JP2004108486A - Roller bearing - Google Patents

Roller bearing Download PDF

Info

Publication number
JP2004108486A
JP2004108486A JP2002271612A JP2002271612A JP2004108486A JP 2004108486 A JP2004108486 A JP 2004108486A JP 2002271612 A JP2002271612 A JP 2002271612A JP 2002271612 A JP2002271612 A JP 2002271612A JP 2004108486 A JP2004108486 A JP 2004108486A
Authority
JP
Japan
Prior art keywords
flange
roller
rollers
needle
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002271612A
Other languages
Japanese (ja)
Inventor
Yoshitaka Waseda
早稲田 義孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2002271612A priority Critical patent/JP2004108486A/en
Publication of JP2004108486A publication Critical patent/JP2004108486A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent seizure of rollers and reduce torque of inside of a bearing in using a shell type needle roller bearing or a cylindrical roller bearing with oil lubrication. <P>SOLUTION: In this roller bearing, a plurality of needle rollers 20 are arranged on an inner circumference of the shell 10 in a circumference direction, an end surface of the needle roller 20 is a flat surface 22 and has an attachment part formed on an outer circumference, the shell 10 is composed of a cylindrical part 13 having a raceway surface 14 of the needle rollers 20 on an inner circumference surface thereof and a pair of flange parts 11, 12 sagging in an inner diameter direction at an axial direction both ends of the cylindrical part 13, and an inner surface of the flange parts 11, 12 become flat guide surface 11a, 12a directly opposing the flat surface 22 of the end surface of the needle roller 20. A flange diameter of at least one of flange parts 11, 12 of the shell 10 is larger than PCD of the needle rollers 20. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、シェル形針状ころ軸受や円筒ころ軸受等のころ軸受に関する。
【0002】
【従来の技術】
従来、保持器付きタイプのシェル形針状ころ軸受において、シェルの一方の鍔部の鍔径を大きくしたものがある(例えば、特許文献1参照。)。このように構成することで、油潤滑の条件下で使用した場合に、当該鍔径の大きな鍔部から潤滑油が軸受内部に侵入し、針状ころが軌道面に焼き付くのを防止できる。
【0003】
シェル形針状ころ軸受には、保持器付きタイプのほか、総ころタイプもある。図8に、従来の総ころタイプのシェル形針状ころ軸受の一例を示す。
【0004】
図8において、10は外輪となるシェル、20はシェル10の内周に沿って並設した複数の針状ころである。シェル10は、円筒部13の軸方向両端に、針状ころ20がばらけるのを防ぐために鍔部11,12を内径方向に垂下させて形成したものである。円筒部13の内周は軌道面14となり、針状ころ20は軌道面14に沿って転動する。
【0005】
針状ころ20の端面21は平坦面22であり、外周に面取部23が形成されている。また、鍔部11,12の内面は、針状ころ20の端面21の平坦面22に直接対向するガイド面11a,12aとなっている。
【0006】
このタイプのシェル形針状ころ軸受は、主にグリース封入にて使用されており、グリースの漏れ防止や、外部からの異物の侵入を防止するため、シェル10の鍔部11,12の径方向長さは、十分大きく設定されていた。
【0007】
すなわち、鍔部11,12の内径端15,16における内径(以下、鍔径と称する)Eと、針状ころ20のPCD(各針状ころ20の中心を結んだ円Cの直径)との関係は、
PCD>E
を満たしており、鍔径Eが小さく設定されていた。
【0008】
【特許文献1】
特開2001−65575号公報
【0009】
【発明が解決しようとする課題】
図8に示すシェル形針状ころ軸受を、外部から潤滑油を供給する油潤滑の条件下で使用する場合、径方向長さが大きい鍔部11,12が邪魔になって、潤滑油が軸受内部に侵入し難くなる。
【0010】
これにより、軸受内部における潤滑油量が不十分となり、潤滑不良を起こす。総ころタイプのシェル形針状ころ軸受の場合、鍔部11,12のガイド面11a,12aが、針状ころ20の端面21の平坦面22に直接対向してアキシアル荷重を受けており、潤滑不良を起こすと、針状ころ20が軌道面14に焼き付くおそれがある他、針状ころ20の端面21と鍔部11,12のガイド面11a,12aの摩擦抵抗が大きくなり、場合によっては焼き付きが発生し、軸受内部のトルクが大きくなるという問題があった。
【0011】
【課題を解決するための手段】
本発明のころ軸受は、外輪の内周面に複数のころを周方向に配置してなり、前記ころの端面は平坦面であって外周に面取部が形成されており、前記外輪は、内周面に前記ころの軌道面を有する円筒部と、前記円筒部の軸方向両端にそれぞれ内径方向に垂下された一対の鍔部とからなり、前記鍔部の内面は前記ころの端面の平坦面に直接対向する平坦なガイド面となり、前記外輪の少なくとも一方の鍔部の鍔径を、前記ころのPCDより大きくしたものである。
【0012】
ころ軸受は、鍔部の内面がころの端面の平坦面に直接対向する平坦なガイド面となるものであればよく、シェル形針状ころ軸受や円筒ころ軸受を含むととに、総ころタイプあるいは保持器付きタイプのいずれであってもよい。
【0013】
鍔径をころのPCDより大きくする鍔部は、外輪の軸方向両端の一対の鍔部のうち、一方もしくは両方のいずれであってもよい。
【0014】
鍔径をころのPCDより大きくした鍔部の内径端の形状は、真円、周方向に凹凸を形成したもの、楕円等、特に形状は限定されないが、少なくとも最大の鍔径がころのPCDより大きくなっていればよい。
【0015】
本発明のころ軸受によると、外輪の少なくとも一方の鍔部の鍔径を、ころのPCDより大きくしたので、鍔部から露出する隣り合うころ間の隙間面積が大きくなる。よって、油潤滑で使用される場合に、鍔部から露出した大きなころ間の隙間より潤滑油が流入し、軸受内部に供給される潤滑油の量が増大し、ころの焼付きを防止でき、軸受内部のトルクの低減を図ることができる。
【0016】
【発明の実施の形態】
本発明の一実施形態を図1ないし図5に基づいて説明する。
【0017】
図1は総ころタイプのシェル形針状ころ軸受の断面図、図2はころ軸受の外輪の側面図、図3はころ軸受の部分側面図、図4はころ軸受を用いたロッカアームの側面図、図5はロッカアームの平面図を示している。
【0018】
図1において、10は外輪となるシェル、20はシェル10の内周に沿って並設した複数の針状ころである。シェル10は、円筒部13の軸方向両端に、針状ころ20がばらけるのを防ぐために鍔部11,12を内径方向に垂下させて形成したものである。円筒部13の内周は軌道面14となり、針状ころ20は軌道面14に沿って転動する。
【0019】
針状ころ20の端面21は平坦面22であり、外周にR形状の面取部23が形成されている。また、鍔部11,12の内面は、針状ころ20の端面21の平坦面22に直接対向するガイド面11a,12aとなっており、ガイド面11a,12aにて針状ころ20のアキシアル荷重を受けている。
【0020】
シェル10は、薄鋼板を曲げ成形してなる。すなわち、薄鋼板の一側にプレスにて鍔部11を折曲形成し、他側の内周をトリミングにより薄肉とし、針状ころ20を組込み、プレスにて鍔部12を折曲形成する。
【0021】
鍔部11の内径端15は、周方向に凸部17と凹部18を交互に形成してなる花びら状となっている。
【0022】
対向する凸部17どうしの間の鍔径をA、対向する凹部18どうしの間の鍔径をB、針状ころ20のPCDとすると、
PCD<A<B
の関係を満たしている。
【0023】
また、鍔部11,12のガイド面11a,12aが、針状ころ20の端面21の平坦面22に直接対向していることから、各針状ころ20の端面21の平坦面22の外径端を結ぶ円の直径をFとすると、
A<B<F
の関係を満たしている。
【0024】
なお、鍔部12の内径端16においても、鍔部11の内径端15と同様に、周方向に凹凸を形成した花びら状に形成されている。
【0025】
本発明のシェル形針状ころ軸受が油潤滑で使用される適用例として、図4および図5にロッカアーム30の例を示す。すなわち、シェル形針状ころ軸受がロッカアーム30のローラとして機能する。
【0026】
ロッカアーム30は、エンドピボットタイプであって、本体31と、支軸32と、支軸32に回転自在に支持されたシェル形針状ころ軸受とを有している。
【0027】
本体31は、互いにほぼ平行に対向配置された一対の対向側壁部33,33と、両対向側壁部33,33の長手方向一端における下側間に設けたピボット部34と、両対向側壁部33,33の長手方向他端間に設けたバルブステム案内部35とを有する形状の板金製のプレス加工品とされている。
【0028】
両対向側壁部33,33の長手方向中間には、対向側壁部33,33の壁面に直交する同軸上に貫通された貫通孔36が設けられており、貫通孔36に対して支軸32の両端がそれぞれ挿入されかしめられることにより、支軸32が両対向側壁部33,33間に架設された状態で取り付けられている。
【0029】
両対向側壁部33,33間において、支軸32の外周に複数の針状ころ20を介してシェル10が回転自在に取り付けられ、シェル10の外周面にカム39が当接される。
【0030】
このようなロッカアーム30では、本体31のピボット部34が、図示しないシリンダヘッドに設置されるラッシュアジャスタ37の上端に係合され、バルブステム案内部35が、シリンダヘッドに設置される動弁機構のバルブのステムエンド38に当接される。そして、カム39を回転させることにより、ピボット部34が支点となって本体2が傾動させられるようになり、バルブステム案内部35が上下に所定ストロークで反復変位させられることで、バルブを開閉動作させる。このように、ロッカアーム30は、本体2の長手方向一端側を支点としてバルブ操作のため揺動させられる構成となっている。
【0031】
ロッカアーム30のローラとして使用されるシェル形針状ころ軸受の場合、図1に示すように、シェル10の両方の鍔部11,12の鍔径を、針状ころ20のPCDより大きくしたころ軸受を用いることにより、軸受内に十分な潤滑油が供給される。
【0032】
このように構成されたころ軸受によると、シェル10の鍔部11,12の最小の鍔径Aを針状ころ20のPCDより大きくしたので、鍔部11,12の内径端15,16が周方向全長に渡って針状ころ20のPCDより大きくなる。よって、各針状ころ20の中心を結んだ円Cより外径側において、隣り合う針状ころ20間の隙間S(図3参照)が新たに露出し、鍔部11,12から露出する隣り合う針状ころ20間の隙間Sの面積が大きくなる。この結果、油潤滑で使用される場合に、鍔部11,12から露出した大きな針状ころ20間の隙間Sより潤滑油が流入し、軸受内部に供給される潤滑油の量が増大する。よって、針状ころ20が軌道面14に焼き付くのを防止できるとともに、針状ころ20の端面21と鍔部11,12のガイド面11a,12aの摩擦抵抗が小さくなり焼き付きを防止でき、高いアキシアル負荷能力が保証され、軸受内部のトルクの低減が図れる。
【0033】
また、鍔部11,12の内径端15,16に、鍔径の小さな凸部17を形成したので、鍔径の大きな凹部18にて潤滑油の流入量を増大させると共に、鍔径の小さな凸部17にて針状ころ20のばらけ防止ならびにアキシアル荷重を受けることができる。
【0034】
なお、鍔部11,12の鍔径は、少なくとも最大の鍔径Bを針状ころ20のPCDより大きくしたものであればよい。このように、鍔部11,12の内径端15,16の周方向における一部でも、針状ころ20のPCDより大きくなっていれば、当該大きくなった箇所より隣り合う針状ころ20間の隙間Sが露出し、軸受内部に供給される潤滑油の量が増大する。
【0035】
また、一方の鍔部11(または鍔部12)において、当該最大の鍔径を、針状ころ20のPCDより大きくしたものであってもよい。すなわち、鍔径を針状ころ20のPCDより大きくした鍔部11(または鍔部12)より潤滑油が軸受内に流入し、鍔径が針状ころ20のPCDより小さい鍔部12(または鍔部11)にて流入した潤滑油が流出するのを防止でき、そのような潤滑油の流れのある箇所にて使用される装置に適用することができる。この場合、鍔部11の肉厚は、鍔部12の肉厚より厚く、鍔部11の鍔径を針状ころ20のPCDより大きくした方が、シェル10の強度低下等のおそれが少なくて好ましい。
【0036】
本発明の他の実施形態を図6および図7に基づいて説明する。
【0037】
この実施形態は、鍔部11,12の内径端15,16が、針状ころ20のPCDより大きい鍔径Dを有する真円にて形成されていることを特徴とする。
【0038】
このように構成しても、鍔部11,12から露出する隣り合う針状ころ20間の隙間Sの面積が大きくなり、油潤滑で使用される場合に、軸受内部に供給される潤滑油の量が増大する。
【0039】
なお、外輪10の鍔11,12の内径端15,16の形状は、最大の鍔径が針状ころ20のPCDより大きいものであればよく、真円、凹凸形状の他、楕円等、特に形状は限定されない。しかも、両鍔11,12の内径端15,16において、異なるの形状としてもよい。
【0040】
本発明のシェル形針状ころ軸受が油潤滑で使用される適用例として挙げたロッカアーム30は一例であり、その他の油潤滑部位にて使用されるものであってもよい。
【0041】
また、本発明の構成が適用されるころ軸受としては、鍔部の内面がころの端面の平坦面に直接対向する平坦なガイド面となる軸受であればよく、シェル形針状ころ軸受のほか、鍛造製等の外輪の内周面の軌道面に沿って転動する複数のころからなる円筒ころ軸受であってもよく、また、保持器付きタイプであって、保持器にて保持されたころの端面に鍔部の平坦なガイド面が直接対向するころ軸受であってもよい。
【0042】
【発明の効果】
本発明のころ軸受によると、油潤滑で使用される場合に、鍔から露出したころ間の大きな隙間より潤滑油が流入し、軸受内部に供給される潤滑油の量が増大し、ころの焼付きを防止でき、軸受内部のトルクの低減を図ることができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るシェル形針状ころ軸受の断面図である。
【図2】図1のころ軸受の外輪の側面図である。
【図3】図1のころ軸受の部分側面図である。
【図4】図1のころ軸受を用いたロッカアームの側面図である。
【図5】図4のロッカアームの平面図である。
【図6】本発明の他の実施形態に係るシェル形針状ころ軸受の断面図である。
【図7】図6のころ軸受の部分側面図である。
【図8】従来例に係るシェル形針状ころ軸受の断面図である。
【符号の説明】
10      シェル(外輪)
11,12   鍔部
11a,12a ガイド面
13      円筒部
14      軌道面
20      針状ころ(ころ)
21      端面
22      平坦面
23      面取部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a roller bearing such as a needle needle roller bearing or a cylindrical roller bearing.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, among shell-type needle roller bearings with a retainer, there is one in which a flange diameter of one flange portion of a shell is increased (for example, see Patent Document 1). With this configuration, when used under conditions of oil lubrication, lubricating oil can be prevented from entering the inside of the bearing from the flange portion having the large flange diameter and seizing the needle rollers onto the raceway surface.
[0003]
There are shell type needle roller bearings as well as types with cages and full roller types. FIG. 8 shows an example of a conventional full-roller type needle roller bearing.
[0004]
In FIG. 8, reference numeral 10 denotes a shell serving as an outer ring, and reference numeral 20 denotes a plurality of needle rollers arranged side by side along the inner periphery of the shell 10. The shell 10 is formed by hanging flanges 11 and 12 in the inner diameter direction at both axial ends of the cylindrical portion 13 in order to prevent the needle rollers 20 from coming apart. The inner circumference of the cylindrical portion 13 becomes a raceway surface 14, and the needle rollers 20 roll along the raceway surface 14.
[0005]
The end surface 21 of the needle roller 20 is a flat surface 22, and a chamfered portion 23 is formed on the outer periphery. The inner surfaces of the flanges 11 and 12 are guide surfaces 11 a and 12 a directly facing the flat surface 22 of the end surface 21 of the needle roller 20.
[0006]
This type of needle-type needle roller bearing is mainly used with grease sealed therein. In order to prevent grease from leaking and to prevent foreign matter from entering from outside, the flanges 11 and 12 of the shell 10 have a radial direction. The length was set large enough.
[0007]
That is, the inner diameter (hereinafter, referred to as a flange diameter) E at the inner diameter ends 15, 16 of the flange portions 11, 12 and the PCD of the needle rollers 20 (the diameter of a circle C connecting the centers of the needle rollers 20). The relationship is
PCD> E
Was satisfied, and the flange diameter E was set small.
[0008]
[Patent Document 1]
JP 2001-65575 A
[Problems to be solved by the invention]
When the shell-type needle roller bearing shown in FIG. 8 is used under the condition of oil lubrication in which lubricating oil is supplied from the outside, the flange portions 11 and 12 having a large radial length hinder the lubricating oil. Difficult to penetrate inside.
[0010]
As a result, the amount of lubricating oil inside the bearing becomes insufficient, causing poor lubrication. In the case of a full-roller type needle needle roller bearing, the guide surfaces 11a and 12a of the flanges 11 and 12 directly face the flat surface 22 of the end surface 21 of the needle roller 20 and receive an axial load. If a failure occurs, the needle rollers 20 may seize on the raceway surface 14, and the frictional resistance between the end surface 21 of the needle rollers 20 and the guide surfaces 11a and 12a of the flanges 11 and 12 may increase. And the torque inside the bearing increases.
[0011]
[Means for Solving the Problems]
The roller bearing of the present invention has a plurality of rollers arranged in the circumferential direction on the inner peripheral surface of the outer ring, the end surfaces of the rollers are flat surfaces, and a chamfer is formed on the outer periphery, and the outer ring has A cylindrical portion having a raceway surface of the roller on an inner peripheral surface thereof, and a pair of flange portions respectively suspended in an inner diameter direction at both axial ends of the cylindrical portion, and the inner surface of the flange portion has a flat end face of the roller. It is a flat guide surface directly facing the surface, and the flange diameter of at least one flange of the outer ring is larger than the PCD of the roller.
[0012]
Roller bearings need only be those in which the inner surface of the flange portion is a flat guide surface that directly opposes the flat surface of the end surface of the roller.Including shell-type needle roller bearings and cylindrical roller bearings, full-roller type Alternatively, any of the type with a retainer may be used.
[0013]
The flange part whose flange diameter is larger than the roller PCD may be one or both of a pair of flange parts at both axial ends of the outer ring.
[0014]
The shape of the inner diameter end of the flange portion whose flange diameter is larger than that of the roller PCD is not particularly limited, such as a perfect circle, one having irregularities formed in the circumferential direction, and an ellipse. It just needs to be bigger.
[0015]
According to the roller bearing of the present invention, since the flange diameter of at least one flange of the outer ring is made larger than the PCD of the rollers, the gap area between adjacent rollers exposed from the flange is increased. Therefore, when used in oil lubrication, the lubricating oil flows from the gap between the large rollers exposed from the flange, the amount of lubricating oil supplied to the inside of the bearing increases, and seizure of the rollers can be prevented, The torque inside the bearing can be reduced.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
[0017]
1 is a sectional view of a full-roller type needle needle roller bearing, FIG. 2 is a side view of an outer ring of the roller bearing, FIG. 3 is a partial side view of the roller bearing, and FIG. 4 is a side view of a rocker arm using the roller bearing. FIG. 5 shows a plan view of the rocker arm.
[0018]
In FIG. 1, reference numeral 10 denotes a shell serving as an outer ring, and reference numeral 20 denotes a plurality of needle rollers arranged side by side along the inner periphery of the shell 10. The shell 10 is formed by hanging flanges 11 and 12 in the inner diameter direction at both axial ends of the cylindrical portion 13 in order to prevent the needle rollers 20 from coming apart. The inner circumference of the cylindrical portion 13 becomes a raceway surface 14, and the needle rollers 20 roll along the raceway surface 14.
[0019]
The end surface 21 of the needle roller 20 is a flat surface 22, and an R-shaped chamfered portion 23 is formed on the outer periphery. Further, the inner surfaces of the flange portions 11 and 12 are guide surfaces 11a and 12a directly facing the flat surface 22 of the end surface 21 of the needle roller 20, and the axial load of the needle roller 20 at the guide surfaces 11a and 12a. Is receiving.
[0020]
The shell 10 is formed by bending a thin steel plate. That is, the flange 11 is bent and formed on one side of a thin steel plate by a press, the inner periphery on the other side is thinned by trimming, the needle rollers 20 are assembled, and the flange 12 is bent by a press.
[0021]
The inner diameter end 15 of the flange portion 11 has a petal shape in which convex portions 17 and concave portions 18 are alternately formed in the circumferential direction.
[0022]
Assuming that the flange diameter between the opposing convex portions 17 is A, the flange diameter between the opposing concave portions 18 is B, and the PCD of the needle roller 20 is:
PCD <A <B
Meet the relationship.
[0023]
In addition, since the guide surfaces 11a and 12a of the flange portions 11 and 12 directly oppose the flat surface 22 of the end surface 21 of the needle roller 20, the outer diameter of the flat surface 22 of the end surface 21 of each needle roller 20 is adjusted. If the diameter of the circle connecting the ends is F,
A <B <F
Meet the relationship.
[0024]
The inner diameter end 16 of the flange portion 12 is also formed in a petal shape with irregularities in the circumferential direction, similarly to the inner diameter end 15 of the flange portion 11.
[0025]
FIGS. 4 and 5 show an example of a rocker arm 30 as an application example in which the shell needle roller bearing of the present invention is used for oil lubrication. That is, the shell-shaped needle roller bearing functions as a roller of the rocker arm 30.
[0026]
The rocker arm 30 is an end pivot type, and has a main body 31, a support shaft 32, and a shell-shaped needle roller bearing rotatably supported by the support shaft 32.
[0027]
The main body 31 includes a pair of opposing side wall portions 33, 33 arranged substantially parallel to each other, a pivot portion 34 provided between lower sides at one longitudinal end of the opposing side wall portions 33, 33, and a pair of opposing side wall portions 33. , 33 and a valve stem guide portion 35 provided between the other ends in the longitudinal direction.
[0028]
A through hole 36 penetrating coaxially perpendicular to the wall surfaces of the opposed side wall portions 33, 33 is provided at a longitudinally intermediate position between the opposed side wall portions 33, 33. By inserting and caulking the both ends, the support shaft 32 is attached in a state of being bridged between the opposed side wall portions 33, 33.
[0029]
The shell 10 is rotatably attached to the outer periphery of the support shaft 32 via the plurality of needle rollers 20 between the opposed side wall portions 33, 33, and the cam 39 abuts on the outer peripheral surface of the shell 10.
[0030]
In such a rocker arm 30, the pivot portion 34 of the main body 31 is engaged with the upper end of a lash adjuster 37 installed on a cylinder head (not shown), and the valve stem guide portion 35 is connected to a valve operating mechanism installed on the cylinder head. It abuts on the stem end 38 of the valve. By rotating the cam 39, the pivot portion 34 becomes a fulcrum and the main body 2 is tilted, and the valve stem guide portion 35 is repeatedly displaced up and down by a predetermined stroke, thereby opening and closing the valve. Let it. As described above, the rocker arm 30 is configured to be swung about the one end in the longitudinal direction of the main body 2 to operate the valve.
[0031]
In the case of a shell type needle roller bearing used as a roller of the rocker arm 30, as shown in FIG. 1, the roller diameter of both the flange portions 11 and 12 of the shell 10 is larger than the PCD of the needle roller 20. , Sufficient lubricating oil is supplied into the bearing.
[0032]
According to the roller bearing configured as described above, the minimum flange diameter A of the flange portions 11 and 12 of the shell 10 is made larger than the PCD of the needle roller 20, so that the inner diameter ends 15 and 16 of the flange portions 11 and 12 are circumferential. It becomes larger than the PCD of the needle roller 20 over the entire length in the direction. Therefore, on the outer diameter side from the circle C connecting the centers of the needle rollers 20, a gap S (see FIG. 3) between the adjacent needle rollers 20 is newly exposed, and the adjacent needle rollers 20 exposed from the flange portions 11 and 12 are newly exposed. The area of the gap S between the matching needle rollers 20 increases. As a result, when used in oil lubrication, lubricating oil flows from the gap S between the large needle rollers 20 exposed from the flanges 11 and 12, and the amount of lubricating oil supplied to the inside of the bearing increases. Therefore, the needle rollers 20 can be prevented from seizing on the raceway surface 14, and the frictional resistance between the end surface 21 of the needle rollers 20 and the guide surfaces 11 a, 12 a of the flange portions 11, 12 can be reduced, and seizure can be prevented, and a high axial force can be prevented. The load capacity is guaranteed, and the torque inside the bearing can be reduced.
[0033]
Further, since the convex portions 17 having a small flange diameter are formed at the inner diameter ends 15 and 16 of the flange portions 11 and 12, the amount of lubricating oil flowing into the concave portion 18 having a large flange diameter is increased, and the convex portion having a small flange diameter is formed. The portion 17 can prevent the needle rollers 20 from coming apart and receive an axial load.
[0034]
The flange diameters of the flange portions 11 and 12 may be at least those in which the maximum flange diameter B is larger than the PCD of the needle roller 20. As described above, even if a part of the inner diameter ends 15 and 16 of the flange portions 11 and 12 in the circumferential direction is larger than the PCD of the needle rollers 20, the gap between the needle rollers 20 adjacent to the enlarged portion is increased. The gap S is exposed, and the amount of lubricating oil supplied inside the bearing increases.
[0035]
Further, in one of the flanges 11 (or the flange 12), the maximum flange diameter may be larger than the PCD of the needle roller 20. That is, lubricating oil flows into the bearing from the flange portion 11 (or flange portion 12) having a flange diameter larger than the PCD of the needle roller 20, and the flange portion 12 (or flange) having a flange diameter smaller than the PCD of the needle roller 20. It is possible to prevent the lubricating oil that has flowed in at the part 11) from flowing out, and the present invention can be applied to a device used in a place where such a lubricating oil flows. In this case, the thickness of the flange 11 is thicker than the thickness of the flange 12, and when the flange diameter of the flange 11 is larger than the PCD of the needle roller 20, the strength of the shell 10 is less likely to be reduced. preferable.
[0036]
Another embodiment of the present invention will be described with reference to FIGS.
[0037]
This embodiment is characterized in that the inner diameter ends 15, 16 of the flange portions 11, 12 are formed as perfect circles having a flange diameter D larger than the PCD of the needle roller 20.
[0038]
Even with such a configuration, the area of the gap S between the adjacent needle rollers 20 exposed from the flange portions 11 and 12 increases, and when used in oil lubrication, the lubricating oil supplied to the inside of the bearing is reduced. The amount increases.
[0039]
The shape of the inner diameter ends 15 and 16 of the flanges 11 and 12 of the outer ring 10 may be any shape as long as the maximum flange diameter is larger than the PCD of the needle roller 20. The shape is not limited. In addition, the inner ends 15, 16 of the flanges 11, 12 may have different shapes.
[0040]
The rocker arm 30 described as an application example in which the shell-type needle roller bearing of the present invention is used for oil lubrication is an example, and may be used for other oil lubrication parts.
[0041]
Further, as the roller bearing to which the configuration of the present invention is applied, any bearing may be used as long as the inner surface of the flange portion is a flat guide surface directly opposed to the flat surface of the end surface of the roller. May be a cylindrical roller bearing composed of a plurality of rollers rolling along the raceway surface of the inner peripheral surface of an outer ring such as a forged product, and a type with a retainer, which is held by the retainer. A roller bearing in which a flat guide surface of a flange directly faces the end surface of the roller may be used.
[0042]
【The invention's effect】
According to the roller bearing of the present invention, when used in oil lubrication, the lubricating oil flows from the large gap between the rollers exposed from the flange, the amount of lubricating oil supplied to the inside of the bearing increases, and the roller burns. It is possible to obtain the effect that the attachment can be prevented and the torque inside the bearing can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a shell-type needle roller bearing according to an embodiment of the present invention.
FIG. 2 is a side view of an outer ring of the roller bearing of FIG.
FIG. 3 is a partial side view of the roller bearing of FIG. 1;
FIG. 4 is a side view of a rocker arm using the roller bearing of FIG. 1;
FIG. 5 is a plan view of the rocker arm of FIG. 4;
FIG. 6 is a cross-sectional view of a shell needle roller bearing according to another embodiment of the present invention.
FIG. 7 is a partial side view of the roller bearing of FIG. 6;
FIG. 8 is a cross-sectional view of a conventional needle needle roller bearing.
[Explanation of symbols]
10 shell (outer ring)
11, 12 Flanges 11a, 12a Guide surface 13 Cylindrical portion 14 Track surface 20 Needle roller (roller)
21 end face 22 flat face 23 chamfer

Claims (2)

外輪の内周面に複数のころを周方向に配置してなり、前記ころの端面は平坦面であって外周に面取部が形成されており、前記外輪は、内周面に前記ころの軌道面を有する円筒部と、前記円筒部の軸方向両端にそれぞれ内径方向に垂下された一対の鍔部とからなり、前記鍔部の内面は前記ころの端面の平坦面に直接対向する平坦なガイド面となるころ軸受において、
前記外輪の少なくとも一方の鍔部の鍔径を、前記ころのPCDより大きくした、ことを特徴とするころ軸受。
A plurality of rollers are arranged in the circumferential direction on the inner peripheral surface of the outer ring, the end surfaces of the rollers are flat surfaces, and a chamfer is formed on the outer periphery, and the outer ring has the inner peripheral surface of the rollers. A cylindrical portion having a raceway surface, and a pair of flange portions each hanging in the radial direction at both axial ends of the cylindrical portion, the inner surface of the flange portion is a flat surface directly facing the flat surface of the end face of the roller. For roller bearings that serve as guide surfaces,
A roller bearing, wherein a flange diameter of at least one flange of the outer ring is larger than a PCD of the roller.
外輪の内周面に複数のころを周方向に配置してなり、前記ころの端面は平坦面であって外周に面取部が形成されており、前記外輪は、内周面に前記ころの軌道面を有する円筒部と、前記円筒部の軸方向両端にそれぞれ内径方向に垂下された一対の鍔部とからなり、前記鍔部の内面は前記ころの端面の平坦面に直接対向する平坦なガイド面となるころ軸受において、
前記外輪の少なくとも一方の鍔部の内径端が、当該一方の鍔部の周方向で鍔径が変化する形状であり、かつ、少なくとも最大の鍔径を前記ころのPCDより大きくした、ことを特徴とするころ軸受。
A plurality of rollers are arranged in the circumferential direction on the inner peripheral surface of the outer ring, the end surfaces of the rollers are flat surfaces, and a chamfer is formed on the outer periphery, and the outer ring has the inner peripheral surface of the rollers. A cylindrical portion having a raceway surface, and a pair of flange portions each hanging in the radial direction at both axial ends of the cylindrical portion, the inner surface of the flange portion is a flat surface directly facing the flat surface of the end face of the roller. For roller bearings that serve as guide surfaces,
An inner diameter end of at least one flange portion of the outer ring has a shape in which a flange diameter changes in a circumferential direction of the one flange portion, and at least a maximum flange diameter is larger than a PCD of the roller. Roller bearing.
JP2002271612A 2002-09-18 2002-09-18 Roller bearing Pending JP2004108486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002271612A JP2004108486A (en) 2002-09-18 2002-09-18 Roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002271612A JP2004108486A (en) 2002-09-18 2002-09-18 Roller bearing

Publications (1)

Publication Number Publication Date
JP2004108486A true JP2004108486A (en) 2004-04-08

Family

ID=32268871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002271612A Pending JP2004108486A (en) 2002-09-18 2002-09-18 Roller bearing

Country Status (1)

Country Link
JP (1) JP2004108486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112568A (en) * 2004-10-15 2006-04-27 Nsk Ltd Cylindrical roller bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112568A (en) * 2004-10-15 2006-04-27 Nsk Ltd Cylindrical roller bearing

Similar Documents

Publication Publication Date Title
US8894292B2 (en) Split outer ring, split rolling bearing using the same ring and construction and method of mounting the same rolling bearing
US20090126195A1 (en) Roller bearing
JPH1089367A (en) Bearing holder
EP0521142A1 (en) Method of assembling a rocker arm assembly.
JPS60184910A (en) Locker arm assembly
WO2010122904A1 (en) Needle bearing and needle bearing device
JP3815027B2 (en) Roller support bearing device
JP2011241894A (en) Split rolling bearing, and bearing device with the same
JP3815504B2 (en) Roller support bearing device
US5324119A (en) Needle roller bearing
JP2004108486A (en) Roller bearing
JP2622743B2 (en) Composite shaft and method of manufacturing the same
US20030140878A1 (en) Rocker arm arrangement for internal combustion engine
JPH08219161A (en) Cage for roller bearing
US8573170B2 (en) Rocker arm assembly with integrated support pin anti-inversion feature
JP3919055B2 (en) Rolling bearing
JP2008232311A (en) Roller bearing
CN210799724U (en) Double-half outer ring and double-row angular contact ball bearing
JP2579533Y2 (en) Cam follower device
JP4935447B2 (en) Rolling bearing
JP2008039055A (en) Bearing device for supporting roller
JP2004036781A (en) Cam follower
JP2003314543A (en) Roller bearing with aligning ring
JP4196690B2 (en) Roller bearing and roller bearing device using the same
JP2004156751A (en) Double row conical roller bearing with aligning mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050708

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

A02 Decision of refusal

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A02