JP2004112711A - Bidirectional optical communication system - Google Patents

Bidirectional optical communication system Download PDF

Info

Publication number
JP2004112711A
JP2004112711A JP2002276017A JP2002276017A JP2004112711A JP 2004112711 A JP2004112711 A JP 2004112711A JP 2002276017 A JP2002276017 A JP 2002276017A JP 2002276017 A JP2002276017 A JP 2002276017A JP 2004112711 A JP2004112711 A JP 2004112711A
Authority
JP
Japan
Prior art keywords
light
user
optical
optical fiber
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002276017A
Other languages
Japanese (ja)
Other versions
JP4012450B2 (en
Inventor
Mitsuhiro Tatsuta
立田  光廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002276017A priority Critical patent/JP4012450B2/en
Publication of JP2004112711A publication Critical patent/JP2004112711A/en
Application granted granted Critical
Publication of JP4012450B2 publication Critical patent/JP4012450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bidirectional optical communication system in which an optical source is not provided in a user terminal, and the terminal has an exclusive use optical fiber for the terminal. <P>SOLUTION: An office 1 is provided with an optical source for transmission 11 per a user 1, a photodetector 12 per the user 1, an optical resource for a transmission signal 13 for the user 1, a multiplexing and demultiplexing unit 14 in the office, and an optical frequency multiplexing and demultiplexing unit 17 in the office. The system comprises the office 1, a common use optical fiber 3 connecting with the office 1, a birefringence optical frequency filter 4 of 2 frequency light transmission out of sending lights, and a polarization maintaining optical fiber 6 which leads the transmission light to the user terminal 2. The user terminal 2 is composed of a polarization beam splitter, a light detector which receives one light of the separated lights, and a means which modulates the other light by a modulator following a signal to be sent, and then makes the light inputted to the polarized beam splitter again, and makes it proceed in the reverse direction and reach the birefringence optical frequency filter 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は光ファイバを用いた双方向光通信システムに関するものである。
【0002】
【従来の技術】
近年、光ファイバ通信技術は研究段階から実用段階にはいり、既に市外電話通信網などの幹線系に大量に導入されている。更に、インターネットの急速な普及などに対応して、光ファイバを用いた通信網を家庭にまで広げる、所謂FTTH(Fiber To The Home )の実現も間近いと期待されている。ここで問題となるのが、双方向通信システムの構成である。
【0003】
図1は双方向通信システムの概念図であって、ユーザ端末2に対向する相手を局1と表示している。インターネットのホームページなどの信号は、図1には表示されていない経路で局1に到達した後、局1からユーザ端末2に向かって光ファイバ3を介して送出される。この信号を便宜上、慣習に従って下り信号と呼ぶ。一方、ユーザ端末2からはホームページへの接続要求信号などが局1に向かって発信される。これを慣習に従って上り信号と呼ぶことにする。
【0004】
図8は、従来技術を用いた双方向光通信システムの一つの構成図を示す。この例では、ユーザ端末2は、光ファイバ3を介した下り信号光の受光器22および上り信号を送信するための上り送信用光源26を含めて構成される。光通信用の光源は用途により様々のものがある。例えば、光コードを用いたオーディオのCD(コンパクトディスク)からMD(ミニディスク)への録音は光ファイバ通信の一形態とも考えられる。
【0005】
オーディオのCDからMDへの録音程度の伝送距離と伝送容量ならば、十分信頼性のある(故障の心配のない)民生品が得られるが、電話局と家庭を結ぶ大容量通信のためには高精度な温度管理などの特別な配慮が必要となり、図8の構成は技術的な実現可能性はあるもののコスト高となるという欠点がある。
【0006】
一本の光ファイバに異なる多くの周波数の光信号を同居させて伝送する光周波数多重伝送は、多種多様なサービスに対応したり、伝送容量の増大に対処するのに効果的だと期待され、既に幹線系に導入されている。また、1つの局に接続されるユーザ端末の数が多くなると、光ファイバ通信網の建設コストの経済化のため、伝送路の一部共用が望まれる。
【0007】
図9はこのような要求に応える一形態であって、パッシブダブルスター型と呼ばれる分岐光線路網でなる分岐部/光周波数フィルタ5に周波数多重伝送を組み合わせ、複数のユーザ端末(1,2,・・n)に伝送したものである。このようなシステム構成で双方向光通信を実現するためには、図10に示すように、分岐部/光周波数フィルタ5以降の専用光ファイバ7の区間では、1ユーザ端末あたり2本の光ファイバを使用し、1本は下り信号用に、他方は上り信号用に用いる構成が考えられる。
【0008】
この構成では、1ユーザ端末あたり2本の光ファイバを必要とすることは経済性の観点から明らかな欠点である(第1の欠点)。また、一般に光周波数フィルタの性能(クロストークや挿入損失など)は出力ポートの数が増えるほど低下するため、分岐部/光周波数フィルタ5の出力ポートを1ユーザ端末あたり2つ必要とすることもまた欠点となる(第2の欠点)。更に、図8について説明したように、ユーザ端末に上り送信用光源26を必要とすることは大きな欠点となる(第3の欠点)。
【0009】
上記第1の欠点に限れば、図11に示すように、分岐部/光周波数フィルタ5に接続された2本の光ファイバを合分波器に接続し、その後、1本の光ファイバでユーザ端末まで導くことにより解決する。しかしながら、この場合にも依然として、上記第3の欠点は解決されない。また、変調形式の異なる信号を同一の伝送路光ファイバを用いて双方向に伝送する双方向光通信方法もある(特許文献1参照)。しかし、この方法も上記第3の欠点は解決されない。しかも、インターネットの急速な普及などに対応し、特に双方向通信を家庭にまで広げるとなると、解決すべき課題が多々ある。
【0010】
【特許文献1】
特開平9−98137号公報
【0011】
【発明が解決しようとする課題】
このように、従来技術を用いた双方向光通信システムでは、ユーザ端末は、下り信号光の受光器および上り信号を送信するための光源を含めて構成されるが、周波数多重技術を活用するために、この光源の温度管理は高精度(1/1000度程度)を要す。これを回避するため1ユーザ端末あたり2本の光ファイバを用いる方法もあるが、1ユーザ端末あたり2本の光ファイバを必要とし、かつ光周波数フィルタの出力ポートを1ユーザ端末あたり2つ必要として高コストのみならず性能面でも問題が生じていた。そこで本発明の目的は、ユーザ端末に光源を設置することなく、かつ、1ユーザ端末あたり一本の専用光ファイバを用いた安価で信頼性の高い双方向光通信システムを実現することである。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係る双方向光通信システムは、局とユーザ端末を光ファイバで結ぶ双方向光通信システムにおいて、前記局に接続された一本の光ファイバと、前記一本の光ファイバを介して局から送られてくる光のうち、偏光方向が互いに直交した特定の2つの周波数の光を透過させる複屈折光周波数フィルタと、前記複屈折光周波数フィルタ透過光をその偏光状態を保ったままユーザ端末まで導く偏波保持光ファイバと、ユーザ端末により構成される。
【0013】
こうして、複屈折周波数フィルタでは、周波数が隣接する透過光の偏光方向が互いに直交していることに着目し、周波数多重伝送システムの主要なコストを占める光周波数フィルタのポート数を最小限とする手段としてその複屈折性を積極的に利用することにより、ユーザ端末に光源を設置することなく、かつ、1ユーザ端末あたり1本の専用光ファイバを用いて、安価で信頼性の高い双方向光通信システムを実現することができる。
【0014】
本発明の請求項2に係る双方向光通信システムは、請求項1記載の双方向光通信システムにおいて、前記局はユーザ宛送信用光源、ユーザ用受光器、ユーザ発信信号用光源、合分波器でなる複数のユーザ用光源・受光器類と1つの光周波数合分波器とで構成される。
【0015】
こうして、双方向通信を実現するには上り・下り用の2つの信号光が必要であるため、これらを局に設置した1つまたは2つの光源で供給するためにはユーザ発信信号用として無変調光を局からユーザまで配送する必要があるが、このように局を構成することにより、ユーザ端末に光源を設置することなく、かつ、1ユーザ端末あたり1本の専用光ファイバを用いて、安価で信頼性の高い双方向光通信システムを実現することができる。
【0016】
本発明の請求項3に係る双方向光通信システムは、請求項1記載の双方向光通信システムにおいて、前記ユーザ端末は前記偏波保持光ファイバ出力光をその偏光方向に従い分離する偏光ビームスプリッタと、前記偏光ビームスプリッタで分離された光のうち一方を受光する光検出器と、他方をユーザが送出すべき信号に従い変調器により変調を加えたのち、再び前記偏光ビームスプリッタに入射して前記複屈折光周波数フィルタに到達せしめる手段とにより構成される。
【0017】
本発明の請求項4に係る双方向光通信システムは、請求項3記載の双方向光通信システムにおいて、前記変調器は反射型変調器で構成される。
【0018】
こうして、複屈折周波数フィルタの周波数が隣接する透過光の偏光方向が互いに直交する複屈折特性を利用することにより、ユーザ端末に光源を設置する必要のない簡単な構成で、1ユーザ端末あたり一本の専用光ファイバを用いた安価で信頼性の高い双方向光通信システムを実現することである。
【0019】
【発明の実施の形態】
双方向通信を実現するには上り・下り用の2つの信号光が必要である。これらを局に設置した1つまたは2つの光源で供給するためにはユーザ発信信号用として無変調光を局からユーザまで配送する必要がある。更に、1ユーザ当たり1本の光ファイバを用いてシステムを構成するためには、必然的に周波数の異なる2光源が必要となるため、周波数多重伝送システムが不可欠となる。
【0020】
本発明は、複屈折周波数フィルタでは、周波数が隣接する透過光の偏光方向が互いに直交していることに着目し、周波数多重伝送システムの主要なコストを占める光周波数フィルタのポート数を最小限とする手段としてその複屈折性を積極的に利用したことに特徴がある。
【0021】
次に本発明の実施形態を図を参照して説明する。図2は本発明の実施形態の一例を示し、システムの全体構成図である。このシステムは、局1、共用ファイバ3、複屈折光周波数フィルタ4、各ユーザ毎に専用の偏波保持光ファイバ6、各ユーザ毎のユーザ端末2から構成される。
【0022】
局1の構成は、図3に示すように、全ユーザ共用部品である光周波数合分波器17、1ユーザあたり2本の光ファイバによりこれに接続された各ユーザ毎に対応するユーザN用光源・受光器類部(N:1,2,・・・)10で構成される。例えば、ユーザ1用光源・受光器類10はユーザ1宛送信用光源11、ユーザ1用受光器12、ユーザ1発信信号用光源13で構成され、ユーザ1宛送信用光源11は第1の入力光ファイバ15により直接光周波数合分波器17に接続されている。
【0023】
ユーザ1用受光器12とユーザ1発信信号用光源13は、それぞれ光ファイバで接続された合分波器14を介して、第2の入力光ファイバ16により光周波数合分波器17に接続されている。光周波数合分波器17は入力されたすべての異なる周波数光を混合して合流ポートに接続された共用光ファイバ3に出力する。図3にはユーザ1用光源・受光器類10の構成についてのみ詳しく描いており、他のユーザN用光源・受光器類については略記している。
【0024】
図4はユーザ端末2の内部構造を示し、偏光ビームスプリッタ21、受光器22、合分波器23、変調器24で構成されている。ユーザが送信すべき送信信号8は、ここでいうユーザ端末2の外部から供給されるが、図4には併せて示している。
【0025】
次に、本発明の動作について図2〜図5を参照して詳しく説明する。はじめに、局1からユーザ1端末2に宛て送られる下り信号光について述べる。図3に示すように局1において、周波数ν のユーザ1宛送信用光源11を出た光は、1本の光ファイバ15を介して光周波数合分波器17に導かれる。
【0026】
光周波数合分波器17は周波数があらかじめ定められた値、ν (k=1,2,・・)の光のみをただ1つの合流ポートに接続された1本の共用光ファイバ3に送出する素子である。前記ユーザ1宛送信用光源の周波数ν はこのような透過周波数のうちの1つである。光周波数合分波器17から送出された光は共用光ファイバ3により図2の複屈折光周波数フィルタ4に導かれる。
【0027】
複屈折光岡波数フィルタ4の動作と具体例を説明するまえに、複屈折を持たない光周波数フィルタについてまず説明する。複屈折を持たない光周波数フィルタは、前述の局内に設置された光周波数合分波器17と実質的に同一のものであり、入力ポートと合流ポートを取り替えて用いる。即ち、1つの合流ポートから入射した複数の周波数の光があるとき、予め定められた特定の周波数の光のみが、予め定められた分波ポートから出力される。
【0028】
このような機能を持つ素子として、アレイ導波路回折格子AWG(Arrayed Wave guide Graing)が販売されている。また、同様の機能は図5に示すように、入力端子から入射した光ν ,ν ,ν ・・・を複数の端子宛に等パワー分配する光分岐素子と、各々の出力端子に1つずつ接続され特定の周波数の光のみを透過させるFPE(ファブリ・ペロ・エタロン)群を用いて実現することもできる。
【0029】
次に、複屈折光周波数フィルタについて説明する。複屈折とは、同一の物質でありながら、光の偏光方向によって異なる屈折率をもつ現象であって、基板上に構成された光導波路に特に顕著にみられる。
【0030】
前述のアレイ導波路回折格子もファブリ・ペロ・エタロン群も、いずれの場合にも、特定の出力ポートの透過率が、素子内の光の通り道の光路長(屈折率と実長の積)と光の波長の比に依存する性質を利用して、入射光をその周波数に従ってフィルタしている。現実の光導波路には複屈折現象がみられフィルタ特性は複雑になる。即ち、入射光の偏光状態に依存して光路長が異なるため、同一ポートでありながらフィルタの透過周波数が異なる。
【0031】
図6は複屈折を持つファブリ・ペロ・エタロンの透過特性を示す。本来、ファブリ・ペロ・エタロンの透過特性は周波数に関して完全に周期的となり、その周期はFSRとよばれるが、複屈折を持つファブリ・ペロ・エタロンの場合には、図6に示すように、透過信号成分ν は2つの近接した要素ν(1)、ν(2)を持つ。
【0032】
ここで、周波数ν(1)<ν(2)とするとき、2つの複屈折主軸のうち、ν(1)は光速が遅い軸に、ν(2)は光速が速い軸に対応している。エタロン入射時の偏光状態が複屈折主軸に対して傾いた楕円偏光であっても、これらの透過光は出射時には、互いに偏光方向が直交した直線偏光になっている。また、近接した透過ピークの周波数差δ=ν(2)−ν(1)は複屈折の大きさに比例している。
【0033】
本発明では1つの出力ポートから2種類の周波数光が得られ、かつその偏光方向が直交していることを利用する。例えば、図2のユーザ1宛送信用光源11の周波数ν をν(1)に一致させると、この光は複屈折光周波数フィルタ4を通過して偏波保持光ファイバ6に結合する。
【0034】
偏波保持光ファイバ6は複屈折性の極めて大きな光ファイバであり、市販されている。通常の光ファイバにみられる複屈折の大きさが10−7から10−6程度であるのに対し、偏波保持光ファイバ6の複屈折は10−4程度の大きさとなるように製作されている。このため、通常の光ファィバ内では伝搬と共に偏光状態はランダムに変化してしまうが、直線偏光を偏波保持光ファイバ6の偏光主軸に平行または垂直に入射する場合には、入射時の偏光状態がそのまま偏波保持光ファイバ6の出射端まで保たれるという特徴がある。
【0035】
本発明では、複屈折光周波数フィルタ4を通過した周波数ν (=ν(1))のユーザ1宛送信光の偏光方向を、偏波保持光ファイバ6の主軸に一致させる。この状態をν と書くことにする。図4には、偏波保持光ファイバ6から偏光方向の固定された周波数ν のユーザ1宛送信光ν がユーザ端末2に入射する様子が描かれている。
【0036】
ユーザ端末2内の偏光ビームスプリッタ21は、入射光の特定の偏光方向成分を第1のポートに、また、これと直交する偏光成分を第2のポートへと導く素子である。本発明の実施例では、ユーザ1宛送信光はすべて特定の方向に偏光した直線偏光となっているから、この方向を偏光ビームスプリッタ21の第1ポート透過方向に一致させておくことにより、第1ポートに接続された受光器により損失なく受信される。
【0037】
次に、ユーザ1が局宛に信号を送る方法について述べる。図3に示すように、このための光源(ユーザ1発信信号用光源)13はユーザ端末ではなく局1に設置される。ユーザ1発信信号用光源13の周波数をν とし、ν と区別する。
【0038】
局内の合分波器14は2ポート側から順方向に用いる場合は入射光の一部または全部を1つの出力ポートに導く合波器として働き、1ポート側から逆方向に用いる場合は2つのポートに分割して出力されるための分波器として働く。ユーザ1発信信号用光源13を出た光はこの合分波器14を経由して光周波数合分波器17に結合される。
【0039】
ユーザ1発信信号用光源13の周波数ν を、光周波数合分波器17の第jの出力ポートの複屈折にもとづく第2透過周波数ν(2)に一致させておくことにより、周波数ν (=ν(1))のユーザ1宛送信光と同じ第j出力ポートから出射させることができる。このとき、その偏光方向は周波数ν (=ν(1))のユーザ1宛送信光と直交している。これをν〃と表記する。
【0040】
図2において、複屈折光周波数フィルタ4の第jポートに接続された偏波保持光ファイバ6の主軸はユーザ1宛送信光の偏光方向に一致しているから、これと直交する偏光方向を持つユーザ1発信信号用光の偏光状態もまた、直線偏光に保たれたままユーザ端末2に到達する。
【0041】
図4には、ユーザ1宛送信光ν と直交する直線偏光として、ユーザ1発信信号用光ν〃がユーザ端末2に入射する様子が描かれている。結局、偏波保持光ファイバ6から偏光ビームスプリッタ21には、偏光方向の直交する2つの周波数の光、ν  及びν〃が入射する。前者は第1のポートに出力され受光器22に入力されるが、後者、即ち、ユーザ1発信信号用光は第2のポートに出力され、合分波器23を経由して変調器24に導かれる。
【0042】
ここに至るまで、ユーザ1発信信号用光は無変調であったが、ユーザ端末2内の変調器24を通過の際、ユーザが局宛に送出すべき送信信号8に従って変調を受ける。変調を受けたユーザ1発信信号光は前記合分波器23の第2のポートに導かれ、再び偏光ビームスプリッタ21に達する。
【0043】
この時、変調を受けたユーザ1発信信号光の周波数は変調帯域程度の変化しか受けず、事実上ν のままとして扱えるが、偏光方向については若干の変化が生じうる。偏光ビームスプリッタ21への入射光の偏光方向ゆらぎがあっても、偏光ビームスプリッタ21はその透過軸成分のみを透過させることから、偏波保持光ファイバ6に結合する光は偏波が保存される。
【0044】
但し、この入射光の偏光方向ゆらぎは偏波保持光ファイバ6への結合効率に影響するので、可能な限り偏光方向を偏光ビームスプリッタ21の第2ポート透過軸に一致させることが望ましい。
【0045】
偏光ビームスプリッタ21を逆進する周波数ν のユーザ1発信信号光は、再び偏波保持光ファイバ6へ結合し、図2における複屈折光周波数フィルタ4、共用光ファイバ3を経て、図3の局1内の光周波数合分波器17を通過して、局内の合分波器14に到達し、更に合分波器14の第2の出力ポートに接続されたユーザ1用受光器12により受信される。
【0046】
図7はユーザ端末2の第2の構成例であって、反射型変調器25を用いることにより、ユーザ端末内に合分波器を不要としている。反射型変調器25の具体例としては、液晶変調器、あるいはより高速動作が可能なものとして、LiNb0などの電気光学効果を用いた位相変調器を反射鏡と組み合わせて実現できる。
【0047】
このように、双方向通信を実現するには上り・下り用の2つの信号光が必要であるため、これらを局に設置した1つまたは2つの光源で供給するためにはユーザ発信信号用として無変調光を局からユーザまで配送する必要があり、更に、1ユーザ当たり1本の光ファイバを用いてシステムを構成するためには、必然的に周波数の異なる2光源が必要となるので、周波数多重伝送システムが不可欠となるが、本発明は、複屈折周波数フィルタでは、周波数が隣接する透過光の偏光方向が互いに直交していることに着目し、複屈折周波数フィルタを用いることにより、周波数多重伝送システムの主要なコストを占める光周波数フィルタのポート数を最小限とする手段としてその複屈折性を積極的に利用したものである。
【0048】
【発明の効果】
以上のように本発明は、複屈折周波数フィルタでは、周波数が隣接する透過光の偏光方向が互いに直交していることに着目し、周波数多重伝送システムの主要なコストを占める光周波数フィルタのポート数を最小限とする手段としてその複屈折性を積極的に利用することにより、ユーザ端末に光源を設置することなく、かつ、1ユーザ端末あたり1本の専用光ファイバを用いて、安価で信頼性の高い双方向光通信システムを実現することができる。
【0049】
また、双方向通信を実現するには上り・下り用の2つの信号光が必要であるため、これらを局に設置した1つまたは2つの光源で供給するためにはユーザ発信信号用として無変調光を局からユーザまで配送する必要があるが、本発明のように、局とユーザ端末を構成することにより、ユーザ端末に光源を設置することなく、かつ、1ユーザ端末あたり1本の専用光ファイバを用いて、安価で信頼性の高い双方向光通信システムを実現することができる。
【図面の簡単な説明】
【図1】双方向通信システムの概念図。
【図2】本発明の双方向通信システムの全体構成図。
【図3】本発明の局の構成図。
【図4】本発明のユーザ端末の第1の構成図。
【図5】複屈折を持たない光周波数フィルタの実施例図。
【図6】複屈折ファブリ・ペロ・エタロンの透過特性図。
【図7】本発明のユーザ端末の第2の構成図。
【図8】従来の双方向光通信システムの第1の構成図。
【図9】分岐光線路型光周波数多重伝送システム(一方向伝送)
【図10】従来の双方向光通信システムの第2の具体的構成図。
【図11】従来の双方向光通信システムの第3の具体的構成図。
【符号の説明】
1                局
11              ユーザ1宛送信用光源
12              ユーザ1用受光器
13              ユーザ1発信信号用光源
14              合分波器
15,16        第1、第2の入力光ファイバ
17              光周波数合分波器
2                ユーザ端末
21              偏光ビームスプリッタ
22              受光器
23              合分波器
24              変調器
25              反射型変調器
3                共用光ファイバ
4                複屈折光周波数フィルタ
5                分岐部/光周波数フィルタ
6                偏波保持光ファイバ
7                専用光ファイバ
8                送信信号
10              ユーザ用光源・受光器類
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bidirectional optical communication system using an optical fiber.
[0002]
[Prior art]
2. Description of the Related Art In recent years, optical fiber communication technology has entered the research stage from the practical stage, and has already been introduced in large quantities into trunk lines such as toll telephone networks. Further, in response to the rapid spread of the Internet and the like, it is expected that the realization of the so-called FTTH (Fiber To The Home), which extends a communication network using an optical fiber to homes, is near. The problem here is the configuration of the two-way communication system.
[0003]
FIG. 1 is a conceptual diagram of a two-way communication system, in which a partner facing a user terminal 2 is indicated as a station 1. A signal such as a home page of the Internet arrives at the station 1 via a path not shown in FIG. 1 and is transmitted from the station 1 to the user terminal 2 via the optical fiber 3. For convenience, this signal is called a downstream signal according to custom. On the other hand, a connection request signal to the homepage is transmitted from the user terminal 2 to the station 1. This will be referred to as an up signal according to a custom.
[0004]
FIG. 8 shows one configuration diagram of a bidirectional optical communication system using the conventional technique. In this example, the user terminal 2 is configured to include a light receiver 22 for downstream signal light via the optical fiber 3 and a light source 26 for upstream transmission for transmitting an upstream signal. There are various light sources for optical communication depending on applications. For example, recording audio from a CD (compact disk) to an MD (minidisk) using an optical code can be considered as one form of optical fiber communication.
[0005]
If the transmission distance and the transmission capacity are as low as the recording of audio from a CD to an MD, a sufficiently reliable consumer product (without worrying about failure) can be obtained, but for large-capacity communication between telephone offices and homes, Special considerations such as high-precision temperature control are required, and the configuration of FIG. 8 has technical disadvantages, but has a disadvantage of high cost.
[0006]
Optical frequency multiplexing transmission, in which optical signals of many different frequencies coexist on a single optical fiber for transmission, is expected to be effective in supporting a wide variety of services and coping with an increase in transmission capacity. It has already been introduced to the trunk system. Further, when the number of user terminals connected to one station increases, it is desired to partially share a transmission line in order to reduce the construction cost of an optical fiber communication network.
[0007]
FIG. 9 shows an embodiment responding to such a request, in which a frequency division multiplexing transmission is combined with a branching / optical frequency filter 5 composed of a branching optical line network called a passive double star type, and a plurality of user terminals (1, 2, 2,. ..N). In order to realize bidirectional optical communication with such a system configuration, as shown in FIG. 10, in the section of the dedicated optical fiber 7 after the branch / optical frequency filter 5, two optical fibers per user terminal are used. A configuration is conceivable in which one is used for downstream signals and the other is used for upstream signals.
[0008]
In this configuration, the necessity of two optical fibers per user terminal is a clear disadvantage from the viewpoint of economy (first disadvantage). In general, the performance (crosstalk, insertion loss, etc.) of the optical frequency filter decreases as the number of output ports increases, so that two output ports of the branching / optical frequency filter 5 may be required for each user terminal. There is also a drawback (second drawback). Further, as described with reference to FIG. 8, the need for the uplink transmission light source 26 in the user terminal is a major drawback (third drawback).
[0009]
As far as the first drawback is concerned, as shown in FIG. 11, two optical fibers connected to the branching / optical frequency filter 5 are connected to the multiplexer / demultiplexer, and thereafter, the user is connected by one optical fiber. It is solved by leading to the terminal. However, even in this case, the third disadvantage is still not solved. There is also a bidirectional optical communication method in which signals having different modulation formats are transmitted bidirectionally using the same transmission line optical fiber (see Patent Document 1). However, this method also does not solve the third disadvantage. In addition, there are many problems to be solved in response to the rapid spread of the Internet, especially when two-way communication is extended to homes.
[0010]
[Patent Document 1]
JP-A-9-98137
[Problems to be solved by the invention]
As described above, in the bidirectional optical communication system using the conventional technology, the user terminal is configured to include the light receiver for transmitting the downstream signal light and the light source for transmitting the upstream signal, but to utilize the frequency multiplexing technology. In addition, the temperature control of this light source requires high accuracy (about 1/1000 degrees). In order to avoid this, there is a method using two optical fibers per user terminal. However, two optical fibers are required per user terminal, and two output ports of the optical frequency filter are required per user terminal. Problems have arisen in terms of performance as well as high cost. Therefore, an object of the present invention is to realize an inexpensive and highly reliable two-way optical communication system without installing a light source in a user terminal and using one dedicated optical fiber per user terminal.
[0012]
[Means for Solving the Problems]
To achieve the above object, a two-way optical communication system according to claim 1 of the present invention is a two-way optical communication system for connecting a station and a user terminal with an optical fiber, wherein one optical fiber connected to the station is provided. And a birefringent optical frequency filter that transmits light of two specific frequencies whose polarization directions are orthogonal to each other, among the light transmitted from the station via the one optical fiber, and the birefringent optical frequency filter It comprises a polarization maintaining optical fiber that guides transmitted light to a user terminal while maintaining its polarization state, and a user terminal.
[0013]
Thus, in the birefringent frequency filter, attention is paid to the fact that the polarization directions of transmitted light having adjacent frequencies are orthogonal to each other, and a means for minimizing the number of ports of the optical frequency filter which occupies a major cost of the frequency multiplex transmission system. Inexpensive and highly reliable bi-directional optical communication without using a light source in the user terminal and using one dedicated optical fiber per user terminal by actively utilizing the birefringence The system can be realized.
[0014]
A two-way optical communication system according to a second aspect of the present invention is the two-way optical communication system according to the first aspect, wherein the station is a light source for a user, a light receiver for a user, a light source for a user transmission signal, a multiplexing / demultiplexing device. A plurality of light sources and light receivers for the user, which are devices, and one optical frequency multiplexer / demultiplexer.
[0015]
Thus, two signal lights for uplink and downlink are required to realize two-way communication. To supply these with one or two light sources installed in the station, unmodulated signals for user transmission signals are used. It is necessary to deliver light from the station to the user, but by configuring the station in this way, it is possible to use a dedicated optical fiber per user terminal without installing a light source in the user terminal, and to reduce the cost. Thus, a highly reliable two-way optical communication system can be realized.
[0016]
The bidirectional optical communication system according to claim 3 of the present invention is the bidirectional optical communication system according to claim 1, wherein the user terminal includes a polarization beam splitter that separates the polarization-maintaining optical fiber output light according to its polarization direction. A light detector for receiving one of the lights separated by the polarization beam splitter, and a modulator for modulating the other light according to a signal to be transmitted by a user. Means for reaching the refraction light frequency filter.
[0017]
The bidirectional optical communication system according to a fourth aspect of the present invention is the bidirectional optical communication system according to the third aspect, wherein the modulator comprises a reflection type modulator.
[0018]
In this way, by utilizing the birefringence characteristic in which the polarization directions of the transmitted light whose frequencies of the birefringent frequency filter are adjacent to each other are orthogonal to each other, a simple configuration that does not require the installation of a light source in the user terminal can be used. To realize an inexpensive and highly reliable two-way optical communication system using the dedicated optical fiber.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
To realize bidirectional communication, two signal lights for uplink and downlink are required. In order to supply these with one or two light sources installed in the station, it is necessary to deliver unmodulated light from the station to the user for a user transmission signal. Further, in order to configure a system using one optical fiber per user, two light sources having different frequencies are inevitably required, so that a frequency multiplex transmission system is indispensable.
[0020]
The present invention focuses on the fact that, in the birefringent frequency filter, the polarization directions of transmitted light whose frequencies are adjacent to each other are orthogonal to each other, and minimizes the number of ports of the optical frequency filter that occupies a major cost of the frequency multiplex transmission system. It is characterized in that the birefringence is positively used as a means for performing this.
[0021]
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 2 shows an example of an embodiment of the present invention, and is an overall configuration diagram of a system. This system comprises a station 1, a shared fiber 3, a birefringent optical frequency filter 4, a polarization maintaining optical fiber 6 dedicated to each user, and a user terminal 2 for each user.
[0022]
As shown in FIG. 3, the configuration of the station 1 includes an optical frequency multiplexer / demultiplexer 17, which is a common component for all users, and a user N corresponding to each user connected thereto by two optical fibers per user. The light source / receiver unit (N: 1, 2, ...) 10 is configured. For example, the light source / photodetector 10 for user 1 includes a light source 11 for transmission to user 1, a light receiver 12 for user 1, and a light source 13 for transmission signal for user 1. The optical fiber 15 is directly connected to the optical frequency multiplexer / demultiplexer 17.
[0023]
The user 1 light receiver 12 and the user 1 transmission signal light source 13 are connected to an optical frequency multiplexer / demultiplexer 17 by a second input optical fiber 16 via a multiplexer / demultiplexer 14 connected by an optical fiber. ing. The optical frequency multiplexer / demultiplexer 17 mixes all the input different frequency lights and outputs the mixed light to the shared optical fiber 3 connected to the junction port. FIG. 3 illustrates only the configuration of the light source / light receiver 10 for user 1 in detail, and the light sources / light receivers for other user N are abbreviated.
[0024]
FIG. 4 shows the internal structure of the user terminal 2, which comprises a polarization beam splitter 21, a light receiver 22, a multiplexer / demultiplexer 23, and a modulator 24. The transmission signal 8 to be transmitted by the user is supplied from outside the user terminal 2 here, and is also shown in FIG.
[0025]
Next, the operation of the present invention will be described in detail with reference to FIGS. First, downlink signal light transmitted from the station 1 to the user 1 terminal 2 will be described. As shown in FIG. 3, in the station 1, the light emitted from the transmission light source 11 for the user 1 having the frequency ν 1 is guided to the optical frequency multiplexer / demultiplexer 17 via one optical fiber 15.
[0026]
The optical frequency multiplexer / demultiplexer 17 transmits only light having a predetermined frequency, ν k (k = 1, 2,...), To one shared optical fiber 3 connected to only one junction port. Element. The frequency ν 1 of the light source for transmission to the user 1 is one of such transmission frequencies. The light transmitted from the optical frequency multiplexer / demultiplexer 17 is guided by the shared optical fiber 3 to the birefringent optical frequency filter 4 in FIG.
[0027]
Before describing the operation and specific examples of the birefringent optical wavenumber filter 4, an optical frequency filter having no birefringence will be described first. The optical frequency filter having no birefringence is substantially the same as the optical frequency multiplexer / demultiplexer 17 installed in the above-mentioned station, and is used by replacing the input port and the merge port. That is, when there are lights of a plurality of frequencies incident from one junction port, only light of a predetermined specific frequency is output from the predetermined branching port.
[0028]
As an element having such a function, an arrayed wave guide grating (AWG) is on sale. Also, as shown in FIG. 5, a similar function is provided to an optical branching element that distributes light ν 1 , ν 2 , ν 3 ... It can also be realized by using an FPE (Fabry-Perot etalon) group which is connected one by one and transmits only light of a specific frequency.
[0029]
Next, the birefringent optical frequency filter will be described. Birefringence is a phenomenon in which the same substance has a different refractive index depending on the polarization direction of light, and is particularly remarkable in an optical waveguide formed on a substrate.
[0030]
In each case, the array waveguide grating and the Fabry-Perot etalon group each have a specific output port whose transmittance is equal to the optical path length (product of the refractive index and the actual length) of the light path in the device. Utilizing the property that depends on the ratio of the wavelengths of light, incident light is filtered according to its frequency. The birefringence phenomenon is observed in an actual optical waveguide, and the filter characteristics become complicated. That is, since the optical path length differs depending on the polarization state of the incident light, the transmission frequency of the filter differs even for the same port.
[0031]
FIG. 6 shows the transmission characteristics of a Fabry-Perot etalon having birefringence. Originally, the transmission characteristic of the Fabry-Perot etalon is completely periodic with respect to frequency, and the period is called FSR. In the case of the Fabry-Perot etalon having birefringence, as shown in FIG. The signal component ν j has two adjacent elements ν j (1) and ν j (2).
[0032]
Here, when frequency ν j (1) <ν j (2), of the two birefringent principal axes, ν j (1) is on the axis with a slow light speed, and ν j (2) is on the axis with a fast light velocity. Yes, it is. Even when the polarization state at the time of incidence of the etalon is elliptically polarized light inclined with respect to the main axis of birefringence, at the time of emission, these transmitted lights are linearly polarized lights whose polarization directions are orthogonal to each other. Further, the frequency difference δ = ν j (2) −ν j (1) of the adjacent transmission peaks is proportional to the magnitude of birefringence.
[0033]
The present invention utilizes the fact that two types of frequency light are obtained from one output port and their polarization directions are orthogonal. For example, when the frequency ν 1 of the transmission light source 11 for the user 1 in FIG. 2 is matched with ν j (1), this light passes through the birefringent optical frequency filter 4 and is coupled to the polarization maintaining optical fiber 6.
[0034]
The polarization maintaining optical fiber 6 is an extremely large birefringent optical fiber and is commercially available. The birefringence of the ordinary optical fiber is about 10 −7 to 10 −6 , whereas the birefringence of the polarization maintaining optical fiber 6 is about 10 −4. I have. For this reason, the polarization state changes randomly with propagation in a normal optical fiber. However, when linearly polarized light is incident parallel or perpendicular to the main polarization axis of the polarization maintaining optical fiber 6, the polarization state at the time of incidence is changed. Is maintained as it is to the exit end of the polarization maintaining optical fiber 6.
[0035]
In the present invention, the polarization direction of the transmission light addressed to the user 1 at the frequency ν 1 (= ν j (1)) that has passed through the birefringent optical frequency filter 4 is made to coincide with the main axis of the polarization maintaining optical fiber 6. This state will be written as ν 1 } . FIG. 4 illustrates a state in which the transmission light ν 1 } of the polarization direction fixed to the user 1 having the frequency ν 1 and directed to the user 1 is incident on the user terminal 2 from the polarization maintaining optical fiber 6.
[0036]
The polarization beam splitter 21 in the user terminal 2 is an element that guides a specific polarization direction component of the incident light to a first port and a polarization component orthogonal thereto to a second port. In the embodiment of the present invention, since the transmission light directed to the user 1 is all linearly polarized light polarized in a specific direction, by setting this direction to the transmission direction of the first port of the polarization beam splitter 21, the It is received without loss by the photodetector connected to one port.
[0037]
Next, a method in which the user 1 sends a signal to the station will be described. As shown in FIG. 3, the light source (light source for the user 1 transmission signal) 13 for this purpose is installed in the station 1 instead of the user terminal. The frequency of the user 1 outgoing signal light source 13 and [nu 2, distinguished from [nu 1.
[0038]
The multiplexer / demultiplexer 14 in the station functions as a multiplexer for guiding part or all of the incident light to one output port when used from the two-port side in the forward direction, and serves as a multiplexer when used from the one port side in the reverse direction. It works as a duplexer for splitting and outputting to ports. The light emitted from the user 1 transmission signal light source 13 is coupled to the optical frequency multiplexer / demultiplexer 17 via the multiplexer / demultiplexer 14.
[0039]
By keeping the frequency ν 2 of the light source 13 for the user 1 transmission signal equal to the second transmission frequency ν j (2) based on the birefringence of the j-th output port of the optical frequency multiplexer / demultiplexer 17, the frequency ν 2 1 (= ν j (1)) can be emitted from the same j-th output port as the transmission light addressed to the user 1. At this time, the polarization direction is orthogonal to the transmission light addressed to the user 1 at the frequency ν 1 (= ν j (1)). This is denoted as ν 2 〃.
[0040]
In FIG. 2, the main axis of the polarization maintaining optical fiber 6 connected to the j-th port of the birefringent optical frequency filter 4 coincides with the polarization direction of the transmission light addressed to the user 1, and therefore has a polarization direction orthogonal to this. The polarization state of the light for the user 1 transmission signal also reaches the user terminal 2 while being kept in the linearly polarized light.
[0041]
FIG. 4 illustrates a state in which light 1 for a user 1 transmission signal ν 2入射 is incident on the user terminal 2 as linearly polarized light orthogonal to transmission light ν 1 destined for user 1. Eventually, light of two frequencies, ν 1 and ν 2 , whose polarization directions are orthogonal to each other, enters the polarization beam splitter 21 from the polarization maintaining optical fiber 6. The former is output to the first port and input to the optical receiver 22, whereas the latter, that is, the light for the user 1 transmission signal is output to the second port and transmitted to the modulator 24 via the multiplexer / demultiplexer 23. Be guided.
[0042]
Up to this point, the light for the user 1 transmission signal has not been modulated, but when passing through the modulator 24 in the user terminal 2, the light is modulated according to the transmission signal 8 to be transmitted to the station by the user. The modulated user 1 signal light is guided to the second port of the multiplexer / demultiplexer 23 and reaches the polarization beam splitter 21 again.
[0043]
At this time, the frequency of the user 1 outgoing signal light being modulated are not subject only change the order of the modulation band, but treated as remains virtually [nu 2, the polarization direction slight change may occur. Even if there is fluctuation in the polarization direction of the light incident on the polarization beam splitter 21, the polarization beam splitter 21 transmits only the transmission axis component thereof, so that the light coupled to the polarization maintaining optical fiber 6 retains its polarization. .
[0044]
However, since the fluctuation in the polarization direction of the incident light affects the coupling efficiency to the polarization maintaining optical fiber 6, it is desirable that the polarization direction coincides with the second port transmission axis of the polarization beam splitter 21 as much as possible.
[0045]
The user 1 signal light having the frequency ν 2 that travels backward through the polarization beam splitter 21 is coupled to the polarization maintaining optical fiber 6 again, passes through the birefringent optical frequency filter 4 and the shared optical fiber 3 in FIG. The light passes through the optical frequency multiplexer / demultiplexer 17 in the station 1 and reaches the multiplexer / demultiplexer 14 in the station. Further, the light receiver 12 for user 1 is connected to the second output port of the multiplexer / demultiplexer 14. Received.
[0046]
FIG. 7 shows a second configuration example of the user terminal 2, and the use of the reflection type modulator 25 eliminates the need for a multiplexer / demultiplexer in the user terminal. Specific examples of the reflection type modulator 25, a liquid crystal modulator, or as being capable of high-speed operation than can be achieved in combination with a reflecting mirror a phase modulator using an electro-optical effect such as LiNbO 3.
[0047]
As described above, two signal lights for uplink and downlink are required to realize two-way communication. Therefore, in order to supply these with one or two light sources installed in a station, it is necessary to use a signal for user transmission. Since it is necessary to deliver unmodulated light from the station to the user, and to configure a system using one optical fiber per user, two light sources having different frequencies are inevitably needed. Although a multiplex transmission system is indispensable, the present invention focuses on the fact that, in a birefringent frequency filter, the polarization directions of transmitted light whose frequencies are adjacent to each other are orthogonal to each other. The birefringence is actively used as a means for minimizing the number of ports of the optical frequency filter which occupies a major cost of the transmission system.
[0048]
【The invention's effect】
As described above, the present invention focuses on the fact that, in a birefringent frequency filter, the polarization directions of transmitted light whose frequencies are adjacent to each other are orthogonal to each other, and the number of ports of the optical frequency filter occupying a major cost of the frequency multiplex transmission system. Active use of the birefringence as a means to minimize inconvenience, without installing a light source in the user terminal and using one dedicated optical fiber per user terminal, inexpensive and reliable , It is possible to realize a bidirectional optical communication system with high performance.
[0049]
Further, since two signal lights for uplink and downlink are required to realize bidirectional communication, in order to supply these with one or two light sources installed in the station, unmodulated signals for user transmission signals are used. Although it is necessary to deliver light from the station to the user, as in the present invention, by configuring the station and the user terminal, it is possible to install one dedicated light source per user terminal without installing a light source in the user terminal. By using the fiber, an inexpensive and highly reliable two-way optical communication system can be realized.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a two-way communication system.
FIG. 2 is an overall configuration diagram of a two-way communication system according to the present invention.
FIG. 3 is a configuration diagram of a station according to the present invention.
FIG. 4 is a first configuration diagram of a user terminal according to the present invention.
FIG. 5 is an embodiment diagram of an optical frequency filter having no birefringence.
FIG. 6 is a transmission characteristic diagram of a birefringent Fabry-Perot etalon.
FIG. 7 is a second configuration diagram of the user terminal of the present invention.
FIG. 8 is a first configuration diagram of a conventional bidirectional optical communication system.
FIG. 9 is a branched optical line type optical frequency multiplex transmission system (one-way transmission)
FIG. 10 is a second specific configuration diagram of a conventional bidirectional optical communication system.
FIG. 11 is a third specific configuration diagram of a conventional bidirectional optical communication system.
[Explanation of symbols]
1 station 11 light source for transmission to user 1 12 light receiver for user 1 13 light source for user 1 transmission signal 14 multiplexer / demultiplexer 15, 16 first and second input optical fiber 17 optical frequency multiplexer / demultiplexer 2 user terminal 21 Polarization beam splitter 22 light receiver 23 multiplexer / demultiplexer 24 modulator 25 reflective modulator 3 shared optical fiber 4 birefringent optical frequency filter 5 branch / optical frequency filter 6 polarization maintaining optical fiber 7 dedicated optical fiber 8 transmission signal 10 Light sources and receivers for users

Claims (4)

局とユーザ端末を光ファイバで結ぶ双方向光通信システムにおいて、前記局に接続された一本の光ファイバと、前記一本の光ファイバを介して局から送られてくる光のうち、偏光方向が互いに直交した特定の2つの周波数の光を透過させる複屈折光周波数フィルタと、前記複屈折光周波数フィルタ透過光をその偏光状態を保ったままユーザ端末まで導く偏波保持光ファイバと、ユーザ端末により構成される双方向光通信システム。In a two-way optical communication system that connects a station and a user terminal with an optical fiber, one optical fiber connected to the station, and a polarization direction of light transmitted from the station via the one optical fiber. A birefringent optical frequency filter that transmits light of two specific frequencies orthogonal to each other, a polarization maintaining optical fiber that guides the birefringent optical frequency filter transmitted light to a user terminal while maintaining its polarization state, and a user terminal A two-way optical communication system comprising: 前記局はユーザ宛送信用光源、ユーザ用受光器、ユーザ発信信号用光源、合分波器でなる複数のユーザ用光源・受光器類と1つの光周波数合分波器とで構成されることを特徴とする請求項1記載の双方向光通信システム。The station is composed of a plurality of light sources / receivers for a user including a light source for transmission to a user, a light receiver for a user, a light source for a user transmission signal, a multiplexer / demultiplexer, and one optical frequency multiplexer / demultiplexer. The two-way optical communication system according to claim 1, wherein: 前記ユーザ端末は前記偏波保持光ファイバ出力光をその偏光方向に従い分離する偏光ビームスプリッタと、前記偏光ビームスプリッタで分離された光のうち一方を受光する光検出器と、他方をユーザが送出すべき信号に従い変調器により変調を加えたのち、再び前記偏光ビームスプリッタに入射して前記複屈折光周波数フィルタに到達せしめる手段とにより構成されることを特徴とする請求項1記載の双方向光通信システム。The user terminal transmits a polarization beam splitter that separates the polarization-maintaining optical fiber output light according to its polarization direction, a photodetector that receives one of the lights separated by the polarization beam splitter, and a user that sends out the other. 2. A bidirectional optical communication system according to claim 1, further comprising means for modulating the signal in accordance with a power signal by a modulator, and then re-entering the polarization beam splitter to reach the birefringent optical frequency filter. system. 前記変調器は反射型変調器であることを特徴とする請求項3記載の双方向光通信システム。The two-way optical communication system according to claim 3, wherein the modulator is a reflection type modulator.
JP2002276017A 2002-09-20 2002-09-20 Bi-directional optical communication system Expired - Fee Related JP4012450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002276017A JP4012450B2 (en) 2002-09-20 2002-09-20 Bi-directional optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276017A JP4012450B2 (en) 2002-09-20 2002-09-20 Bi-directional optical communication system

Publications (2)

Publication Number Publication Date
JP2004112711A true JP2004112711A (en) 2004-04-08
JP4012450B2 JP4012450B2 (en) 2007-11-21

Family

ID=32272033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276017A Expired - Fee Related JP4012450B2 (en) 2002-09-20 2002-09-20 Bi-directional optical communication system

Country Status (1)

Country Link
JP (1) JP4012450B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174946A (en) * 1981-04-20 1982-10-27 Nippon Telegr & Teleph Corp <Ntt> Bidirectional optical transmission method
JPS63279627A (en) * 1987-05-12 1988-11-16 Brother Ind Ltd Two-way optical communication module
JPH06130257A (en) * 1992-10-19 1994-05-13 Oki Electric Ind Co Ltd Bidirectional light transmission/reception module
JPH0998137A (en) * 1995-10-03 1997-04-08 Mitsubishi Electric Corp Bidirectional optical communication method
JPH11154915A (en) * 1997-11-21 1999-06-08 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter-receiver
JP2001272533A (en) * 2000-03-21 2001-10-05 Lucent Technol Inc Birefringent filter and its operating method
JP2002148472A (en) * 2000-11-10 2002-05-22 Sumitomo Electric Ind Ltd Interleaver

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174946A (en) * 1981-04-20 1982-10-27 Nippon Telegr & Teleph Corp <Ntt> Bidirectional optical transmission method
JPS63279627A (en) * 1987-05-12 1988-11-16 Brother Ind Ltd Two-way optical communication module
JPH06130257A (en) * 1992-10-19 1994-05-13 Oki Electric Ind Co Ltd Bidirectional light transmission/reception module
JPH0998137A (en) * 1995-10-03 1997-04-08 Mitsubishi Electric Corp Bidirectional optical communication method
JPH11154915A (en) * 1997-11-21 1999-06-08 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter-receiver
JP2001272533A (en) * 2000-03-21 2001-10-05 Lucent Technol Inc Birefringent filter and its operating method
JP2002148472A (en) * 2000-11-10 2002-05-22 Sumitomo Electric Ind Ltd Interleaver

Also Published As

Publication number Publication date
JP4012450B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
US5479082A (en) Device for extraction and re-insertion of an optical carrier in optical communications networks
JP5789712B2 (en) Polarization stabilization scheme for uncooled self-tuning cavities for colorless ultra-broadband PON
JP2001517018A (en) Wavelength-selective optical switching device, optical communication device using the optical switching device, and method used in the optical communication device
CN203422497U (en) Compact-type wavelength division multiplexing optical structure and light emitting module
US6243175B1 (en) WDM optical communication system having reduced loss and cross-talk
US8649637B2 (en) Polarization interference optical interleaver
CN111371499A (en) Modulation device and optical transmitter
JP3511445B2 (en) Optical two-way transmission system
JP2002539712A (en) Optical transceiver for single wavelength
JPH10293219A (en) Structure of optical waveguide coupler
CN209215629U (en) A kind of simplex optical module and the Wave division multiplexing optical transmission system being made from it
JP4116244B2 (en) Transceiver for wavelength division multiplexing
JP3391650B2 (en) Optical splitter
JP2003143077A (en) Optical transmission system and optical signal modulator used in the same
JP2004112711A (en) Bidirectional optical communication system
KR100901508B1 (en) Light source distributor for use in wavelength division multiplexed-passive optical network
JP4431704B2 (en) Optical buffer delay
US20050152642A1 (en) Integrated optical-power adjustable WDM
JPH05157944A (en) Two-way optical device
JPH103066A (en) Optical modulation device and wavelength add-drop module
KR200435229Y1 (en) Coarse Wavelength Division Multiplexer Passive Optical Network System having 8 Channle
US6317527B1 (en) Optical isolator and circulator
JP3054167B2 (en) Bidirectional optical transmission system and optical receiver
JP2004240215A (en) Optical communication device and optical communication system
JP3304077B2 (en) Optical wavelength division multiplexing transceiver

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees