JP2004111185A - Coaxial cable and its manufacturing device - Google Patents

Coaxial cable and its manufacturing device Download PDF

Info

Publication number
JP2004111185A
JP2004111185A JP2002271210A JP2002271210A JP2004111185A JP 2004111185 A JP2004111185 A JP 2004111185A JP 2002271210 A JP2002271210 A JP 2002271210A JP 2002271210 A JP2002271210 A JP 2002271210A JP 2004111185 A JP2004111185 A JP 2004111185A
Authority
JP
Japan
Prior art keywords
insulator
coaxial cable
inner conductor
intermediate product
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002271210A
Other languages
Japanese (ja)
Inventor
Itsuro Kasabo
笠坊 逸郎
Akito Futaboshi
二星 明登
Hitoshi Fukazawa
深沢 仁
Nobuyoshi Matsuda
松田 信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002271210A priority Critical patent/JP2004111185A/en
Publication of JP2004111185A publication Critical patent/JP2004111185A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Communication Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coaxial cable with a small attenuation, easy to manufacture, and of an exact product shape. <P>SOLUTION: With the coaxial cable with a foamed plastic insulator 3 interposed between an inner conductor 1 and an outer conductor 2, the insulator 3 forms a cavity part 4 of a spiral groove shape with the inner conductor 1 as a center. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、発泡プラスチックを絶縁体とする同軸ケーブルに関する。
【0002】
【従来の技術】
従来、高周波信号の伝送等に使用される同軸ケーブルにあっては、その減衰量を一層低減させる目的から、内部導体と外部導体との間の環状断面空間部に介装させる絶縁体の発泡度(発泡したプラスチック中の空隙部の容量百分率)を80%程度にまで上げた、いわゆる高発泡プラスチック絶縁同軸ケーブルが広く用いられるようになっている。図9は、従来の高発泡プラスチック絶縁同軸ケーブルを示す斜視図であり、40は内部導体、41は発泡プラスチック絶縁体、42は外部導体、そして、43はシースである。
また、他の従来の同軸ケーブルとしては、図9に示したように内部導体40と外部導体42との間の環状断面空間部全体にわたって発泡プラスチックから成る絶縁体41を充満させたものではなく、ケーブル全体の発泡度を等価的に引き上げるため、図示省略するが、環状断面空間部内に発泡プラスチック部と小空間部とを交互に配設した高発泡プラスチック絶縁同軸ケーブル等が考えられている(例えば、特許文献1参照)。
【0003】
【特許文献1】
実開平3−43219号公報(第1図)
【0004】
【発明が解決しようとする課題】
しかしながら、このような同軸ケーブルの製造は非常に困難であり、容易に製造できる構成を有するものは特に提案されていない。なお、考えられるものとしては、発泡絶縁体を紐状に押出し、撚り合わせ機により内部導体に絶縁体を巻き付けて形成し、外部導体を外嵌させるものや、回転クロスヘッドを用いて内部導体に発泡絶縁体からなる紐を巻き付けながら押し出し、外部導体を外嵌させるものがある。しかし、いずれも芯無しや異形の発泡押出しとなり、寸法精度が確保できず、押出形状の制御が難しいものであり、実効上の発泡度を90%程度にまで上げることは非常に困難である。
【0005】
そこで本発明は、減衰量が小さく製造が簡単で製品形状が正確な同軸ケーブルと、容易に効率よく減衰量が小さい同軸ケーブルを製造できる製造装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上述の目的を達成するために、本発明に係る同軸ケーブルは、内部導体と外部導体との間に発泡プラスチック絶縁体が介装される同軸ケーブルに於て、該絶縁体は該内部導体を中心として螺旋溝状の空隙部を形成しているものである。
また、上記絶縁体の横断面形状は、円形の上記内部導体を中心に含む略一文字型であり、かつ、該絶縁体と該内部導体は、該絶縁体の発泡成型により一体化され、しかも、該絶縁体の横断面における相互に平行な2辺は切削形成されているものである。
【0007】
上述の目的を達成するために、本発明に係る同軸ケーブルの製造装置は、内部導体と該内部導体に被覆させた円筒状発泡プラスチック絶縁体とから成る中間製品を長手方向に走行自在に支持するガイド手段と、該ガイド手段の出口側において走行中の該中間製品の該円筒状発泡プラスチック絶縁体を螺旋状に切削するよう該中間製品の軸心廻りを公転しながら回転する切削刃と、を備えたものである。
また、上記切削刃は、上記中間製品の円筒状発泡プラスチック絶縁体を横断面略一文字型に切削するように上記中間製品を挟んで平行に配設された一対のエンドミルから成るものである。
【0008】
【発明の実施の形態】
以下、図示の実施の形態に基づき、本発明を詳説する。
【0009】
本発明に係る同軸ケーブルは、例えば、地上波デジタルTV放送用の給電線等として用いられることを想定したものであり、その実施の一形態を図1の斜視図及び図2の側面図に示す。この同軸ケーブルは、横断面円形の内部導体1と、内部導体1と同心状に配設される横断面円形の外部導体2と、内部導体1と外部導体2との間に介装される発泡プラスチック製の絶縁体3と、を有するものであり、さらに、外部導体2の外周側には絶縁性のシース9が被覆されている。
なお、図1ではこれら構成を説明するため、シース9、外部導体2、絶縁体3を順次剥がしたものとし、図2ではさらに、外部導体2を途中から断面としている。
【0010】
内部導体1の外周面と外部導体2の内周面との間の環状断面空間部に配設される絶縁体3は、内部導体1を中心としてケーブルの長手方向に沿って2条螺旋溝状の空隙部(小空間部)4を形成している。即ち、内部導体1と外部導体2との間の環状断面空間部には、図3の横断面図に示すように、横断面形状が内部導体1を中心に含む略一文字型の絶縁体3が配設されており、絶縁体3は同軸ケーブルの軸心Cを中心として螺旋状にねじられた構成としている。従って、この同軸ケーブルは、空隙絶縁型同軸給電線といえる。
【0011】
絶縁体3の横断面形状は、略一文字型としているが、図3の横断面図に示すように、長辺側の2辺は平行な直線形状であり、他方の短辺側の2辺は軸心Cを中心とする円弧状で外部導体2の内周面形状に沿った形状(内周面形状と同一形状)としている。つまり、絶縁体3には、図1〜図3に示すように、同軸ケーブルの軸心Cを中心線とする一対の平行螺旋面10,10と、同軸ケーブルの軸心Cを中心線とする一対の円弧状螺旋面11,11と、が形成されている。
そして、ねじられて(螺旋状となって)対面した平行螺旋面10の間が空隙部4となる。
【0012】
また、絶縁体3と内部導体1は、絶縁体3の発泡成型による融着(溶着)等により密着一体化されており、しかも、絶縁体3の横断面における相互に平行な2辺は切削形成されている。つまり、絶縁体3の平行螺旋面10,10は、螺旋状切削面となる。
従って、絶縁体3は内部導体1へ円弧状の当接面により接触して内部導体1と一体化され、絶縁体3の円弧状螺旋面11,11が外部導体2の内周形状と対応しているため、外部導体2を被覆させる際の位置決め、及び、組み立て後の形状保持が確実に行え、絶縁性能を有すると共に外力(潰れ)に抗する強度も確保できる。
【0013】
さらに絶縁体3について説明すると、横断面において絶縁体3は内部導体1を両側から挟んでいる構成であり、本発明の同軸ケーブルは、2条の螺旋発泡絶縁構造の高周波銅コルゲート同軸ケーブルともいえる。即ち、絶縁体3配設部には、図3に示すように内部導体1を挟んだ2条の螺旋発泡プラスチック部と螺旋空気層部とを備えていることとなる。
【0014】
同軸ケーブルの材質、寸法について説明すると、例えば、内部導体1を外径がφ5〜18mmの直管状の銅管、絶縁体3を外径がφ12〜43mmの高発泡ポリエチレン製の樹脂、外部導体2を波付銅管(コルゲート銅管)、シース9をポリエチレン製の樹脂としている。
【0015】
次に、図1で示した本発明の同軸ケーブルと図9で示した従来の同軸ケーブルとの減衰量を比較した実験結果を表1に示す。この結果からわかるように、本発明では、高発泡された絶縁体3に螺旋状の空隙部4を設けたことにより、絶縁体3部における実効誘電率、実効誘電体力率を小さくすることができ、その結果、全ての呼び径において減衰量を小さくすることができた。
【0016】
【表1】

Figure 2004111185
【0017】
次に、この同軸ケーブルの製造装置について説明する。図4は装置の側面断面図であり、図5は装置の平面図、図6は切削加工部の正面図である。本発明の同軸ケーブルは、図1にて説明したように、内部導体1に絶縁体3を外嵌させ、さらにその外周に外部導体2及びシース9を外嵌させて製造するものであり、図4〜図6に示す本発明の製造装置は、内部導体1に所定形状の(螺旋形状に)絶縁体3を被覆させた半製品13を製造する絶縁体成型装置Mである。即ち、この装置は、内部導体1と内部導体1に被覆させた円筒状発泡プラスチック絶縁体6とから成る中間製品8の円筒状発泡プラスチック絶縁体6を部分的に切削除去して半製品13を作製するものである。
【0018】
なお、図示省略するが、この絶縁体成型装置Mの上流側(前工程)には、内部導体1をその軸心方向に走行させながら、その外周面側で発泡プラスチックの円形発泡成型が施されて、内部導体1の外周面(全周)に円筒状発泡プラスチック絶縁体6を被覆させる発泡成型機(円形発泡成型工程)を有している。従って、図4に示す装置の上流側では、内部導体1に円筒状発泡プラスチック絶縁体6が被覆され、横断面円環形状の絶縁体6を有する中間製品8が、そのまま軸心方向へ走行して絶縁体成型装置Mへと進行する。
【0019】
そして、本発明の製造装置(絶縁体成型装置M)は、その軸心L方向に走行する中間製品8を支持するガイド手段7と、ガイド手段7の出口直下流側の切削加工部Aにおいて中間製品8の円筒状発泡プラスチック絶縁体6を所定形状に切削して半製品13を成型する切削刃5と、切削刃5をその回転軸心x廻りに高速回転(自転)させかつ切削刃5を中間製品8の軸心L廻りに公転させる回転駆動手段12と、を備えている。さらに、切削加工部Aの直下流位置において、中間製品8における軸心Lと中間製品8を加工して形成された半製品13における軸心Iとを一直線上に保ちかつ半製品13の軸心Iを常に一定高さ(位置)に保つ芯保持手段(回転ガイドロール)14と、その下流側に第二のガイド手段15と、を備え、第一のガイド手段7の入口部から第二のガイド手段15の出口部までをケーシング16(図4の二点鎖線)により覆いかぶせている。そして、本発明においては、切削刃5の本数を2本としている。
【0020】
なお、本発明においては、中間製品8の走行速度(線速)は約15m/min 以下に設定し、切削刃5の回転軸心x廻りの回転数を約1500rpm 以下、切削刃5の中間製品8の軸心L廻りの回転数を約300rpm以下の範囲にて設定し、螺旋状に切削加工された絶縁体3の螺旋ピッチを 200mm程度までとしている。なお、これら速度や回転数はこれらの値に制限されるものではなく、変更可能である。
【0021】
ガイド手段7は、中間製品8の外径より内径が大きい直管部材17と、直管部材17の一端側及び他端側に取着され中間製品8を滑らかに摺動させて芯保持する短円筒状の樹脂製のガイド部材18,18と、を備え、中間製品8を長手方向に走行自在に支持している。即ち、ガイド部材18,18は、中間製品8の外周面側を略全周から保持するようにし、ガイド手段7の軸心と中間製品8の軸心Lとを一致させている。そして、ガイド手段7の軸心が絶縁体成型装置Mの軸心Eとなる。
【0022】
切削刃5は、ガイド手段7の出口側の切削加工部Aにおいて、回転駆動手段12の作動により、その軸心L方向に走行中の中間製品8の円筒状発泡プラスチック絶縁体6を螺旋状に切削するよう中間製品8の軸心L廻りを公転しながら回転(自転)するものである。
具体的に説明すると、図6に示すように、切削刃5は、中間製品8の円筒状発泡プラスチック絶縁体6を横断面略一文字型に切削するように中間製品8を挟んで平行に配設された一対のエンドミルから成るものであり、図6ではエンドミルの側面(外周面)を円筒状発泡プラスチック絶縁体6に接触させて切削するものである。この一対の切削刃(エンドミル)5,5の回転軸心x,xは平行で、回転軸心x,xの間に中間製品8の軸心Lが配置されており、軸心Lから夫々の回転軸心x,xまでの距離を等しくしている。つまり、切削刃5,5同士の間隔をPとすると、P/2の位置に軸心Lが配置される。なお、エンドミルの外径はφ30mm程度としている。また、図示省略するが、切削刃5を鋸刃等としてもよい。
【0023】
回転駆動手段12は、図4と図5に示すように、ガイド手段7の外周側に絶縁体成型装置M(ガイド手段7)の軸心Eを回転軸心とする第一筒体19と、第一筒体19の上流端部に動力(回転)を伝達し第一筒体19を軸心E廻りに回転させる第一駆動手段20と、切削刃5を切削刃5の回転軸心x廻りに回転させるよう第一筒体19の下流端部において第一駆動手段20による上記動力(回転)を切削刃5へ伝達する第一動力伝達手段21と、を備えている。さらに、回転駆動手段12は、第一筒体19の外周側に絶縁体成型装置Mの軸心Eを回転軸心とする第二筒体22と、第二筒体22の上流端部に動力(回転)を伝達し第二筒体22を軸心E廻りに回転させる第二駆動手段23と、切削刃5を中間製品8の軸心L(絶縁体成型装置Mの軸心E)廻りに公転させるよう第二筒体22の下流端部において第二駆動手段23による上記動力(回転)を切削刃5へ伝達する第二動力伝達手段24と、を備えている。
なお、直管部材17と第一筒体19の間、第一筒体19と第二筒体22の間には、夫々、軸受部材(ベアリング)を配設し、夫々が滑らかに回転するようされており、さらに、第二筒体22の外周面側に軸受部材(ベアリング)を配設して、第二筒体22は装置架台48に回転自在に保持されている。
【0024】
そして、図5に示すように、第一駆動手段20は、電動機(モータ)25と一対のプーリ26,26と回転ベルト27とを備え、電動機25の回転動力が、プーリ26,26と回転ベルト27とを介して第一筒体19に伝えられる。第二駆動手段23は、電動機(モータ)28と一対のプーリ29,29と回転ベルト30とを備え、電動機28の回転動力が、プーリ29,29と回転ベルト30とを介して第二筒体22に伝えられる。
【0025】
そして、図4に示すように、第一動力伝達手段21は、第一筒体19に固着され装置Mの軸心Eを回転中心とする第一傘歯車31と、それに噛み合う第二傘歯車32と、第二傘歯車32に中心軸として固定される軸部材33と、軸部材33を中心軸として軸部材33に固定される第一平歯車34と、それに噛み合う第二平歯車35と、を備え、第二平歯車35の中心軸が切削刃5の回転軸心xとなるよう切削刃5が第二平歯車35に固着されている。即ち、第一と第二傘歯車31,32とにより、回転軸が90°変換されており、装置Mの軸心Eと、切削刃5の回転軸心xはねじれの位置にあって、直角に立体交差していることとなる。
第二傘歯車32は、第一傘歯車31に 180°離れて(位相を違えて)一対配設され、軸部材33、第一平歯車34、第二平歯車35も対応させて夫々一対配設され、一対の切削刃5,5は、略 180°反対側(外方)から、中間製品8を挟むよう、装置Mの軸心E方向(内方)へ延伸するよう配設されている。従って、一対の切削刃5,5の回転方向は、図5の矢印aと矢印bに示すように、回転軸心x方向(一方向)から見ると、夫々反対向きとなる。また、一対の軸部材33,33の軸心は、一直線上に配置されることとなる。
【0026】
第二動力伝達手段24は、第二筒体22に一端側が固着され装置Mの軸心Eを回転中心とする一対の断面L字型の回転取付片36を備え、回転取付片36の他端側に、第一動力伝達手段21の軸部材33を回転自在に保持している。即ち、回転取付片36の回転により、軸部材33が装置Mの軸心E廻りに回転し、第二傘歯車32を第一傘歯車31の廻りに回転させて、切削刃5を軸心E廻りに公転させることとなる。なお、回転取付片36は、180 °離れて(位相を違えて)第二筒体22に固定されており、180 °離れて配設した第一動力伝達手段21の軸部材33を保持することとなる。
【0027】
本発明の絶縁体成型装置Mは、第一傘歯車31を太陽歯車とし、その廻りを公転する第二傘歯車32(第一平歯車34、第二平歯車35)を遊星歯車として、切削刃5を回転(自転)させながら公転させるいわゆる遊星歯車機構により回転駆動手段12が構成されているため、装置をコンパクトにすることができる。
また、他の実施の形態として、図示省略するが、切削刃5にモータを直結させて切削刃5をその軸心x廻りに回転させ、これらを中間製品8の廻りを公転させて切削加工を行うようにしてもよい。
【0028】
また、一対の切削刃(エンドミル)5,5は、相互間距離(図6の間隔P)を変更自在としており、切削刃5,5の接近・離間は、図4と図5に示すように、一対の切削刃5,5の基端部側に夫々の連結させた揺動片37,37により角度調整をして行う。具体的に説明すると、揺動片37の一端部は、軸部材33の外方側に、軸部材33を中心軸として揺動可能に連結しており、揺動片37の他端部に切削刃5の基端軸部を、切削刃5が回転(自転)自在となるように、保持している。従って、軸部材33,33は、180 °反対位置にその軸心を同一直線状として配置されているため、一対の揺動片37,37を軸部材33,33廻りに揺動させ、所定の揺動位置にて止めボルト38等により揺動片37,37を位置固定することで、切断刃5,5の間隔Pは所定間隔に変更でき、維持できる。
【0029】
さらに、揺動片37,37の揺動角度を示すポジション指示マークFが回転取付片36に記され、揺動片37の揺動角度を検知することができ、一対の切削刃5,5の揺動角度を一致させることができる。さらに、製造する同軸ケーブルの径を変更する際においても、この指示マークFによれば、間隔Pの調整が容易であると共に再現性が得られ、常に正確な形状の製品を得ることができる。なお、図示省略するが、一方の揺動片37を所定の角度に固定すると、他方の揺動片37が、軸心Mを中心とした点対象の位置に自動的に一致させるようリンク機構を設けてもよい。
【0030】
また、絶縁体成型装置Mは、図4に示すように、エア吹きつけ位置を変更自在とするエアノズル45,45を備えており、図外のコンプレッサー等からエアノズル45を介してエアの噴出を行い、切削加工部Aにおいて、切削刃5,5による円筒状発泡プラスチック絶縁体6の切削屑を吹き飛ばし、半製品13を綺麗にすると共に、切削刃5の目詰まりを防止している。さらに、切削加工部Aの下方位置には、集塵機(図示省略)が設けられており、エアで飛ばされた切削屑を集めるようにしている。
【0031】
切削加工部Aの下流側に配設した芯保持手段14は、図7の正面図、図8の側面図に示すように、4本のローラ46により井型を形成し、対向するローラ46,46間の寸法を変更させて、半製品13を四方からガイドして、半製品13の曲がり(垂れ下がり)を防止して切削刃5による切削量が変化しないようにしている。また、この芯保持手段14は、図4に示すケーシング16に固着したブラケット(図示省略)を介して、軸心E廻りに回転自在に取着されており、半製品13の輪郭形状に合わせて回転し、半製品13をガイドしながら下流側へ滑らかに走行させることができる。なお、ローラ46の間隔は、ノブ47を回転させることで調整ができる。
また、図4に示すように、芯保持手段14の下流側のケーシング16の壁面に、第二のガイド手段15を配設している。このガイド手段15は、樹脂製の短円筒状のガイド部材であり、半製品13を絶縁体成型装置M(ケーシング16)から滑らかに繰り出すことができる。
【0032】
さらに、図示省略するが、この絶縁体成型装置の下流側(後工程)では、半製品13をその軸心I方向に送りながら半製品13の外周に外部導体2を被覆させる外部導体被覆機(外部導体被覆工程)を有している。さらに、その下流側に、外部導体2の外周面にシース9を被覆させるシース被覆機(シース被覆工程)を有しており、同軸ケーブルが連続的に作製される。
【0033】
【発明の効果】
本発明は上述の構成により次のような効果を奏する。
【0034】
(請求項1によれば)製品形状が正確で安定したものとすると共に、絶縁体3の発泡度を等価的に上げることができ、減衰量をより一層低減させた同軸ケーブルとすることができる。
【0035】
(請求項2によれば)絶縁体3は内部導体1へ円弧状の当接面により接触するため、内部導体1と外部導体2との相対位置関係を適切に保持し、さらに、外部導体2を被覆させる際の位置決め、及び、製造後の形状保持が確実に行え、絶縁性能を有すると共に外力に対向する強度も確保でき、作製が容易となる。
【0036】
(請求項3によれば)中間製品8の円筒状発泡プラスチック絶縁体6の発泡度に影響されることなく絶縁部を形成できるため、減衰量をより一層低減させた同軸ケーブルを製造することができる。
ガイド手段7により中間製品8を直線状に整え、出口部の直下流側で切削刃5により、中間製品8の円筒状発泡プラスチック絶縁体6を所定形状に切削するため、精度よく、切削加工が行える。
中間製品8を走行させながら切削刃5により加工を行うため、効率よく同軸ケーブルの製造が可能となり、また、装置をコンパクトにできる。
中間製品8に対して過度の捻じりや張力を与えないため、一つの製造ライン上に設置させることができ、同軸ケーブルを連続的、かつ、簡単に製造でき、生産効率を上げることが可能となる。
【0037】
(請求項4によれば)180 °反対側から同時に切削を行うため、安定して中間製品8の円筒状発泡プラスチック絶縁体6を加工でき、減衰量をより一層低減させ得る同軸ケーブルを製造することができる。
【図面の簡単な説明】
【図1】本発明の同軸ケーブルの実施の一形態を示す斜視図である。
【図2】本発明の同軸ケーブルの一部断面側面図である。
【図3】本発明の同軸ケーブルの横断面図である。
【図4】本発明の同軸ケーブル製造装置の実施の一形態を示す側面断面図である。
【図5】同軸ケーブル製造装置の平面図である。
【図6】切削加工部の正面図である。
【図7】芯保持手段の正面図である。
【図8】芯保持手段の側面図である。
【図9】従来の同軸ケーブルの斜視図である。
【符号の説明】
1 内部導体
2 外部導体
3 絶縁体
4 空隙部
5 切削刃
6 円筒状発泡プラスチック絶縁体
7 ガイド手段
8 中間製品
L 軸心[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coaxial cable using foamed plastic as an insulator.
[0002]
[Prior art]
Conventionally, in the case of a coaxial cable used for transmission of a high-frequency signal and the like, in order to further reduce the amount of attenuation, the foaming degree of the insulator interposed in the annular cross-sectional space between the inner conductor and the outer conductor. A so-called highly foamed plastic insulated coaxial cable in which the (percentage of the volume of voids in foamed plastic) is increased to about 80% has been widely used. FIG. 9 is a perspective view showing a conventional high foam plastic insulated coaxial cable, where 40 is an inner conductor, 41 is a foam plastic insulator, 42 is an outer conductor, and 43 is a sheath.
Further, as another conventional coaxial cable, as shown in FIG. 9, the insulator 41 made of foamed plastic is not filled over the entire annular cross-section space between the inner conductor 40 and the outer conductor 42. Although not shown, in order to equivalently raise the degree of foaming of the entire cable, a high foamed plastic insulated coaxial cable or the like in which foamed plastic portions and small space portions are alternately arranged in an annular cross-sectional space portion has been considered (for example, FIG. And Patent Document 1).
[0003]
[Patent Document 1]
Japanese Utility Model Publication No. 3-43219 (FIG. 1)
[0004]
[Problems to be solved by the invention]
However, it is very difficult to manufacture such a coaxial cable, and a cable having a configuration that can be easily manufactured has not been proposed. In addition, as a possible thing, the foamed insulator is extruded into a string shape, the insulator is wound around the inner conductor by a twisting machine, and the outer conductor is externally fitted, or a rotating crosshead is used for the inner conductor. There is a type in which a string made of a foamed insulator is extruded while being wound, and an external conductor is externally fitted. However, each of them has a coreless or irregularly shaped foam extrusion, cannot secure dimensional accuracy, and is difficult to control the extrusion shape, and it is very difficult to increase the effective foaming degree to about 90%.
[0005]
Therefore, an object of the present invention is to provide a coaxial cable having a small attenuation and which is easy to manufacture and has an accurate product shape, and a manufacturing apparatus capable of easily and efficiently manufacturing a coaxial cable having a small attenuation.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a coaxial cable according to the present invention is a coaxial cable in which a foamed plastic insulator is interposed between an inner conductor and an outer conductor. To form a spiral groove-shaped void portion.
Further, the cross-sectional shape of the insulator is substantially a single character including the circular inner conductor at the center, and the insulator and the inner conductor are integrated by foam molding of the insulator, and Two sides parallel to each other in the cross section of the insulator are formed by cutting.
[0007]
In order to achieve the above object, a coaxial cable manufacturing apparatus according to the present invention supports an intermediate product comprising an inner conductor and a cylindrical foamed plastic insulator covered on the inner conductor so as to be able to travel in the longitudinal direction. A guide means, and a cutting blade which rotates while revolving around the axis of the intermediate product so as to spirally cut the cylindrical foamed plastic insulator of the intermediate product running at the exit side of the guide means. It is provided.
Further, the cutting blade comprises a pair of end mills arranged in parallel with the intermediate product interposed therebetween so as to cut the cylindrical foamed plastic insulator of the intermediate product into an approximately one-letter cross section.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
[0009]
The coaxial cable according to the present invention is supposed to be used, for example, as a feeder for terrestrial digital TV broadcasting, and one embodiment thereof is shown in the perspective view of FIG. 1 and the side view of FIG. . The coaxial cable includes an inner conductor 1 having a circular cross section, an outer conductor 2 having a circular cross section disposed concentrically with the inner conductor 1, and a foam interposed between the inner conductor 1 and the outer conductor 2. And an outer sheath of the outer conductor 2 is covered with an insulating sheath 9.
In FIG. 1, the sheath 9, the outer conductor 2, and the insulator 3 are assumed to be sequentially peeled to explain these configurations, and in FIG. 2, the outer conductor 2 is further shown in a cross section from the middle.
[0010]
The insulator 3 disposed in the annular cross-sectional space between the outer peripheral surface of the inner conductor 1 and the inner peripheral surface of the outer conductor 2 has a double spiral groove shape along the longitudinal direction of the cable centering on the inner conductor 1. (A small space portion) 4 is formed. That is, in the annular cross-section space between the inner conductor 1 and the outer conductor 2, as shown in a cross-sectional view of FIG. The insulator 3 is spirally twisted around the axis C of the coaxial cable. Therefore, this coaxial cable can be said to be a gap-insulated coaxial feeder.
[0011]
The cross-sectional shape of the insulator 3 is substantially one-letter type. However, as shown in the cross-sectional view of FIG. 3, the two long sides are parallel straight lines, and the other two short sides are parallel. The outer conductor 2 has an arc shape centered on the axis C and conforms to the inner peripheral surface shape of the outer conductor 2 (the same shape as the inner peripheral surface shape). That is, as shown in FIGS. 1 to 3, the insulator 3 has a pair of parallel spiral surfaces 10, 10 having the axis C as the center line of the coaxial cable, and the axis C of the coaxial cable as the center line. A pair of arc-shaped spiral surfaces 11 and 11 are formed.
And the space | interval part 4 becomes between the parallel spiral surfaces 10 which were twisted (it became a spiral shape) and faced.
[0012]
The insulator 3 and the inner conductor 1 are tightly integrated by fusing (welding) or the like of the insulator 3 by foam molding, and two parallel sides of the insulator 3 are formed by cutting. Have been. That is, the parallel spiral surfaces 10, 10 of the insulator 3 are spiral cutting surfaces.
Therefore, the insulator 3 comes into contact with the inner conductor 1 by an arc-shaped contact surface to be integrated with the inner conductor 1, and the arc-shaped spiral surfaces 11, 11 of the insulator 3 correspond to the inner peripheral shape of the outer conductor 2. Therefore, positioning when coating the outer conductor 2 and shape retention after assembling can be reliably performed, and insulation strength can be secured and strength against external force (crushing) can be secured.
[0013]
To further describe the insulator 3, the insulator 3 has a configuration in which the inner conductor 1 is sandwiched from both sides in a cross section, and the coaxial cable of the present invention can be said to be a high-frequency copper corrugated coaxial cable having a two-row spiral foamed insulation structure. . That is, the portion where the insulator 3 is provided has two spiral foamed plastic portions sandwiching the internal conductor 1 and a spiral air layer portion as shown in FIG.
[0014]
The material and dimensions of the coaxial cable will be described. For example, the inner conductor 1 is a straight tubular copper tube having an outer diameter of φ5 to 18 mm, the insulator 3 is a resin made of highly foamed polyethylene having an outer diameter of φ12 to 43 mm, and the outer conductor 2 Is a corrugated copper tube (corrugated copper tube), and the sheath 9 is a polyethylene resin.
[0015]
Next, Table 1 shows the experimental results of comparing the attenuation of the coaxial cable of the present invention shown in FIG. 1 with the conventional coaxial cable shown in FIG. As can be seen from the results, in the present invention, the effective dielectric constant and the effective dielectric power factor in the insulator 3 can be reduced by providing the spiral voids 4 in the highly foamed insulator 3. As a result, the attenuation could be reduced for all the nominal diameters.
[0016]
[Table 1]
Figure 2004111185
[0017]
Next, the coaxial cable manufacturing apparatus will be described. 4 is a side sectional view of the apparatus, FIG. 5 is a plan view of the apparatus, and FIG. 6 is a front view of a cutting portion. As described with reference to FIG. 1, the coaxial cable of the present invention is manufactured by fitting the insulator 3 to the inner conductor 1 and further fitting the outer conductor 2 and the sheath 9 to the outer periphery. The manufacturing apparatus of the present invention shown in FIGS. 4 to 6 is an insulator molding apparatus M that manufactures a semi-finished product 13 in which the inner conductor 1 is covered with the insulator 3 having a predetermined shape (spiral shape). That is, this apparatus partially cuts and removes the cylindrical foamed plastic insulator 6 of the intermediate product 8 composed of the inner conductor 1 and the cylindrical foamed plastic insulator 6 coated on the inner conductor 1 to remove the semi-finished product 13. It is to be produced.
[0018]
Although not shown, on the upstream side (pre-process) of the insulator molding apparatus M, while the inner conductor 1 is running in the axial direction, circular foam molding of foamed plastic is performed on the outer peripheral surface side. In addition, a foam molding machine (circular foam molding step) for covering the outer peripheral surface (entire circumference) of the inner conductor 1 with the cylindrical foamed plastic insulator 6 is provided. Therefore, on the upstream side of the apparatus shown in FIG. 4, the inner conductor 1 is covered with the cylindrical foamed plastic insulator 6, and the intermediate product 8 having the insulator 6 having the annular cross section travels in the axial direction as it is. To the insulator molding apparatus M.
[0019]
The manufacturing apparatus (insulator molding apparatus M) of the present invention includes a guide unit 7 for supporting an intermediate product 8 running in the direction of the axis L, and a cutting unit A immediately downstream of the outlet of the guide unit 7. A cutting blade 5 for cutting the cylindrical foamed plastic insulator 6 of the product 8 into a predetermined shape to form a semi-finished product 13; a high-speed rotation (rotation) of the cutting blade 5 around its rotation axis x; Rotation driving means 12 for revolving around the axis L of the intermediate product 8. Further, at a position immediately downstream of the cutting portion A, the axis L of the intermediate product 8 and the axis I of the semi-finished product 13 formed by processing the intermediate product 8 are kept in a straight line, and the axis of the semi-finished product 13 is maintained. A core holding means (rotary guide roll) 14 for always maintaining I at a constant height (position) and a second guide means 15 on the downstream side thereof are provided. The casing 16 (two-dot chain line in FIG. 4) covers the exit of the guide means 15 up to the outlet. In the present invention, the number of the cutting blades 5 is two.
[0020]
In the present invention, the running speed (linear speed) of the intermediate product 8 is set to about 15 m / min or less, the number of rotations of the cutting blade 5 around the rotation axis x is about 1500 rpm or less, The number of rotations around the axis L of No. 8 is set within a range of about 300 rpm or less, and the helical pitch of the helically cut insulator 3 is set to about 200 mm. Note that these speeds and rotation speeds are not limited to these values and can be changed.
[0021]
The guide means 7 has a straight pipe member 17 having an inner diameter larger than the outer diameter of the intermediate product 8, and a short pipe attached to one end and the other end of the straight pipe member 17 for smoothly sliding the intermediate product 8 and holding the core. And a guide member 18 made of a cylindrical resin, and supports the intermediate product 8 so as to be able to run in the longitudinal direction. That is, the guide members 18, 18 hold the outer peripheral surface side of the intermediate product 8 from substantially the entire circumference, and make the axis of the guide means 7 coincide with the axis L of the intermediate product 8. The axis of the guide means 7 becomes the axis E of the insulator molding apparatus M.
[0022]
The cutting blade 5 spirally moves the cylindrical foamed plastic insulator 6 of the intermediate product 8 running in the direction of the axis L by the operation of the rotation driving means 12 in the cutting portion A on the outlet side of the guide means 7. It rotates (rotates) while revolving around the axis L of the intermediate product 8 so as to perform cutting.
More specifically, as shown in FIG. 6, the cutting blades 5 are arranged in parallel with the intermediate product 8 interposed therebetween so as to cut the cylindrical foamed plastic insulator 6 of the intermediate product 8 into a substantially cross-sectional shape. In FIG. 6, a side surface (outer peripheral surface) of the end mill is brought into contact with the cylindrical foamed plastic insulator 6 for cutting. The rotation axes x, x of the pair of cutting blades (end mills) 5, 5 are parallel to each other, and the axis L of the intermediate product 8 is disposed between the rotation axes x, x. The distances to the rotation axes x, x are made equal. That is, if the interval between the cutting blades 5, 5 is P, the axis L is located at the position of P / 2. The outer diameter of the end mill is about φ30 mm. Although not shown, the cutting blade 5 may be a saw blade or the like.
[0023]
As shown in FIGS. 4 and 5, the rotation driving means 12 includes a first cylindrical body 19 having an axis E of the insulator molding device M (guide means 7) as a rotation axis on the outer peripheral side of the guide means 7, First drive means 20 for transmitting power (rotation) to the upstream end portion of the first cylindrical body 19 to rotate the first cylindrical body 19 around the axis E, and the cutting blade 5 around the rotation axis x of the cutting blade 5. And a first power transmitting means 21 for transmitting the power (rotation) by the first driving means 20 to the cutting blade 5 at a downstream end of the first cylindrical body 19 so as to rotate the power. Further, the rotation driving means 12 includes a second cylindrical body 22 having an axis E of the insulator molding apparatus M as a rotation axis on the outer peripheral side of the first cylindrical body 19, and a power supply at an upstream end of the second cylindrical body 22. (Rotation) to rotate the second cylindrical body 22 around the axis E, and the cutting blade 5 around the axis L of the intermediate product 8 (the axis E of the insulator molding device M). A second power transmission means 24 for transmitting the power (rotation) by the second drive means 23 to the cutting blade 5 at the downstream end of the second cylindrical body 22 so as to revolve.
In addition, a bearing member (bearing) is provided between the straight pipe member 17 and the first cylindrical body 19 and between the first cylindrical body 19 and the second cylindrical body 22, respectively, so that each rotates smoothly. Further, a bearing member (bearing) is provided on the outer peripheral surface side of the second cylindrical body 22, and the second cylindrical body 22 is rotatably held by the device mount 48.
[0024]
As shown in FIG. 5, the first driving means 20 includes an electric motor (motor) 25, a pair of pulleys 26, 26, and a rotating belt 27, and the rotational power of the electric motor 25 is controlled by the pulleys 26, 26 and the rotating belt. 27 to the first cylindrical body 19. The second driving means 23 includes an electric motor (motor) 28, a pair of pulleys 29, 29, and a rotating belt 30, and the rotational power of the electric motor 28 is supplied to the second cylindrical body via the pulleys 29, 29 and the rotating belt 30. 22.
[0025]
As shown in FIG. 4, the first power transmission means 21 includes a first bevel gear 31 fixed to the first cylindrical body 19 and having the rotation center about the axis E of the device M, and a second bevel gear 32 meshing with the first bevel gear 31. A shaft member 33 fixed to the second bevel gear 32 as a central axis, a first spur gear 34 fixed to the shaft member 33 with the shaft member 33 as a central axis, and a second spur gear 35 meshing therewith. The cutting blade 5 is fixed to the second spur gear 35 so that the central axis of the second spur gear 35 is the rotation axis x of the cutting blade 5. That is, the rotation axis is changed by 90 ° by the first and second bevel gears 31 and 32, and the axis E of the apparatus M and the rotation axis x of the cutting blade 5 are in a twisted position and have a right angle. It will be crossing over at.
The second bevel gear 32 is arranged in a pair at 180 ° apart (out of phase) from the first bevel gear 31, and the shaft member 33, the first spur gear 34, and the second spur gear 35 are also arranged in a pair, respectively. The pair of cutting blades 5 and 5 are arranged to extend in the direction of the axis E (inward) of the apparatus M so as to sandwich the intermediate product 8 from the opposite side (outside) by approximately 180 °. . Therefore, the rotation directions of the pair of cutting blades 5 and 5 are opposite to each other when viewed from the rotation axis x direction (one direction) as shown by arrows a and b in FIG. Further, the axes of the pair of shaft members 33, 33 are arranged on a straight line.
[0026]
The second power transmission means 24 includes a pair of L-shaped rotating attachment pieces 36 each having one end fixed to the second cylindrical body 22 and having the center of rotation about the axis E of the device M. On the side, a shaft member 33 of the first power transmission means 21 is rotatably held. That is, the rotation of the rotary mounting piece 36 causes the shaft member 33 to rotate around the axis E of the device M, and to rotate the second bevel gear 32 around the first bevel gear 31, thereby causing the cutting blade 5 to rotate around the axis E. It will be revolved around. The rotation mounting piece 36 is fixed to the second cylindrical body 22 at 180 ° apart (out of phase), and holds the shaft member 33 of the first power transmission means 21 arranged at 180 ° away. It becomes.
[0027]
The insulator molding apparatus M according to the present invention uses the first bevel gear 31 as a sun gear and the second bevel gear 32 (the first spur gear 34 and the second spur gear 35) revolving therearound as a planetary gear. Since the rotation drive means 12 is constituted by a so-called planetary gear mechanism that revolves while rotating (rotating) the device 5, the device can be made compact.
As another embodiment, although not shown, a motor is directly connected to the cutting blade 5 to rotate the cutting blade 5 around its axis x, and these revolve around the intermediate product 8 to perform cutting. It may be performed.
[0028]
The distance between the pair of cutting blades (end mills) 5 and 5 (interval P in FIG. 6) can be changed. The approach and separation of the cutting blades 5 and 5 are as shown in FIGS. The angle is adjusted by the swinging pieces 37, 37 connected to the base end sides of the pair of cutting blades 5, 5, respectively. More specifically, one end of the swinging piece 37 is connected to the outer side of the shaft member 33 so as to be swingable about the shaft member 33 as a center axis, and the other end of the swinging piece 37 is cut. The base shaft portion of the blade 5 is held so that the cutting blade 5 can freely rotate (self-rotate). Therefore, since the shaft members 33, 33 are arranged at the positions opposite to each other by 180 ° so that the axes thereof are in the same straight line, the pair of rocking pieces 37, 37 are rocked around the shaft members 33, 33, and a predetermined By fixing the positions of the swinging pieces 37, 37 with the stop bolts 38 and the like at the swinging position, the interval P between the cutting blades 5, 5 can be changed to a predetermined interval and can be maintained.
[0029]
Further, a position indication mark F indicating the swing angle of the swinging pieces 37, 37 is written on the rotary mounting piece 36, and the swinging angle of the swinging piece 37 can be detected. The swing angles can be matched. Further, even when the diameter of the coaxial cable to be manufactured is changed, the indication mark F makes it easy to adjust the interval P, obtain reproducibility, and always obtain a product having an accurate shape. Although not shown, when one of the rocking pieces 37 is fixed at a predetermined angle, the link mechanism is adjusted so that the other rocking piece 37 automatically coincides with the position of a point object about the axis M. It may be provided.
[0030]
In addition, as shown in FIG. 4, the insulator molding apparatus M is provided with air nozzles 45 that allow the air blowing position to be freely changed, and air is ejected from the compressor or the like (not shown) via the air nozzle 45. In the cutting section A, the cutting blades 5 and 5 blow off the cutting chips of the cylindrical foamed plastic insulator 6 to clean the semi-finished product 13 and prevent the cutting blade 5 from being clogged. Further, a dust collector (not shown) is provided at a position below the cutting portion A so as to collect cutting chips blown by air.
[0031]
As shown in the front view of FIG. 7 and the side view of FIG. 8, the core holding means 14 disposed on the downstream side of the cutting portion A forms a well shape by four rollers 46, and the opposing rollers 46, By changing the dimension between 46, the semi-finished product 13 is guided from all sides to prevent bending (sagging) of the semi-finished product 13 so that the cutting amount by the cutting blade 5 does not change. The core holding means 14 is rotatably mounted around an axis E via a bracket (not shown) fixed to a casing 16 shown in FIG. The semi-finished product 13 can be rotated and smoothly run downstream while guiding the semi-finished product 13. The interval between the rollers 46 can be adjusted by rotating the knob 47.
Further, as shown in FIG. 4, a second guide means 15 is disposed on a wall surface of the casing 16 on the downstream side of the core holding means 14. The guide means 15 is a short-cylindrical guide member made of resin, and can smoothly feed out the semi-finished product 13 from the insulator molding device M (casing 16).
[0032]
Further, although not shown, on the downstream side (post-process) of the insulator molding device, an external conductor coating machine (which coats the outer conductor 2 on the outer periphery of the semi-finished product 13 while feeding the semi-finished product 13 in the direction of its axis I ( Outer conductor covering step). Further, on the downstream side, a sheath coating machine (sheath coating step) for coating the outer peripheral surface of the outer conductor 2 with the sheath 9 is provided, and a coaxial cable is continuously produced.
[0033]
【The invention's effect】
The present invention has the following effects by the above configuration.
[0034]
(According to claim 1) The product shape can be made accurate and stable, the degree of foaming of the insulator 3 can be equivalently increased, and a coaxial cable with further reduced attenuation can be obtained. .
[0035]
Since the insulator 3 contacts the inner conductor 1 by an arc-shaped contact surface, the relative position between the inner conductor 1 and the outer conductor 2 is appropriately maintained. Positioning at the time of coating, and shape retention after manufacture can be performed reliably, and it has insulation performance and can secure the strength against external force, facilitating fabrication.
[0036]
According to the third aspect, since the insulating portion can be formed without being affected by the degree of foaming of the cylindrical foamed plastic insulator 6 of the intermediate product 8, it is possible to manufacture a coaxial cable with further reduced attenuation. it can.
The intermediate product 8 is straightened by the guide means 7 and the cylindrical foamed plastic insulator 6 of the intermediate product 8 is cut into a predetermined shape by the cutting blade 5 immediately downstream of the outlet, so that the cutting process can be performed with high precision. I can do it.
Since the processing is performed by the cutting blade 5 while the intermediate product 8 is running, the coaxial cable can be efficiently manufactured, and the apparatus can be made compact.
Since excessive twisting and tension are not applied to the intermediate product 8, the coaxial cable can be installed on one production line, and the coaxial cable can be manufactured continuously and easily, and the production efficiency can be increased. .
[0037]
Since the cutting is performed simultaneously from the opposite side by 180 ° (according to claim 4), a coaxial cable capable of stably processing the cylindrical foamed plastic insulator 6 of the intermediate product 8 and further reducing the attenuation can be manufactured. be able to.
[Brief description of the drawings]
FIG. 1 is a perspective view showing one embodiment of a coaxial cable of the present invention.
FIG. 2 is a partial cross-sectional side view of the coaxial cable of the present invention.
FIG. 3 is a cross-sectional view of the coaxial cable of the present invention.
FIG. 4 is a side sectional view showing an embodiment of the coaxial cable manufacturing apparatus according to the present invention.
FIG. 5 is a plan view of the coaxial cable manufacturing device.
FIG. 6 is a front view of a cutting portion.
FIG. 7 is a front view of the lead holding means.
FIG. 8 is a side view of the lead holding means.
FIG. 9 is a perspective view of a conventional coaxial cable.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner conductor 2 Outer conductor 3 Insulator 4 Void 5 Cutting blade 6 Cylindrical foamed plastic insulator 7 Guide means 8 Intermediate product L Shaft center

Claims (4)

内部導体(1)と外部導体(2)との間に発泡プラスチック絶縁体(3)が介装される同軸ケーブルに於て、該絶縁体(3)は該内部導体(1)を中心として螺旋溝状の空隙部(4)を形成していることを特徴とする同軸ケーブル。In a coaxial cable in which a foamed plastic insulator (3) is interposed between an inner conductor (1) and an outer conductor (2), the insulator (3) spirals around the inner conductor (1). A coaxial cable having a groove-shaped gap (4). 上記絶縁体(3)の横断面形状は、円形の上記内部導体(1)を中心に含む略一文字型であり、かつ、該絶縁体(3)と該内部導体(1)は、該絶縁体(3)の発泡成型により一体化され、しかも、該絶縁体(3)の横断面における相互に平行な2辺は切削形成されている請求項1記載の同軸ケーブル。The cross-sectional shape of the insulator (3) is substantially one-letter shape including the circular inner conductor (1) at the center, and the insulator (3) and the inner conductor (1) are formed of the insulator (3). 2. The coaxial cable according to claim 1, wherein the coaxial cable is integrated by foam molding of (3), and two sides parallel to each other in a cross section of the insulator (3) are cut. 内部導体(1)と該内部導体(1)に被覆させた円筒状発泡プラスチック絶縁体(6)とから成る中間製品(8)を長手方向に走行自在に支持するガイド手段(7)と、該ガイド手段(7)の出口側において走行中の該中間製品(8)の該円筒状発泡プラスチック絶縁体(6)を螺旋状に切削するよう該中間製品(8)の軸心(L)廻りを公転しながら回転する切削刃(5)と、を備えたことを特徴とする同軸ケーブル製造装置。Guide means (7) for supporting an intermediate product (8) comprising an inner conductor (1) and a cylindrical foamed plastic insulator (6) coated on the inner conductor (1) so as to be able to travel in the longitudinal direction; At the outlet side of the guide means (7), around the axis (L) of the intermediate product (8) so as to spirally cut the cylindrical foamed plastic insulator (6) of the running intermediate product (8). A coaxial cable manufacturing device, comprising: a cutting blade (5) that rotates while revolving. 上記切削刃(5)は、上記中間製品(8)の円筒状発泡プラスチック絶縁体(6)を横断面略一文字型に切削するように上記中間製品(8)を挟んで平行に配設された一対のエンドミルから成る請求項3記載の同軸ケーブル製造装置。The cutting blade (5) is disposed in parallel with the intermediate product (8) therebetween so as to cut the cylindrical foamed plastic insulator (6) of the intermediate product (8) into a substantially one-letter cross section. 4. The coaxial cable manufacturing device according to claim 3, comprising a pair of end mills.
JP2002271210A 2002-09-18 2002-09-18 Coaxial cable and its manufacturing device Pending JP2004111185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002271210A JP2004111185A (en) 2002-09-18 2002-09-18 Coaxial cable and its manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002271210A JP2004111185A (en) 2002-09-18 2002-09-18 Coaxial cable and its manufacturing device

Publications (1)

Publication Number Publication Date
JP2004111185A true JP2004111185A (en) 2004-04-08

Family

ID=32268594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002271210A Pending JP2004111185A (en) 2002-09-18 2002-09-18 Coaxial cable and its manufacturing device

Country Status (1)

Country Link
JP (1) JP2004111185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108030A (en) * 2004-10-08 2006-04-20 Mitsubishi Cable Ind Ltd Coaxial cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108030A (en) * 2004-10-08 2006-04-20 Mitsubishi Cable Ind Ltd Coaxial cable

Similar Documents

Publication Publication Date Title
CN104715858A (en) Manufacturing device and manufacturing method of differential signal transmission cable
JP2004111185A (en) Coaxial cable and its manufacturing device
US2525285A (en) Continuous method and apparatus for making coiled structures
JPH02231121A (en) Manufacture of spiral pipe with rib and device therefor
CN103708274A (en) Rubber band conveying and cutting device
CN114843041B (en) Cable insulation layer cladding device
JP5880466B2 (en) Cobb cutting device for coated electric wire, device for manufacturing coated electric wire, method for cutting cobbed wire for coated wire, and method for manufacturing coated electric wire
CN111941788A (en) Automatic batching pay-off formula plastic tubing extrusion lines
JP4316346B2 (en) Transmission belt manufacturing method
JP2004055144A (en) Small diameter coaxial cable and its manufacturing method
JP2006049067A (en) Coaxial cable and its manufacturing method
CN109682048B (en) Automatic air guide device and application thereof to air conditioning equipment
CN116435037B (en) High-temperature-resistant insulated copper bar manufacturing method and equipment thereof
JP3101372B2 (en) Apparatus for laying wires in a circular winding
JP4260489B2 (en) Corrugated device
EP2014446A1 (en) Apparatus for fabricating bellows type hose and fabrication method thereof
CN212636511U (en) Cable double-layer co-extrusion device
CN218619497U (en) High-precision pure nickel strip slitting mechanism convenient to adjust
CN220445400U (en) Rubber gasket laser cutting machine
JP6523847B2 (en) Twisted wire manufacturing method and twisted wire machine
CN213070747U (en) Wrapping tape device
CA2073402C (en) Rigid/flexible tube
CN219988165U (en) Filter device of cable extruding machine
CN218809548U (en) Wire take-up system for improving linearity of superfine metal wire
CN215283298U (en) Heating device of forming machine