JP2004113858A - Method for cleaning harmful metal polluted soil by planting - Google Patents

Method for cleaning harmful metal polluted soil by planting Download PDF

Info

Publication number
JP2004113858A
JP2004113858A JP2002277206A JP2002277206A JP2004113858A JP 2004113858 A JP2004113858 A JP 2004113858A JP 2002277206 A JP2002277206 A JP 2002277206A JP 2002277206 A JP2002277206 A JP 2002277206A JP 2004113858 A JP2004113858 A JP 2004113858A
Authority
JP
Japan
Prior art keywords
pokeweed
soil
planting
metal
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002277206A
Other languages
Japanese (ja)
Inventor
Izumi Watanabe
渡邉 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2002277206A priority Critical patent/JP2004113858A/en
Publication of JP2004113858A publication Critical patent/JP2004113858A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent cleaning means for soil polluted with a harmful metal such as heavy metals or the like or a harmful substance such as a radioactive substance or the like. <P>SOLUTION: Phytolacca americana L. Inb is planted in harmful metal polluted soil G and, after growth, the above-ground part thereof is removed from the planting soil to be subjected to harmful metal removal. Especially, a work period for removing the above-ground part from the planting soil is set to a floral bud forming period when a allelo-chemical compound (substance having allelopathy effect) A is discharged and the above-ground part, to which floral buds are formed, is removed at least once. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有害金属を含有する土壌から有害金属を排除し土地を有害金属汚染から浄化する方法であって、より詳しくは有害金属汚染土壌に有害金属蓄積能力の高い植物を植栽し、次いでこの植物を植栽地より除去する有害金属汚染土壌の浄化方法に関するものである。ここで、有害金属とはおもに重金属であるが、軽金属や放射性物質も人間に有害という意味でふくまれる。
【0002】
【従来の技術】
産業廃棄物などを発生源とした有害金属による土壌汚染は深刻な問題である。土壌中に存在する有害有害金属の浄化処理法の開発は次世代の環境を保全するために必須である。従来の浄化法には、汚染土地にて有害金属の不溶化する方法がある。これは薬剤投入によって汚染土壌を化学的に調整し、汚染土壌から有害金属が周辺環境へ溶出拡散しないように有害金属の不溶化、不活性化を行うものであるが、当面の有害金属拡散防止は行えるものの、土壌有害金属は依然として存在する。有害金属は一旦安定化又は不溶出化されるが、自然環境下の経時過程で起こる降雨、酸化、温度変化などに伴い土壌自体が化学変化し、有害金属が再溶出することがある。これは恒久的な解決方策ではない。
【0003】
また、汚染地から汚染土壌を除去する方法がある。これは大量の土壌を採取及び移送せねばならないため、莫大な経費と労力を要する上に、除去した汚染土壌を別の場所に移転させるだけの一時的な処理策となることが多く、移転先で同様の汚染問題を引き起こす可能性がある。これも恒久的な解決方策ではない。よって、汚染土壌から「有害金属のみを選択的」に除去し、除去された有害金属が新たな汚染源とならない恒久的な土壌浄化法が望まれていた。その観点から植物によるファイトレメディエーション(土壌修復)が昭和50年代から注目され、さまざまな技術が提案されている。(たとえば特許文献1、特許文献3、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8参照。)
【0004】
特許文献1では、特定の植物が重金属を吸収し、これを大量に蓄積できることに着目し、このような植物を重金属汚染土壌に植栽し、重金属の吸収及び蓄積機構が考察されている。特に、植物の茎や葉といった地上部分よりも、地下部分である根に多量の重金属が蓄積される、イオン化された重金属のみならず、安定な化合物として存在する重金属もイオン化して吸収する、などが記載されている。また重金属汚染土壌浄化に適する重金属蓄積能力の高い植物として、キク科、オシロイバナ科、シソ科、マメ科、ナス科、ハナシノブ科、クマツヅラ科、ツルナ科、バラ科、フジウツギ科、オトギリソウ科、ウコギ科、ヒノキ科、マンサク科、カバノキ科、フトモモ科、キョウチクトウ科、ユキノシタ科、イネ科、アヤメ科、カンナ科、ヒルガオ科、アブラナ科、メシダ科、アカザ科、セリ科、ヤナギ科の何れか1種以上の植物であると記載されている。
【0005】
しかしながら、これらの好適とされる植物にて、重金属を含む有害金属の蓄積能力はさほど高いものではない。具体的には、浄化対象の有害金属を各植物の乾燥重量で測定しても5ppm未満である。さらに、前記の「根に多量の重金属が蓄積される」、「イオン化された重金属のみならず、安定な化合物として存在する重金属もイオン化して吸収する」といった記載を証明する実験が示されておらず再現性と実用性に疑問がある。
【0006】
その他の特許文献3,4,5,6,7,8についても、土壌汚染浄化法として実用化されるほど効果的な浄化作用を有する植物が提案されていない。また、特許文献の一部では毛根病菌のプラスミド導入などによって浄化作用の顕著な毛状根を形成したり、遺伝子導入による形質転換によって浄化能力を向上させるといった手間とコストのかかる方法が提案されているが、実用性に疑問がある。
【0007】
一方、特許文献2にては、植物のアレロパシー作用の利用が記載されているが、これは除草効果を有するアレロパシー物質を放出し、かつ、安定なトランスジェニック植物を提供するものであって、有害金属汚染土壌浄化を課題とするものではない。
【0008】
「アレロパシー」というのは「他感作用」と訳されており、その定義は『植物から放出される化学物質が、他の植物や微生物・昆虫に対して阻害的あるいは促進的な何らかの作用を及ぼす現象』とされている。例としては、空き地や休耕地のセイタカアワダチソウが放出する化学物質による他の植物の生育抑制、マメ科牧草の「ヘアリーベッチ」による果樹園や休耕地における雑草抑制、日本在来の豆「はっしょうまめ」による雑草抑制と害虫除け、「ヒガンバナ」のネズミ、モグラ、害虫除け、「ソバ」による雑草抑制、樹木類の落ち葉被覆による雑草抑制等がある。また、コーヒーやお茶に多量に含まれているカフェインがマメ科以外の植物の発芽を著しく阻害するという研究報告があって、これもアレロパシーの一種ともいわれている。現在このアレロパシーの活用法として、草で草を退治する研究がなされている。特定の雑草のみを抑制し、作物に害を与えない雑草防除法は、除草剤使用に比べて効果は低いものの、環境に与える影響が少ない利点がある。
【0009】
非特許文献1は、植物を用いたファイトレメディエーション(土壌修復)の問題点を記載したもので、そう方法については具体的な記載はない。非特許文献1は、本発明で用いるヨウシュヤマゴボウ(ink−berry)が、希土類元素の蓄積植物であることが報告されているが、土壌汚染への用途を示唆するものではない。非特許文献3はヨモギの含有する元素と生育土壌との相関および比例関係を記載したもので、非特許文献4はヨモギなどの植物の元素含有量を土壌汚染のIndicator(標準)としてもちいることを記載したもので、いずれも有害金属汚染土壌浄化について詳しく記載されていない。
【0010】
【特許文献1】
特開2000−288529号公報
【特許文献2】
特開平10−150983号公報
【特許文献3】
特開昭57−190号公報
【特許文献4】
特表平7−508206号公報
【特許文献5】
特開平2000−167534号公報
【特許文献6】
特開平2000−176433号公報
【特許文献7】
特開平2001−275683号公報
【特許文献8】
特開平2002−172380号公報
【非特許文献1】
Cunningham, S.D., Betri, W. R., Huang, J. W. (1995)、Trend Biotech、vol13, p393−397
【非特許文献2】
Ichihashi, H., Morita, H., Tatsukawa, R. (1992)、Envoiron. Pollut. 、vol76, p157−162
【非特許文献3】
Honma, S., Tsumita, K.., Shirata, K.(1977)、Envoiron. and Human Surval. Minisry of Education. p103−111
【非特許文献4】
Baker, A.J.M., Mcgrath, S.P., Reeves, R.D., Smith, J.A.C.(1999)、Metalhyperaccumulator plants、p85−107
【0011】
【発明が解決する課題】
本発明は、有害金属を含有する土壌から有害金属を排除し土地を有害金属汚染から浄化する方法であって、基本的には特許文献1に記載された有害金属を含む有害金属汚染土壌に有害金属蓄積能力の高い植物を植栽し、次いでこの植物を植栽地より除去する有害金属汚染土壌の浄化方法に関する課題の解決を与えるものである。具体的には、かかる植栽植物の好適な種を特定し、好適な植栽方法、好適な除去方法を提供する。
【0012】
【課題を解決するための手段】
本発明は、有害金属汚染土壌に有害金属蓄積能力の高い植物を植栽し、次いでこの植物を植栽地より除去する有害金属汚染土壌の浄化方法において、植栽植物がヨウシュヤマゴボウ(Phytolacca americana)であり、該ヨウシュヤマゴボウの地上部を植栽地より除去し、除去したヨウシュヤマゴボウ地上部を有害金属処理する。すなわち発明者は、課題解決に好適な植栽植物がヨウシュヤマゴボウであり、該ヨウシュヤマゴボウ全体ではなく、その地上部を植栽地より除去し、除去したヨウシュヤマゴボウ地上部を有害金属処理すればよいことを見出した。
【0013】
本案はヨウシュヤマゴボウの地上部のみを植栽地より除去し、除去したヨウシュヤマゴボウ地上部を有害金属処理する。もちろんヨウシュヤマゴボウの根にも有害金属が吸収されているので、短期的にはヨウシュヤマゴボウ全体を除去したほうが有害金属除去量は多い。しかしながら、後で述べるようにヨウシュヤマゴボウでは土壌より吸収された有害金属が根→茎→葉と転流する傾向にあるので、地上部(茎と葉)のみの除去でも十分な有害金属除去効果をもつ。しかも、根を残留させておけば地上部(茎と葉)は再生するので、再度植栽する必要がない。
【0014】
ヨウシュヤマゴボウは、1m程度の長い(深い)根を張る。このことは土地上層から深い部分の有害金属も吸収される可能性があり有利である。ヨウシュヤマゴボウは、人里の空地、荒地、河原、竹林のふちなど、やや藪になっているようなところによく見られる。花は淡紫色をおびた白っぽい花で、夏のころ、穂になってたくさんつける。そのころから草全体が大きくなりはじめ、秋には高さ1〜2メートルの株になる。そして、直径8mmほどの黒紫色の実がよく目立つ。北アメリカ原産の帰化植物で、明治のはじめごろ渡来し、各地に増えていった。ヨゥシュとは西洋種の意味で、根がヤマゴボウに似ているところからこの名がついた。原産地の名前を冠してアメリカヤマゴボウの別名もある。 この実は手でつぶすと、その濃い紫色っぽい汁が手につく。原産地ではインク・ベリー(ink−berry)と呼ばれる。
【0015】
【発明の実施の形態】
本案の実施において、植物のアレロパシーを利用することが重要である。ヨウシュヤマゴボウの植栽を長期間にわたって研究したところ、一代目ヨウシュヤマゴボウを生育させたあと、さらに二代目のヨウシュヤマゴボウを植栽すると生育良好である。その理由は、ヨウシュヤマゴボウ自身によるアレロパシー作用と考えている。一般のアレロパシー作用同様、ヨウシュヤマゴボウのアレロパシー作用も科学的に解明されていないが、一代目の植栽が二代目の同種生育に促進的な作用をなすことは実験的に明らかである。したがって、有害金属汚染土壌の浄化に際しても、ヨウシュヤマゴボウを複数回植栽することが好適である。
【0016】
多年草であるヨウシュヤマゴボウを数年に渡って植え続けることで、植物アレロパシー効果が得られる。ここで、できれば頻繁に地上部を刈り取ることが望ましい。この刈り取り時の目安は花芽形成時であって、その時期にバイオマスの成長が止まるため地上部を刈り取ることで、根部からのアレロ・ケミカル(アレロパシー効果をもつ物質)放出を増進し、汚染金属をより吸収しやすくすると考えられるからである。つまり、最もオーソドックスな場合、植えて二年以上放置し有害金属を吸収させ、アレロパシー効果も相乗的に上昇させる。さらに、アレロパシーを活性化させるため、花芽が形成された時期に頻繁に地上部を刈り取るのが好適である。
【0017】
上記の作業を図解したものを図4、図5、図6に示す。図4(a)が有害金属に汚染された土壌GにヨウシュヤマゴボウInbを植栽したもので、これが図4(b)のように成育し、図5(c)のように花芽をつける。この時期までに根からある程度アレロ・ケミカル(アレロパシー効果をもつ物質)が放出され、地上部除去によってさらにアレロ・ケミカル放出が増進される(図5(d))。そこで、図6(e)のように第一回目に植栽したヨウシュヤマゴボウInb1の間隙に、ヨウシュヤマゴボウInb2を第二回目に植栽する。その後、図6(f)のように成育し花芽が形成された時期に地上部を刈り取り有害金属処理する。
【0018】
また、浄化対象土壌にヨウシュヤマゴボウを植栽するに際して、植栽前または植栽作業中に自然土を混入するとヨウシュヤマゴボウの生育が促進され好ましい。この原因も自然土自体、あるいは自然土に混入した任意の植物由来物質によるアレロパシー作用と考えられる。混入する自然土は、植栽するヨウシュヤマゴボウが生育していた土地の自然土が望ましい。自然土を混入する量は、ヨウシュヤマゴボウの根を植栽するために用いる根の埋設用土壌重量の7−8%程度で効果がある。
【0019】
すなわち、植栽に際し、ヨウシュヤマゴボウ根茎部を埋めるために一時的に排除した有害金属汚染土壌と該排除土壌重量の10分の1以下の重量である他の土壌とを混合した混合土でヨウシュヤマゴボウの根茎部を埋めて植栽すると好適である。また、前記の他の土壌が、植栽するヨウシュヤマゴボウの株が自然生育していた土地の土壌であると好適である。この理由は、同種生育土壌によるアレロパシー作用、あるいは自然生育環境である土壌にヨウシュヤマゴボウ生育に適する微量元素が含まれるから、と考えられる。
【0020】
さらに、植栽するヨウシュヤマゴボウが、浄化対象の有害金属を0.1ppm以上の濃度で含有する土壌で自然生育または浄化対象の有害金属を0.1ppm以上の濃度で含有する土壌で栽培したものであると、浄化対象有害金属をよく吸収する。これは生育環境への適応のひとつの発現である、と考えられる。この現象の科学的説明はまだできない。
【0021】
浄化対象の有害金属を0.1ppm以上の濃度で含有する土壌の判定は、通常の土壌分析で行って判定してもよいし、ヘビノネコザ、ブタクサ、ヨモギなどを土壌モニタリング種として、浄化対象の有害金属の含有有害金属量で間接的に求めてもよい。もちろん、ヨウシュヤマゴボウを土壌モニタリング種としてもよい。
【0022】
さらに、植栽するヨウシュヤマゴボウが、浄化対象の有害金属を乾燥重量で1ppm以上含有しているものであると好適である。つまり、もともと生育した環境土壌に有害金属があるヨウシュヤマゴボウの有害金属吸収能力は高い。また、そのヨウシュヤマゴボウ自体に有害金属がすでに含有されているものは、有害金属吸収能力が高いことの証左である。これらの判定基準で植栽するヨウシュヤマゴボウの産地を選別すればよい。
【0023】
図1、図2、図3は発明者ら環境化学学会で発表した「ヨウシュヤマゴボウを用いた微量金属元素汚染のモニタリング及び修復の可能性」要旨集の図面である。これらで本案説明を補足する。図1は、植物種とCd蓄積量(安中市採取植物)の測定例であって、他の種に比べてヨウシュヤマゴボウの一種であるPhytolaccaceaeが抜群のCd蓄積量であることがわかる。図2は、ヨウシュヤマゴボウの産地とTl(タリウム)、Be(ベリリウム)蓄積量の関係であって、汚染地である中国上海市大金山(Dajin−shan)で採取されたものに極めて多く蓄積されていることがわかる。図3は、土壌Cd、Zn濃度とヨウシュヤマゴボウの根、茎、葉に含有されるCd、Zn量との相関を示す図(Spearman’s rank correlation)であって、ヨウシュヤマゴボウの根は土壌の濃度と相関があって、Cd、Znが根→茎→葉と転流する傾向にあることが示唆される。
【0024】
有害金属の例について補足する。カドミウムCd(原子番号=48)の毒性については、富山県神通川流域のイタイイタイ病というカドミウム中毒で一般的である。これは、カドミウムが蓄積した腎臓で、カドミウムが亜鉛酵素の働きを、その元素としての類似性から阻害し、腎障害を起こすものである。また、ベリリウム(Be)は軽金属(原子番号=4)に属し、その化合物には甘みがあり強い毒性がある。わずかな量で死に至るほどの強い毒性なのだが、その毒性の理由は詳しくわかっていない。タリウム(Tl)(原子番号=81)は、非常に毒性の高い元素の一つであって、かつてはアリやネズミの駆除用に硫酸タリウムという物質が使われたが、味もにおいも無く人間の致死量も2g程度と大変危険なため、使用されなくなった。
【0025】
さらにまた、放射線物質のために汚染された土壌においてもヨウシュヤマゴボウを植栽すれば、放射性元素がヨウシュヤマゴボウにて吸収される(データ略)。これを利用してヨウシュヤマゴボウを植栽することによって期間は長いものの安全かつ確実な放射線汚染土壌処理ができる。
【0026】
除去された植物は、電気、プラズマ、あるいは一般燃料エネルギーによって高温処理部を形成した密封式焼却炉を用いて、900℃以上で焼却を行う。これは公知の有害金属含有物質の処理方法である。密封式の焼却炉とは、焼却飛灰や揮発有害金属などが極力直接外界に漏出しない構造になっている焼却炉を総称し、このような焼却炉であれば何れのものでもよい。焼却後は、およそ500℃までは自然放冷でもよいが、少なくとも300〜450℃の範囲ではダイオキシンの生成を防ぐため長時間滞留させないようにし、望ましくはこの範囲で急冷を行うと良い。炉内温度が常温又は数十度位となった段階で焼却灰を取り出す。更に、炉壁等に煤塵を始めとする焼却残渣が付着している場合は同時に取り出し、焼却灰と合わせて焼却物とし、以下のような処理を行うのが好ましい。
【0027】
取り出された焼却物は、かなり減容化されているので、例えばセメント系固化材などの公知の無機系固化材を加えて有害金属成分を溶出し難くするために固化し、これを埋立処分することもできる。また、焼却物中に濃縮された有害金属成分を分離回収し、回収有害金属を有価資源として再利用すると好適である。焼却灰中の有害金属の分離回収は公知何れの方法で行ってもよい。たとえば、硫酸や塩酸を用いて焼却灰を酸洗浄して有害金属を溶出させ、これを固液分離して得た液分をアルカリ処理して有害金属を高純度の化合物として析出させる方法が一般的である。
【0028】
【発明の効果】
本発明によれば、有害金属に汚染された土壌から有害金属成分を効率良く除去できるので、時間はかかるが有害金属が一掃された土壌に土壌再生することができる。除去は定期的に地上部だけを刈り取って根をそのままにする。地上部はいずれ再生され吸収は永続するので一度植栽すれば定期的な地上部刈り取りだけでよい。しかも根は深いので地表下1m程度の有害金属除去も可能である。
【図面の簡単な説明】
【図1】植物種とCd蓄積量(安中市採取植物)
【図2】ヨウシュヤマゴボウの産地とTI(タリウム)、Be(ベリリウム)蓄積量
【図3】土壌Cd、Zn濃度とヨウシュヤマゴボウの根、茎、葉に含有されるCd、Zn量との相関を示す図(Spearman’s rank correlation)
【図4】本案のヨウシュヤマゴボウ植栽の説明図その1
【図5】本案のヨウシュヤマゴボウ植栽の説明図その2
【図6】本案のヨウシュヤマゴボウ植栽の説明図その3
【符号の説明】
A 根から放出されたアレロ・ケミカル(アレロパシー効果をもつ物質)
Be ベリリウム
Cd カドニウム
F ヨウシュヤマゴボウの花芽
G 有害金属に汚染された土壌
Inb ヨウシュヤマゴボウ(ink−berry)
Inb1 第一回目に植栽したヨウシュヤマゴボウ(ink−berry)
Inb2 第二回目に植栽したヨウシュヤマゴボウ(ink−berry)
Tl タリウム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a method of purifying land from harmful metal contamination by removing harmful metals from soil containing harmful metals, and more specifically, planting a plant having a high harmful metal accumulation ability on harmful metal contaminated soil, The present invention relates to a method for purifying toxic metal-contaminated soil by removing this plant from a planting site. Here, harmful metals are mainly heavy metals, but light metals and radioactive substances are also included in the sense that they are harmful to humans.
[0002]
[Prior art]
Soil pollution by toxic metals from industrial wastes is a serious problem. Development of a purification method for harmful and harmful metals present in soil is indispensable for preserving the environment of the next generation. Conventional purification methods include a method of insolubilizing harmful metals in contaminated land. This is to chemically adjust the contaminated soil by introducing chemicals and insolubilize and inactivate the harmful metal so that the harmful metal does not elute and diffuse from the contaminated soil to the surrounding environment. Although possible, soil toxic metals still exist. The harmful metal is once stabilized or non-eluted, but the soil itself may undergo a chemical change due to rainfall, oxidation, temperature change, etc. occurring in the course of time in the natural environment, and the harmful metal may be eluted again. This is not a permanent solution.
[0003]
There is also a method for removing contaminated soil from contaminated land. This requires enormous expense and labor, as a large amount of soil must be collected and transported, and is often a temporary measure only to relocate the contaminated soil removed to another location. Can cause similar pollution problems. This is not a permanent solution either. Therefore, there has been a demand for a permanent soil remediation method that removes only harmful metals selectively from contaminated soil, and in which the removed harmful metals do not become a new source of pollution. From this viewpoint, phytoremediation (soil remediation) by plants has been attracting attention since the 1970s, and various techniques have been proposed. (For example, see Patent Literature 1, Patent Literature 3, Patent Literature 4, Patent Literature 5, Patent Literature 6, Patent Literature 7, and Patent Literature 8.)
[0004]
Patent Literature 1 focuses on the fact that a specific plant can absorb heavy metal and accumulate it in a large amount. Such a plant is planted in a soil contaminated with heavy metal, and the mechanism of absorption and accumulation of heavy metal is considered. In particular, a larger amount of heavy metal is accumulated in the roots, which are underground parts than the above-ground parts such as plant stems and leaves, and not only ionized heavy metals but also heavy metals that exist as stable compounds are ionized and absorbed. Is described. In addition, as plants having high heavy metal accumulation ability suitable for purification of soil contaminated with heavy metals, there are Asteraceae, Ossilophilaceae, Lamiaceae, Legumes, Solanaceae, Hanashinobaceae, Liliaceae, Craneaceae, Rosaceae, Rhododendronaceae, Hypericumaceae, and Laceae. , One of the following species: Cypress family, Cypress family, Berberaceae family, Birch family, Myrtaceae family, Apocynaceae family, Saxifragaceae family, Grass family, Iridaceae family, Cannaceae family, Convolvulaceae family, Brassicaceae family, Mesidae family, Akaza family, Aceraceae family, Salix family It is described as the above plant.
[0005]
However, in these preferred plants, the ability to accumulate harmful metals, including heavy metals, is not very high. Specifically, the harmful metal to be purified is less than 5 ppm when measured by the dry weight of each plant. In addition, experiments have been shown to prove the above description that "a large amount of heavy metal is accumulated in roots" and "Ionize and absorb not only ionized heavy metals but also heavy metals existing as stable compounds". Questions about reproducibility and practicality.
[0006]
Other Patent Documents 3, 4, 5, 6, 7, and 8 have not proposed a plant having an effective purification action enough to be put to practical use as a soil pollution purification method. In addition, a part of the patent document proposes a complicated and costly method of forming hairy roots having a remarkable purifying effect by introducing a plasmid of hairy root disease fungus, or improving the purifying ability by transformation by gene introduction. Yes, but there is doubt about its practicality.
[0007]
On the other hand, Patent Document 2 describes utilization of allelopathic action of a plant, which releases an allelopathic substance having a herbicidal effect and provides a stable transgenic plant. The issue is not to purify metal-contaminated soil.
[0008]
“Allelopathy” is translated as “allelopathy” and its definition is that “a chemical released from a plant exerts some inhibitory or promoting action on other plants, microorganisms or insects. Phenomenon. Examples include chemicals released by the valerian grassland in vacant lots and fallow land, which control the growth of other plants, legume pasture "Hairy Vetch" to control weeds in orchards and fallow land, and the native Japanese bean "Hasomame". Weed control and insect pest control, "Hambana" rodents, moles, and pest control, "buckwheat" weed control, and weed control by tree fallen leaf cover. In addition, there is a research report that caffeine contained in a large amount in coffee and tea significantly inhibits germination of plants other than legumes, and this is also said to be a type of allelopathy. At present, research is being conducted on the use of this allelopathy to exterminate grass with grass. A weed control method that suppresses only specific weeds and does not harm crops has an advantage that it is less effective than the use of herbicides but has less effect on the environment.
[0009]
Non-Patent Document 1 describes the problem of phytoremediation (soil remediation) using plants, and there is no specific description of such a method. Non-Patent Document 1 reports that the pokeweed (ink-berry) used in the present invention is a plant that accumulates rare earth elements, but does not suggest use for soil contamination. Non-Patent Document 3 describes the correlation and proportional relationship between elements contained in mugwort and growing soil, and Non-Patent Document 4 uses the element content of plants such as mugwort as an indicator (standard) of soil contamination. No description is given in detail about the purification of toxic metal-contaminated soil.
[0010]
[Patent Document 1]
JP 2000-288529 A [Patent Document 2]
JP-A-10-150983 [Patent Document 3]
JP-A-57-190 [Patent Document 4]
Japanese Patent Publication No. 7-508206 [Patent Document 5]
Japanese Patent Application Laid-Open No. 2000-167534 [Patent Document 6]
JP 2000-176433 A [Patent Document 7]
JP 2001-275683 A [Patent Document 8]
JP-A-2002-172380 [Non-Patent Document 1]
Cunningham, S.M. D. , Betri, W.C. R. Huang, J .; W. (1995), Trend Biotech, vol 13, p 393-397.
[Non-patent document 2]
Ichihashi, H .; , Morita, H .; Tatsukawa, R .; (1992), Envoiron. Polut. , Vol76, p157-162
[Non-Patent Document 3]
Honma, S.M. Tsumita, K .; . , Shirata, K .; (1977), Envoiron. and Human Surval. Ministry of Education. p103-111
[Non-patent document 4]
Baker, A .; J. M. McGrath, S .; P. Reeves, R .; D. , Smith, J.M. A. C. (1999), Metalhyperaccumulator plants, p85-107.
[0011]
[Problems to be solved by the invention]
The present invention is a method for purifying land from harmful metal contamination by removing harmful metals from soil containing harmful metals, and is basically harmful to harmful metal-contaminated soil containing harmful metals described in Patent Document 1. The object of the present invention is to solve a problem relating to a method for purifying toxic metal-contaminated soil in which a plant having a high metal accumulation capacity is planted, and then the plant is removed from the planting site. Specifically, a suitable species of such a plant to be planted is specified, and a suitable planting method and a suitable removal method are provided.
[0012]
[Means for Solving the Problems]
The present invention provides a method for purifying a toxic metal-contaminated soil, in which a plant having a high toxic metal accumulation ability is planted in the toxic metal-contaminated soil, and then the plant is removed from the planting place. The planted plant is Phytolacca americana ), The above-ground part of the pokeweed is removed from the planting ground, and the removed part of the pokeweed is treated with harmful metals. That is, the inventor has suggested that the plant plant suitable for solving the problem is the pokeweed pokeweed, and not the entire pokeweed poke but the above-ground part is removed from the planting ground, and the removed pokeweed pokeweed is treated with harmful metal. I found out what to do.
[0013]
In this project, only the above-ground part of the pokeweed is removed from the planting ground, and the terrestrial part of the removed pokeweed is treated with harmful metals. Of course, the harmful metals are also absorbed in the roots of the pokeweed, so removing the entire pokeweed in the short term will remove more harmful metals. However, as described later, in pokeweed pokeweed, harmful metals absorbed from soil tend to translocate from roots to stems to leaves. With. Moreover, if the roots are left, the above-ground parts (stems and leaves) will be regenerated, and there is no need to plant again.
[0014]
The pokeweed has a long (deep) root of about 1 m. This has the advantage that harmful metals in deeper parts of the land can also be absorbed. The pokeweed pokeweed is often found in slightly open areas, such as in open areas, wastelands, riverbanks, and bamboo forests. The flowers are pale-purple, whitish flowers, and in summer, they often become ears. From that time on, the whole grass began to grow and in the fall it became a 1-2 meter tall plant. Then, black-purple fruits having a diameter of about 8 mm are conspicuous. It is a naturalized plant native to North America that was introduced around the beginning of the Meiji era and has increased in various parts of the country. Josh is a Western species and its name is derived from its roots resembling pokeweed. There is also an alias for American pokeweed bearing the name of the place of origin. When this fruit is crushed by hand, the dark purple-colored juice gets on the hand. In its place of origin, it is called an ink-berry.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
It is important to utilize plant allelopathy in the practice of the present invention. After studying the planting of the pokeweed over a long period of time, it was found that the first generation pokeweed was grown and then the second generation pokeweed was planted. We believe that the reason is allelopathic action by the pokeweed. Like the general allelopathic effect, the allelopathic effect of Pleurotus pokeweed has not been elucidated scientifically, but it is experimentally clear that the first-generation planting has a promoting effect on the second-generation homologous growth. Therefore, when purifying toxic metal-contaminated soil, it is preferable to plant the pokeweed a plurality of times.
[0016]
By planting the perennial pokeweed for several years, a plant allelopathic effect can be obtained. Here, it is desirable to reap the above-ground parts as often as possible. The standard for this cutting is the time of flower bud formation. At that time, the growth of biomass stops, and by cutting the above-ground part, the release of allelochemicals (substances having an allelopathic effect) from the roots is increased, and contaminant metals are reduced. This is because it is considered to be easier to absorb. In other words, in the most orthodox state, it is planted and left for two years or more to absorb harmful metals and synergistically increase the allelopathic effect. Furthermore, in order to activate allelopathy, it is preferable to cut down the above-ground parts frequently at the time when flower buds are formed.
[0017]
FIGS. 4, 5, and 6 illustrate the above operations. FIG. 4 (a) shows a plant in which a pokeweed Inb is planted on soil G contaminated with harmful metals, which grows as shown in FIG. 4 (b) and gives buds as shown in FIG. 5 (c). By this time, allelochemicals (substances having an allelopathic effect) are released from the roots to some extent, and the release of allergic chemicals is further enhanced by removing the above-ground parts (FIG. 5 (d)). Therefore, as shown in FIG. 6E, the pokeweed pokeweed Inb2 is planted in the gap between the pokeweed pokeweed Inb1 planted the first time. Thereafter, as shown in FIG. 6 (f), the above-ground part is cut off and treated with harmful metals at the time when it has grown and formed flower buds.
[0018]
Further, when planting pokeweed on the soil to be purified, it is preferable to mix natural soil before planting or during the planting operation because the growth of pokeweed is promoted. The cause is also considered to be allelopathic action by the natural soil itself or any plant-derived substance mixed into the natural soil. The natural soil to be mixed is preferably the natural soil of the land where the pokeweed grows. The amount of the natural soil mixed is effective at about 7 to 8% of the weight of the soil for burying roots used for planting the roots of the pokeweed.
[0019]
That is, at the time of planting, iodine is mixed with a toxic metal-contaminated soil temporarily removed to fill the rhizome of the pokeweed and other soil having a weight of one-tenth or less of the weight of the removed soil. It is preferable to bury the rhizome of the pokeweed for planting. Further, it is preferable that the other soil is soil of a land where a plant of the pokeweed pokeweed naturally grows. The reason for this is considered to be allelopathic action by the same species growing soil, or the fact that the soil, which is a natural growth environment, contains trace elements suitable for growing pokeweed.
[0020]
In addition, the pokeweed to be planted is naturally grown on soil containing the harmful metal to be purified at a concentration of 0.1 ppm or more and cultivated on the soil containing the harmful metal to be purified at a concentration of 0.1 ppm or more. , The harmful metal to be purified is well absorbed. This is considered to be one expression of adaptation to the growth environment. A scientific explanation of this phenomenon is not yet available.
[0021]
The determination of soil containing harmful metals to be purified at a concentration of 0.1 ppm or more may be performed by ordinary soil analysis, or the harmful metals to be purified may be determined using soil monitoring species such as Hebinonekoza, Ragweed, and Artemisia. It may be obtained indirectly from the amount of harmful metal contained in the metal. Of course, pokeweed may be used as a soil monitoring species.
[0022]
Further, it is preferable that the pokeweed to be planted contains 1 ppm or more of a harmful metal to be purified by dry weight. In other words, the pokeweed pokeweed, which originally contains harmful metals in its environmental soil, has a high ability to absorb harmful metals. In addition, those in which the burdock burdock itself contains a harmful metal are evidence that the ability to absorb harmful metals is high. The production area of the pokeweed to be planted may be selected based on these criteria.
[0023]
FIGS. 1, 2 and 3 are drawings of the abstracts of "Possibility of monitoring and repairing trace metal element contamination using pokeweed" released at the Society of Environmental Chemistry. These supplement the explanation of the present invention. FIG. 1 shows a measurement example of the plant species and the amount of Cd accumulation (a plant collected in Annaka City), and it can be seen that Phytolaccaseae, which is a kind of pokeweed, is an outstanding Cd accumulation amount compared to other species. FIG. 2 shows the relationship between the locality of the pokeweed and the accumulated amounts of Tl (thallium) and Be (beryllium), which are extremely large in those collected at the contaminated area of Dajin-shan, Shanghai, China. You can see that it is done. FIG. 3 is a diagram (Spearman's rank correlation) showing a correlation between soil Cd and Zn concentrations and amounts of Cd and Zn contained in roots, stems and leaves of the pokeweed. There is a correlation with the soil concentration, suggesting that Cd and Zn tend to translocate from root to stem to leaf.
[0024]
Supplementary examples of harmful metals. Regarding the toxicity of cadmium Cd (atomic number = 48), it is common in cadmium poisoning called itai-itai disease in the Jinzu River basin in Toyama Prefecture. This is a kidney in which cadmium accumulates, and cadmium inhibits the function of zinc enzyme from its similarity as an element, causing renal damage. Beryllium (Be) belongs to a light metal (atomic number = 4), and its compound is sweet and highly toxic. It is so toxic that even small quantities can be fatal, but the reasons for its toxicity are not fully understood. Thallium (Tl) (atomic number = 81) is one of the most toxic elements. In the past, thallium sulfate was used to control ants and rats, but humans have no taste or smell. Since the lethal dose of the substance was very dangerous, about 2 g, it was no longer used.
[0025]
Furthermore, if the pokeweed is planted even in soil contaminated by radioactive substances, the radioactive elements are absorbed by the pokeweed (data not shown). By utilizing this to plant pokeweed, it is possible to safely and reliably treat radiation-contaminated soil, although the period is long.
[0026]
The removed plants are incinerated at 900 ° C. or higher using a sealed incinerator having a high-temperature treatment section formed by electricity, plasma, or general fuel energy. This is a known method for treating harmful metal-containing substances. The closed-type incinerator is a generic name for incinerators having a structure in which incineration fly ash and volatile harmful metals do not leak to the outside world as much as possible. Any incinerator may be used as long as it is such an incinerator. After incineration, spontaneous cooling may be performed up to about 500 ° C., but at least in the range of 300 to 450 ° C., do not stay for a long time in order to prevent generation of dioxin. Desirably, rapid cooling is performed in this range. The incineration ash is taken out when the furnace temperature reaches room temperature or several tens of degrees. Further, when incineration residues such as dust are attached to the furnace wall or the like, it is preferable to take out the incineration residue at the same time, combine it with incineration ash to make incineration, and perform the following treatment.
[0027]
Since the incinerated material taken out is considerably reduced in volume, for example, a known inorganic solidifying material such as a cement-based solidifying material is added to solidify to make it difficult to elute harmful metal components, and the solidified material is disposed of in landfill. You can also. It is also preferable to separate and collect the harmful metal components concentrated in the incineration, and reuse the collected harmful metals as valuable resources. The separation and recovery of harmful metals in the incineration ash may be performed by any known method. For example, a method is commonly used in which incinerated ash is acid-washed with sulfuric acid or hydrochloric acid to elute harmful metals, and a liquid obtained by solid-liquid separation of the ash is subjected to alkali treatment to precipitate harmful metals as a high-purity compound. It is a target.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, since a harmful metal component can be efficiently removed from the soil contaminated with the harmful metal, it can take time, but can regenerate the soil to the soil from which the harmful metal has been eliminated. Removal removes only the above-ground parts regularly and leaves the roots intact. The above-ground part will be regenerated and the absorption will be permanent, so once planting it is only necessary to cut the above-ground part regularly. Moreover, since the roots are deep, it is possible to remove harmful metals about 1 m below the ground surface.
[Brief description of the drawings]
Fig. 1 Plant species and Cd accumulation (plants collected in Annaka City)
[Fig. 2] The locality of the pokeweed and the accumulation of TI (thallium) and Be (beryllium). [Fig. 3] Diagram showing correlation (Spearman's rank correlation)
FIG. 4 is an explanatory view of a pokeweed planting of the present invention, part 1
FIG. 5 is an explanatory view of the pokeweed planting of the present invention, part 2
FIG. 6 is an explanatory diagram 3 of the pokeweed pokeweed planting of the present invention.
[Explanation of symbols]
A Allelochemicals released from roots (substances with allelopathic effect)
Be Beryllium Cd Cadnium F Flower bud G of pokeweed G Soil contaminated with harmful metals Inb pokeweed (ink-berry)
Inb1 The first planted pokeweed (ink-berry)
Inb2 The pokeweed (Ink-berry) planted the second time
Tl thallium

Claims (7)

有害金属汚染土壌に有害金属蓄積能力の高い植物を植栽し、次いでこの植物を植栽地より除去する有害金属汚染土壌の浄化方法において、植栽植物がヨウシュヤマゴボウであり、該ヨウシュヤマゴボウの地上部を植栽地より除去し、除去したヨウシュヤマゴボウ地上部を有害金属処理する有害金属汚染土壌の浄化方法In a method for purifying harmful metal-contaminated soil by planting a plant having a high harmful metal accumulation ability on the harmful metal-contaminated soil, and then removing the plant from the planting ground, the plant is a pokeweed pokeweed, Of harmful metal-contaminated soil by removing the above-ground part of the plant from the planting ground and treating the removed part of the pokeweed burdock with harmful metal 請求項1に記載された地上部を植栽地より除去する作業の時期が、ヨウシュヤマゴボウの花芽形成時であって、花芽が形成された地上部を少なくとも1回除去するものである有害金属汚染土壌の浄化方法The harmful metal according to claim 1, wherein the operation of removing the above-ground portion from the planting place is at the time of flower bud formation of the pokeweed, and at least once removing the above-ground portion where the flower bud is formed. How to clean contaminated soil 請求項1または請求項2に記載された植栽に際し、ヨウシュヤマゴボウ根茎部を埋めるために一時的に排除した有害金属汚染土壌と該排除土壌重量の10分の1以下の重量である他の土壌とを混合した混合土でヨウシュヤマゴボウの根茎部を埋めて植栽する有害金属汚染土壌の浄化方法In the planting according to claim 1 or claim 2, the harmful metal-contaminated soil temporarily eliminated to fill the rhizome of the pokeweed and other ones having a weight of one tenth or less of the weight of the eliminated soil. A method for purifying toxic metal-contaminated soil by burying the rhizome of the pokeweed and planting it with a mixed soil mixed with soil 請求項3に記載された他の土壌が、植栽するヨウシュヤマゴボウの株が自然生育していた土地の土壌である有害金属汚染土壌の浄化方法A method for purifying toxic metal-contaminated soil, wherein the other soil according to claim 3 is a soil of a land where a plant of the pokeweed plant to be planted naturally grows. 請求項1から請求項4に記載された植栽するヨウシュヤマゴボウが、浄化対象の有害金属を0.1ppm以上の濃度で含有する土壌で自然生育または浄化対象の有害金属を0.1ppm以上の濃度で含有する土壌で栽培したものである有害金属汚染土壌の浄化方法The pokeweed to be planted according to any one of claims 1 to 4, wherein the harmful metal to be purified is naturally grown or 0.1 ppm or more in the soil containing the harmful metal to be purified at a concentration of 0.1 ppm or more. Of Hazardous Metal Contaminated Soil Cultivated on High Concentration Soil 請求項1から請求項4に記載された植栽するヨウシュヤマゴボウが、浄化対象の有害金属を乾燥重量で1ppm以上含有しているものである有害金属汚染土壌の浄化方法A method for purifying harmful metal-contaminated soil, wherein the pokeweed to be planted according to any one of claims 1 to 4 contains a harmful metal to be purified in an amount of 1 ppm or more by dry weight. 請求項1から請求項4に記載された植栽にて、ヨウシュヤマゴボウを二回に分けて有害金属汚染土壌に植栽するものであり、第一回目の植栽の後、ヨウシュヤマゴボウの花芽形成時に花芽が形成された第一回目に植栽したヨウシュヤマゴボウの地上部を少なくとも1回除去し、前記除去作業後に第一回目に植栽したヨウシュヤマゴボウの植栽間隙に第二回目の植栽をするものである有害金属汚染土壌の浄化方法The plant according to claims 1 to 4, wherein the pokeweed is planted on the toxic metal-contaminated soil in two stages, and after the first planting, The above-ground portion of the first planted pokeweed which had flower buds formed at the time of flower bud formation was removed at least once, and the second time in the planting gap of the first planted pokeweed after the removal operation. Of harmful metal-contaminated soil that is planted
JP2002277206A 2002-09-24 2002-09-24 Method for cleaning harmful metal polluted soil by planting Pending JP2004113858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277206A JP2004113858A (en) 2002-09-24 2002-09-24 Method for cleaning harmful metal polluted soil by planting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277206A JP2004113858A (en) 2002-09-24 2002-09-24 Method for cleaning harmful metal polluted soil by planting

Publications (1)

Publication Number Publication Date
JP2004113858A true JP2004113858A (en) 2004-04-15

Family

ID=32272870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277206A Pending JP2004113858A (en) 2002-09-24 2002-09-24 Method for cleaning harmful metal polluted soil by planting

Country Status (1)

Country Link
JP (1) JP2004113858A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107475384A (en) * 2017-08-21 2017-12-15 南京农业大学 A kind of screening technique of manganese/Cd uptake efficient ecological type dyers' grapes
CN110076194A (en) * 2019-04-03 2019-08-02 河南清水源科技股份有限公司 A kind of bionic plant and application thereof based on the rising type removal heavy metal pollution of soil of acceleration
CN110665948A (en) * 2018-07-03 2020-01-10 河南理工大学 Ecological restoration method suitable for heavy metal contaminated soil in multiple regions
CN111906130A (en) * 2020-06-28 2020-11-10 中国科学院广州能源研究所 Soil pollution treatment method based on plant physiology and physics regulation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107475384A (en) * 2017-08-21 2017-12-15 南京农业大学 A kind of screening technique of manganese/Cd uptake efficient ecological type dyers' grapes
CN110665948A (en) * 2018-07-03 2020-01-10 河南理工大学 Ecological restoration method suitable for heavy metal contaminated soil in multiple regions
CN110076194A (en) * 2019-04-03 2019-08-02 河南清水源科技股份有限公司 A kind of bionic plant and application thereof based on the rising type removal heavy metal pollution of soil of acceleration
CN110076194B (en) * 2019-04-03 2021-11-30 河南清水源科技股份有限公司 Bionic plant for removing heavy metal pollution of soil based on accelerated transpiration and application thereof
CN111906130A (en) * 2020-06-28 2020-11-10 中国科学院广州能源研究所 Soil pollution treatment method based on plant physiology and physics regulation

Similar Documents

Publication Publication Date Title
Nouri et al. Application of green remediation on soil salinity treatment: A review on halophytoremediation
Laureysens et al. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations
Paz-Alberto et al. Phytoremediation: a green technology to remove environmental pollutants
Kumar et al. Use of plant species in controlling environmental pollution
Bicalho et al. Herbicide distribution in soils of a riparian forest and neighboring sugar cane field
Ariyakanon et al. Phytoremediation of copper contaminated soil by Brassica juncea (L.) Czern and Bidens alba (L.) DC. var. radiata
Subhashini et al. Phytoremediation of cadmium and chromium contaminated soils by Cyperus rotundus L
WO2010130730A1 (en) Use of cistus libanotis to clean heavy metals containing soils
Soto Carrión et al. Potential phytoremediator of native species in soils contaminated by heavy metals in the garbage dump Quitasol-Imponeda Abancay
Chen et al. Three-season rotation of chicory–tobacco–peanut with high biomass and bioconcentration factors effectively remediates cadmium-contaminated farmland
Yin et al. Copper and zinc speciation in soils from paddy cultivation areas in Kelantan, Malaysia
JP5660760B2 (en) Method for recovering tellurium from soil containing tellurium
JP2004113858A (en) Method for cleaning harmful metal polluted soil by planting
Sanghamitra et al. Heavy metal tolerance of weed species and their accumulations by phytoextraction
CN102441562A (en) Method for promoting broad bean in restoring and treating cadmium-polluted soil by using citric acid
Hu et al. Natural plant selection for radioactive waste remediation
JP2014172026A (en) Heavy metal removal/recovery method
Shibata et al. Phytoremediation of Pb contaminated soil with polymer-coated EDTA
Pandey et al. Vetiveria zizanioides (L.) Nash–more than a promising crop in phytoremediation
WO2007091382A1 (en) Method of purifying medium contaminated with heavy metals
Dinesh et al. Phytoaccumulation of heavy metals in contaminated soil using Makoy (Solenum nigrum L.) and Spinach (Spinacia oleracea L.) plant
KR20100028311A (en) Phytoremediation of heavy metal-contaminated soil using cucumis sp
Al-Khazan et al. Toxic materials phytoremediation potential of four common trees in Saudi Arabia: A review
JP2005296941A (en) Method for cleaning lead-contaminated soil
Bicalho et al. The fate of tebuthiuron in microcosm with riparian forest seedlings

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708