work is received by the pressure receiving surface of the pressure receiving direction change transmission unit, and the pressure received by the pressure receiving surface is reduced by the diameter of the tubular work. The direction is changed as a force along the outward direction, and the constraining surface of the pressure receiving direction change transmission unit is pressed against the inner wall surface of the shaft end of the tubular work along the radially outward direction of the tubular work. A hydraulic forming method characterized by increasing the restraint of the shaft end of the tubular workpiece.
管状ワークの軸端部の内壁面側に配置され、前記管状ワークの中空室の液圧を受圧する受圧面と、前記管状ワークの軸長方向の軸先端に向かうにつれて縮径するテーパをもつ外側傾斜面とを有する受圧体と、
前記管状ワークの前記軸端部の内周面側に配置され、前記受圧体の前記外側傾斜面に係合すると共に前記管状ワークの軸長方向の軸先端に向かうにつれて縮径するテーパをもつ内側傾斜面と、前記管状ワークの前記軸端部の内壁面に対向すると共に前記管状ワークの前記軸端部の内壁面を径外方向に沿って加圧して拘束する拘束面とを有するワーク拘束体とを具備することを特徴とする液圧成形に用いるワーク端末支持構造。
A pressure-receiving surface that is disposed on the inner wall surface side of the shaft end of the tubular work and receives the hydraulic pressure in the hollow chamber of the tubular work, and an outer side that has a taper whose diameter decreases toward the axial end in the axial direction of the tubular work. A pressure receiving body having an inclined surface,
An inner side which is disposed on the inner peripheral surface side of the shaft end of the tubular work, engages with the outer inclined surface of the pressure receiving body, and has a taper whose diameter decreases toward an axial front end of the tubular work in the axial direction. A work restraint body having an inclined surface and a restraint surface that faces the inner wall surface of the shaft end of the tubular work and presses and restrains the inner wall surface of the shaft end of the tubular work in a radially outward direction. A work terminal supporting structure used for hydraulic forming, comprising:
請求項2において、前記ワーク拘束体が前記管状ワークの軸先端に向けて移動することを規制する規制部材が設けられていることを特徴とする液圧成形に用いるワーク端末支持構造。3. The work terminal supporting structure used in hydraulic forming according to claim 2, further comprising a regulating member that regulates movement of the work restricting body toward a shaft tip of the tubular work. 請求項2または請求項3において、前記受圧体の前記外側傾斜面は前記受圧体の軸芯の周りで周方向に形成されており、前記ワーク拘束体の前記内側傾斜面は前記ワーク拘束体の軸芯の周りで周方向に形成されていることを特徴とする液圧成形に用いるワーク端末支持構造。4. The pressure receiving body according to claim 2, wherein the outer inclined surface of the pressure receiving member is formed in a circumferential direction around an axis of the pressure receiving member, and the inner inclined surface of the work restraining member is formed of the work restraining member. A work terminal supporting structure used for hydraulic forming, which is formed in a circumferential direction around an axis. 請求項2〜請求項4のうちのいずれか一項において、前記ワーク拘束体は前記ワーク拘束体の周方向において複数個に分割された分割体で形成されており、
各前記分割体は前記内側傾斜面及び前記拘束面をそれぞれ有することを特徴とする液圧成形に用いるワーク端末支持構造。
In any one of Claims 2 to 4, the work restricting body is formed of a plurality of divided bodies in a circumferential direction of the work restricting body,
A work terminal supporting structure used for hydraulic forming, wherein each of the divided bodies has the inner inclined surface and the constraint surface, respectively.
請求項5において、前記ワーク拘束体の各前記分割体に伸縮可能な索条体が付設され、各前記分割体は前記索条体により互いに接続されていることを特徴とする液圧成形に用いるワーク端末支持構造。6. The hydraulic forming method according to claim 5, wherein a stretchable cord is attached to each of the divided bodies of the work restricting body, and the divided bodies are connected to each other by the cord. Work terminal support structure. 請求項2〜請求項6のうちのいずれか一項において、前記ワーク拘束体の前記拘束面は、前記管状ワークの前記軸端部の内壁面との係合性を増加させる係合度増加部を有することを特徴とする液圧成形に用いるワーク端末支持構造。In any one of Claims 2 to 6, the restraining surface of the work restraining body includes an engagement degree increasing portion that increases engagement with an inner wall surface of the shaft end of the tubular work. A work terminal support structure for use in hydraulic forming, comprising: 請求項2〜請求項7のうちのいずれか一項において、前記ワーク拘束体は金属材料、セラミックス材料、弾性変形可能な材料のうちのいずれか1種を基材として形成されていることを特徴とする液圧成形に用いるワーク端末支持構造。The work restraint according to any one of claims 2 to 7, wherein the work restraint is formed using any one of a metal material, a ceramic material, and an elastically deformable material as a base material. Work terminal support structure used for hydraulic forming.
JP2002277817A 2002-09-24 2002-09-24 Hydraulic forming method, work terminal support structure used for hydraulic forming Expired - Fee Related JP3848909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277817A JP3848909B2 (en) 2002-09-24 2002-09-24 Hydraulic forming method, work terminal support structure used for hydraulic forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277817A JP3848909B2 (en) 2002-09-24 2002-09-24 Hydraulic forming method, work terminal support structure used for hydraulic forming

Publications (2)

Publication Number Publication Date
JP2004114062A true JP2004114062A (en) 2004-04-15
JP3848909B2 JP3848909B2 (en) 2006-11-22

Family

ID=32273305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277817A Expired - Fee Related JP3848909B2 (en) 2002-09-24 2002-09-24 Hydraulic forming method, work terminal support structure used for hydraulic forming

Country Status (1)

Country Link
JP (1) JP3848909B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409966C (en) * 2005-07-15 2008-08-13 财团法人金属工业研究发展中心 Microregulated pipe hydraulic forming punch mechanism
KR101149731B1 (en) 2009-11-09 2012-06-08 주식회사 성우하이텍 Hydro-forming system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101972664B1 (en) * 2017-10-27 2019-04-25 부산대학교 산학협력단 Sealing unit and hydroforming apparatus comprising the same
KR102272249B1 (en) * 2020-05-07 2021-07-02 주식회사 와이디산업 Tube expanding device for capillary tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409966C (en) * 2005-07-15 2008-08-13 财团法人金属工业研究发展中心 Microregulated pipe hydraulic forming punch mechanism
KR101149731B1 (en) 2009-11-09 2012-06-08 주식회사 성우하이텍 Hydro-forming system

Also Published As

Publication number Publication date
JP3848909B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
EP0957306B1 (en) Apparatus for producing a tube joint
CN101012845B (en) Blind rivet
EP1235023B1 (en) Coupling assembly
KR100251261B1 (en) Common rail and method of manufacturing the same
US4751836A (en) Pipe end conditioner and method
KR100251259B1 (en) Method for improving fatigue strength due to repeated pressure at branch hole part in member for high pressure fluid, branch hole part of member, member for high pressure fluid with built-in slider having branch hole
CN103629289A (en) Tube provided with branch tube, shock absorber, and method for making them
US20060144109A1 (en) Method and device for connecting two components and an assembly of the components
EP1366318B1 (en) Coupling for connection of a tube or hose by pushing-in
JP2004114062A (en) Hydrostatic forming method and structure for supporting end of work used in hydrostatic forming
JP2007015639A (en) Pipe line connecting part and master cylinder using the same
JP2008232409A (en) Seal ring mounting method
EP1321704A3 (en) End fitting for tubular members and method of applying same
JP2018529914A (en) Hydraulic clamping device, system comprising such a device, and method of interconnecting hub and shaft
JPH10318081A (en) Common rail and its manufacture
JP2006122943A (en) Nozzle for hydraulic forming, and hydraulic forming apparatus
US5293679A (en) Method of connecting two pipes
EP1519088A3 (en) Plug for closing holes in pieces during deep drilling
JP4790136B2 (en) Hydroform sealing device for thin-walled steel pipes
JP4226937B2 (en) Lock device for locking shaft member and lock device for locking cylindrical member
JP3771890B2 (en) Fitting device
JP4791033B2 (en) Corrosion-proof core mounting tool
JP4050494B2 (en) Socket plug and socket
JP2006123016A (en) Positioning clamping device
JP2010094784A (en) Bearing hydraulic nut and rolling bearing unit using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees