JP2004113951A - Method and apparatus for separating ion-exchange resin - Google Patents

Method and apparatus for separating ion-exchange resin Download PDF

Info

Publication number
JP2004113951A
JP2004113951A JP2002281715A JP2002281715A JP2004113951A JP 2004113951 A JP2004113951 A JP 2004113951A JP 2002281715 A JP2002281715 A JP 2002281715A JP 2002281715 A JP2002281715 A JP 2002281715A JP 2004113951 A JP2004113951 A JP 2004113951A
Authority
JP
Japan
Prior art keywords
exchange resin
separation tower
ion
resin layer
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002281715A
Other languages
Japanese (ja)
Other versions
JP4058622B2 (en
Inventor
Yasuhide Yoshimori
吉森 安英
Susumu Fukue
福江 晋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002281715A priority Critical patent/JP4058622B2/en
Publication of JP2004113951A publication Critical patent/JP2004113951A/en
Application granted granted Critical
Publication of JP4058622B2 publication Critical patent/JP4058622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for separating an ion-exchange resin, whereby, in separating an ion-exchange resin containing suspended matters in a separation tower, the interface between an anion-exchange resin layer and a cation-exchange resin layer is correctly detected by excluding the influence of the suspended matters. <P>SOLUTION: An ion-exchange resin comprising an anion-exchange resin and a cation-exchange resin is put into a separation tower and separated into an anion-exchange resin layer and a cation-exchange resin layer by supplying back washing water to the separation tower. Before putting the ion-exchange resin into the tower, water is put into the tower in such an amount that the water level becomes higher than the position of a sensor part, which is installed in the tower for optically detecting the interface between the anion-exchange resin layer and the cation-exchange resin layer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、分離塔に充填されたイオン交換樹脂をアニオン交換樹脂層とカチオン交換樹脂層とに分離するに適したイオン交換樹脂の分離方法および分離装置に関する。
【0002】
【従来の技術】
復水を回収して再利用する場合、復水中に含まれる懸濁物質または溶解性物質を除去する必要がある。このような復水処理には、例えばカチオン交換樹脂とアニオン交換樹脂の混合樹脂(イオン交換樹脂)が充填された脱塩塔がよく用いられている。この脱塩塔に充填されたイオン交換樹脂は、数日から1週間程度を周期とした再生処理が必要である。
【0003】
この混合樹脂を再生処理するには、予めカチオン交換樹脂とアニオン交換樹脂とに分離する必要がある。この場合、分離塔内において分離させたアニオン交換樹脂層とカチオン交換樹脂層との界面を把握することが重要である。そこで、発明者らは先にアニオン交換樹脂とカチオン交換樹脂との色の差(階調差)を利用したイオン交換樹脂の界面検出方法および検出手段を提案した(特許文献1を参照)。
【0004】
この界面検出方法は、まず分離塔の側壁面に設けた撮像手段により得られた画素データを画素毎に分解して、基準となるイオン交換樹脂の階調データと比較する。次に画素毎にイオン交換樹脂の階調差分データを生成する。そして、これらの階調差分データが全画素に占める割合比を求めてアニオン交換樹脂層とカチオン交換樹脂層の境界面の位置を判定するものである。
【0005】
或いは、イオン交換樹脂の色の違いによって界面を判定する方法もある(特許文献2を参照)。これは、アニオン交換樹脂が黄色または白色であるのに対して、カチオン交換樹脂が茶色または赤色であることに着目してその色差により界面を判定するものである。この特許文献2に開示された発明は、イオン交換樹脂層に投光し、この反射光を色判別センサからなる界面検出器で受光して、反射光の光量に応じて境界面を検出するように構成されたものである。
【0006】
【特許文献1】
特願2002−266646号
【特許文献2】
特許第2621575号公報
【0007】
【発明が解決しようとする課題】
これらのイオン交換樹脂層の界面検出方法は、分離塔の壁面に設けられた観測窓(覗き窓)を介して、分離塔の内部を光学センサ(例えば撮像素子、色判別センサ)で検出して、その検出データに基づきイオン交換樹脂層の界面を判定するものである。ちなみに、この観測窓は、例えば透光可能な窓ガラスを保持するフレームと共に、ボルト締めされて分離塔の側面に固着したものとして構成されている。
【0008】
また、イオン交換樹脂の再生処理において、処理終了後は分離塔の内部を空にした状態で保管される。そして、脱塩塔に充填されているイオン交換樹脂の再生処理を行う場合、洗浄水と共に分離塔にイオン交換樹脂を移送する。このとき、イオン交換樹脂が分離塔の底部から送り込まれて、洗浄水の水位が除々に上昇していく。すると、液面の上昇と共に、分離塔の壁面に設けられた観測窓(覗き窓)の部位にその液面が通過していくことになる。
【0009】
このとき、液面付近の懸濁物質が観測窓に付着する現象が生じる。このため分離塔内でイオン交換樹脂を分離する際、観測窓に付着した懸濁物質により分離塔の内部の視野が妨げられるため、イオン交換樹脂層の界面を光学センサで検出できなくなるという問題があった。
また、この覗き窓に汚れが付着すると、分離塔内の逆洗水だけでは完全に清浄化することができず、次回の分離処理を行う前に手作業で覗き窓を清浄しなければならないという問題もあった。
【0010】
或いは、分離塔の内側に組み込まれた光学センサによりイオン交換樹脂層の界面を検出する場合であっても、上述した理由により光学センサに懸濁物質が付着する。このため脂層の界面が検出できなくなるという問題があった。
本発明は、このような事情を考慮してなされたもので、その目的は、懸濁物質を含有したイオン交換樹脂を分離塔内で分離する際、この懸濁物質の影響を排除して、アニオン交換樹脂層とカチオン交換樹脂層との界面を正しく検出することのできるイオン交換樹脂の分離方法および分離装置を提供することにある。
【0011】
【課題を解決するための手段】
前述した目的を達成するため、請求項1に係るイオン交換樹脂の分離方法は、アニオン交換樹脂とカチオン交換樹脂とを含むイオン交換樹脂を分離塔に充填し、該分離塔に逆洗水を供給してアニオン交換樹脂層とカチオン交換樹脂層とに分離するとき、前記分離塔に前記イオン交換樹脂を充填するに先立ち、前記分離塔に設けられた前記アニオン交換樹脂層とカチオン交換樹脂層との界面を光学的に検出するセンサ部よりも上方の位置まで、予め該分離塔に水を充填しておくことを特徴とする。
【0012】
このイオン交換樹脂の分離方法に用いるセンサ部は、前記分離塔の壁面に設けられた覗き窓、または前記分離塔の内側に組み込まれて該分離塔内を撮像する光学センサから構成される。また、前記分離塔内に予め充填される水の液面の高さは、前記分離塔に供給する逆洗水の水量を調節して設定される。
このため、分離塔内の水の液面の高さは、センサ部よりも上方に位置することになり、液面に浮上している懸濁物質が覗き窓または光学センサに付着することがない。
【0013】
また、請求項4に記載するイオン交換樹脂の分離方法によれば、アニオン交換樹脂とカチオン交換樹脂とを含むイオン交換樹脂が充填される分離塔と、この分離塔に逆洗水を供給して前記イオン交換樹脂をアニオン交換樹脂層とカチオン交換樹脂層とに分離させる逆洗水供給手段と、前記分離塔に設けられて該分離塔内をその側方から視野して前記アニオン交換樹脂層とカチオン交換樹脂層との界面を光学的に検出するためのセンサ部と、このセンサ部の上方まで前記分離塔に水が満たされているときに該分離塔への前記イオン交換樹脂の充填を許可する充填制御手段とを備えたことを特徴としている。
【0014】
このセンサ部は、前記分離塔の壁面に設けられた覗き窓、または前記分離塔の内側に組み込まれて、この分離塔内を撮像する光学センサから構成されるものである。
したがって、本発明によれば懸濁物質を多く含有したアニオン交換樹脂およびカチオン交換樹脂が混合されたイオン交換樹脂の分離を行う場合であっても、その界面を光学的に検出することが可能なイオン交換樹脂の分離方法および分離装置を提供できる。
【0015】
【発明の実施の形態】
以下、図面を参照して本発明に係るイオン交換樹脂の分離方法および分離装置について説明する。
図1は、本発明に係るイオン交換樹脂の分離装置を用いた発電所用復水脱塩装置の一例を示す概略構成図である。この復水脱塩装置は、復水に含まれる塩分(海水)を除去する脱塩塔10を備えている。この脱塩塔10内には、復水に含まれる塩分を除去するイオン交換樹脂1が充填されている。このイオン交換樹脂1は、アニオン交換樹脂とカチオン交換樹脂との混合樹脂からなっている。尚、脱塩塔10の下部には、例えばプラント構成材料から発生する腐食生成物等の不純物を脱塩塔10で脱塩処理された復水中から除去するストレーナ11が接続されている。
【0016】
このようなアニオン交換樹脂とカチオン交換樹脂とを混合させた脱塩塔10にあっては、定期的にイオン交換樹脂1の再生を行う必要がある。このため、脱塩塔10充填されたカチオン交換樹脂とアニオン交換樹脂とを分離する分離塔20が脱塩塔10に接続されている。
この分離塔20の下部には、流量調整弁21を有する給水管22が接続されている。そして、分離塔20内に供給する逆洗水の流量を流量調整弁21で調整することで、カチオン交換樹脂とアニオン交換樹脂との比重差を利用してこれらの交換樹脂が二層に分離される。
【0017】
具体的には逆洗水の供給によりアニオン交換樹脂とカチオン交換樹脂とが分離塔20内を流動する。そして、比重の小さなアニオン交換樹脂が分離塔20の上部にアニオン交換樹脂層2として、一方、比重の大きなカチオン交換樹脂が分離塔20の下部にカチオン交換樹脂層3として分離される。また、分離塔20の略中央部には、二層に分離された交換樹脂のうち、比重の小さなアニオン交換樹脂を取出してアニオン交換樹脂再生塔40に移送するコレクタ23が設けられている。
【0018】
また分離塔20の側壁面には、前記コレクタ23が配置されている高さ位置に相応して分離塔20内の状態を観測する観測窓24(覗き窓)が設けられている(図2)。この観測窓24は、イオン交換樹脂の分離状態(境界面)を外部から観測可能とするものである。そして、観測窓24には、この観測窓24を介してイオン交換樹脂1の分離状況を観測する光学センサ25が取り付けられている。
【0019】
この光学センサ25は、分離塔20に配置されたコレクタ23の周辺部位を撮像範囲として、この撮像範囲の略中央部にコレクタ23を視野するよう観測窓24に取り付けられている。また、光学センサ25は、例えばCCDカメラまたはCMOSセンサ等が用いられる。そして、光学センサ25によって撮像されたデータは、界面検出装置30に送られる。界面検出装置30は、この撮像されたデータに基づき流量調整弁21を調整することでイオン交換樹脂の分離を行う。
【0020】
このように構成されたイオン交換樹脂の分離装置において、本発明が特徴とするところは、分離塔20にイオン交換樹脂を充填するに先立ち、アニオン交換樹脂層2とカチオン交換樹脂層3との界面を光学的に検出する光学センサ25の視野範囲よりも上方の位置まで、予め該分離塔20に洗浄水を充填しておく点にある。
【0021】
より具体的に本発明に係る復水脱塩装置におけるイオン交換樹脂の分離方法を図3に示すフローチャートを用いて詳細に説明する。
先ず脱塩塔10でアニオン交換樹脂とカチオン交換樹脂とが混合されたイオン交換樹脂に含まれる不純物を除去する水洗浄が行われる(ステップS1)。次いで界面検出装置30が、分離塔下部に設けられた流量調整弁21を開き逆洗水を分離塔20に注入する(ステップS2)。この逆洗水は、その水面が分離塔20に取り付けられた観測窓(覗き窓)24の上方になるまで界面検出装置30により注入される(ステップS3)。詳しくは、界面検出装置30が流量調整弁21を開き、観測窓24に取り付けられた光学センサ25の視野範囲の上方に逆洗水の水面が位置するよう分離塔20に逆洗水を注入する。
【0022】
そして、逆洗水の水面が観測窓24の上方になるまで注入された時点で、脱塩塔10内のイオン交換樹脂を分離塔20に移送する(ステップS4)。次に分離塔20に移送されたイオン交換樹脂1を、アニオン交換樹脂層2とカチオン交換樹脂槽3とに分離するため、界面検出装置30が分離塔20の下部に設けられた流量調整弁21を開き、逆洗水を注入する(ステップS5)。すると、この逆洗水の流速によってイオン交換樹脂1がアニオン交換樹脂層2とカチオン交換樹脂層3との二層に分離される(ステップS6)。
【0023】
このようにして分離されたイオン交換樹脂のうち、アニオン交換樹脂だけをコレクタ23を介して取出してアニオン交換樹脂再生塔40に移送する(ステップS7)。すると分離塔20にはカチオン交換樹脂だけが残ることになるので、分離塔20およびアニオン交換樹脂再生塔40に薬液を注入して再生処理を行う(ステップS8)。
【0024】
この再生処理が終了すると、分離塔20とアニオン交換樹脂再生塔40に洗浄水を注入して再生に用いた薬液の除去を行う(ステップS9)。このような一連の再生処理が完了したカチオン交換樹脂およびアニオン交換樹脂は、樹脂貯槽50に移送されて貯蔵される(ステップS10)。
そして、樹脂貯槽50に貯留されたイオン交換樹脂は、必要に応じて脱塩塔10移送され再使用される(ステップS11)。
【0025】
かくして、上述したイオン交換樹脂の分離方法によれば、イオン交換樹脂を分離塔20に充填するに先立ち、ステップS2、S3で分離塔20に設けられた光学センサ25の視野範囲よりも上方の位置まで、分離塔20に予め逆洗水を充填しているのでイオン交換樹脂に付着または混在している懸濁物質が、観測窓24に取り付けた光学センサ25の視野範囲に付着することがない。
【0026】
また、観測窓24に取り付けた光学センサ25の視野範囲に懸濁物質が付着しないので、従来、イオン交換樹脂の分離処理前後に行っていた観測窓24の清掃作業が不要となる。更にイオン交換樹脂移送時に観測窓24に付着する懸濁物質がないため、精度の高いイオン交換樹脂層の界面検出を行うことが可能となる。
特に発電所起動時は、復水に鉄成分(錆等)が多く含まれている。このため、発電所起動時に復水の脱塩処理を行ったイオン交換樹脂には、この鉄製分が大量に含まれることになる。従来のイオン交換樹脂の分離装置において、この鉄成分が多く含まれるイオン交換樹脂を分離塔20に注入すると、この鉄成分が観測窓24に付着するので光学センサ25による分離塔内部のイオン交換樹脂の検出を妨げる要因となっていた。また、この観測窓24に付着した鉄成分はカチオン交換樹脂の色(茶色または赤色)と似ているため、界面を誤検出する原因にもなっていた。
【0027】
これに対して、本発明のイオン交換樹脂の分離方法によればイオン交換樹脂を分離塔20に充填するに先立ち、ステップS2、S3で分離塔20に設けられた光学センサ25の視野範囲よりも上方の位置まで、分離塔20に予め逆洗水を充填しているので、観測窓24にこの鉄成分が付着するのを防止することが可能である。したがって、懸濁物質が多く含まれるイオン交換樹脂の分離を行う上で極めて効果的である。
【0028】
また、上述した実施形態では、イオン交換樹脂に付着または混在している懸濁物質が、分離塔20の側面に設けられた観測窓24に付着するのを防止したものとしているが、例えば観測窓24を介すことなく、特に図示しないが分離塔20の内側に光学センサを組み込んでイオン交換樹脂の境界面を検出する方法であってもよい。この場合は、イオン交換樹脂の分離に先立って分離塔20に注水を行い、光学センサの視野範囲より上方まで洗浄水を注入すれば、この光学センサに懸濁物質が付着するのを防ぐことができる。このため、精度の高いイオン交換樹脂層の界面検出を行うことが可能となる。
【0029】
尚、上述した実施形態ではイオン交換樹脂を分離塔20へ移送する前に、分離塔20に注水していたが、再生処理が終わったイオン交換樹脂を樹脂貯槽50へ移送した後に分離塔20に洗浄水を注入しても観測窓24の部位を予め逆洗水で満たしているので同様の効果を得ることができる。
このように本発明は上述した実施形態のとらわれることなく、その主旨を逸脱しない範囲で種々変形して実施することが可能である。
【0030】
【発明の効果】
以上述べたように、本発明のイオン交換樹脂の分離方法および分離装置によれば、イオン交換樹脂に付着または混在している懸濁物質がイオン交換樹脂層の界面を検出する観測窓あるいは分離塔の内側に組み込まれた光学センサに付着することがない。このため、イオン交換樹脂を分離する際、高い精度を維持しつつイオン交換樹脂層の界面検出を行うことが可能となる。更に、観測窓あるいは光学センサを再生の都度洗浄する必要がなく、メンテナンス性の向上を図ることができる。
【0031】
特に懸濁物質を多く含有しているイオン交換樹脂の分離・再生処理に効果的である等の実用上多大なる効果が奏せられる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るイオン交換樹脂の分離装置の概略構成を示す図。
【図2】本発明の一実施形態に係るイオン交換樹脂の分離装置の主要部を示す図。
【図3】本発明の一実施形態に係るイオン交換樹脂の分離方法を示すフローチャート。
【符号の説明】
10   脱塩塔
20   分離塔
21   流量調整弁
22   給水管
23   コレクタ
24   観測窓
25   光学センサ
30   界面検出装置
40   アニオン交換樹脂再生塔
50   樹脂貯槽
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and apparatus for separating an ion exchange resin suitable for separating an ion exchange resin filled in a separation tower into an anion exchange resin layer and a cation exchange resin layer.
[0002]
[Prior art]
When condensed water is collected and reused, it is necessary to remove suspended or soluble substances contained in the condensed water. For such condensate treatment, for example, a desalination tower filled with a mixed resin (ion exchange resin) of a cation exchange resin and an anion exchange resin is often used. The ion exchange resin filled in the desalination tower needs a regeneration treatment with a cycle of several days to about one week.
[0003]
In order to regenerate this mixed resin, it is necessary to separate it into a cation exchange resin and an anion exchange resin in advance. In this case, it is important to grasp the interface between the anion exchange resin layer and the cation exchange resin layer separated in the separation tower. Therefore, the inventors have previously proposed a method and a detection means for detecting an interface of an ion exchange resin using a color difference (gradation difference) between an anion exchange resin and a cation exchange resin (see Patent Document 1).
[0004]
In this interface detection method, first, pixel data obtained by an imaging unit provided on a side wall surface of a separation tower is decomposed for each pixel, and compared with reference gradation data of an ion exchange resin. Next, gradation difference data of the ion exchange resin is generated for each pixel. Then, the ratio of these gradation difference data to the total pixels is determined to determine the position of the boundary surface between the anion exchange resin layer and the cation exchange resin layer.
[0005]
Alternatively, there is a method of determining an interface based on a difference in color of an ion exchange resin (see Patent Document 2). This is based on the fact that the anion exchange resin is yellow or white and the cation exchange resin is brown or red, and the interface is determined based on the color difference. The invention disclosed in Patent Literature 2 projects light onto an ion-exchange resin layer, receives the reflected light with an interface detector including a color determination sensor, and detects a boundary surface according to the amount of reflected light. It is comprised in.
[0006]
[Patent Document 1]
Japanese Patent Application No. 2002-266646 [Patent Document 2]
Japanese Patent No. 2621575 [0007]
[Problems to be solved by the invention]
In these methods for detecting the interface of the ion-exchange resin layer, the inside of the separation tower is detected by an optical sensor (for example, an image sensor or a color discrimination sensor) through an observation window (viewing window) provided on the wall of the separation tower. The interface of the ion exchange resin layer is determined based on the detection data. Incidentally, the observation window is configured to be bolted and fixed to the side surface of the separation tower together with, for example, a frame holding a translucent window glass.
[0008]
In the regeneration treatment of the ion exchange resin, after the treatment is completed, the separation tower is stored with the inside thereof being empty. Then, when performing the regeneration treatment of the ion exchange resin filled in the desalination tower, the ion exchange resin is transferred to the separation tower together with the washing water. At this time, the ion exchange resin is fed from the bottom of the separation tower, and the water level of the washing water gradually rises. Then, as the liquid level rises, the liquid level passes through an observation window (viewing window) provided on the wall surface of the separation tower.
[0009]
At this time, a phenomenon occurs in which suspended matter near the liquid surface adheres to the observation window. Therefore, when separating the ion-exchange resin in the separation tower, the suspended matter attached to the observation window hinders the visual field inside the separation tower, so that the interface of the ion-exchange resin layer cannot be detected by the optical sensor. there were.
Also, if dirt adheres to the viewing window, it cannot be completely cleaned only by backwashing water in the separation tower, and the viewing window must be manually cleaned before performing the next separation process. There were also problems.
[0010]
Alternatively, even when the interface of the ion exchange resin layer is detected by an optical sensor incorporated inside the separation tower, the suspended substance adheres to the optical sensor for the above-described reason. For this reason, there was a problem that the interface of the fat layer could not be detected.
The present invention has been made in consideration of such circumstances, and its purpose is to eliminate the influence of the suspended substance when separating the ion-exchange resin containing the suspended substance in the separation column. It is an object of the present invention to provide a method and an apparatus for separating an ion exchange resin, which can correctly detect an interface between the anion exchange resin layer and the cation exchange resin layer.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, a method for separating an ion-exchange resin according to claim 1 fills a separation tower with an ion-exchange resin containing an anion exchange resin and a cation exchange resin, and supplies backwash water to the separation tower. When separating into an anion exchange resin layer and a cation exchange resin layer and then, before filling the separation tower with the ion exchange resin, the anion exchange resin layer and the cation exchange resin layer provided in the separation tower It is characterized in that the separation tower is previously filled with water up to a position above the sensor section for optically detecting the interface.
[0012]
The sensor unit used for the method for separating the ion exchange resin is constituted by a viewing window provided on a wall surface of the separation tower, or an optical sensor incorporated inside the separation tower to image the inside of the separation tower. Further, the height of the liquid level of the water previously filled in the separation tower is set by adjusting the amount of backwash water supplied to the separation tower.
For this reason, the height of the liquid level of the water in the separation tower is located above the sensor section, and the suspended solids floating on the liquid level do not adhere to the viewing window or the optical sensor. .
[0013]
According to the method for separating an ion exchange resin according to the fourth aspect, a separation tower filled with an ion exchange resin containing an anion exchange resin and a cation exchange resin, and backwash water is supplied to the separation tower. Backwash water supply means for separating the ion exchange resin into an anion exchange resin layer and a cation exchange resin layer, and the anion exchange resin layer provided in the separation tower and viewing the inside of the separation tower from the side. A sensor unit for optically detecting the interface with the cation exchange resin layer, and permitting the separation tower to be filled with the ion exchange resin when the separation tower is filled with water up to above the sensor unit. And a filling control unit that performs the charging.
[0014]
This sensor section is constituted by a viewing window provided on the wall surface of the separation tower or an optical sensor incorporated inside the separation tower to image the inside of the separation tower.
Therefore, according to the present invention, even when the ion exchange resin in which the anion exchange resin and the cation exchange resin containing a large amount of the suspended substance are mixed is to be separated, the interface thereof can be optically detected. A method and apparatus for separating an ion exchange resin can be provided.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method and an apparatus for separating an ion exchange resin according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of a condensate desalination device for a power plant using the ion exchange resin separation device according to the present invention. This condensate desalination apparatus includes a desalination tower 10 for removing salt (seawater) contained in condensate. The desalting tower 10 is filled with an ion exchange resin 1 for removing salt contained in the condensate. This ion exchange resin 1 is made of a mixed resin of an anion exchange resin and a cation exchange resin. In addition, a strainer 11 is connected to the lower part of the desalination tower 10 for removing impurities such as corrosion products generated from the plant constituent materials from the condensed water subjected to the desalination treatment in the desalination tower 10.
[0016]
In such a desalting tower 10 in which an anion exchange resin and a cation exchange resin are mixed, it is necessary to periodically regenerate the ion exchange resin 1. For this reason, a separation tower 20 for separating the cation exchange resin and the anion exchange resin filled in the desalting tower 10 is connected to the desalting tower 10.
A water supply pipe 22 having a flow control valve 21 is connected to a lower portion of the separation tower 20. Then, by adjusting the flow rate of the backwash water supplied into the separation tower 20 by the flow control valve 21, these exchange resins are separated into two layers by utilizing the specific gravity difference between the cation exchange resin and the anion exchange resin. You.
[0017]
Specifically, the anion exchange resin and the cation exchange resin flow in the separation tower 20 by supplying the backwash water. Then, the anion exchange resin having a small specific gravity is separated as an anion exchange resin layer 2 at the upper part of the separation tower 20, while the cation exchange resin having a large specific gravity is separated as a cation exchange resin layer 3 at a lower part of the separation tower 20. At a substantially central portion of the separation tower 20, a collector 23 is provided which takes out an anion exchange resin having a low specific gravity from the exchange resins separated into two layers and transfers the resin to the anion exchange resin regeneration tower 40.
[0018]
Further, on the side wall surface of the separation tower 20, an observation window 24 (viewing window) for observing the state inside the separation tower 20 is provided corresponding to the height position where the collector 23 is arranged (FIG. 2). . This observation window 24 allows the state of separation (boundary surface) of the ion exchange resin to be observed from the outside. The observation window 24 is provided with an optical sensor 25 for observing the state of separation of the ion exchange resin 1 through the observation window 24.
[0019]
The optical sensor 25 is attached to the observation window 24 so that the peripheral portion of the collector 23 arranged in the separation tower 20 is set as an imaging range, and the collector 23 is viewed substantially in the center of the imaging range. As the optical sensor 25, for example, a CCD camera or a CMOS sensor is used. Then, data captured by the optical sensor 25 is sent to the interface detection device 30. The interface detection device 30 separates the ion exchange resin by adjusting the flow control valve 21 based on the imaged data.
[0020]
The feature of the present invention in the ion exchange resin separation apparatus thus configured is that, before the separation tower 20 is filled with the ion exchange resin, the interface between the anion exchange resin layer 2 and the cation exchange resin layer 3 is increased. Is that the separation tower 20 is previously filled with washing water up to a position above the visual field range of the optical sensor 25 that optically detects the water.
[0021]
More specifically, a method for separating an ion exchange resin in the condensate deionization apparatus according to the present invention will be described in detail with reference to a flowchart shown in FIG.
First, water washing is performed in the desalting tower 10 to remove impurities contained in the ion exchange resin in which the anion exchange resin and the cation exchange resin are mixed (Step S1). Next, the interface detection device 30 opens the flow control valve 21 provided at the lower part of the separation tower, and injects backwash water into the separation tower 20 (Step S2). The backwash water is injected by the interface detection device 30 until the water surface is above an observation window (viewing window) 24 attached to the separation tower 20 (step S3). Specifically, the interface detection device 30 opens the flow control valve 21 and injects the backwash water into the separation tower 20 so that the water surface of the backwash water is positioned above the visual field range of the optical sensor 25 attached to the observation window 24. .
[0022]
Then, when the backwash water is injected until the water surface is above the observation window 24, the ion exchange resin in the desalination tower 10 is transferred to the separation tower 20 (Step S4). Next, in order to separate the ion exchange resin 1 transferred to the separation tower 20 into the anion exchange resin layer 2 and the cation exchange resin tank 3, the interface detection device 30 is provided with a flow control valve 21 provided below the separation tower 20. Is opened, and backwash water is injected (step S5). Then, the ion exchange resin 1 is separated into two layers of the anion exchange resin layer 2 and the cation exchange resin layer 3 by the flow rate of the backwash water (step S6).
[0023]
Of the ion exchange resins thus separated, only the anion exchange resin is taken out via the collector 23 and transferred to the anion exchange resin regeneration tower 40 (Step S7). Then, since only the cation exchange resin remains in the separation tower 20, a chemical solution is injected into the separation tower 20 and the anion exchange resin regeneration tower 40 to perform a regeneration treatment (step S8).
[0024]
When the regeneration process is completed, the washing water is injected into the separation tower 20 and the anion exchange resin regeneration tower 40 to remove the chemical used for the regeneration (step S9). The cation exchange resin and the anion exchange resin that have undergone such a series of regeneration treatments are transferred to and stored in the resin storage tank 50 (Step S10).
Then, the ion-exchange resin stored in the resin storage tank 50 is transferred to the desalination tower 10 as needed and reused (Step S11).
[0025]
Thus, according to the ion exchange resin separation method described above, prior to filling the ion exchange resin into the separation tower 20, the position above the visual field of the optical sensor 25 provided in the separation tower 20 in steps S2 and S3. Until the backwashing water is filled in the separation tower 20 in advance, the suspended matter adhering to or mixed with the ion exchange resin does not adhere to the field of view of the optical sensor 25 attached to the observation window 24.
[0026]
Further, since the suspended substance does not adhere to the visual field range of the optical sensor 25 attached to the observation window 24, the cleaning work of the observation window 24 which has been performed before and after the separation process of the ion exchange resin is not required. Furthermore, since there is no suspended substance adhering to the observation window 24 when the ion exchange resin is transferred, it is possible to detect the interface of the ion exchange resin layer with high accuracy.
Especially when the power plant is started, the condensate contains a lot of iron components (rust, etc.). For this reason, the iron-exchange resin subjected to the desalination treatment of the condensed water at the start of the power plant contains a large amount of this iron component. In a conventional ion-exchange resin separation apparatus, when the ion-exchange resin containing a large amount of the iron component is injected into the separation tower 20, the iron component adheres to the observation window 24. Was a factor that hindered the detection of In addition, since the iron component attached to the observation window 24 is similar to the color (brown or red) of the cation exchange resin, it also causes erroneous detection of the interface.
[0027]
On the other hand, according to the ion exchange resin separation method of the present invention, before filling the ion exchange resin into the separation tower 20, the visual field range of the optical sensor 25 provided in the separation tower 20 in steps S2 and S3 is increased. Since the separation tower 20 is previously filled with backwash water up to the upper position, it is possible to prevent the iron component from adhering to the observation window 24. Therefore, it is extremely effective in separating an ion exchange resin containing a large amount of suspended substances.
[0028]
In the above-described embodiment, the suspended substance adhering to or mixed with the ion exchange resin is prevented from adhering to the observation window 24 provided on the side surface of the separation tower 20. Although not shown, an optical sensor may be incorporated inside the separation tower 20 to detect the boundary surface of the ion-exchange resin without using the intermediary of the separation tower 24. In this case, if water is injected into the separation tower 20 prior to the separation of the ion exchange resin, and the washing water is injected above the visual field range of the optical sensor, it is possible to prevent suspended substances from adhering to the optical sensor. it can. For this reason, it is possible to detect the interface of the ion exchange resin layer with high accuracy.
[0029]
In the above-described embodiment, water is injected into the separation tower 20 before transferring the ion-exchange resin to the separation tower 20. Even if the cleaning water is injected, the same effect can be obtained because the observation window 24 is previously filled with the backwashing water.
As described above, the present invention can be variously modified and implemented without departing from the gist of the present invention without being limited to the above-described embodiment.
[0030]
【The invention's effect】
As described above, according to the method and apparatus for separating an ion exchange resin of the present invention, an observation window or a separation tower in which a suspended substance adhered to or mixed with the ion exchange resin detects an interface of the ion exchange resin layer. It does not adhere to the optical sensor incorporated inside the camera. For this reason, when separating the ion exchange resin, it is possible to detect the interface of the ion exchange resin layer while maintaining high accuracy. Further, it is not necessary to clean the observation window or the optical sensor every time the image is regenerated, so that maintenance can be improved.
[0031]
In particular, it has a great practical effect such as being effective for the separation and regeneration treatment of an ion exchange resin containing a large amount of suspended substances.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an ion exchange resin separation device according to an embodiment of the present invention.
FIG. 2 is a diagram showing a main part of an ion exchange resin separation device according to one embodiment of the present invention.
FIG. 3 is a flowchart showing a method for separating an ion exchange resin according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Demineralization tower 20 Separation tower 21 Flow control valve 22 Water supply pipe 23 Collector 24 Observation window 25 Optical sensor 30 Interface detection device 40 Anion exchange resin regeneration tower 50 Resin storage tank

Claims (5)

アニオン交換樹脂とカチオン交換樹脂とを含むイオン交換樹脂を分離塔に充填し、該分離塔に逆洗水を供給してアニオン交換樹脂層とカチオン交換樹脂層とに分離するに際し、
前記分離塔に前記イオン交換樹脂を充填するに先立ち、前記分離塔に設けられた前記アニオン交換樹脂層とカチオン交換樹脂層との界面を光学的に検出するセンサ部よりも上方の位置まで、予め該分離塔に水を充填しておくことを特徴とするイオン交換樹脂の分離方法。
Filling a separation tower with an ion exchange resin containing an anion exchange resin and a cation exchange resin, upon supplying backwash water to the separation tower to separate the anion exchange resin layer and the cation exchange resin layer,
Prior to filling the separation tower with the ion exchange resin, before the sensor section for optically detecting the interface between the anion exchange resin layer and the cation exchange resin layer provided in the separation tower, A method for separating an ion exchange resin, wherein the separation tower is filled with water.
前記センサ部は、前記分離塔の壁面に設けられた覗き窓、または前記分離塔の内側に組み込まれて該分離塔内を撮像する光学センサからなる請求項1に記載のイオン交換樹脂の分離方法。The method for separating an ion-exchange resin according to claim 1, wherein the sensor unit comprises a viewing window provided on a wall surface of the separation tower, or an optical sensor incorporated inside the separation tower to image the inside of the separation tower. . 前記分離塔内に予め充填される水の液面高さは、前記分離塔に供給する逆洗水の水量を調節して設定されるものである請求項1に記載のイオン交換樹脂の分離方法。The method for separating an ion-exchange resin according to claim 1, wherein the liquid level of the pre-filled water in the separation tower is set by adjusting the amount of backwash water supplied to the separation tower. . アニオン交換樹脂とカチオン交換樹脂とを含むイオン交換樹脂が充填される分離塔と、
この分離塔に逆洗水を供給して前記イオン交換樹脂をアニオン交換樹脂層とカチオン交換樹脂層とに分離させる逆洗水供給手段と、
前記分離塔に設けられて該分離塔内をその側方から視野して前記アニオン交換樹脂層とカチオン交換樹脂層との界面を光学的に検出するためのセンサ部と、
このセンサ部の上方まで前記分離塔に水が満たされているときに該分離塔への前記イオン交換樹脂の充填を許可する充填制御手段と
を具備したことを特徴とするイオン交換樹脂の分離装置。
A separation tower filled with an ion exchange resin containing an anion exchange resin and a cation exchange resin,
Backwash water supply means for supplying backwash water to the separation tower to separate the ion exchange resin into an anion exchange resin layer and a cation exchange resin layer,
A sensor unit provided in the separation tower for optically detecting an interface between the anion exchange resin layer and the cation exchange resin layer while viewing the inside of the separation tower from the side thereof,
A filling control means for permitting the filling of the ion-exchange resin into the separation tower when the separation tower is filled with water up to above the sensor unit. .
前記センサ部は、前記分離塔の壁面に設けられた覗き窓、または前記分離塔の内側に組み込まれて該分離塔内を撮像する光学センサからなる請求項4に記載のイオン交換樹脂の分離装置。5. The ion exchange resin separation device according to claim 4, wherein the sensor unit comprises a viewing window provided on a wall surface of the separation tower, or an optical sensor incorporated inside the separation tower to image the inside of the separation tower. .
JP2002281715A 2002-09-26 2002-09-26 Method and apparatus for separating ion exchange resin Expired - Fee Related JP4058622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281715A JP4058622B2 (en) 2002-09-26 2002-09-26 Method and apparatus for separating ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281715A JP4058622B2 (en) 2002-09-26 2002-09-26 Method and apparatus for separating ion exchange resin

Publications (2)

Publication Number Publication Date
JP2004113951A true JP2004113951A (en) 2004-04-15
JP4058622B2 JP4058622B2 (en) 2008-03-12

Family

ID=32276093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281715A Expired - Fee Related JP4058622B2 (en) 2002-09-26 2002-09-26 Method and apparatus for separating ion exchange resin

Country Status (1)

Country Link
JP (1) JP4058622B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015013221A (en) * 2013-07-03 2015-01-22 株式会社竹村製作所 Water treatment equipment using filter sand
CN111905445A (en) * 2020-08-21 2020-11-10 四川省宜宾惠美线业有限责任公司 Method for separating mixed lipid of anion resin and cation resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015013221A (en) * 2013-07-03 2015-01-22 株式会社竹村製作所 Water treatment equipment using filter sand
CN111905445A (en) * 2020-08-21 2020-11-10 四川省宜宾惠美线业有限责任公司 Method for separating mixed lipid of anion resin and cation resin

Also Published As

Publication number Publication date
JP4058622B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
KR102265310B1 (en) Methods and compositions for the treatment and recovery of purge solvent
JP4704475B2 (en) Treatment with reduced backwash volume
US20120152863A1 (en) Liquid extraction filter and method for cleaning it
CN105645625A (en) High-efficiency high-recovery-rate reverse osmosis dense water recycling treatment method and system
KR20120095858A (en) Recycling method and device for recycling waste water containing slurry from a semi-conductor treatment process, in particular from a chemico-mechanical polishing process
JP4058622B2 (en) Method and apparatus for separating ion exchange resin
KR101616503B1 (en) Waste oil and oil sludge treatment system and method thereof
JP2014182069A (en) Method and apparatus for removing inorganic particle from contaminated object including inorganic particle
EP0430323B1 (en) Silver recovery device
JP4355889B2 (en) Ion-exchange resin interface detection method and interface detection apparatus
JP5354466B2 (en) Stock solution filtration device and method
KR101240258B1 (en) Methods and apparatus of chemical water recycling during in-situ clean in place for submerged membrane system in drinking water treatment
JP2017080893A (en) Liquid discharge device and method for washing liquid discharge head
KR100433754B1 (en) Cleaning method of Contaminated Ion Exchange Resin
JPH10192718A (en) Resin regenerator for condensate desalter
JPH0432869B2 (en)
JP3430598B2 (en) Membrane separation device
FR2956634A1 (en) VEHICLE WASHING INSTALLATION
JP3697123B2 (en) Waste liquid recycling device for printing press
JP2585879Y2 (en) Membrane separation device
JP5748208B2 (en) Water purification system
JP5885958B2 (en) Radiation contaminant removal unit and decontamination method
JPH02159539A (en) Floc image camera apparatus for water purifying plant
JPS5816959B2 (en) Wastewater treatment method when cleaning oil tanks
JP4138974B2 (en) Peep window

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4058622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees