JP2004110968A - Apparatus and method for radiating electron beam, and apparatus and method for manufacturing disk-shaped body - Google Patents

Apparatus and method for radiating electron beam, and apparatus and method for manufacturing disk-shaped body Download PDF

Info

Publication number
JP2004110968A
JP2004110968A JP2002274121A JP2002274121A JP2004110968A JP 2004110968 A JP2004110968 A JP 2004110968A JP 2002274121 A JP2002274121 A JP 2002274121A JP 2002274121 A JP2002274121 A JP 2002274121A JP 2004110968 A JP2004110968 A JP 2004110968A
Authority
JP
Japan
Prior art keywords
electron beam
irradiation
beam irradiation
disk
shutter member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002274121A
Other languages
Japanese (ja)
Other versions
JP2004110968A5 (en
Inventor
Mamoru Usami
宇佐美 守
Kazuyuki Tanaka
田中 和志
Yukio Kaneko
金子 幸生
Takeshi Umeka
梅香 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002274121A priority Critical patent/JP2004110968A/en
Priority to PCT/JP2003/011890 priority patent/WO2004027520A1/en
Priority to US10/528,518 priority patent/US7193956B2/en
Priority to TW092125766A priority patent/TW200421014A/en
Priority to AU2003264485A priority patent/AU2003264485A1/en
Publication of JP2004110968A publication Critical patent/JP2004110968A/en
Publication of JP2004110968A5 publication Critical patent/JP2004110968A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for radiating an electron beam capable of easily curing a material which is hard to cure by irradiation with ultraviolet rays, and easily switching between irradiation and non-irradiation of an electron beam, and to provide an apparatus and a method for manufacturing a disk-shaped body capable of efficiently forming a lubricating layer or the like on the disk-shaped body from the material which is hard to cure by irradiation with ultraviolet rays. <P>SOLUTION: The electron beam radiation apparatus 1 is provided with a rotational drive part 17 for rotationally driving a rotated body 2; a shielding case 10 for housing the rotated body to be rotatable, and an electron beam irradiation part 11 arranged on the shielding case so that an electron beam is irradiated to the surface of the rotated body through an irradiation window 11a; a shutter member 22 which is arranged between the irradiation window and the surface of the rotated body and is movable between an open position where the irradiation window is open for allowing the electron beam therefrom to pass through and a closed position where the irradiation window is closed for shading the electron beam; and a shutter driving mechanism 20 for moving the shutter member so as to switch between irradiation and non-irradiation of the electron beam while the rotated body is rotating. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子線照射のための電子線照射装置、電子線照射方法、ディスク状体の製造装置及びディスク状体の製造方法に関する。
【0002】
【従来の技術】
従来、光情報記録媒体としてCD(コンパクトディスク)やDVD(デジタルバーサタイルディスク)等の光ディスクが実用化されているが、最近、発振波長が400nm程度の青紫色半導体レーザの開発が進んでおり、かかる青紫色半導体レーザを用いてDVDよりも高密度記録の可能な高密度DVD等の次世代の高密度光ディスクの開発が行われている。
【0003】
かかる次世代の高密度光ディスクの現在考えられている層構成の例を図12に示す。この高密度光ディスクは、ポリカーボネート等の樹脂材料からなる基材90の上に、情報記録のための記録層91と、記録・再生のためのレーザ光が記録層91に入射するように透過する光透過層92と、光ピックアップ側の部材との接触を考慮した潤滑層93とが順に積層されている。
【0004】
これらの光透過層層92及び潤滑層93は、それらの形成時に硬化のために塗布後に紫外線が照射されるが、特に潤滑層等をラジカル重合性二重結合を有するシリコーン化合物及びフッ素化合物等の材料から形成する場合に、反応開始剤を添加すると潤滑層等としての特性が劣る場合があり、このような場合反応開始剤を添加しないと、紫外線照射では硬化が困難であり、充分な品質の潤滑層を形成することができない。
【0005】
【特許文献1】
特開平4−019839号公報
【0006】
【特許文献2】
特開平11−162015号公報
【0007】
【特許文献3】
特開平7−292470号公報
【0008】
【特許文献4】
特開2000−64042公報
【0009】
【発明が解決しようとする課題】
本発明は、上述のような従来技術の問題に鑑み、紫外線照射では硬化が困難である材料をも容易に硬化でき、また、電子線の照射・非照射の切り換えを簡単に実行できる電子線照射装置及び電子線照射方法を提供することを目的とする。また、電子線の照射・非照射の切り換えを簡単に実行でき、紫外線照射では硬化が困難である材料による樹脂層等をディスク状体上に効率よく形成できるようにしたディスク状体の製造装置及びディスク状体の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明による電子線照射装置は、被回転体を回転駆動する回転駆動部と、前記被回転体を回転可能に収容する遮蔽容器と、前記被回転体の表面に対し電子線がその照射窓から照射されるように前記遮蔽容器に設けられた電子線照射部と、前記照射窓と前記被回転体の表面との間に配置され、前記照射窓からの電子線を透過するように開く開位置と遮るように閉じる閉位置との間で移動可能なシャッタ部材と、前記被回転体の回転中に前記電子線の照射と非照射とを切り換えるように前記シャッタ部材を移動させるシャッタ駆動機構と、を具備する。
【0011】
この電子線照射装置によれば、回転中の被回転体の表面に対し電子線を照射するので、被回転体の表面に紫外線よりも大きなエネルギを有する電子線を効率よく照射することができる。このため、例えば、紫外線照射では硬化が困難である材料による潤滑性を有する層(以下、単に「潤滑層」と記す。)等を容易に硬化できる。また、シャッタ部材により電子線の照射・非照射の切り換え制御を簡単に実行でき、また、電子線照射部の電源をオンオフ制御する必要がないので、電子線照射部の立ち上げ時間が不要であり電子線照射を繰り返すときに効率的である。
【0012】
上記電子線照射装置において、前記電子線照射部は加速電圧が20乃至100kVである電子線を発生することが好ましくい。これにより、特に、表面から薄い範囲に例えば樹脂層に効率よく電子線エネルギを与え、その下方に存在する基材等に電子線による影響を与えない。
【0013】
また、前記遮蔽容器内を例えば窒素ガス、アルゴンガスやCOガス、これらの混合ガス等の不活性ガスの雰囲気とし、前記照射窓の近傍に不活性ガスが流れるようにガス導入口及びガス排出口を前記遮蔽容器に設けることが好ましい。この不活性ガスの流れにより照射窓を冷却することができる。
【0014】
この場合、前記照射窓の近傍に温度センサを設け、前記温度センサによる測定温度に基づいて前記不活性ガスの流量を調整することにより、照射窓の近傍を一定温度以下に制御できる。
【0015】
また、前記遮蔽容器内の酸素濃度を測定するための酸素濃度計が設けられていることが好ましい。これにより、遮蔽容器内が一定の酸素濃度以下であることが確認でき、例えば、電子線の照射される被回転体の照射表面近傍での酸素によるラジカル反応阻害が発生し難くなり、良好な硬化反応を確保できる。
【0016】
また、前記遮蔽容器内を減圧するための真空装置が設けられていることが好ましい。これにより、所定圧力に減圧した遮蔽容器内で電子線照射を行うことが可能となり、また、遮蔽容器内を不活性ガスの雰囲気に置換することを簡単かつ効率的に行うことができる。
【0017】
また、前記遮蔽容器は開閉可能であり、鉄鋼やステンレス鋼等の金属材料から構成されるとともに前記照射窓からの電子線を遮蔽する遮蔽構造を有することが好ましい。これにより、電子線及び2次X線を遮蔽することができ、電子線及び2次X線が外部に漏れず、被爆に対する安全性の対策上好ましい。なお、前記遮蔽構造の近傍に前記遮蔽容器を密閉するための密閉構造を設けることが好ましく、これにより、密閉構造を構成するOリング等の材料に対して電子線が遮蔽され、電子線照射による材料劣化が起きない。
【0018】
また、前記被回転体はディスク形状を有し、前記表面の半径方向に延びる領域に前記照射窓から電子線を照射するようにできる。このため、電子線照射部を一半径方向に配置するだけで、回転中のディスク状の被回転体の全体に簡単かつ効率的に電子線を照射することができる。なお、複数の電子線照射部を配置し、複数の半径方向箇所で電子線を照射するようにしてもよい。
【0019】
また、前記電子線照射部は前記半径方向に配置された複数の電子線照射管を備えることが好ましい。なお、この場合の半径方向は、被回転体の回転中心から放射状に延びる方向及び被回転体の回転中心から偏心した点から被回転体の外周に延びる方向のどちらであってもよい。
【0020】
前記複数の電子線照射管は前記半径方向において前記電子線の照射線強度の分布がほぼ均一になるような配置にできる。この場合、前記電子線照射による積算照射線量の分布が前記半径方向においてほぼ均一になるように前記被回転体の半径位置に応じて前記電子線照射の時間を制御するように構成することが好ましい。これにより、被回転体の表面の半径位置で速度が異なることに起因する電子線照射の積算照射線量の半径方向における不均一な分布を均一になるように補正できる。
【0021】
例えば、前記シャッタ部材が開くときに前記被回転体の表面の外周位置で開き始め次第に内周位置へと開くように構成することで、周速度の速い外周側で照射時間を長くし、周速度の遅い内周側で照射時間を短くできるので、上述の電子線照射の積算照射線量の半径方向における不均一な分布をほぼ均一になるように補正できる。なお、この場合、前記シャッタ部材が開き方向と反対方向に移動することで閉じられる構成にすることが好ましい。
【0022】
また、例えば、前記半径方向に延びるように開口部を設け、前記シャッタ部材の移動により前記開口部を開閉することで前記電子線の照射と非照射とを切り換えるとともに、前記シャッタ部材と前記開口部との相対位置及び前記シャッタ部材の移動速度により前記被回転体の半径位置に応じて前記電子線照射の時間を制御することで、速度の速い外周側で照射時間を長くし、速度の遅い内周側で照射時間を短くできるので、上述の電子線照射の積算照射線量の半径方向における不均一な分布をほぼ均一になるように補正できる。
【0023】
また、前記複数の電子線照射管は前記半径方向において前記電子線の照射線強度が外周側で大きく内周側で小さくなるような分布となるように配置にできる。これにより、一定の回転速度で回転する被回転体において周速度の速い外周側で照射線強度を大きくし、周速度の遅い内周側で小さくするので、被回転体の表面の半径位置で速度が異なることに起因する電子線照射の積算照射線量の半径方向における不均一な分布をほぼ均一になるように補正できる。
【0024】
この場合、前記シャッタ部材を前記被回転体の回転速度よりも速い比較的高速度で開閉するように構成することで、シャッタ部材を開閉するときの照射時間の違いを無視できる。
【0025】
以上のように、被回転体の半径方向において電子線照射の積算照射線量がほぼ均一に分布するように電子線照射を行うことができ、被回転体の被照射面全体にほぼ均一に電子線によるエネルギが与えられるので、例えば、樹脂層を均一に瞬時に効率的に硬化できる。
【0026】
また、上述の電子線照射装置では、前記半径方向に延びるように開口部を設け、前記シャッタ部材の移動により前記開口部を開閉することで前記電子線の照射と非照射とを切り換えるように構成できる。この場合、前記開口部は前記シャッタ部材及び前記照射窓と前記被回転体の表面との間に設けられた別部材の少なくとも一方に形成されることが好ましい。
【0027】
本発明による電子線照射方法は、密閉可能な遮蔽容器内に収容された被回転体を回転駆動するステップと、前記被回転体の表面と電子線照射部の照射窓との間に設けられたシャッタ部材を移動させて前記被回転体の回転中の表面に対し前記照射窓から電子線を照射するステップと、所定時間の電子線照射後に前記シャッタ部材の移動により前記電子線を遮り前記電子線照射を停止するステップと、を含むことを特徴とする。
【0028】
この電子線照射方法によれば、回転中の被回転体の表面に対し電子線を照射するので、被回転体の表面に紫外線よりも大きなエネルギを有する電子線を効率よく照射することができる。このため、例えば、紫外線照射では硬化が困難である材料による潤滑層を容易に硬化できる。また、シャッタ部材により電子線の照射・非照射の切り換え制御を簡単に実行でき、また、電子線照射部の電源をオンオフ制御する必要がないので、電子線照射部の立ち上げ時間が不要であり電子線照射を繰り返すときに効率的である。
【0029】
上記電子線照射方法において、前記電子線照射部は加速電圧が20乃至100kVであることが好ましい。これにより、特に、表面から薄い範囲に例えば樹脂層に効率よく電子線エネルギを与え、その下方に存在する基材等に電子線による影響を与えない。
【0030】
また、前記遮蔽容器内を減圧してから不活性ガスを導入することで不活性ガス雰囲気に置換することで、遮蔽容器内を簡単かつ効率的に不活性ガスの雰囲気とすることができる。
【0031】
また、前記遮蔽容器内の酸素濃度を測定しながら前記不活性ガスを導入することが好ましく、また、前記不活性ガスをガス導入口からガス排出口に向けて前記照射窓の近傍を通して流すことにより前記照射窓の近傍を冷却することが好ましい。
【0032】
また、前記照射窓の近傍に設けた温度センサによる測定温度に基づいて前記不活性ガスの流量を調整することで冷却温度を制御することが好ましい。
【0033】
また、前記被回転体はディスク形状を有し、前記表面の半径方向に延びる領域に前記照射窓から電子線を照射することが好ましい。なお、複数の電子線照射部を配置し、複数の半径方向箇所で電子線を照射するようにしてもよい。
【0034】
この場合、前記電子線照射は前記電子線照射部として前記半径方向に配置された複数の電子線照射管により行うことができる。
【0035】
また、前記複数の電子線照射管は前記半径方向において前記電子線の照射線強度の分布がほぼ均一になるように配置されるとともに、前記電子線照射による積算照射線量の分布が前記半径方向においてほぼ均一になるように前記被回転体の半径位置に応じて前記電子線照射の時間を制御することが好ましい。
【0036】
これにより、被回転体の表面の半径位置で速度が異なることに起因する電子線照射の積算照射線量の半径方向における不均一な分布をほぼ均一になるように補正でき、例えば、前記シャッタ部材が開くときに前記被回転体の表面の外周位置で開き始め次第に内周位置へと開くことにより前記時間を制御することで、周速度の速い外周側で照射時間を長くし、周速度の遅い内周側で照射時間を短くできるので、上述の電子線照射の積算照射線量の半径方向における不均一な分布をほぼ均一になるように補正できる。なお、この場合、前記シャッタ部材を開き方向と反対方向に移動させることで閉じることが好ましい。
【0037】
また、前記複数の電子線照射管は前記半径方向において前記電子線の照射線強度が外周側で大きく内周側で小さくなるような分布となるように配置されることにより、一定の回転速度で回転する被回転体において周速度の速い外周側で照射線強度を大きくし、周速度の遅い内周側で小さくするので、被回転体の表面の半径位置で速度が異なることに起因する電子線照射の積算照射線量の半径方向における不均一な分布をほぼ均一になるように補正できる。
【0038】
この場合、前記シャッタ部材を前記被回転体の回転速度よりも速い比較的高速度で開閉するように構成することで、シャッタ部材を開閉するときの照射時間の違いを無視できる。
【0039】
以上のように、被回転体の半径方向において電子線照射の積算照射線量がほぼ均一に分布するように電子線照射を行うことができ、被回転体の被照射面全体に均一に電子線によるエネルギが与えられるので、例えば、潤滑層を均一に瞬時に効率的に硬化できる。
【0040】
本発明によるディスク状体の製造装置は、上述の電子線照射装置を備え、前記被回転体をディスク状体として、その上に形成された潤滑層及び/又は樹脂層を前記電子線照射により硬化させるように構成したことを特徴とする。
【0041】
このディスク状体の製造装置によれば、回転中のディスク状体の表面に対し電子線を照射するので、ディスク状体の表面に紫外線よりも大きなエネルギを有する電子線を効率よく照射することができる。このため、紫外線照射では硬化が困難である材料による潤滑層等を簡単に硬化できディスク状体上に効率よく形成できる。また、シャッタ部材により電子線の照射・非照射の切り換え制御を簡単に実行でき、また、電子線照射部の電源をオンオフ制御する必要がないので、電子線照射部の立ち上げ時間が不要であり、潤滑層形成のために多数のディスク状体に対し電子線照射を効率的に繰り返すことができ、生産性が向上する。
【0042】
また、ディスク状体の半径方向において電子線照射の積算照射線量をほぼ均一に分布させるように電子線照射を行うことで、ディスク状体の被照射面に対し全体的に均一に電子線によるエネルギを与えることができるので、潤滑層等を均一に瞬時に効率的に硬化できる。
【0043】
本発明によるディスク状体の製造方法は、上述の電子線照射装置を用いるか、または、上述の電子線照射方法を用い、前記被回転体をディスク状体として、その上に形成された潤滑層及び/又は樹脂層を前記電子線照射により硬化させることを特徴とする。
【0044】
このディスク状体の製造方法によれば、回転中のディスク状体の表面に対し電子線を照射するので、ディスク状体の表面に紫外線よりも大きなエネルギを有する電子線を効率よく照射することができる。このため、紫外線照射では硬化が困難である材料による潤滑層等を簡単に硬化できディスク状体上に効率よく形成できる。また、シャッタ部材により電子線の照射・非照射の切り換え制御を簡単に実行でき、また、電子線照射部の電源をオンオフ制御する必要がないので、電子線照射部の立ち上げ時間が不要であり、樹脂層等形成のために多数のディスク状体に対し電子線照射を効率的に繰り返すことができ、生産性が向上する。
【0045】
また、ディスク状体の半径方向において電子線照射の積算照射線量をほぼ均一に分布させるように電子線照射を行うことで、ディスク状体の被照射面に対し全体的に均一に電子線によるエネルギを与えることができるので、潤滑層等を均一に瞬時に効率的に硬化できる。
【0046】
また、上述のディスク状体の製造方法では、加速電圧が20乃至100kVである電子線を用いることで、表面から薄い範囲に樹脂層に効率よく電子線エネルギを与え、その下方に存在する基材等に電子線による影響を与えない。
【0047】
なお、上記ディスク状体の製造方法は、上記電子線照射ステップの前に実行される、前記照射前のディスク状体上に潤滑層を形成するステップを更に含むことが好ましく、前記潤滑層を前記電子線照射により硬化できる。
【0048】
【発明の実施の形態】
以下、本発明による第1の実施の形態による電子線照射装置及び第2の実施の形態によるディスク状媒体の製造装置について図面を用いて説明する。
【0049】
〈第1の実施の形態〉
【0050】
図1は本発明の実施の形態による電子線照射装置を概略的に示すの側面図であり、図2は図1の電子線照射装置のシャッタ部材及びシャッタ駆動機構を概略的に示す平面図であり、図3は図1の電子線照射装置の制御系を示すブロック図であり、図4は図1の電子線照射装置の動作を示すフローチャートである。
【0051】
図1に示すように、電子線照射装置1は、被回転体2を回転可能に収容し電子線を遮蔽するためにステンレス鋼から構成された遮蔽容器10と、被回転体2の中心孔を係合部4に係合することで保持した被回転体2を回転軸3を介して回転駆動するモータ17と、被回転体2に対し半径方向に低加速電圧による電子線を照射窓11aから照射する電子線照射部11と、電子線照射部11に電圧を印加するための電源12と、照射窓11aの近傍に配置された温度センサ24と、温度センサ24と接続されて照射窓11aの近傍の温度を測定する温度測定装置13と、を備える。
【0052】
また、電子線照射装置1は、遮蔽容器10内の密閉空間の酸素濃度を測定する酸素濃度計16と、遮蔽容器10内をバルブ19を介して排気し減圧する真空装置18と、遮蔽容器10内を窒素ガス雰囲気に置換するために窒素ガスを供給する窒素ガス源14と、窒素ガス源14から窒素ガスがガス導入口25から導入され照射窓11aの近傍を通りガス排出口26から排出するように流れるときのガス流量を制御可能なガス流量制御バルブ15と、を備える。
【0053】
電子線照射装置1は、更に、被回転体2よりも直径が大きく被回転体2と電子線照射部11の照射窓11aとの間に配置された開口付き円板21と、円板21と照射窓11aとの間に配置されたシャッタ部材22とシャッタ部材22を駆動するスライダ23とを有するシャッタ駆動機構20と、を備える。
【0054】
図2のように、円板21は扇形状の開口21aを有し、電子線照射部11からの電子線が扇形状の開口21aを通して被回転体2の半径方向の内周側と外周側との間に形成される半径方向領域2aに照射されるようになっている。
【0055】
また、シャッタ部材22は、電子線を遮蔽する鉄鋼やステンレス鋼から矩形状に構成され、スライダ23により図2のスライド方向Hに駆動されると、図2の破線で示すように、円板21の扇形状の開口21aを完全に覆い閉める閉位置に移動し、電子線照射部11からの電子線を遮り、電子線は被回転体2の半径方向領域2aに照射されない。また、シャッタ部材22がスライダ23により上述と反対のスライド方向H’に駆動されると、図2の実線のように、開口21aから完全に退避し開口21aが開く開位置に移動し、電子線照射部11からの電子線を通過させ、電子線が被回転体2の半径方向領域2aに照射される。
【0056】
また、図2に示すように、電子線照射部11は、被回転体2の半径方向に配列された円柱状の電子線照射管31,32,33を備え、電子線照射管31が内周側に配置され、電子線照射管32,33がともに外周側のほぼ同じ半径位置になるように配置される。
【0057】
各電子線照射管31乃至33は電源12から電圧が印加され、その加速電圧が20乃至100kVである電子線が各照射窓から被回転体2の半径方向領域2aに照射される。
【0058】
図2の電子線照射管31,32,33の半径方向における配置の具体例について図13により説明する。図13(a)は電子線照射装置1における被回転体に対する電子線照射管の第1の配置例を概略的に示す部分平面図、図13(b)は第1の配置例における電子線の照射線強度分布を概略的に示す分布図である。
【0059】
図13(a)に示すように、電子線照射管31,32,33は円板21の開口21a内に収まるように配置されているが、電子線照射管32,33は、それらの中心位置32a、33aが被回転体2に対し外周側のほぼ同じ半径位置(被回転体2の中心から半径方向の距離)r2に配置されており、電子線照射管31は、その中心位置31aが被回転体2に対し内周側の半径位置r1に配置されている。
【0060】
図13(a)のように電子線照射管31,32,33を配置したとき、電子線の照射線強度は図13(b)のように被回転体2の半径方向rに分布し、電子線の照射線強度が外周側で比較的大きく内周側で比較的小さくなるように分布する。
【0061】
図13(a)において電子線照射時に被回転体2が回転方向Sに一定速度で回転するときの1回転に要する時間をt秒とすると、被回転体2の半径位置r1における周速度v1及び半径位置r2における周速度v2は、それぞれ次式(1)、(2)で表すことができる。
【0062】
v1=(2π・r1)/t ・・・(1)
v2=(2π・r2)/t ・・・(2)
【0063】
ここで、r1<r2であるので、周速度v1と周速度v2との関係は次式(3)のようになる。
【0064】
v1<v2 ・・・(3)
【0065】
上述のように、一定の回転速度で回転する被回転体2では、被回転体2の表面の半径位置rにより式(3)のように周速度が異なるため電子線照射の積算照射線量が半径方向領域2aにおいて内周側で大きく外周側で小さくなるような不均一な分布を示すのであるが、図13(a)のように電子線照射管31,32,33を配置することで、図13(b)のように電子線の照射線強度を外周側で比較的大きく内周側で比較的小さくなるので、電子線照射の積算照射線量の半径方向における不均一な分布を補正でき、比較的均一にできる。
【0066】
なお、シャッタ駆動機構20でスライダ23によりシャッタ部材22を開閉するときの移動速度は、比較的高速であり、被回転体の回転速度よりもかなり高速度であるので、シャッタ部材22を開閉するときの照射時間の違いは無視できる。また、電子線照射の積算照射線量の分布を更に均一にするように図13(a)における各電子線照射管31乃至33の位置を調整してもよい。
【0067】
以上のような図1,図2の電子線照射装置1は、図3に示すように制御部30により全体が制御されながら電子線照射を行うが、電子線照射装置1の動作の各ステップS01乃至S11を図4を参照して説明する。
【0068】
制御部30の制御により、まず、真空装置18が作動し遮蔽容器10内を減圧し(S01)、バルブ19を閉じてから、窒素ガスを窒素ガス源14から流量制御バルブ15を介して遮蔽容器10内に導入する(S02)。これにより、遮蔽容器10内を窒素雰囲気に容易に置換することができる。
【0069】
そして、酸素濃度計16で遮蔽容器10内が所定の酸素濃度まで低下したことを検知し(S03)、モータ17を駆動することで被回転体2を所定の回転速度で回転させる(S04)。一方、電源12から電子線照射部11に電圧を印加し(S05)、電子線を発生させる(S06)。このとき、シャッタ部材22は閉位置にあり、電子線の発生量は小さく制御される。
【0070】
次に、図2の破線の閉位置にあるシャッタ部材22をシャッタ駆動機構20を作動しスライダ23を駆動することでスライド方向H’に移動させて開口21aを開いて開位置にするとともに(S07)、電子線の発生量を大きく制御し、電子線を回転している被回転体2の半径方向領域2aの表面に照射する(S08)。このように回転している被回転体2の半径方向に電子線を照射するので、被回転体2の表面全体に電子線を照射することができる。
【0071】
そして、被回転体2に電子線を所定時間だけ照射してから、同様にシャッタ駆動機構20を作動しシャッタ部材22をスライド方向Hに移動させて開口21aを閉じて閉位置にすることで(S09)、その被回転体2に対する電子線照射を終了する。
【0072】
また、上述の電子線照射部11から電子線が発生している間、窒素ガス源14からの窒素ガスがガス導入口25から照射窓11aの近傍を通りガス排出口26へと流れるようにすることで(S10)、電子線発生時に温度上昇する照射窓11aを冷却でき、またシャッタ部材22も冷却できる。また、照射窓11a近傍の温度を温度センサ24と温度測定装置13とで測定し、その測定温度に基づいて窒素ガスの流量をガス流量制御バルブ15で制御する(S11)。これにより、照射窓11a近傍の温度を一定温度以下に制御できる。
【0073】
以上のように、図1乃至図4の電子線照射装置によれば、回転中の被回転体2の表面に対し電子線を照射するので、被回転体2の表面に紫外線よりも大きなエネルギを有する電子線を効率よく照射することができる。このため、例えば、紫外線照射では硬化が困難である材料による潤滑層を容易に硬化できる。
【0074】
また、加速電圧が20乃至100kVである電子線を照射するので、被回転体2の表面から薄い範囲に例えば樹脂層に効率よく電子線エネルギを与え、その下方に存在する基材等に電子線による影響を与えず、基材等の劣化を防止できる。
【0075】
また、シャッタ駆動機構20及びシャッタ部材22により電子線の照射・非照射の切り換え制御を簡単に実行できる。
【0076】
また、被回転体2の半径方向において電子線照射の積算照射線量をほぼ均一に分布させるように電子線照射を行うことができ、被回転体2の被照射面に対し全体的に均一に電子線によるエネルギを与えることができるので、例えば樹脂層を均一に効率的に硬化できる。
【0077】
次に、図2の電子線照射管31,32,33の半径方向における第2の配置例について図14により説明する。図14(a)は電子線照射装置1における被回転体2に対する電子線照射管31乃至33の第2の配置例を概略的に示す部分平面図、図14(b)は第2の配置例における電子線の照射線強度分布を概略的に示す分布図である。
【0078】
図14(a)に示すように、電子線照射管31,32,33は、それらの中心位置31a、32a、33aが被回転体2の半径位置r11,r12,r13で被回転体2の半径方向にほぼ等間隔に円板21の開口21a内に収まるように配置されている。このように電子線照射管31,32,33を配置したとき、電子線の照射線強度は図14(b)のように被回転体2の半径方向rにほぼ均一に分布する。
【0079】
図14(a)において電子線照射時に被回転体2が一定速度で回転するとき、被回転体2の半径位置r11,r12,r13における周速度をそれぞれv11,v12,v13とすると、上記式(1)〜(3)と同様に、r11<r12<r13であるので、周速度v11,v12,v13の関係は次式(4)のようになる。
【0080】
v11<v12<v13 ・・・(4)
【0081】
上述のように、一定の回転速度で回転する被回転体2では、被回転体2の表面の半径位置rにより式(4)のように周速度が異なり、かつ、図14(b)のように半径位置において照射線強度がほぼ均一な分布を示すので、被回転体2の半径方向領域2aにおける照射線量の積算照射線量が内周側で大きく、外周側で小さくなってしまう。そこで、図15のようにシャッタ部材を構成することで半径方向領域2aにおける照射線量の積算照射線量の分布をほぼ均一になるように制御している。
【0082】
図15はシャッタ部材の変形例を示す図14(a)と同様の部分的平面図であり、図17は図15のシャッタ部材の平面図である。図15、図17に示すように、シャッタ部材28は、回動軸29を中心に開方向R及びその反対の閉方向R’に回動可能な円板状に構成され、略半円状に切り欠かれており、破線で示すように切り欠き部28bが形成され、直線状に形成された端部28aを有する。なお、シャッタ部材28は図17の一点鎖線で示すような略四分の三円状等であってもよい。
【0083】
シャッタ部材28の回動軸29は、被回転体の2の回転中心(回転軸3に対応する)に対して偏心した位置にある。また、シャッタ駆動機構20は正逆回転可能なモータ(図示省略)を備え、回動軸29を開方向R及び閉方向R’に回動しシャッタ部材28を移動させて開閉する。
【0084】
シャッタ駆動機構20によるシャッタ部材28の動作について説明する。まず、シャッタ部材28は、図5の実線の閉位置で開口21aを覆い電子線を遮り、電子線非照射の状態である。この状態からシャッタ部材28を回転軸29を中心に開方向Rに回動すると、切り欠き部28bの端部28aから次第に開口21aを開いていく。
【0085】
即ち、シャッタ部材28が移動し、その端部28aが開口21aの外周端21bに至り、一点鎖線で示す(端部28aの)端部位置41を過ぎると、開口21aを外周端21bの近傍から開く。続いて、シャッタ部材28は、その端部28aが、図15のように一点鎖線で示す端部位置42,43,44のように移動しながら開口21aを外周側から内周側に開いていく。そして、シャッタ部材28は、端部位置45で開口部21aをほぼ開放する。
【0086】
上述のように回転するシャッタ部材28の回転速度は、電子線照射時に回転方向Sに回転する被回転体2の回転速度と同じ程度かまたは差がない程度に設定されている。従って、シャッタ部材28が回動し開口部21aを開放している間に照射される電子線による照射線量を無視できないが、上述のように、開口部21aを外周側から内周側に向けて開放していくので、被回転体2における半径方向領域2aにおける電子線照射時間が外周側で比較的長く内周側で比較的短くなる結果、上述のような電子線照射の積算照射線量の半径方向における不均一な分布を補正でき、比較的均一にできる。
【0087】
また、シャッタ部材28を所定時間の経過後、図15のように回動方向Rと反対の回動方向R’に開放時と同じ回転速度で回動すると、その端部28aが上述と反対に端部位置45,44,43,42,41と移動しながら開口21aを閉じる。このとき、開口部21aを始めに内周側を閉じてから次第に外周側へと閉じていくので、被回転体2における半径方向領域2aにおける電子線照射時間が外周側で比較的長く内周側で比較的短くなる。このため、電子線照射の積算照射線量の半径方向における不均一な分布を一層補正でき、更に比較的均一にできる。
【0088】
なお、シャッタ部材28の回動軸29の位置や端部28aの形状、更に開口21aの形状等を適宜調整することで、電子線照射の積算照射線量の半径方向における分布をより均一にできる。また、電子線照射の積算照射線量の分布を更に均一にするように図14(a)における各電子線照射管31乃至33の位置を微調整するようにしてもよい。
【0089】
〈第2の実施の形態〉
【0090】
次に、第2の実施の形態としてのディスク状媒体の製造装置について説明する。図5乃至図9は、本実施の形態においてディスク状媒体上に潤滑層を形成するための各工程を説明する製造装置の側面図である。
【0091】
図5乃至図9に示すように、ディスク状媒体の製造装置(以下、単に「製造装置」という。)50は、加速電圧が20乃至100kVである低加速電圧による電子線を発生しディスク状媒体49の表面に照射する電子線照射装置1と、照射前のディスク状媒体49を電子線照射装置1に供給しかつ照射後のディスク状媒体49aを電子線照射装置1から受け取る入替室52と、照射前のディスク状媒体と照射後のディスク状媒体とを入れ替えるために回動軸53により回動する回動部54と、を密閉可能なチャンバ51内に備える。
【0092】
図5乃至図9のように、製造装置50は、更に、照射前のディスク状媒体を入替室52に供給し照射後のディスク状媒体を排出するようにディスク状媒体の搬送を行うディスク搬送装置60を備える。
【0093】
電子線照射装置1は、図1、図2とほぼ同様に構成されているので、図1,図2と相違する点を説明する。即ち、図1の遮蔽容器10は、図5では、ディスク状媒体49を回転可能に収容する図の下側の回動トレイ部10aと、電子照射部11やシャッタ駆動機構20等が設けられる上側の固定部10bに分割され、回動トレイ部10aは固定部10bに対し回動部54により上下動及び回動し入替室52側に移動可能になっている。
【0094】
図5のように、回動トレイ部10aの合わせ面10c及び固定部10bの合わせ面10c’には電子線が外部に漏れないように電子線を遮蔽する遮蔽部55が設けられている。図10は遮蔽部55を示す拡大断面図である。図10に示すように、回動トレイ部10aの合わせ面10cには凸部55aが全周に形成され、固定部10bの合わせ面10c’には凸部55aが入り込むことができるように凹部55bが全周に形成されている。
【0095】
また、遮蔽部55を構成する凹部55bの底部には更に窪み55cが形成され、窪み55c内にOリング56aを収め密閉部56を形成している。回動トレイ部10aと固定部10bとを合わせて内部に形成される密閉空間1aの密閉性を密閉部56により高めることができる。
【0096】
図10において、密閉部56のOリング56aは凹部55bの更に底部側の窪み55c内に位置するので、電子線が直接に照射されないので、Oリング56aの劣化を防止できる。
【0097】
図5に示すように、入替室52は、回動部54により上下動及び回動し電子線照射装置1側に移動し回動トレイ部10aと入れ替え可能な回動トレイ部52aと、ディスク搬送装置60により照射前のディスク状媒体を受け取り照射後のディスク状媒体を外部に排出するように回動する搬送回動トレイ部52bとを備える。
【0098】
チャンバ51は入替室52の一部を構成する端部51aと連結部51bとを有する。端部51aと連結部51bが入替室52の回動トレイ部52aと搬送回動トレイ部52bとの間に介在し合わせ面になって、入替室52内に密閉空間52cが形成されるとともに、搬送回動トレイ部52bがチャンバ51の一部を構成する。
【0099】
また、端部51aと搬送回動トレイ部52bとの間の合わせ面及び端部51bと搬送回動トレイ部52bとの間の合わせ面にはそれぞれOリングによる密閉部57が設けられている。また、端部51aと回動トレイ部52aとの間の合わせ面及び連結部51bと回動トレイ部52aとの間の合わせ面にはそれぞれ図10と同様の遮蔽部55,密閉部56が設けられている。
【0100】
チャンバ51は、電子線照射装置1の端部側で固定部10bと連結し、中央部付近で連結部51bが固定部10bと連結し、搬送回動トレイ部52bが端部51a及び連結部51bで密閉されるので、全体として密閉可能になっている。また、チャンバ51、搬送回動トレイ部52b(62)、回動トレイ部10a及び固定部10b等は、鉄鋼やステンレス鋼から構成され、電子線を遮蔽し、電子線が外部に漏れないようになっている。
【0101】
チャンバ51には窒素ガス導入口58から窒素ガスが導入でき、また、入替室52内の密閉空間52cは真空装置59により減圧可能である。図9のようにチャンバ51全体が密閉された状態で回動部54が回動トレイ部10a、52aとともに図の下方に移動し、密閉空間1a、52cが開放された場合は、入替室52は窒素ガスで置換された状態であるため、チャンバ51内が電子線照射装置1の密閉空間1aの窒素ガス雰囲気に影響を及ぼさない。
【0102】
また、入替室52には窒素ガス導入口59bから窒素ガスが導入可能となっている。また、チャンバ51内の窒素ガスはガス排出口58aから排出可能になっている。
【0103】
図5に示すように、ディスク搬送装置60は、入替室52を構成する搬送回動トレイ部52bと入れ替え可能な別の搬送回動トレイ部62と、搬送回動トレイ部52b,62を回動軸63を介して回動させる回動部64と、を備える。搬送回動トレイ部52b,62は、ディスク状媒体49の中心孔の周囲近傍でディスク状媒体49を真空吸着する吸着部61をそれぞれ有する。回動部64は上下動及び回動によりディスク状媒体を入替室52と外部のディスク受渡部70との間で搬送する。
【0104】
ディスク受渡部70から入替室52へと供給されるディスク状媒体49は、外部のスピンコート装置等でその表面に樹脂材料を含む光透過層とその上に潤滑剤からなる潤滑層が形成されている。
【0105】
かかる光透過層形成のための材料としては活性エネルギー線硬化性化合物であれば特に限定されないが、(メタ)アクリルイロ基、ビニル基及びメルカプト基の中から選択される少なくとも1つの反応性基を有することが好ましい。その他、公知の光重合開始剤を含んでいてもよい。
【0106】
また、潤滑層形成のための材料としては、例えば、ラジカル重合性二重結合を有するシリコーン化合物及びフッ素化合物があるが、これらには限定されない。これらの潤滑層形成材料は、一般に、光重合開始剤を含まない場合には紫外線による硬化が困難であるが、電子線により瞬時に硬化させることができる。
【0107】
次に、上述の製造装置50の動作についてディスク状媒体への電子線照射及びディスク状媒体の排出・供給に分けて、図5乃至図9、及び図11のフローチャートを参照して説明する。
【0108】
〈ディスク状媒体への電子線照射〉
【0109】
図11に示すように、まず、図9のようにチャンバ51全体が密閉され、回動軸53及び回動部54が回動トレイ部10a、52aとともに図の下方に移動し、密閉空間1a、52cが開放してから、窒素ガス導入口58から窒素ガスをチャンバ51内に導入し、内部を窒素ガス雰囲気に置換する(S21)。このとき、酸素濃度計16によりチャンバ内51の酸素濃度を測定しながら窒素ガスの置換を行うことができる。
【0110】
次に、回動軸53及び回動部54が回動トレイ部10a、52aとともに図の上方に移動すると、図5のように密閉空間1a、52cが形成される。そして、電子線照射装置1では、密閉空間1a内でモータ17によりディスク状媒体49が回転し(S22)、電子線照射部11が所定量の電子線を発生するように制御され(S23)、窒素ガスが導入口25から排出口26へと照射窓11a近傍を通りながら流れる。
【0111】
次に、図6のように、シャッタ駆動機構20によりシャッタ部材22を開くことで(S24)、電子線照射部11から回転中のディスク状媒体49の光透過層上に潤滑層の形成された表面に電子線照射を行う(S25)。図7のように電子線照射を所定時間だけ行ってから、図8のようにシャッタ駆動機構20によりシャッタ部材22を閉じることで(S26)、そのディスク状媒体49の表面に対する電子線照射を終了する。これにより、ディスク状媒体49の光透過層の表面に固着された潤滑層を有するディスク状媒体49aを得ることができる。これは、光透過層が硬化するとともに潤滑剤の反応性基が光透過層表面や他の潤滑剤の反応性基と結合(硬化)するためと思われる。
【0112】
〈ディスク状媒体の排出・供給〉
【0113】
図5のように入替室52内の密閉空間52cが形成されている状態で、図6のように、照射後のディスク状媒体49aが内部にある入替室52の密閉空間52cを開放バルブ59c及び開放口59dを介して大気開放する(S30)。
【0114】
そして、ディスク搬送装置60は回動軸63及び回動部64を介して搬送回動トレイ部52b側の吸着部61を図6の下方に移動させて、ディスク状媒体49aを吸着する(S31)。これとほぼ同時に、外部のディスク受渡部70にある表面に潤滑層の形成された照射前のディスク状媒体49を別の搬送回動トレイ部62側の吸着部61が吸着する(S32)。
【0115】
次に、図7のように、ディスク搬送装置60は回動軸63及び回動部64を図7の上方に移動させることで、吸着部61及び搬送回動トレイ部52bとともにディスク状媒体49aを回動トレイ部52a内から持ち上げ、同時に吸着部61及び搬送回動トレイ部62とともにディスク状媒体49をディスク受渡部70から持ち上げる。そして、回動部64が回動軸63を中心にして回動することで搬送回動トレイ部52bと62との位置を入れ替える(S33)。
【0116】
次に、図8のように、ディスク搬送装置60が回動軸63及び回動部64を図7の下方に移動させることで、ディスク状媒体49を入替室52の回動トレイ部52a内に収める(S34)。一方、ディスク状媒体49aをディスク受渡部70に渡し(S35)、各吸着部61がディスク状媒体49,49aの吸着を止め図の上方に移動する。ディスク受渡部70からディスク状媒体49aが外部に排出される(S36)。
【0117】
そして、上述のようにして再び形成された入替室52内の密閉空間52cを真空装置59により減圧し、窒素ガス導入口59bから窒素ガスを導入し窒素ガス置換をしておく(S37)。
【0118】
以上のようにして、照射後のディスク状媒体49aを入替室52からディスク受渡部70まで搬送し、同時に、照射前のディスク状媒体49をディスク受渡部70から入替室52まで搬送することができ、ディスク状媒体49の交換を回動軸63及び回動部64の1回の回動で行うことができる。
【0119】
また、上述のディスク状媒体49、49aの交換は、密閉空間1aと52cとが独立しているので、図6,図7のように、電子線照射装置1における電子線照射中に実行することができ、効率的である。
【0120】
次に、入替室52と電子線照射装置1との間のディスク状媒体の入れ替え動作について説明する。即ち、上述の図8のように照射前のディスク状媒体49が入替室52の回動トレイ部52a内に収容され、電子線照射装置1では、モータ17による回転が停止し(S38)、電子線照射の終了したディスク状媒体49aが回動トレイ部10a内に収容された状態で、回動軸53及び回動部54が図の下方に移動することで、回動トレイ部52a、10aを下方に移動して密閉空間52c、1aを開放する。なお、このとき密閉空間52c内は窒素ガス雰囲気に置換されているので、チャンバ51内の他の部分への影響はない。
【0121】
次に、図9のように、チャンバ51内で回動部54が回動軸53を中心に回動することで回動トレイ部52aと10aとの位置を入れ替える(S39)。これにより、回動トレイ部52aに収容された照射前のディスク状媒体49が電子線照射装置1内に移り(S40)、これとほぼ同時に、回動トレイ部10aに収容されたディスク状媒体49aが入替室52内に移る(S41)。
【0122】
上述のようにして、入替室52と電子線照射装置1との間のディスク状媒体49、49aの交換を回動軸53及び回動部54の1回の回動で行うことができる。そして、回動軸53及び回動部54が図の上方に移動することで、回動トレイ部52a、10aを上方に移動させて図5のように密閉空間52c、1aを再び形成し、電子線照射装置1では上述のステップS22に戻り、また、入替室52では上述のステップS30に戻り、同様の動作を繰り返すことができる。
【0123】
なお、モータ17の回転軸3は、回動軸53及び回動部54の回動時には、回動部54及び回動トレイ部10aから下方に退避するようになっており、回動部54が回動できる。
【0124】
以上のように、図5乃至図9の製造装置50によれば、表面に潤滑層等が形成されたディスク状媒体49を回転させ、その回転中のディスク状媒体上に加速電圧が20乃至100kVである低加速電圧による電子線を照射するので、ディスク状媒体上に紫外線よりも大きなエネルギを有する電子線を効率よく照射することができるため、紫外線照射では硬化が困難である潤滑層等を容易に硬化・固着でき、潤滑層等を瞬時に形成でき、潤滑層等形成の生産性が向上する結果、ディスク状媒体の生産性向上に寄与できる。
【0125】
また、チャンバ51の内部及びディスク搬送装置60において回動トレイ部と別の回動トレイ部との連動したそれぞれ1回の回動で両回動トレイ部を互いに入れ替えることにより、照射後のディスク状媒体49aを排出するとともに照射前のディスク状媒体49を供給することができ、連続して効率よく入れ替えることができるので、生産性が向上する。
【0126】
また、加速電圧が20乃至100kVである低加速電圧による電子線を用いるので、表面から薄い範囲にある潤滑層等に効率よく電子線エネルギを与え、その下方に存在する基材に電子線による影響を与えない。
【0127】
また、被回転体2の半径方向において電子線照射の積算照射線量をほぼ均一に分布させるように電子線照射を行うことができ、被回転体2の被照射面に対し全体的に均一に電子線によるエネルギを与えることができるので、潤滑層を均一に効率的に硬化できる。
【0128】
また、シャッタ駆動機構20及びシャッタ部材22により電子線の照射・非照射の切り換え制御を簡単に実行でき、また、電子線照射部11の電源12をオンオフ制御する必要がないので、電子線照射部11の立ち上げ時間が不要であり、電子線照射装置1にディスク状媒体49が次々と供給され、連続的な電子線照射の繰り返すを効率的に実行でき、生産性が向上する。
【0129】
例えば、電子線照射装置1の電子線照射部11を構成する低加速電圧による電子線照射のための電子線照射管31乃至33(図2)は、ウシオ電機(株)から市販されており、例えば、加速電圧50KV、管電流0.6mA/本の条件で、表面から10乃至20μm程度の深さ範囲内の潤滑層・樹脂層等に効率よく電子線エネルギを与えることができ、1秒未満で瞬時に効率的に硬化させることができる。例えば、図12のような光ディスクの潤滑層93のみならず光透過層92の少なくとも潤滑層93と接する部分をも同時に硬化できる。しかも、例えば図12のような光ディスクにおいて潤滑層93の下方にある基材90には電子線が到達しないので、ポリカーボネート等の樹脂材料からなる基材90にダメージを与えず、変色・変形・劣化等の悪影響が起きない。
【0130】
なお、各電子線照射管31,32,33の各照射窓を構成する窓材としては厚さ3μm程度のシリコン薄膜が好ましく、従来の照射窓では取り出すことのできない100kV以下の低い加速電圧で加速された電子線を取り出すことができる。
【0131】
なお、本明細書において、「回動」とは、回転のように一方向(またはその反対方向)に連続的に被回転体が回るのではなく、一方向またはその反対方向に所定量だけ回りそこで停止するようにして、その位置を変えるように回ることを意味する。また、被回転体の「半径方向」とは、被回転体の回転中心から放射状に延びる方向及び被回転体の回転中心から偏心した点から被回転体の外周に延びる方向を意味する。
【0132】
以上のように本発明を実施の形態により説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、本実施の形態のディスク状媒体の製造装置では、光ディスク等のディスク状媒体の表面近傍に上述のような材料からなる光透過層及び潤滑層を硬化して形成する例を説明したが、本発明はこれに限定されず、潤滑層以外の樹脂層等を硬化するのに適用してもよいことは勿論である。例えば、図12において潤滑層93の下の光透過層92のみを形成するために適用してもよく、瞬時に硬化させることができ効率的であり、生産性向上に寄与できる。
【0133】
また、電子線照射装置1で電子線を照射可能な被回転体としては各種のディスク状体であってよく、また、製造装置50で製造可能なディスク状体として、光ディスク等のディスク状媒体を例にして説明したが、媒体以外のディスク状体上に各種の樹脂層を形成する場合にも適用できることは勿論である。
【0134】
また、図1の電子線照射装置及び図5乃至図9の製造装置では、電子線を照射の対象となる表面における層厚さを考慮して、電子線照射部11の電子線照射管の管電圧等を決定することが好ましい。また、電子線照射部11を構成する電子線照射管の数は、被照射表面の大きさや面積に応じて適宜増減することができる。
【0135】
また、チャンバ内や電子線照射装置内の雰囲気を置換するガスとしては窒素ガスに限定されず、アルゴンガス、ヘリウムガス,CO等の不活性ガスであってもよく、また、これらの2種またはそれ以上の混合ガスであってもよい。
【0136】
また、図13(a)における電子線照射管31乃至33の別の配置例を図16(a)に示す。図16(a)のように、図13(a)の電子線照射管33の半径方向位置を電子線照射管32よりも内周側にずらし、図16(b)のような電子線の照射量強度分布としてもよい。
【0137】
また、本実施の形態では、電子線照射管の本数を3本としたが、単数または2本であってもよく、また4本以上であってもよく、電子線照射管の半径方向における配列間隔を調整することで、必要な電子線の照射量強度分布を得るようにできる。
【0138】
【発明の効果】
本発明によれば、電子線をディスク状体等の被回転体に効率よく照射することができ、例えば紫外線照射では硬化が困難である材料をも容易に硬化でき、また電子線の照射・非照射の切り換えを簡単に実行できる電子線照射装置及び電子線照射方法を提供できる。
【0139】
また、電子線の照射・非照射の切り換えを簡単に実行でき、また紫外線照射では硬化が困難である材料による潤滑層や樹脂層等をディスク状体上に効率よく形成できるようにしたディスク状体の製造装置及びディスク状体の製造方法を提供できる。
【図面の簡単な説明】
【図1】第1の実施の形態による電子線照射装置を概略的に示すの側断面図である。
【図2】図1の電子線照射装置のシャッタ部材及びシャッタ駆動機構を概略的に示す平面図である。
【図3】図1の電子線照射装置の制御系を示すブロック図であり、
【図4】図1の電子線照射装置の動作を示すフローチャートである。
【図5】第2の実施の形態によるディスク状媒体の製造装置を概略的に示す側断面図であり、ディスク状媒体上に潤滑層等を形成するための電子線照射の直前の工程を説明する図である。
【図6】図5と同様の側断面図であり、ディスク状媒体上に潤滑層等を形成するための電子線照射及びディスク状媒体の外部との入替工程を説明する図である。
【図7】図5と同様の側断面図であり、ディスク状媒体上に潤滑層等を形成するための電子線照射及びディスク状媒体の外部との入替工程を説明する図である。
【図8】図5と同様の側断面図であり、ディスク状媒体上に潤滑層等を形成するためのディスク状媒体の内部での入替工程の準備工程(入替室内の減圧・窒素ガス置換等)を説明する図である。
【図9】図5と同様の側断面図であり、ディスク状媒体上に潤滑層等を形成するためのディスク状媒体の内部での入替工程を説明する図である。
【図10】図5乃至図9の製造装置における遮蔽部55を示す拡大断面図である。
【図11】図5乃至図9の製造装置におけるディスク状媒体への電子線照射の各ステップ及びディスク状媒体の排出・供給の各ステップを示すフローチャートである。
【図12】図5乃至図9の製造装置において製造可能な光ディスクの層構成の例を示す図である。
【図13】図13(a)は電子線照射装置1における被回転体に対する電子線照射管の第1の配置例を概略的に示す部分平面図、図13(b)は第1の配置例における電子線の照射線強度分布を概略的に示す分布図である。
【図14】図14(a)は電子線照射装置1における被回転体2に対する電子線照射管31乃至33の第2の配置例を概略的に示す部分平面図、図14(b)は第2の配置例における電子線の照射線強度分布を概略的に示す分布図である。
【図15】図14(b)のような電子線の照射線強度分布を有する場合に適用して好ましいシャッタ部材の変形例を示す図14(a)と同様の部分的平面図である。
【図16】図16(a)は電子線照射装置1における被回転体に対する電子線照射管の第1の配置例の変形を示す部分平面図、図16(b)はその変形例における電子線の照射線強度分布を概略的に示す分布図である。
【図17】図15のシャッタ部材の平面図である。
【符号の説明】
1・・・電子線照射装置
2・・・被回転体
10・・・遮蔽容器
11・・・電子線照射部
11a・・・照射窓
12・・・電源
13・・・温度測定装置
24・・・温度センサ
14・・・窒素ガス源
15・・・ガス流量制御バルブ
16・・・酸素濃度計
17・・・モータ(回転駆動部)
18・・・真空装置
20・・・シヤッタ駆動機構
21・・・円板
21a・・・開口
22・・・シヤッタ部材
28・・・シャッタ部材
29・・・回動軸
30・・・制御部
31〜33・・・電子線照射管
50・・・ディスク状媒体の製造装置
10a・・・回動トレイ部
10b・・・固定部
51・・・チャンバ
52・・・入替室
52a・・・回動トレイ部
52b・・・搬送回動トレイ部
53・・・回動軸
54・・・回動部
55・・・遮蔽部
56・・・密閉部
59・・・真空装置
60・・・ディスク搬送装置
62・・・回動トレイ部
70・・・ディスク受渡部
92・・・光透過層(樹脂層)
93・・・潤滑層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electron beam irradiation device for electron beam irradiation, an electron beam irradiation method, a disk-shaped body manufacturing apparatus, and a disk-shaped body manufacturing method.
[0002]
[Prior art]
Conventionally, optical disks such as CDs (compact disks) and DVDs (digital versatile disks) have been put into practical use as optical information recording media. Recently, blue-violet semiconductor lasers having an oscillation wavelength of about 400 nm have been developed. Development of next-generation high-density optical discs such as high-density DVDs, which can record at higher densities than DVDs, using blue-violet semiconductor lasers, is underway.
[0003]
FIG. 12 shows an example of a layer configuration currently considered for such a next-generation high-density optical disk. This high-density optical disk has a recording layer 91 for recording information and a light that transmits a laser beam for recording / reproduction so as to enter the recording layer 91 on a base material 90 made of a resin material such as polycarbonate. A transmissive layer 92 and a lubricating layer 93 in consideration of contact with a member on the optical pickup side are sequentially laminated.
[0004]
The light transmitting layer 92 and the lubricating layer 93 are irradiated with ultraviolet light after being applied for curing during their formation. Particularly, the lubricating layer and the like are formed of a silicone compound having a radical polymerizable double bond and a fluorine compound. When formed from a material, if a reaction initiator is added, the properties as a lubricating layer or the like may be inferior. In such a case, if no reaction initiator is added, curing by ultraviolet irradiation is difficult, and sufficient quality is not obtained. A lubrication layer cannot be formed.
[0005]
[Patent Document 1]
JP-A-4-01839
[0006]
[Patent Document 2]
JP-A-11-162015
[0007]
[Patent Document 3]
JP-A-7-292470
[0008]
[Patent Document 4]
JP 2000-64042 A
[0009]
[Problems to be solved by the invention]
The present invention has been made in consideration of the above-described problems of the related art, and has been made in consideration of the above-described problems of the prior art. It is an object to provide an apparatus and an electron beam irradiation method. Further, a disc-shaped body manufacturing apparatus which can easily perform switching between irradiation and non-irradiation of an electron beam, and can efficiently form a resin layer or the like made of a material which is difficult to cure by ultraviolet irradiation on the disc-shaped body. An object of the present invention is to provide a method for manufacturing a disk-shaped body.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an electron beam irradiation apparatus according to the present invention includes a rotation driving unit that rotationally drives a rotating object, a shielding container that rotatably stores the rotating object, and a rotating container that rotates the rotating object. On the other hand, an electron beam irradiator provided in the shielding container so that an electron beam is irradiated from the irradiation window, and disposed between the irradiation window and the surface of the rotated object, and the electron beam from the irradiation window A shutter member movable between an open position that opens to transmit light and a closed position that closes so as to block the light, and the shutter member that switches between irradiation and non-irradiation of the electron beam during rotation of the rotating body. And a shutter drive mechanism for moving the shutter.
[0011]
According to this electron beam irradiation device, since the surface of the rotating object is irradiated with the electron beam, the surface of the rotating object can be efficiently irradiated with an electron beam having energy larger than that of ultraviolet rays. For this reason, for example, a layer having lubricity (hereinafter simply referred to as “lubricating layer”) or the like made of a material that is difficult to cure by ultraviolet irradiation can be easily cured. In addition, the switching control of irradiation / non-irradiation of the electron beam can be easily executed by the shutter member, and since the power supply of the electron beam irradiation unit does not need to be turned on / off, the startup time of the electron beam irradiation unit is not required. It is efficient when electron beam irradiation is repeated.
[0012]
In the above electron beam irradiation apparatus, it is preferable that the electron beam irradiation section generates an electron beam having an acceleration voltage of 20 to 100 kV. Thereby, particularly, the electron beam energy is efficiently applied to, for example, the resin layer in a thin range from the surface, and the substrate and the like existing thereunder are not affected by the electron beam.
[0013]
Further, the inside of the shielding container is, for example, nitrogen gas, argon gas or CO2. 2 It is preferable that an atmosphere of an inert gas such as a gas or a mixed gas thereof be provided, and a gas inlet and a gas outlet be provided in the shielding container so that the inert gas flows near the irradiation window. The irradiation window can be cooled by the flow of the inert gas.
[0014]
In this case, by providing a temperature sensor near the irradiation window and adjusting the flow rate of the inert gas based on the temperature measured by the temperature sensor, the vicinity of the irradiation window can be controlled to a certain temperature or lower.
[0015]
Preferably, an oxygen concentration meter for measuring the oxygen concentration in the shielding container is provided. Thereby, it is possible to confirm that the inside of the shielding container has a certain oxygen concentration or less. For example, radical reaction inhibition by oxygen near the irradiated surface of the rotating body to be irradiated with the electron beam is less likely to occur, and good curing is achieved. Reaction can be secured.
[0016]
Further, it is preferable that a vacuum device for reducing the pressure inside the shielding container is provided. This makes it possible to perform the electron beam irradiation in the shielding container reduced to a predetermined pressure, and to easily and efficiently replace the inside of the shielding container with an inert gas atmosphere.
[0017]
Preferably, the shielding container is openable and closable, is made of a metal material such as steel or stainless steel, and has a shielding structure for shielding electron beams from the irradiation window. Thereby, the electron beam and the secondary X-ray can be shielded, and the electron beam and the secondary X-ray do not leak to the outside, which is preferable in terms of safety measures against exposure. In addition, it is preferable to provide a sealing structure for sealing the shielding container in the vicinity of the shielding structure, whereby an electron beam is shielded from a material such as an O-ring constituting the sealing structure, and the electron beam is irradiated. No material degradation occurs.
[0018]
Further, the rotating object has a disk shape, and an electron beam can be irradiated from the irradiation window to a region extending in a radial direction of the surface. For this reason, by simply arranging the electron beam irradiation unit in one radial direction, it is possible to easily and efficiently irradiate the entire rotating disk-shaped rotated object with the electron beam. Note that a plurality of electron beam irradiators may be arranged to irradiate an electron beam at a plurality of radial locations.
[0019]
Preferably, the electron beam irradiation unit includes a plurality of electron beam irradiation tubes arranged in the radial direction. In this case, the radial direction may be either a direction extending radially from the rotation center of the rotated object or a direction extending from the point eccentric to the rotation center of the rotated object to the outer periphery of the rotated object.
[0020]
The plurality of electron beam irradiation tubes may be arranged such that the distribution of the irradiation beam intensity of the electron beam in the radial direction is substantially uniform. In this case, it is preferable to control the time of the electron beam irradiation in accordance with the radial position of the rotating body so that the distribution of the integrated irradiation dose by the electron beam irradiation becomes substantially uniform in the radial direction. . Thereby, the uneven distribution in the radial direction of the integrated irradiation dose of the electron beam irradiation due to the difference in the speed at the radial position on the surface of the rotating body can be corrected to be uniform.
[0021]
For example, when the shutter member is opened, it starts to open at the outer peripheral position on the surface of the rotating body and gradually opens to the inner peripheral position, thereby increasing the irradiation time on the outer peripheral side where the peripheral speed is high, and increasing the peripheral speed. Since the irradiation time can be shortened on the inner peripheral side where the electron beam irradiation is slow, the uneven distribution in the radial direction of the integrated irradiation dose of the electron beam irradiation can be corrected so as to be substantially uniform. In this case, it is preferable that the shutter member is closed by moving in the direction opposite to the opening direction.
[0022]
Further, for example, an opening is provided so as to extend in the radial direction, and the opening and closing of the opening is performed by moving the shutter member to switch between irradiation and non-irradiation of the electron beam. By controlling the time of the electron beam irradiation in accordance with the relative position of the shutter member and the moving speed of the shutter member in accordance with the radial position of the rotating body, the irradiation time is increased on the outer peripheral side where the speed is high, and when the speed is low. Since the irradiation time can be shortened on the peripheral side, the above-described uneven distribution in the radial direction of the integrated irradiation dose of the electron beam irradiation can be corrected to be substantially uniform.
[0023]
Further, the plurality of electron beam irradiation tubes can be arranged such that the irradiation beam intensity of the electron beam in the radial direction has a distribution such that the intensity is higher on the outer side and smaller on the inner side. As a result, in the rotating body that rotates at a constant rotation speed, the irradiation line intensity is increased on the outer peripheral side where the peripheral speed is high, and is decreased on the inner circumferential side where the peripheral speed is low. Can be corrected so that the uneven distribution in the radial direction of the integrated irradiation dose of the electron beam irradiation caused by the difference in the electron beam irradiation becomes substantially uniform.
[0024]
In this case, by configuring the shutter member to open and close at a relatively high speed higher than the rotation speed of the rotating body, a difference in irradiation time when opening and closing the shutter member can be ignored.
[0025]
As described above, the electron beam irradiation can be performed so that the integrated irradiation dose of the electron beam irradiation is distributed substantially uniformly in the radial direction of the rotating object, and the electron beam can be almost uniformly distributed over the entire irradiated surface of the rotating object. , The resin layer can be uniformly and instantly and efficiently cured, for example.
[0026]
In the above-described electron beam irradiation apparatus, an opening is provided so as to extend in the radial direction, and the opening and closing of the opening is performed by moving the shutter member to switch between irradiation and non-irradiation of the electron beam. it can. In this case, it is preferable that the opening is formed in at least one of the shutter member and another member provided between the irradiation window and the surface of the rotated member.
[0027]
An electron beam irradiation method according to the present invention includes a step of rotating and driving a rotatable body accommodated in a sealable shield container, and provided between a surface of the rotatable body and an irradiation window of an electron beam irradiation unit. Moving a shutter member to irradiate the rotating surface of the object to be rotated with an electron beam from the irradiation window; and moving the shutter member after irradiating the electron beam for a predetermined time to block the electron beam. Stopping the irradiation.
[0028]
According to this electron beam irradiation method, since the surface of the rotating object is irradiated with the electron beam, the surface of the rotating object can be efficiently irradiated with an electron beam having energy larger than that of the ultraviolet light. Therefore, for example, a lubricating layer made of a material that is difficult to cure by ultraviolet irradiation can be easily cured. In addition, the switching control of irradiation / non-irradiation of the electron beam can be easily executed by the shutter member, and since the power supply of the electron beam irradiation unit does not need to be turned on / off, the startup time of the electron beam irradiation unit is not required. It is efficient when electron beam irradiation is repeated.
[0029]
In the above electron beam irradiation method, it is preferable that the electron beam irradiation unit has an acceleration voltage of 20 to 100 kV. Thereby, particularly, the electron beam energy is efficiently applied to, for example, the resin layer in a thin range from the surface, and the substrate and the like existing thereunder are not affected by the electron beam.
[0030]
Further, by reducing the pressure in the shielding container and then introducing an inert gas to replace the inert gas atmosphere, the inside of the shielding container can be easily and efficiently made to have an inert gas atmosphere.
[0031]
Further, it is preferable to introduce the inert gas while measuring the oxygen concentration in the shielding container, and by flowing the inert gas from the gas inlet to the gas outlet through the vicinity of the irradiation window. Preferably, the vicinity of the irradiation window is cooled.
[0032]
Preferably, the cooling temperature is controlled by adjusting a flow rate of the inert gas based on a temperature measured by a temperature sensor provided near the irradiation window.
[0033]
Preferably, the rotating member has a disk shape, and irradiates an electron beam from the irradiation window to a region extending in a radial direction of the surface. Note that a plurality of electron beam irradiators may be arranged to irradiate an electron beam at a plurality of radial locations.
[0034]
In this case, the electron beam irradiation can be performed by a plurality of electron beam irradiation tubes arranged in the radial direction as the electron beam irradiation unit.
[0035]
Further, the plurality of electron beam irradiation tubes are arranged so that the distribution of the irradiation intensity of the electron beam in the radial direction is substantially uniform, and the distribution of the integrated irradiation dose by the electron beam irradiation is in the radial direction. It is preferable that the time of the electron beam irradiation is controlled according to the radial position of the rotating body so as to be substantially uniform.
[0036]
Thereby, the uneven distribution in the radial direction of the integrated irradiation dose of the electron beam irradiation caused by the difference in the speed at the radial position on the surface of the rotating body can be corrected to be substantially uniform. By controlling the time by opening to the inner peripheral position gradually at the outer peripheral position of the surface of the rotating body when opening, the irradiation time is increased on the outer peripheral side with a higher peripheral speed, and Since the irradiation time can be shortened on the peripheral side, the above-described uneven distribution in the radial direction of the integrated irradiation dose of the electron beam irradiation can be corrected to be substantially uniform. In this case, it is preferable to close the shutter member by moving the shutter member in a direction opposite to the opening direction.
[0037]
Further, the plurality of electron beam irradiation tubes are arranged in such a manner that the irradiation beam intensity of the electron beam in the radial direction is large on the outer side and smaller on the inner side, so that the rotation speed is constant. In the rotating rotating body, the irradiation beam intensity is increased on the outer peripheral side where the peripheral speed is high, and it is decreased on the inner peripheral side where the peripheral speed is low, so that the electron beam caused by the difference in the velocity at the radial position on the surface of the rotating body The uneven distribution in the radial direction of the integrated irradiation dose of irradiation can be corrected so as to be substantially uniform.
[0038]
In this case, by configuring the shutter member to open and close at a relatively high speed higher than the rotation speed of the rotating body, a difference in irradiation time when opening and closing the shutter member can be ignored.
[0039]
As described above, electron beam irradiation can be performed so that the integrated irradiation dose of electron beam irradiation is distributed almost uniformly in the radial direction of the rotating object, and the entire irradiated surface of the rotating object is uniformly irradiated with the electron beam. Since energy is applied, for example, the lubricating layer can be uniformly and instantly and efficiently cured.
[0040]
An apparatus for manufacturing a disk-shaped body according to the present invention includes the above-described electron beam irradiation device, and uses the rotated body as a disk-shaped body, and cures a lubrication layer and / or a resin layer formed thereon by the electron beam irradiation. It is characterized in that it is configured to be.
[0041]
According to this disk-shaped body manufacturing apparatus, since the surface of the rotating disk-shaped body is irradiated with the electron beam, the surface of the disk-shaped body can be efficiently irradiated with the electron beam having energy larger than that of ultraviolet rays. it can. Therefore, a lubricating layer or the like made of a material that is difficult to cure by ultraviolet irradiation can be easily cured and can be efficiently formed on the disk-shaped body. In addition, the switching control of irradiation / non-irradiation of the electron beam can be easily executed by the shutter member, and since the power supply of the electron beam irradiation unit does not need to be turned on / off, the startup time of the electron beam irradiation unit is not required. In addition, electron beam irradiation can be efficiently repeated on a large number of disk-shaped bodies for forming a lubricating layer, and productivity is improved.
[0042]
In addition, by performing electron beam irradiation so that the integrated irradiation dose of electron beam irradiation is distributed almost uniformly in the radial direction of the disk-shaped object, the energy of the electron beam is uniformly applied to the entire surface to be irradiated of the disk-shaped object. Therefore, the lubricating layer and the like can be uniformly and instantly and efficiently cured.
[0043]
A method for manufacturing a disk-shaped body according to the present invention uses the above-described electron beam irradiation apparatus, or uses the above-described electron beam irradiation method, and sets the rotating body as a disk-shaped body, and forms a lubricating layer formed thereon. And / or curing the resin layer by the electron beam irradiation.
[0044]
According to this method of manufacturing a disk-shaped body, since the surface of the rotating disk-shaped body is irradiated with the electron beam, it is possible to efficiently irradiate the surface of the disk-shaped body with an electron beam having energy larger than that of ultraviolet rays. it can. Therefore, a lubricating layer or the like made of a material that is difficult to cure by ultraviolet irradiation can be easily cured and can be efficiently formed on the disk-shaped body. In addition, the switching control of irradiation / non-irradiation of the electron beam can be easily executed by the shutter member, and since the power supply of the electron beam irradiation unit does not need to be turned on / off, the startup time of the electron beam irradiation unit is not required. In addition, electron beam irradiation can be efficiently repeated on a large number of disk-shaped bodies for forming a resin layer and the like, and productivity is improved.
[0045]
In addition, by performing electron beam irradiation so that the integrated irradiation dose of electron beam irradiation is distributed almost uniformly in the radial direction of the disk-shaped object, the energy of the electron beam is uniformly applied to the entire surface to be irradiated of the disk-shaped object. Therefore, the lubricating layer and the like can be uniformly and instantly and efficiently cured.
[0046]
In the above-described method for manufacturing a disk-shaped body, an electron beam having an accelerating voltage of 20 to 100 kV is used to efficiently apply electron beam energy to a resin layer in a thin range from the surface, and a base material existing below the resin layer. Etc. are not affected by the electron beam.
[0047]
The method of manufacturing the disk-shaped body preferably includes a step of forming a lubrication layer on the disk-shaped body before the irradiation, which is performed before the electron beam irradiation step. Can be cured by electron beam irradiation.
[0048]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an electron beam irradiation apparatus according to a first embodiment of the present invention and a disk-shaped medium manufacturing apparatus according to a second embodiment will be described with reference to the drawings.
[0049]
<First Embodiment>
[0050]
FIG. 1 is a side view schematically showing an electron beam irradiation apparatus according to an embodiment of the present invention, and FIG. 2 is a plan view schematically showing a shutter member and a shutter driving mechanism of the electron beam irradiation apparatus of FIG. FIG. 3 is a block diagram showing a control system of the electron beam irradiation apparatus of FIG. 1, and FIG. 4 is a flowchart showing an operation of the electron beam irradiation apparatus of FIG.
[0051]
As shown in FIG. 1, the electron beam irradiation apparatus 1 includes a shielding container 10 made of stainless steel for rotatably receiving the rotating body 2 and shielding the electron beam, and a center hole of the rotating body 2. A motor 17 for driving the rotating body 2 held by being engaged with the engaging portion 4 via the rotating shaft 3 and an electron beam with a low acceleration voltage in the radial direction with respect to the rotating body 2 from the irradiation window 11a An electron beam irradiating section 11 for irradiation, a power supply 12 for applying a voltage to the electron beam irradiating section 11, a temperature sensor 24 disposed near the irradiation window 11a, and an irradiation window 11a connected to the temperature sensor 24. A temperature measuring device 13 for measuring a temperature in the vicinity.
[0052]
The electron beam irradiation apparatus 1 includes an oxygen concentration meter 16 for measuring the oxygen concentration in a closed space in the shielding container 10, a vacuum device 18 for evacuating and reducing the pressure in the shielding container 10 via a valve 19, A nitrogen gas source 14 for supplying nitrogen gas to replace the inside with a nitrogen gas atmosphere, and a nitrogen gas is introduced from the nitrogen gas source 14 through a gas inlet 25 and is discharged from a gas outlet 26 through the vicinity of the irradiation window 11a. And a gas flow control valve 15 capable of controlling the gas flow when flowing.
[0053]
The electron beam irradiation apparatus 1 further includes a disk 21 with an opening, which is larger in diameter than the object to be rotated 2 and is disposed between the object to be rotated 2 and the irradiation window 11 a of the electron beam irradiation unit 11. A shutter drive mechanism 20 having a shutter member 22 disposed between the irradiation window 11a and a slider 23 for driving the shutter member 22 is provided.
[0054]
As shown in FIG. 2, the disk 21 has a fan-shaped opening 21 a, and an electron beam from the electron beam irradiation unit 11 passes through the fan-shaped opening 21 a to the radially inner side and the outer side of the rotated body 2. Irradiation is performed on the radial region 2a formed between the two.
[0055]
The shutter member 22 is formed in a rectangular shape from steel or stainless steel that shields an electron beam. When the shutter member 22 is driven by the slider 23 in the sliding direction H in FIG. The electron beam from the electron beam irradiation unit 11 is blocked, and the electron beam is not irradiated on the radial area 2a of the rotating body 2. When the shutter member 22 is driven by the slider 23 in the slide direction H ′ opposite to the above, the shutter member 22 is completely retracted from the opening 21a and moves to the open position where the opening 21a is opened as shown by the solid line in FIG. The electron beam from the irradiation unit 11 is passed, and the electron beam is irradiated on the radial region 2 a of the rotating body 2.
[0056]
As shown in FIG. 2, the electron beam irradiation unit 11 includes column-shaped electron beam irradiation tubes 31, 32, and 33 arranged in the radial direction of the rotating body 2. And the electron beam irradiation tubes 32 and 33 are arranged so as to be at substantially the same radial position on the outer peripheral side.
[0057]
A voltage is applied from the power supply 12 to each of the electron beam irradiation tubes 31 to 33, and an electron beam having an acceleration voltage of 20 to 100 kV is applied to the radial region 2a of the rotating body 2 from each irradiation window.
[0058]
A specific example of the arrangement of the electron beam irradiation tubes 31, 32, and 33 in FIG. 2 in the radial direction will be described with reference to FIG. FIG. 13A is a partial plan view schematically showing a first arrangement example of the electron beam irradiation tube with respect to the rotating body in the electron beam irradiation apparatus 1, and FIG. 13B is a partial plan view of the electron beam in the first arrangement example. FIG. 3 is a distribution diagram schematically showing an irradiation intensity distribution.
[0059]
As shown in FIG. 13A, the electron beam irradiation tubes 31, 32, and 33 are arranged so as to fit within the opening 21a of the disk 21, but the electron beam irradiation tubes 32 and 33 are positioned at their center positions. 32a and 33a are arranged at substantially the same radial position (distance in the radial direction from the center of the rotating body 2) r2 on the outer peripheral side with respect to the rotating body 2, and the center position 31a of the electron beam irradiation tube 31 is covered. It is arranged at a radial position r <b> 1 on the inner peripheral side with respect to the rotating body 2.
[0060]
When the electron beam irradiation tubes 31, 32, and 33 are arranged as shown in FIG. 13A, the irradiation intensity of the electron beam is distributed in the radial direction r of the rotating body 2 as shown in FIG. The distribution is such that the radiation intensity of the line is relatively large on the outer periphery and relatively smaller on the inner periphery.
[0061]
In FIG. 13A, assuming that the time required for one rotation when the rotating body 2 rotates at a constant speed in the rotation direction S at the time of electron beam irradiation is t seconds, the peripheral velocity v1 at the radial position r1 of the rotating body 2 and The peripheral velocity v2 at the radial position r2 can be expressed by the following equations (1) and (2), respectively.
[0062]
v1 = (2π · r1) / t (1)
v2 = (2π · r2) / t (2)
[0063]
Here, since r1 <r2, the relationship between the peripheral velocities v1 and v2 is expressed by the following equation (3).
[0064]
v1 <v2 (3)
[0065]
As described above, in the rotating body 2 that rotates at a constant rotation speed, the peripheral velocity differs as in Expression (3) depending on the radial position r of the surface of the rotating body 2, so that the integrated irradiation dose of electron beam irradiation is smaller than the radius. In the direction area 2a, an uneven distribution such that the distribution becomes large on the inner circumference side and becomes smaller on the outer circumference side is shown. However, by arranging the electron beam irradiation tubes 31, 32, and 33 as shown in FIG. As shown in FIG. 13 (b), since the irradiation intensity of the electron beam is relatively large on the outer periphery side and relatively smaller on the inner periphery side, the uneven distribution of the integrated irradiation dose of the electron beam irradiation in the radial direction can be corrected. Target can be uniform.
[0066]
The moving speed when the shutter 23 is opened and closed by the slider 23 by the shutter driving mechanism 20 is relatively high, and is considerably higher than the rotation speed of the rotating body. The difference in the irradiation time can be ignored. In addition, the positions of the electron beam irradiation tubes 31 to 33 in FIG. 13A may be adjusted so that the distribution of the integrated irradiation dose of the electron beam irradiation becomes more uniform.
[0067]
The electron beam irradiation apparatus 1 of FIGS. 1 and 2 performs the electron beam irradiation while being entirely controlled by the control unit 30 as shown in FIG. 3, but each step S01 of the operation of the electron beam irradiation apparatus 1 is performed. Steps S11 to S11 will be described with reference to FIG.
[0068]
Under the control of the control unit 30, first, the vacuum device 18 is operated to depressurize the inside of the shielding container 10 (S01), the valve 19 is closed, and nitrogen gas is supplied from the nitrogen gas source 14 via the flow control valve 15 to the shielding container. 10 (S02). Thereby, the inside of the shielding container 10 can be easily replaced with the nitrogen atmosphere.
[0069]
Then, the oxygen concentration meter 16 detects that the inside of the shielding container 10 has dropped to a predetermined oxygen concentration (S03), and the rotating body 2 is rotated at a predetermined rotation speed by driving the motor 17 (S04). On the other hand, a voltage is applied from the power supply 12 to the electron beam irradiation unit 11 (S05) to generate an electron beam (S06). At this time, the shutter member 22 is in the closed position, and the generation amount of the electron beam is controlled to be small.
[0070]
Next, the shutter member 22 at the closed position indicated by the broken line in FIG. 2 is moved in the sliding direction H ′ by operating the shutter drive mechanism 20 and driving the slider 23, thereby opening the opening 21a to the open position (S07). ), The amount of generation of the electron beam is controlled to be large, and the electron beam is applied to the surface of the rotating area 2a in the radial direction 2a (S08). Since the electron beam is irradiated in the radial direction of the rotating member 2 thus rotated, the entire surface of the rotating member 2 can be irradiated with the electron beam.
[0071]
Then, after the rotating member 2 is irradiated with the electron beam for a predetermined time, the shutter driving mechanism 20 is similarly operated to move the shutter member 22 in the sliding direction H to close the opening 21a to the closed position ( S09), the electron beam irradiation on the rotating body 2 ends.
[0072]
In addition, while the electron beam is being generated from the electron beam irradiation unit 11, the nitrogen gas from the nitrogen gas source 14 flows from the gas inlet 25 to the gas outlet 26 through the vicinity of the irradiation window 11a. Thereby (S10), it is possible to cool the irradiation window 11a whose temperature rises when an electron beam is generated, and also to cool the shutter member 22. The temperature near the irradiation window 11a is measured by the temperature sensor 24 and the temperature measurement device 13, and the flow rate of the nitrogen gas is controlled by the gas flow control valve 15 based on the measured temperature (S11). Thereby, the temperature near the irradiation window 11a can be controlled to a certain temperature or lower.
[0073]
As described above, according to the electron beam irradiation apparatus of FIGS. 1 to 4, the surface of the rotating object 2 is irradiated with the electron beam, so that the surface of the rotating object 2 is supplied with more energy than the ultraviolet light. The electron beam can be efficiently irradiated. Therefore, for example, a lubricating layer made of a material that is difficult to cure by ultraviolet irradiation can be easily cured.
[0074]
In addition, since an electron beam having an acceleration voltage of 20 to 100 kV is applied, the electron beam energy is efficiently applied to, for example, a resin layer in a thin range from the surface of the rotating body 2, and the electron beam is applied to a base material and the like located below the resin layer. And the deterioration of the base material can be prevented.
[0075]
Further, switching control between irradiation and non-irradiation of the electron beam can be easily executed by the shutter driving mechanism 20 and the shutter member 22.
[0076]
Further, the electron beam irradiation can be performed so that the integrated irradiation dose of the electron beam irradiation is distributed almost uniformly in the radial direction of the rotating body 2, and the irradiation surface of the rotating body 2 is uniformly uniformly irradiated with the electron beam. Since energy can be given by the wire, for example, the resin layer can be uniformly and efficiently cured.
[0077]
Next, a second arrangement example of the electron beam irradiation tubes 31, 32, 33 in the radial direction of FIG. 2 will be described with reference to FIG. FIG. 14A is a partial plan view schematically showing a second arrangement example of the electron beam irradiation tubes 31 to 33 with respect to the rotating body 2 in the electron beam irradiation apparatus 1, and FIG. 14B is a second arrangement example. FIG. 4 is a distribution diagram schematically showing an irradiation intensity distribution of an electron beam in FIG.
[0078]
As shown in FIG. 14A, the electron beam irradiation tubes 31, 32, and 33 have their center positions 31a, 32a, and 33a at the radial positions r11, r12, and r13 of the rotated body 2, and They are arranged so as to fit in the opening 21a of the disk 21 at substantially equal intervals in the direction. When the electron beam irradiation tubes 31, 32, and 33 are arranged in this manner, the irradiation beam intensity of the electron beam is substantially uniformly distributed in the radial direction r of the rotating body 2 as shown in FIG.
[0079]
In FIG. 14A, when the rotating body 2 rotates at a constant speed during electron beam irradiation, if the peripheral velocities at the radial positions r11, r12, and r13 of the rotating body 2 are v11, v12, and v13, respectively, the above equation ( As in 1) to (3), since r11 <r12 <r13, the relationship between the peripheral velocities v11, v12, and v13 is as shown in the following equation (4).
[0080]
v11 <v12 <v13 (4)
[0081]
As described above, in the rotating body 2 that rotates at a constant rotation speed, the peripheral speed differs as in Expression (4) depending on the radial position r of the surface of the rotating body 2, and as shown in FIG. Since the irradiation line intensity shows a substantially uniform distribution at the radial position, the integrated irradiation dose of the irradiation dose in the radial region 2a of the rotating body 2 is large on the inner peripheral side and smaller on the outer peripheral side. Therefore, the distribution of the integrated irradiation dose of the irradiation dose in the radial direction region 2a is controlled to be substantially uniform by configuring the shutter member as shown in FIG.
[0082]
FIG. 15 is a partial plan view similar to FIG. 14A showing a modification of the shutter member, and FIG. 17 is a plan view of the shutter member in FIG. As shown in FIGS. 15 and 17, the shutter member 28 is formed in a disk shape that can rotate in the opening direction R and the opposite closing direction R ′ about the rotation shaft 29, and has a substantially semicircular shape. It is notched, and has a notch 28b formed as shown by a broken line, and has an end 28a formed linearly. Note that the shutter member 28 may be substantially a three-quarter circle or the like as shown by a dashed line in FIG.
[0083]
The rotation shaft 29 of the shutter member 28 is located at an eccentric position with respect to the rotation center of the rotation target 2 (corresponding to the rotation shaft 3). Further, the shutter driving mechanism 20 includes a motor (not shown) that can rotate forward and reverse, and rotates the rotating shaft 29 in the opening direction R and the closing direction R ′ to move the shutter member 28 to open and close.
[0084]
The operation of the shutter member 28 by the shutter drive mechanism 20 will be described. First, the shutter member 28 covers the opening 21a at the closed position indicated by the solid line in FIG. 5, blocks the electron beam, and is in a state where the electron beam is not irradiated. When the shutter member 28 is rotated in the opening direction R about the rotation shaft 29 from this state, the opening 21a is gradually opened from the end 28a of the notch 28b.
[0085]
That is, when the shutter member 28 moves and its end 28a reaches the outer peripheral end 21b of the opening 21a, and passes the end position 41 (of the end 28a) indicated by a dashed line, the opening 21a is moved from the vicinity of the outer peripheral end 21b. open. Subsequently, the shutter member 28 opens the opening 21a from the outer peripheral side to the inner peripheral side while moving the end 28a as shown by the end positions 42, 43, and 44 shown by the dashed line in FIG. . Then, the shutter member 28 substantially opens the opening 21a at the end position 45.
[0086]
The rotation speed of the shutter member 28 that rotates as described above is set to be the same as or equal to the rotation speed of the rotating body 2 that rotates in the rotation direction S during electron beam irradiation. Therefore, the irradiation dose of the electron beam emitted while the shutter member 28 is rotating and opening the opening 21a cannot be ignored, but as described above, the opening 21a is directed from the outer side toward the inner side. The electron beam irradiation time in the radial region 2a of the rotating body 2 is relatively long on the outer circumference side and relatively short on the inner circumference side, so that the radius of the integrated irradiation dose of the electron beam irradiation as described above is increased. Non-uniform distribution in the direction can be corrected and relatively uniform.
[0087]
Further, when the shutter member 28 is rotated in a rotation direction R ′ opposite to the rotation direction R at the same rotation speed as when the shutter member 28 is opened as shown in FIG. The opening 21a is closed while moving to the end positions 45, 44, 43, 42, 41. At this time, since the opening 21a is first closed on the inner peripheral side and then gradually closed on the outer peripheral side, the electron beam irradiation time in the radial region 2a of the rotating body 2 is relatively long on the outer peripheral side and is relatively long on the inner peripheral side. Is relatively short. For this reason, the uneven distribution in the radial direction of the integrated irradiation dose of the electron beam irradiation can be further corrected and made relatively uniform.
[0088]
By appropriately adjusting the position of the rotating shaft 29 of the shutter member 28, the shape of the end portion 28a, the shape of the opening 21a, and the like, the distribution of the integrated irradiation dose of electron beam irradiation in the radial direction can be made more uniform. Further, the positions of the electron beam irradiation tubes 31 to 33 in FIG. 14A may be finely adjusted so as to make the distribution of the integrated irradiation dose of the electron beam irradiation more uniform.
[0089]
<Second embodiment>
[0090]
Next, a disk-shaped medium manufacturing apparatus according to a second embodiment will be described. FIG. 5 to FIG. 9 are side views of a manufacturing apparatus for explaining respective steps for forming a lubricating layer on a disk-shaped medium in the present embodiment.
[0091]
As shown in FIGS. 5 to 9, a disk-shaped medium manufacturing apparatus (hereinafter, simply referred to as “manufacturing apparatus”) 50 generates an electron beam at a low acceleration voltage of 20 to 100 kV and generates a disk-shaped medium. An electron beam irradiating device 1 for irradiating the surface of 49, a disc-shaped medium 49 before irradiation to the electron beam irradiating device 1, and a replacement chamber 52 for receiving the irradiated disk-shaped medium 49a from the electron beam irradiating device 1; A rotating portion 54 that is rotated by a rotating shaft 53 for exchanging the disk-shaped medium before irradiation with the disk-shaped medium after irradiation is provided in a hermetically sealable chamber 51.
[0092]
As shown in FIGS. 5 to 9, the manufacturing apparatus 50 further supplies a disk-shaped medium before irradiation to the exchange chamber 52 and transports the disk-shaped medium so as to discharge the disk-shaped medium after irradiation. 60 is provided.
[0093]
Since the electron beam irradiation apparatus 1 is configured substantially similarly to FIGS. 1 and 2, points different from FIGS. 1 and 2 will be described. That is, in FIG. 1, the shielding container 10 of FIG. 1 is provided with a lower rotating tray portion 10a for rotatably storing the disk-shaped medium 49, and an upper portion on which the electron irradiation unit 11, the shutter driving mechanism 20, and the like are provided. The rotating tray portion 10a is vertically movable and rotated by the rotating portion 54 with respect to the fixed portion 10b, and is movable to the replacement chamber 52 side.
[0094]
As shown in FIG. 5, a shielding portion 55 that shields the electron beam so that the electron beam does not leak outside is provided on the mating surface 10c of the rotating tray portion 10a and the mating surface 10c ′ of the fixed portion 10b. FIG. 10 is an enlarged sectional view showing the shielding portion 55. As shown in FIG. 10, a projection 55a is formed all around the mating surface 10c of the rotating tray portion 10a, and a concave portion 55b is formed so that the projection 55a can enter the mating surface 10c 'of the fixed portion 10b. Are formed all around.
[0095]
Further, a depression 55c is further formed at the bottom of the concave portion 55b constituting the shielding portion 55, and an O-ring 56a is accommodated in the depression 55c to form a sealing portion 56. The hermeticity of the hermetically sealed space 1a formed by combining the rotating tray portion 10a and the fixed portion 10b can be enhanced by the hermetically sealed portion 56.
[0096]
In FIG. 10, since the O-ring 56a of the sealing portion 56 is located in the recess 55c on the bottom side of the concave portion 55b, the electron beam is not directly irradiated, so that the deterioration of the O-ring 56a can be prevented.
[0097]
As shown in FIG. 5, the exchange chamber 52 is moved up and down and rotated by the rotation unit 54 to move to the electron beam irradiation apparatus 1 side and can be replaced with the rotation tray unit 10a. A transport rotation tray section 52b that rotates so as to receive the disk-shaped medium before irradiation by the device 60 and discharge the disk-shaped medium after irradiation to the outside.
[0098]
The chamber 51 has an end 51a and a connecting portion 51b that constitute a part of the replacement room 52. The end portion 51a and the connecting portion 51b are interposed between the rotation tray portion 52a and the transport rotation tray portion 52b of the replacement room 52 to form a mating surface, and a sealed space 52c is formed in the replacement room 52, The transport rotation tray portion 52b forms a part of the chamber 51.
[0099]
Further, a sealing portion 57 made of an O-ring is provided on a mating surface between the end portion 51a and the transport rotation tray portion 52b and a mating surface between the end portion 51b and the transport rotation tray portion 52b. Also, the same shielding portion 55 and sealing portion 56 as those in FIG. 10 are provided on the mating surface between the end portion 51a and the rotating tray portion 52a and on the mating surface between the connecting portion 51b and the rotating tray portion 52a. Have been.
[0100]
The chamber 51 is connected to the fixed portion 10b on the end side of the electron beam irradiation device 1, the connecting portion 51b is connected to the fixed portion 10b near the center, and the transport rotation tray portion 52b is connected to the end portion 51a and the connecting portion 51b. , So that the whole can be sealed. Further, the chamber 51, the transport rotation tray section 52b (62), the rotation tray section 10a, the fixed section 10b, etc. are made of steel or stainless steel, and shield the electron beam so that the electron beam does not leak outside. Has become.
[0101]
Nitrogen gas can be introduced into the chamber 51 from a nitrogen gas inlet 58, and the pressure in a sealed space 52 c in the replacement chamber 52 can be reduced by a vacuum device 59. As shown in FIG. 9, in a state where the entire chamber 51 is sealed, the rotating unit 54 moves downward together with the rotating tray units 10a and 52a in the figure, and when the sealed spaces 1a and 52c are opened, the replacement chamber 52 becomes Since the atmosphere is replaced with nitrogen gas, the inside of the chamber 51 does not affect the nitrogen gas atmosphere in the closed space 1 a of the electron beam irradiation apparatus 1.
[0102]
Further, nitrogen gas can be introduced into the replacement chamber 52 from the nitrogen gas inlet 59b. Further, the nitrogen gas in the chamber 51 can be discharged from the gas discharge port 58a.
[0103]
As shown in FIG. 5, the disk transport device 60 rotates another transport rotation tray portion 62 that can be replaced with the transport rotation tray portion 52 b that forms the exchange chamber 52, and rotates the transport rotation tray portions 52 b and 62. A rotation unit 64 configured to rotate via a shaft 63. Each of the transport rotation tray sections 52b and 62 has a suction section 61 that vacuum-adsorbs the disk medium 49 near the center hole of the disk medium 49. The rotating unit 64 transports the disk-shaped medium between the exchange chamber 52 and the external disk delivery unit 70 by vertical movement and rotation.
[0104]
The disk-shaped medium 49 supplied from the disk delivery unit 70 to the replacement chamber 52 has a light transmitting layer containing a resin material on its surface and a lubricating layer made of a lubricant formed thereon by an external spin coater or the like. I have.
[0105]
The material for forming the light transmitting layer is not particularly limited as long as it is an active energy ray-curable compound. At least one reactive group selected from (meth) acryloyl groups, vinyl groups and mercapto groups is used. It is preferred to have. In addition, a known photopolymerization initiator may be included.
[0106]
Examples of the material for forming the lubricating layer include, but are not limited to, a silicone compound having a radical polymerizable double bond and a fluorine compound. These lubricating layer forming materials are generally difficult to cure by ultraviolet rays when they do not contain a photopolymerization initiator, but can be instantaneously cured by electron beams.
[0107]
Next, the operation of the above-described manufacturing apparatus 50 will be described with reference to flowcharts of FIGS. 5 to 9 and FIG. 11 separately for the irradiation of the disk-shaped medium with the electron beam and the discharge and supply of the disk-shaped medium.
[0108]
<Electron beam irradiation on disk-shaped media>
[0109]
As shown in FIG. 11, first, as shown in FIG. 9, the entire chamber 51 is sealed, and the rotating shaft 53 and the rotating part 54 move downward together with the rotating tray parts 10a, 52a in the figure, and the closed space 1a, After opening 52c, nitrogen gas is introduced into the chamber 51 from the nitrogen gas inlet 58, and the inside is replaced with a nitrogen gas atmosphere (S21). At this time, the nitrogen gas can be replaced while the oxygen concentration in the chamber 51 is measured by the oxygen concentration meter 16.
[0110]
Next, when the rotating shaft 53 and the rotating portion 54 move upward together with the rotating tray portions 10a and 52a in the figure, the closed spaces 1a and 52c are formed as shown in FIG. Then, in the electron beam irradiation apparatus 1, the disk-shaped medium 49 is rotated by the motor 17 in the closed space 1a (S22), and the electron beam irradiation unit 11 is controlled to generate a predetermined amount of electron beams (S23). Nitrogen gas flows from the inlet 25 to the outlet 26 while passing near the irradiation window 11a.
[0111]
Next, as shown in FIG. 6, by opening the shutter member 22 by the shutter driving mechanism 20 (S24), a lubricating layer is formed on the light transmitting layer of the disk-shaped medium 49 rotating from the electron beam irradiation unit 11. The surface is irradiated with an electron beam (S25). After the electron beam irradiation is performed for a predetermined time as shown in FIG. 7, the shutter member 22 is closed by the shutter drive mechanism 20 as shown in FIG. 8 (S26), thereby terminating the electron beam irradiation on the surface of the disk-shaped medium 49. I do. Thus, a disk-shaped medium 49a having a lubricating layer fixed to the surface of the light transmission layer of the disk-shaped medium 49 can be obtained. This is presumably because the light-transmitting layer is cured and the reactive group of the lubricant bonds (cures) with the surface of the light-transmitting layer and the reactive group of another lubricant.
[0112]
<Discharge and supply of disk-shaped media>
[0113]
In a state where the sealed space 52c in the replacement room 52 is formed as shown in FIG. 5, as shown in FIG. 6, the sealed space 52c of the replacement room 52 in which the disk-shaped medium 49a after irradiation is located is opened by the opening valve 59c and It is opened to the atmosphere through the opening 59d (S30).
[0114]
Then, the disk transport device 60 moves the suction unit 61 on the side of the transport rotation tray unit 52b through the rotation shaft 63 and the rotation unit 64 downward in FIG. 6 to suction the disk-shaped medium 49a (S31). . At almost the same time, the disk-shaped medium 49 before irradiation with the lubricating layer formed on the surface of the external disk transfer unit 70 is sucked by the suction unit 61 on the side of another transport rotation tray unit 62 (S32).
[0115]
Next, as shown in FIG. 7, the disk transport device 60 moves the rotating shaft 63 and the rotating portion 64 upward in FIG. 7, thereby moving the disk-shaped medium 49a together with the suction portion 61 and the transport rotating tray portion 52b. The disc-shaped medium 49 is lifted from the disc transfer section 70 together with the suction section 61 and the transport turning tray section 62 at the same time as being lifted from the inside of the turning tray section 52a. Then, the position of the transport rotation tray units 52b and 62 is switched by the rotation of the rotation unit 64 about the rotation shaft 63 (S33).
[0116]
Next, as shown in FIG. 8, the disk transport device 60 moves the rotating shaft 63 and the rotating portion 64 downward in FIG. 7, so that the disk-shaped medium 49 is placed in the rotating tray portion 52a of the replacement chamber 52. It is stored (S34). On the other hand, the disk-shaped medium 49a is transferred to the disk delivery unit 70 (S35), and each suction unit 61 stops suctioning the disk-shaped media 49, 49a and moves upward in the drawing. The disc-shaped medium 49a is ejected from the disc delivery unit 70 to the outside (S36).
[0117]
Then, the pressure in the sealed space 52c in the replacement chamber 52 formed again as described above is reduced by the vacuum device 59, and nitrogen gas is introduced from the nitrogen gas inlet 59b to perform nitrogen gas replacement (S37).
[0118]
As described above, the irradiated disk-shaped medium 49a can be transported from the replacement chamber 52 to the disk delivery unit 70, and at the same time, the unirradiated disk-shaped medium 49 can be transported from the disk delivery unit 70 to the replacement chamber 52. The exchange of the disk-shaped medium 49 can be performed by one rotation of the rotation shaft 63 and the rotation part 64.
[0119]
The exchange of the disk-shaped media 49, 49a is performed during the electron beam irradiation in the electron beam irradiation apparatus 1 as shown in FIGS. 6 and 7, since the closed spaces 1a and 52c are independent. Can be efficient.
[0120]
Next, the operation of exchanging the disk-shaped medium between the exchange room 52 and the electron beam irradiation device 1 will be described. That is, as shown in FIG. 8 described above, the disk-shaped medium 49 before irradiation is accommodated in the rotating tray portion 52a of the replacement chamber 52, and in the electron beam irradiation apparatus 1, the rotation by the motor 17 is stopped (S38). The rotating shaft 53 and the rotating unit 54 move downward in the drawing in a state in which the disk-shaped medium 49a, to which the line irradiation has been completed, is accommodated in the rotating tray unit 10a, so that the rotating tray units 52a and 10a are moved. It moves downward to open the closed spaces 52c and 1a. At this time, since the inside of the sealed space 52c is replaced with a nitrogen gas atmosphere, there is no influence on other portions in the chamber 51.
[0121]
Next, as shown in FIG. 9, the position of the rotating tray portions 52a and 10a is switched by rotating the rotating portion 54 about the rotating shaft 53 in the chamber 51 (S39). As a result, the disc-shaped medium 49 before irradiation accommodated in the rotating tray 52a moves into the electron beam irradiation device 1 (S40), and almost simultaneously with this, the disc-shaped medium 49a accommodated in the rotating tray 10a. Moves into the replacement room 52 (S41).
[0122]
As described above, the exchange of the disk-shaped media 49, 49a between the exchange chamber 52 and the electron beam irradiation apparatus 1 can be performed by one rotation of the rotation shaft 53 and the rotation part 54. Then, as the rotating shaft 53 and the rotating portion 54 move upward in the figure, the rotating tray portions 52a and 10a are moved upward to form the closed spaces 52c and 1a again as shown in FIG. The line irradiation apparatus 1 returns to the above-described step S22, and the replacement room 52 returns to the above-described step S30, and the same operation can be repeated.
[0123]
Note that the rotating shaft 3 of the motor 17 is retracted downward from the rotating portion 54 and the rotating tray portion 10a when the rotating shaft 53 and the rotating portion 54 are rotated. Can rotate.
[0124]
As described above, according to the manufacturing apparatus 50 of FIGS. 5 to 9, the disk-shaped medium 49 having the lubricating layer or the like formed on the surface is rotated, and the acceleration voltage is set to 20 to 100 kV on the rotating disk-shaped medium. Since the electron beam is irradiated at a low accelerating voltage, the disk-shaped medium can be efficiently irradiated with an electron beam having energy larger than that of the ultraviolet light. As a result, the lubricating layer and the like can be formed instantaneously, and the productivity of the formation of the lubricating layer and the like is improved. As a result, the productivity of the disk-shaped medium can be improved.
[0125]
In the chamber 51 and in the disk transfer device 60, the rotating tray portion and the other rotating tray portion are interlocked with each other by one rotation so that the two rotating tray portions are exchanged with each other, so that the disk shape after irradiation can be obtained. Since the medium 49a can be discharged and the disk-shaped medium 49 before irradiation can be supplied and can be continuously and efficiently replaced, the productivity is improved.
[0126]
Further, since an electron beam with a low acceleration voltage of 20 to 100 kV is used, the electron beam energy is efficiently applied to a lubricating layer or the like in a thin range from the surface, and the influence of the electron beam on a base material below the lubricating layer. Do not give.
[0127]
Further, the electron beam irradiation can be performed so that the integrated irradiation dose of the electron beam irradiation is distributed almost uniformly in the radial direction of the rotating body 2, and the irradiation surface of the rotating body 2 is uniformly uniformly irradiated with the electron beam. Since the energy can be given by the wire, the lubricating layer can be uniformly and efficiently cured.
[0128]
Further, switching control of irradiation / non-irradiation of the electron beam can be easily executed by the shutter driving mechanism 20 and the shutter member 22. Further, since it is not necessary to control the power supply 12 of the electron beam irradiation unit 11 on / off, the electron beam irradiation unit is not required. 11 is unnecessary, the disk-shaped medium 49 is supplied to the electron beam irradiation apparatus 1 one after another, and continuous electron beam irradiation can be efficiently repeated, thereby improving the productivity.
[0129]
For example, electron beam irradiation tubes 31 to 33 (FIG. 2) for electron beam irradiation with a low acceleration voltage, which constitute the electron beam irradiation unit 11 of the electron beam irradiation device 1, are commercially available from Ushio Inc. For example, under conditions of an acceleration voltage of 50 KV and a tube current of 0.6 mA / tube, electron beam energy can be efficiently applied to a lubricating layer, a resin layer, and the like within a depth range of about 10 to 20 μm from the surface, and can be provided in less than 1 second. And can be cured instantaneously and efficiently. For example, not only the lubricating layer 93 of the optical disk as shown in FIG. 12, but also at least a portion of the light transmitting layer 92 which is in contact with the lubricating layer 93 can be cured at the same time. In addition, for example, in the optical disk shown in FIG. 12, since the electron beam does not reach the base material 90 below the lubrication layer 93, the base material 90 made of a resin material such as polycarbonate is not damaged, and discoloration, deformation, and deterioration are not caused. No adverse effects such as
[0130]
A window material constituting each irradiation window of each of the electron beam irradiation tubes 31, 32, and 33 is preferably a silicon thin film having a thickness of about 3 μm, and is accelerated by a low acceleration voltage of 100 kV or less which cannot be taken out by a conventional irradiation window. The extracted electron beam can be taken out.
[0131]
Note that, in this specification, “rotation” does not mean that the rotated body continuously rotates in one direction (or the opposite direction) as in the case of rotation, but rotates by a predetermined amount in one direction or the opposite direction. Therefore, it means to stop and then turn to change its position. Further, the "radial direction" of the rotating body means a direction extending radially from the rotation center of the rotating body and a direction extending from the point eccentric to the rotation center of the rotating body to the outer periphery of the rotating body.
[0132]
As described above, the present invention has been described with the embodiments, but the present invention is not limited to these, and various modifications can be made within the technical idea of the present invention. For example, in the apparatus for manufacturing a disk-shaped medium according to the present embodiment, an example has been described in which a light-transmitting layer and a lubricating layer made of the above-described materials are hardened and formed near the surface of a disk-shaped medium such as an optical disk. The present invention is not limited to this, and it goes without saying that the present invention may be applied to curing a resin layer other than the lubricating layer. For example, the present invention may be applied to form only the light transmitting layer 92 under the lubricating layer 93 in FIG. 12, which can be cured instantaneously, is efficient, and contributes to an improvement in productivity.
[0133]
The rotating object to which the electron beam irradiating apparatus 1 can irradiate an electron beam may be various disk-like bodies, and the disk-like body that can be manufactured by the manufacturing apparatus 50 is a disk-like medium such as an optical disk. Although described as an example, it is needless to say that the present invention can be applied to a case where various resin layers are formed on a disk-shaped body other than a medium.
[0134]
In the electron beam irradiation apparatus of FIG. 1 and the manufacturing apparatuses of FIGS. 5 to 9, the tube of the electron beam irradiation tube of the electron beam irradiation unit 11 is considered in consideration of the layer thickness on the surface to be irradiated with the electron beam. It is preferable to determine the voltage and the like. Further, the number of electron beam irradiation tubes constituting the electron beam irradiation unit 11 can be appropriately increased or decreased according to the size or area of the surface to be irradiated.
[0135]
The gas for replacing the atmosphere in the chamber or the electron beam irradiation apparatus is not limited to nitrogen gas, but may be argon gas, helium gas, CO2 gas, or the like. 2 And the like, or a mixture of two or more of these.
[0136]
FIG. 16A shows another example of the arrangement of the electron beam irradiation tubes 31 to 33 in FIG. As shown in FIG. 16A, the position of the electron beam irradiation tube 33 in FIG. 13A in the radial direction is shifted to the inner peripheral side of the electron beam irradiation tube 32 to irradiate the electron beam as shown in FIG. It may be a quantity intensity distribution.
[0137]
Further, in the present embodiment, the number of electron beam irradiation tubes is three, but may be one or two, or four or more, and the arrangement of the electron beam irradiation tubes in the radial direction. By adjusting the interval, a necessary electron beam irradiation intensity distribution can be obtained.
[0138]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, a to-be-rotated body, such as a disk-shaped object, can be efficiently irradiated with an electron beam, For example, the material which is hard to harden by ultraviolet irradiation can be easily hardened. An electron beam irradiation apparatus and an electron beam irradiation method that can easily perform irradiation switching can be provided.
[0139]
In addition, it is possible to easily switch between irradiation and non-irradiation of an electron beam, and to efficiently form a lubricating layer, a resin layer, and the like made of a material that is difficult to cure by ultraviolet irradiation on the disk. Can be provided.
[Brief description of the drawings]
FIG. 1 is a side sectional view schematically showing an electron beam irradiation apparatus according to a first embodiment.
FIG. 2 is a plan view schematically showing a shutter member and a shutter driving mechanism of the electron beam irradiation device of FIG.
FIG. 3 is a block diagram showing a control system of the electron beam irradiation apparatus of FIG.
FIG. 4 is a flowchart showing an operation of the electron beam irradiation apparatus of FIG.
FIG. 5 is a side sectional view schematically showing an apparatus for manufacturing a disk-shaped medium according to a second embodiment, illustrating a step immediately before electron beam irradiation for forming a lubricating layer and the like on the disk-shaped medium. FIG.
FIG. 6 is a side sectional view similar to FIG. 5, illustrating an electron beam irradiation for forming a lubricating layer and the like on the disk-shaped medium and a process of replacing the disk-shaped medium with the outside.
FIG. 7 is a side sectional view similar to FIG. 5, illustrating electron beam irradiation for forming a lubricating layer and the like on a disk-shaped medium and a process of replacing the disk-shaped medium with the outside.
FIG. 8 is a side sectional view similar to FIG. 5, showing a preparation process of a replacement process inside a disc-shaped medium for forming a lubricating layer or the like on the disc-shaped medium (decompression, replacement of nitrogen gas, etc. in the replacement chamber); FIG.
FIG. 9 is a side sectional view similar to FIG. 5, illustrating a replacement process inside a disk-shaped medium for forming a lubricating layer and the like on the disk-shaped medium.
FIG. 10 is an enlarged sectional view showing a shielding portion 55 in the manufacturing apparatus of FIGS. 5 to 9;
11 is a flowchart showing steps of irradiating the disk-shaped medium with an electron beam and steps of discharging and supplying the disk-shaped medium in the manufacturing apparatus of FIGS. 5 to 9;
FIG. 12 is a diagram illustrating an example of a layer configuration of an optical disc that can be manufactured by the manufacturing apparatus of FIGS. 5 to 9;
13A is a partial plan view schematically showing a first arrangement example of an electron beam irradiation tube with respect to a rotating body in the electron beam irradiation apparatus 1, and FIG. 13B is a first arrangement example. FIG. 4 is a distribution diagram schematically showing an irradiation intensity distribution of an electron beam in FIG.
14A is a partial plan view schematically showing a second example of the arrangement of electron beam irradiation tubes 31 to 33 with respect to the rotating body 2 in the electron beam irradiation apparatus 1, and FIG. FIG. 9 is a distribution diagram schematically showing an irradiation intensity distribution of an electron beam in an arrangement example 2;
FIG. 15 is a partial plan view similar to FIG. 14A showing a modified example of a shutter member which is preferably applied to a case having an electron beam irradiation intensity distribution as shown in FIG. 14B.
16A is a partial plan view showing a modification of the first arrangement example of the electron beam irradiation tube with respect to the rotating body in the electron beam irradiation apparatus 1, and FIG. 16B is an electron beam in the modification example. FIG. 4 is a distribution diagram schematically showing an irradiation intensity distribution of FIG.
FIG. 17 is a plan view of the shutter member of FIG.
[Explanation of symbols]
1. Electron beam irradiation device
2 ... Rotated object
10 ... shielding container
11 ... Electron beam irradiation unit
11a ・ ・ ・ irradiation window
12 Power supply
13 ・ ・ ・ Temperature measuring device
24 ・ ・ ・ Temperature sensor
14 ... Nitrogen gas source
15 ... Gas flow control valve
16 ... oxygen concentration meter
17 ... motor (rotation drive unit)
18 ・ ・ ・ Vacuum device
20 Shutter drive mechanism
21 ・ ・ ・ Disc
21a ... opening
22 Shutter member
28 Shutter member
29 ・ ・ ・ Rotating axis
30 ... Control unit
31-33 ... Electron beam irradiation tube
50.. Disk manufacturing device
10a: Rotating tray section
10b ... fixed part
51 ... chamber
52 ・ ・ ・ Replacement room
52a: Rotating tray section
52b: transport rotation tray section
53 ... rotating shaft
54 ... rotating part
55 ・ ・ ・ Shielding part
56 ... sealed part
59 ・ ・ ・ Vacuum equipment
60 ・ ・ ・ Disk transport device
62: Rotating tray
70 · · · disk delivery section
92: Light transmitting layer (resin layer)
93 ... lubrication layer

Claims (28)

被回転体を回転駆動する回転駆動部と、
前記被回転体を回転可能に収容する遮蔽容器と、
前記被回転体の表面に対し電子線がその照射窓から照射されるように前記遮蔽容器に設けられた電子線照射部と、
前記照射窓と前記被回転体の表面との間に配置され、前記照射窓からの電子線を透過するように開く開位置と遮るように閉じる閉位置との間で移動可能なシャッタ部材と、
前記被回転体の回転中に前記電子線の照射と非照射とを切り換えるように前記シャッタ部材を移動させるシャッタ駆動機構と、を具備する電子線照射装置。
A rotation drive unit that rotationally drives the rotated body,
A shielding container that rotatably houses the rotated object,
An electron beam irradiator provided in the shielding container so that an electron beam is irradiated from the irradiation window on the surface of the rotating object,
A shutter member that is arranged between the irradiation window and the surface of the rotated body, and that can be moved between an open position that opens to transmit an electron beam from the irradiation window and a closed position that closes to block.
An electron beam irradiation apparatus comprising: a shutter driving mechanism that moves the shutter member so as to switch between irradiation and non-irradiation of the electron beam during rotation of the rotating member.
前記電子線照射部は加速電圧が20乃至100kVである電子線を発生することを特徴とする請求項1に記載の電子線照射装置。The electron beam irradiation apparatus according to claim 1, wherein the electron beam irradiation unit generates an electron beam having an acceleration voltage of 20 to 100 kV. 前記遮蔽容器内を不活性ガスの雰囲気とするとともに、
前記照射窓の近傍に前記不活性ガスが流れるようにガス導入口及びガス排出口を前記遮蔽容器に設けたことを特徴とする請求項1または2に記載の電子線照射装置。
While the inside of the shielding container is an inert gas atmosphere,
The electron beam irradiation apparatus according to claim 1, wherein a gas inlet and a gas outlet are provided in the shielding container so that the inert gas flows near the irradiation window.
前記照射窓の近傍に温度センサを設け、前記温度センサによる測定温度に基づいて前記不活性ガスの流量を調整することを特徴とする請求項3に記載の電子線照射装置。The electron beam irradiation apparatus according to claim 3, wherein a temperature sensor is provided near the irradiation window, and a flow rate of the inert gas is adjusted based on a temperature measured by the temperature sensor. 前記遮蔽容器内の酸素濃度を測定するための酸素濃度計が設けられていることを特徴とする請求項1乃至4のいずれか1項に記載の電子線照射装置。The electron beam irradiation apparatus according to any one of claims 1 to 4, further comprising an oxygen concentration meter for measuring an oxygen concentration in the shielding container. 前記遮蔽容器内を減圧するための真空装置が設けられていることを特徴とする請求項1乃至5のいずれか1項に記載の電子線照射装置。The electron beam irradiation apparatus according to claim 1, further comprising a vacuum device for reducing the pressure in the shielding container. 前記遮蔽容器は開閉可能であり金属材料から構成されるとともに、前記照射窓からの電子線を遮蔽する遮蔽構造を有することを特徴とする請求項1乃至6のいずれか1項に記載の電子線照射装置。The electron beam according to any one of claims 1 to 6, wherein the shielding container is openable and closable, is made of a metal material, and has a shielding structure for shielding an electron beam from the irradiation window. Irradiation device. 前記被回転体はディスク形状を有し、前記表面の半径方向に延びる領域に前記照射窓から電子線を照射するように構成したことを特徴とする請求項1乃至7のいずれか1項に記載の電子線照射装置。8. The device according to claim 1, wherein the rotator has a disk shape, and irradiates an electron beam from the irradiation window to a region extending in a radial direction of the surface. 9. Electron beam irradiation equipment. 前記電子線照射部は前記半径方向に配置された複数の電子線照射管を備えることを特徴とする請求項8に記載の電子線照射装置。The electron beam irradiation apparatus according to claim 8, wherein the electron beam irradiation unit includes a plurality of electron beam irradiation tubes arranged in the radial direction. 前記複数の電子線照射管は前記半径方向において前記電子線の照射線強度の分布がほぼ均一になるように配置されることを特徴とする請求項9に記載の電子線照射装置。The electron beam irradiation apparatus according to claim 9, wherein the plurality of electron beam irradiation tubes are arranged so that the distribution of irradiation intensity of the electron beam in the radial direction is substantially uniform. 前記電子線照射による積算照射線量が前記半径方向においてほぼ等しくなるように前記被回転体の半径位置に応じて前記電子線照射の時間を制御するように構成した特徴とする請求項10に記載の電子線照射装置。11. The method according to claim 10, wherein the time of the electron beam irradiation is controlled according to a radial position of the rotating body so that an integrated irradiation dose by the electron beam irradiation becomes substantially equal in the radial direction. Electron beam irradiation device. 前記シャッタ部材が開くときに前記被回転体の表面の外周位置で開き始め次第に内周位置へと開くように構成することを特徴とする請求項10または11に記載の電子線照射装置。12. The electron beam irradiation apparatus according to claim 10, wherein when the shutter member opens, the shutter member starts to open at an outer peripheral position on the surface of the rotating body and gradually opens to an inner peripheral position. 前記半径方向に延びるように開口部を設け、前記シャッタ部材の移動により前記開口部を開閉することで前記電子線の照射と非照射とを切り換えるとともに、前記シャッタ部材と前記開口部との相対位置及び前記シャッタ部材の移動速度により前記被回転体の半径位置に応じて前記電子線照射の時間を制御することを特徴とする請求項10乃至12のいずれか1項に記載の電子線照射装置。An opening is provided to extend in the radial direction, and the opening and closing of the opening is performed by moving the shutter member to switch between irradiation and non-irradiation of the electron beam, and a relative position between the shutter member and the opening. The electron beam irradiation apparatus according to any one of claims 10 to 12, wherein a time of the electron beam irradiation is controlled in accordance with a radial position of the rotating member by a moving speed of the shutter member. 前記複数の電子線照射管は前記半径方向において前記電子線の照射線強度が外周側で大きく内周側で小さくなるような分布となるように配置されることを特徴とする請求項9に記載の電子線照射装置。The said plurality of electron beam irradiation tubes are arranged so that the irradiation beam intensity of the said electron beam in the said radial direction may become distribution which becomes large on an outer peripheral side and becomes small on an inner peripheral side. Electron beam irradiation equipment. 前記シャッタ部材を前記被回転体の回転速度よりも速い比較的高速度で開閉するように構成することを特徴とする請求項14に記載の電子線照射装置。15. The electron beam irradiation apparatus according to claim 14, wherein the shutter member is configured to be opened and closed at a relatively high speed higher than a rotation speed of the rotating body. 前記半径方向に延びるように開口部を設け、前記シャッタ部材の移動により前記開口部を開閉することで前記電子線の照射と非照射とを切り換えることを特徴とする請求項1乃至12,14,15のいずれか1項に記載の電子線照射装置。An opening is provided so as to extend in the radial direction, and irradiation and non-irradiation of the electron beam are switched by opening and closing the opening by movement of the shutter member. The electron beam irradiation apparatus according to any one of claims 15 to 15. 密閉可能な遮蔽容器内に収容された被回転体を回転駆動するステップと、
前記被回転体の表面と電子線照射部の照射窓との間に設けられたシャッタ部材を移動させて前記被回転体の回転中の表面に対し前記照射窓から電子線を照射するステップと、
所定時間の電子線照射後に前記シャッタ部材の移動により前記電子線を遮り前記電子線照射を停止するステップと、を含むことを特徴とする電子線照射方法。
Rotationally driving a rotatable body accommodated in a sealable shielding container,
Irradiating an electron beam from the irradiation window to a rotating surface of the rotated object by moving a shutter member provided between the surface of the rotated object and the irradiation window of the electron beam irradiation unit;
Stopping the electron beam irradiation by interrupting the electron beam by moving the shutter member after the electron beam irradiation for a predetermined time.
前記電子線照射部は加速電圧が20乃至100kVであることを特徴とする請求項17に記載の電子線照射方法。18. The method according to claim 17, wherein the electron beam irradiation unit has an acceleration voltage of 20 to 100 kV. 前記遮蔽容器内を減圧してから不活性ガスを導入することで不活性ガス雰囲気に置換することを特徴とする請求項17または18に記載の電子線照射方法。19. The electron beam irradiation method according to claim 17, wherein the inside of the shielding container is decompressed and then an inert gas is introduced to replace the atmosphere with an inert gas atmosphere. 前記不活性ガスをガス導入口からガス排出口に向けて前記照射窓の近傍を通して流すことにより前記照射窓の近傍を冷却することを特徴とする請求項20に記載の電子線照射方法。21. The electron beam irradiation method according to claim 20, wherein the vicinity of the irradiation window is cooled by flowing the inert gas from a gas inlet toward a gas outlet through the vicinity of the irradiation window. 前記被回転体はディスク形状を有し、前記表面の半径方向に延びる領域に前記照射窓から電子線を照射することを特徴とする17乃至20のいずれか1項に記載の電子線照射方法。The electron beam irradiation method according to any one of claims 17 to 20, wherein the rotating member has a disk shape, and irradiates an electron beam to a region extending in a radial direction of the surface from the irradiation window. 前記電子線照射は前記電子線照射部として前記半径方向に配置された複数の電子線照射管により行うことを特徴とする請求項21に記載の電子線照射方法。The electron beam irradiation method according to claim 21, wherein the electron beam irradiation is performed by a plurality of electron beam irradiation tubes arranged in the radial direction as the electron beam irradiation unit. 前記複数の電子線照射管は前記半径方向において前記電子線の照射線強度の分布がほぼ均一になるように配置されるとともに、
前記電子線照射による積算照射線量の分布が前記半径方向においてほぼ均一になるように前記被回転体の半径位置に応じて前記電子線照射の時間を制御することを特徴とする請求項22に記載の電子線照射方法。
The plurality of electron beam irradiation tubes are arranged so that the distribution of irradiation intensity of the electron beam in the radial direction is substantially uniform,
23. The electron beam irradiation time according to claim 22, wherein the electron beam irradiation time is controlled according to a radial position of the rotating body so that a distribution of an integrated irradiation dose by the electron beam irradiation becomes substantially uniform in the radial direction. Electron beam irradiation method.
前記シャッタ部材を前記被回転体の表面の外周位置で開き始め次第に内周位置へと開くことにより前記時間を制御することを特徴とする請求項23に記載の電子線照射方法。24. The electron beam irradiation method according to claim 23, wherein the time is controlled by gradually opening the shutter member at an outer peripheral position on the surface of the rotating member to an inner peripheral position. 前記複数の電子線照射管は前記半径方向において前記電子線の照射線強度が外周側で大きく内周側で小さくなるような分布となるように配置されることを特徴とする請求項22に記載の電子線照射方法。23. The method according to claim 22, wherein the plurality of electron beam irradiation tubes are arranged such that the irradiation beam intensity of the electron beam in the radial direction has a distribution such that the irradiation beam intensity is large on an outer peripheral side and smaller on an inner peripheral side. Electron beam irradiation method. 前記シャッタ部材を前記被回転体の回転速度よりも速い比較的高速度で開閉することを特徴とする請求項25に記載の電子線照射方法。26. The electron beam irradiation method according to claim 25, wherein the shutter member is opened and closed at a relatively high speed higher than the rotation speed of the rotating body. 請求項1乃至16のいずれか1項に記載の電子線照射装置を備え、前記被回転体をディスク状体として、その上に形成された潤滑性を有する層及び/又は樹脂層を前記電子線照射により硬化させるように構成したことを特徴とするディスク状体の製造装置。17. The electron beam irradiation apparatus according to claim 1, wherein the rotating body is a disk-shaped body, and a layer having lubricity and / or a resin layer formed thereon is provided with the electron beam. An apparatus for manufacturing a disk-shaped body, wherein the apparatus is configured to be cured by irradiation. 請求項1乃至16のいずれか1項に記載の電子線照射装置を用いるか、または、請求項17乃至26のいずれか1項に記載の電子線照射方法を用い、前記被回転体をディスク状体として、その上に形成された潤滑性を有する層及び/又は樹脂層を前記電子線照射により硬化させることを特徴とするディスク状体の製造方法。The electron beam irradiation apparatus according to any one of claims 1 to 16, or the method using the electron beam irradiation method according to any one of claims 17 to 26, wherein the object to be rotated is formed in a disk shape. A method for manufacturing a disk-shaped body, comprising: curing a layer having lubricity and / or a resin layer formed thereon by the electron beam irradiation.
JP2002274121A 2002-09-19 2002-09-19 Apparatus and method for radiating electron beam, and apparatus and method for manufacturing disk-shaped body Withdrawn JP2004110968A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002274121A JP2004110968A (en) 2002-09-19 2002-09-19 Apparatus and method for radiating electron beam, and apparatus and method for manufacturing disk-shaped body
PCT/JP2003/011890 WO2004027520A1 (en) 2002-09-19 2003-09-18 Electron beam irradiation device, electron beam irradiation method, disc-like body manufacturing apparatus, and disc-like body manufacturing method
US10/528,518 US7193956B2 (en) 2002-09-19 2003-09-18 Electron beam irradiation apparatus, electron beam irradiation method, and apparatus for and method of manufacturing disc-shaped object
TW092125766A TW200421014A (en) 2002-09-19 2003-09-18 Electron beam irradiation device, electron beam irradiation method, disc-like body manufacturing apparatus, and disc-like body manufacturing method
AU2003264485A AU2003264485A1 (en) 2002-09-19 2003-09-18 Electron beam irradiation device, electron beam irradiation method, disc-like body manufacturing apparatus, and disc-like body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274121A JP2004110968A (en) 2002-09-19 2002-09-19 Apparatus and method for radiating electron beam, and apparatus and method for manufacturing disk-shaped body

Publications (2)

Publication Number Publication Date
JP2004110968A true JP2004110968A (en) 2004-04-08
JP2004110968A5 JP2004110968A5 (en) 2005-10-27

Family

ID=32270686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274121A Withdrawn JP2004110968A (en) 2002-09-19 2002-09-19 Apparatus and method for radiating electron beam, and apparatus and method for manufacturing disk-shaped body

Country Status (1)

Country Link
JP (1) JP2004110968A (en)

Similar Documents

Publication Publication Date Title
US7205558B2 (en) Electron beam irradiation apparatus, electron beam irradiation method, and apparatus for and method of manufacturing disc-shaped object
JP2003241394A (en) Electron beam lithography system
KR20030003091A (en) Stamper for producing optical recording medium, optical recording medium, and methods of producing the same
KR20010087255A (en) Electron beam irradiation apparatus, electron beam irradiation method, original disk, stamper, and recording medium
JP2004110969A (en) Device and method for radiating electron beam, and device and method for manufacturing disk-shaped body
US20060163499A1 (en) Apparatus and method for irradiating electron beam
TWI306181B (en)
JP2004110967A (en) Device and method for irradiating electron beam, and device and method for manufacturing disk-shaped body
JP2006190410A (en) Manufacturing method and device for optical disk
JP2004110968A (en) Apparatus and method for radiating electron beam, and apparatus and method for manufacturing disk-shaped body
JP2002140840A (en) Optical disk and original disk manufacturing device
JP2004110970A (en) Method for manufacturing disk-shaped recording medium
JP4076120B2 (en) Spin coating method and apparatus
JP2003091888A (en) Manufacturing method for optical recording medium and manufacturing device for optical recording medium
JP4157072B2 (en) Information recording medium master production method, information recording medium master irradiation apparatus, and information recording medium manufacturing method
JP4261751B2 (en) Rotation drive device and disk master production device using the same
JP3647427B2 (en) Disk manufacturing apparatus and method for forming transmission layer thereof
JP2004164801A (en) Method for manufacturing optical recording disk and system for manufacturing optical recording disk
JPH11288529A (en) Electron beam plotting device
TW200415645A (en) Manufacturing method of optical recording disk
JP2006127713A (en) Irradiation device
JPH11288530A (en) Pattern plotting method using electron beam
JP2006156025A (en) Method and device for electron beam irradiation
JP2005196864A (en) Manufacturing method and device for optical recording medium
JP2007237103A (en) Spin coater and spin-coating method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070807