JP2004108379A - Gas turbine plant - Google Patents
Gas turbine plant Download PDFInfo
- Publication number
- JP2004108379A JP2004108379A JP2003436163A JP2003436163A JP2004108379A JP 2004108379 A JP2004108379 A JP 2004108379A JP 2003436163 A JP2003436163 A JP 2003436163A JP 2003436163 A JP2003436163 A JP 2003436163A JP 2004108379 A JP2004108379 A JP 2004108379A
- Authority
- JP
- Japan
- Prior art keywords
- gas turbine
- compressor
- evaporative coolant
- spray
- intake air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Turbines (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
本出願は、ガスタービンを有する電力・動力発生用ガスタービンプラントにおいて、コンプレッサー前で蒸発冷却材を噴霧する機能を有し、冷却材噴霧が突発的に停止した場合にガスタービンやコンプレッサーに不要な負荷を避ける制御に関する。The present application has a function of spraying evaporative coolant in front of a compressor in a power / power generation gas turbine plant having a gas turbine, which is unnecessary for gas turbines and compressors when coolant spray suddenly stops. Related to control to avoid load.
最近、電力発生用ガスタービンが、コンバインドサイクルシステムなどに広く使用されつつある。Recently, gas turbines for power generation are being widely used in combined cycle systems and the like.
しかし、ガスタービンプラントにおいては、夏期の吸気温度が高くなった場合に空気密度が低下して吸気質量が減少するが、しかし吸入空気容積は減少しないのでコンプレッサーの圧縮仕事は大きく変わらない。一方燃焼ガスの膨張で発生する仕事は、吸気質量が減少した分減少する。そのためにガスタービン出力が大きく低下する。However, in a gas turbine plant, when the intake air temperature in summer increases, the air density decreases and the intake mass decreases, but the compression work of the compressor does not change significantly because the intake air volume does not decrease. On the other hand, the work generated by the expansion of the combustion gas is reduced by the reduction of the intake mass. Therefore, the output of the gas turbine is greatly reduced.
この改善としては吸気に水や液体空気などの蒸発冷却材を噴霧する方法が多く提案されてきた。方法 As this improvement, many methods of spraying evaporative coolant such as water or liquid air into the intake air have been proposed.
また、蒸発冷却材噴霧が突発的に停止した場合には、ガスタービンの羽根などは仕様以上の高温度にさらされ、またコンプレッサーはサージングになる可能性がある。それを以下に説明する。If the evaporative coolant spray stops suddenly, the gas turbine blades, etc. are exposed to a higher temperature than the specification, and the compressor may be surging. It is described below.
吸気に蒸発冷却材を流している場合には、コンプレッサー内の温度が低下しているのでより多くの質量の吸気送り込みが可能になり、それに対して多量の燃料を送り込んでいる状態である。しかし吸気冷却が一気に崩れた場合には、吸気冷却中のようにコンプレッサーは吸気を多量に取り込むことが困難になり、一方ガスタービンの燃焼器では、吸気に対して燃料が過剰になり、燃焼温度が急激に上昇することになる。場合 When the evaporative coolant is flowing into the intake air, since the temperature in the compressor has dropped, it is possible to feed more intake air, and a large amount of fuel is being sent to it. However, if the intake air cooling collapses at a stretch, it becomes difficult for the compressor to take in a large amount of intake air, as during intake air cooling.On the other hand, in a gas turbine combustor, the fuel becomes excessive with respect to the intake air, and the combustion temperature rises. Will rise sharply.
また、コンプレッサー内で水滴が蒸発する場合には、吸気の温度降下による密度上昇により蒸発個所以降のコンプレッサー段では余裕が生じる。そこでコンプレッサー入口側のIGVや可変静翼の角度を調節してコンプレッサー流入量を増加すると、ガスタービン出力をさらに増加できる。しかし、その状態で蒸発冷却材が停止すると、吸気は質量が略同等でも、温度が高い分容積が増加するので、コンプレッサーの負荷が増大してサージングが起き易くなる。これらを避ける根本的配慮はなかった。水 When water droplets evaporate in the compressor, there is a margin in the compressor stage after the evaporation point due to the increase in density due to the temperature drop of the intake air. Therefore, by adjusting the angle of the IGV and the variable stationary vane on the compressor inlet side to increase the compressor inflow, the gas turbine output can be further increased. However, if the evaporative coolant is stopped in this state, the volume of the intake air is increased by the high temperature even if the intake air has substantially the same mass, so that the load on the compressor is increased and surging is likely to occur. There was no fundamental consideration to avoid them.
本出願では、蒸発冷却材噴霧が突発的に停止した場合において、ガスタービンの羽根などが仕様以上の高温度にさらされることを避け、またコンプレッサーがサージングになることを避ける。In the present application, when the evaporative coolant spray is suddenly stopped, the gas turbine blades and the like are prevented from being exposed to a higher temperature than the specification and the compressor is prevented from surging.
本発明は、空気を圧縮するコンプレッサーと、コンプレッサーから圧縮空気を受けて燃料を燃焼してその燃焼ガスで駆動するガスタービン及びガスタービンの発生動力を電力等に変換する機器からなり、コンプレッサーの吸気に蒸発冷却材を噴霧して吸気を冷却するガスタービンプラントにおいて、蒸発冷却材はコンプレッサーの前及びコンプレッサー内で蒸発し、蒸発冷却材の噴霧量が噴霧設定量より急に減少する場合に、ガスタービンへの燃料供給量を、蒸発冷却材を噴霧しない運転条件での燃料供給量に自動的に減少することを特徴とするガスタービンプラントからなる。The present invention includes a compressor that compresses air, a gas turbine that receives compressed air from the compressor, burns fuel and drives the combustion gas, and a device that converts generated power of the gas turbine into electric power or the like. In a gas turbine plant that cools intake air by spraying evaporative coolant onto the evaporator, the evaporative coolant evaporates before and inside the compressor, and when the spray amount of the evaporative coolant suddenly decreases from the spray set amount, The gas turbine plant is characterized in that the amount of fuel supplied to the turbine is automatically reduced to the amount of fuel supplied under operating conditions in which the evaporative coolant is not sprayed.
また本発明は、空気を圧縮するコンプレッサーと、コンプレッサーから圧縮空気を受けて燃料を燃焼してその燃焼ガスで駆動するガスタービン及びガスタービンの発生動力を電力等に変換する機器からなり、コンプレッサーの吸気に蒸発冷却材を噴霧して吸気を冷却するガスタービンプラントにおいて、蒸発冷却材はコンプレッサーの前及びコンプレッサー内で蒸発し、蒸発冷却材の噴霧量が噴霧設定量より急に減少する場合に、IGV角度及びまたは静翼の角度を、蒸発冷却材を噴霧しない運転条件での角度に自動的に変更することを特徴とするガスタービンプラントからなる。The present invention also includes a compressor that compresses air, a gas turbine that receives compressed air from the compressor, burns fuel, and is driven by the combustion gas, and a device that converts power generated by the gas turbine into electric power or the like. In a gas turbine plant that cools the intake air by spraying the evaporative coolant onto the intake air, the evaporative coolant evaporates before and inside the compressor, and when the spray amount of the evaporative coolant suddenly decreases from the spray set amount, The gas turbine plant is characterized in that the IGV angle and / or the angle of the stationary blade are automatically changed to an angle under operating conditions in which the evaporative coolant is not sprayed.
(1)蒸発冷却材の噴霧が突然停止した場合に、ガスタービンの翼や機器が、過度の高温度に曝されるのを防ぐことができる。(2)蒸発冷却材を噴霧が突然停止した場合に、コンプレッサーのサージングを防ぐことができる。(1) It is possible to prevent the gas turbine blades and equipment from being exposed to excessively high temperatures when the spray of the evaporative coolant is suddenly stopped. (2) When the spray of the evaporative coolant is suddenly stopped, surging of the compressor can be prevented.
ガスタービンプラントにおいて、吸気を冷却する蒸発冷却材の噴霧量が急に減少しても、燃料供給量調節や翼角度の自動的に変更することで、それによる弊害を回避する。(4) In a gas turbine plant, even if the spray amount of the evaporative coolant for cooling the intake air suddenly decreases, the adverse effect caused by the fuel supply amount adjustment and the automatic change of the blade angle is avoided.
図2は本発明の実施例である。圧力センサー69で噴霧量が減少した信号は、制御盤73に入り、緊急状態を判断する。そして制御盤73から自動的に燃料調整弁72に燃料の流量を設定値(水噴霧しない状態)まで低下させる信号を出し、またIGVアクチュエーター70にIGVの角度を水噴霧しない状態(流量的には少なくなる方向)の角度に変更する信号を出し、そして可動静翼アクチュエーター71に可動静翼の角度を水噴霧しない状態(流量的には少なくなる方向)の角度に変更する信号を出す。FIG. 2 shows an embodiment of the present invention. The signal indicating that the spray amount has been reduced by the pressure sensor 69 enters the control panel 73 and determines an emergency state. Then, the control panel 73 automatically outputs a signal to the fuel adjusting valve 72 to reduce the fuel flow rate to a set value (a state in which water spray is not performed), and a state in which the IGV actuator 70 is not sprayed with an IGV angle (in terms of flow rate). A signal for changing the angle of the movable stationary blade to the angle of the movable stationary blade actuator 71 is output to the movable stationary blade actuator 71 so as to change the angle of the movable stationary blade to a state in which water spray is not performed (the direction of decreasing the flow rate).
この構成により、ガスタービン65の翼や機器が、過度の高温度に曝されるのを防ぐことができ、またコンプレッサー64の吸気取り込み量を抑制するのでサージングを防ぐことができる。なお、燃料調整弁72、IGVアクチュエーター70、可動静翼アクチュエーター71に水噴霧しない状態の設定量に戻すために信号を送るが、この設定量は、マニュアルでも設定できるし、プログラムを用いて運転状況から自動設定することもできる。With this configuration, the blades and equipment of the gas turbine 65 can be prevented from being exposed to an excessively high temperature, and the intake of the compressor 64 can be suppressed, so that surging can be prevented. A signal is sent to the fuel adjustment valve 72, the IGV actuator 70, and the movable stationary blade actuator 71 in order to return to a set amount in a state where water is not sprayed. The set amount can be set manually, and the operating condition can be set using a program. It can also be set automatically from.
図3a、図3bはサイレンサー内のスプリッターに設置したノズルの図であり、図1でのサイレンサー2近辺である。そして図3aは平面図であり、また図3bは図3aの一部を拡大した図である。スプリッター92はサイレンサー91の構成要素である。噴霧用の水配管93,同94と空気配管94はスプリッター92内に配置している。水を噴霧するノズル96をスプリッター92のコンプレッサー側の側面部に設置している。なおノズル96は空気配管94に直接取り付けている。そしてノズル96を通して水滴を噴霧している。また図9bでは配管をブラケット99,同100でスプリッター92側に固定している。これらの構成により、別途スペースを設けて配管類を設置する必要は無く、そして風路に露出したノズル類による吸気通過抵抗は極めて少ない。FIGS. 3A and 3B are views of a nozzle installed in a splitter in the silencer, which is near the silencer 2 in FIG. 3A is a plan view, and FIG. 3B is an enlarged view of a part of FIG. 3A. The splitter 92 is a component of the silencer 91. The water pipes 93 and 94 for spraying and the air pipe 94 are arranged in a splitter 92. A nozzle 96 for spraying water is provided on a side surface of the splitter 92 on the compressor side. The nozzle 96 is directly attached to the air pipe 94. Water droplets are sprayed through the nozzle 96. In FIG. 9B, the piping is fixed to the splitter 92 side by brackets 99 and 100. With these configurations, there is no need to provide a separate space for pipes, and the intake passage resistance due to the nozzles exposed to the air passage is extremely small.
そして図3bの吸音材は、すくなくとも配管と穴あき板の間にあることが好ましい。この配置で騒音を吸収できる。And the sound absorbing material of FIG. 3b is preferably at least between the pipe and the perforated plate. With this arrangement, noise can be absorbed.
図3bでは吸音材に撥水性吸音材を使用しているが、これは、湿っている吸気が流れてくる場合に水を吸収しない。水を吸収すると吸音性能が低下するが、撥水性吸音材を使用することで吸音性能の低下を防ぐことができる。湿っている吸気が流れる場合としては、例えば、図1にサイレンサーの前に吸気冷却器を備えているが、冷却条件によっては、湿り吸気になることがある。また、このような場合の対策としては、上記の撥水性吸音材以外にも、サイレンサーのスプリッターや壁面を耐食性材料又は耐食性処理を施したものを使用することが好ましい。B In FIG. 3b, a water-repellent sound-absorbing material is used as the sound-absorbing material, but this does not absorb water when wet intake air flows. When water is absorbed, the sound absorbing performance decreases, but by using a water-repellent sound absorbing material, the sound absorbing performance can be prevented from lowering. In the case where wet intake air flows, for example, an intake air cooler is provided in front of the silencer in FIG. 1, but depending on the cooling conditions, wet intake air may occur. In addition, as a countermeasure in such a case, it is preferable to use a silencer splitter or a material whose wall surface is subjected to a corrosion-resistant material or a corrosion-resistant treatment, in addition to the water-repellent sound-absorbing material.
また、蒸発冷却材の噴霧は、吸気の流れに対して直角面で見た場合にはできるだけ均一な方が、コンプレッサーの部分サージングや燃焼器の温度均一性からは望ましい。コンプレッサー前の風路で蒸発冷却材を噴霧する場合、風路内において吸気は早い速度(20m/秒から30m/秒)で流れているので、それに負けない勢いで噴霧するには大風量が必要である。噴霧した水滴は、噴射空気と共にその周囲の空気を巻きこんで広がる。そのため円錐面状に均一に噴霧するに場合においては、周囲の空気速度が速い場合の方が周囲が静止空気の場合よりも多くの噴射空気量を消費する。Also, it is desirable that the spray of the evaporative coolant is as uniform as possible when viewed in a plane perpendicular to the flow of the intake air from the viewpoint of the partial surging of the compressor and the uniformity of the temperature of the combustor. When spraying the evaporative coolant in the air path before the compressor, the intake air flows at a high speed (20m / sec to 30m / sec) in the air path, so a large air volume is required to spray at the same speed. It is. The sprayed water droplets spread around the surrounding air together with the blast air. Therefore, in the case of spraying uniformly in a conical shape, a larger amount of injected air is consumed when the surrounding air speed is high than when the surrounding is still air.
図4aと図4bは水滴を噴霧するノズルをコンプレッサー側から見た図である。図4aはスプリッター側に取り付けているノズル配置を示している。図4bは図4aのノズルからでた水滴の噴霧パターンである。噴霧パターンは直線状パターンである。ノズルは空気配管に管用ネジで取り付けており、ネジを締めこんだままであるので直線状パターンの方向はランダムであり、局部的に見ると水滴は大きく偏在している。この噴霧した偏在水滴を直角に屈曲する風路に供給する。なお直角に屈曲する風路の例としては、図1と図2での、サイレンサーからコンプレッサーに至る風路がある。直角に屈曲する風路部分において吸気の流れは大きく乱れるのでその中にこの偏在水滴をいれて水滴の分布を改善する。なお、直角に屈曲する風路部分に流れを整えるルーバーは当然設置しない方が好ましい。4A and 4B are views of a nozzle for spraying water droplets as viewed from the compressor side. FIG. 4a shows a nozzle arrangement mounted on the splitter side. FIG. 4b is a spray pattern of water droplets emitted from the nozzle of FIG. 4a. The spray pattern is a linear pattern. The nozzle is attached to the air pipe with a pipe screw, and since the screw is kept tightened, the direction of the linear pattern is random, and when viewed locally, water droplets are largely unevenly distributed. The sprayed unevenly distributed water droplets are supplied to a wind path bent at a right angle. Note that an example of the air path bent at a right angle is the air path from the silencer to the compressor in FIGS. 1 and 2. Since the flow of the intake air is largely disturbed in the wind path portion bent at a right angle, the unevenly distributed water droplets are put therein to improve the distribution of the water droplets. In addition, it is naturally preferable not to install a louver for adjusting a flow in a wind path portion bent at a right angle.
図5では、噴霧パターンは円環パターンであり、図6では、噴霧パターンは円周上に点状に噴霧したパターンである。In FIG. 5, the spray pattern is a ring pattern, and in FIG. 6, the spray pattern is a pattern sprayed in a dot on the circumference.
直線状パターン、環状パターン又は円周上に点状に噴霧したパターンで噴霧すると、蒸発冷却材の一部は外側に広がるが、しかし水滴の分布は極めて不均一である。ところがこれを直角に屈曲する通路に対して噴霧すると、屈曲部の乱流域で蒸発冷却材の分布を改善する。そして、噴霧パターンが直線状、環状又は点状であるので、噴霧用の空気を少なくできる。噴霧 When spraying in a linear pattern, an annular pattern or a pattern sprayed in a circle on a circle, a part of the evaporative coolant spreads outward, but the distribution of water droplets is extremely uneven. However, when this is sprayed into a passage bent at a right angle, the distribution of the evaporative coolant is improved in the turbulent flow region at the bent portion. And since the spray pattern is linear, annular or dot-like, air for spraying can be reduced.
図3a,図3b,図4a,図4b,図5,図6の図面ではサイレンサーのスプリッターと蒸発冷却材噴霧要素の組数については、条件に合わせた組数を選択できる。で は In the drawings of FIGS. 3a, 3b, 4a, 4b, 5 and 6, the number of sets of the splitter of the silencer and the evaporative coolant spray element can be selected according to the conditions.
本出願における実施の形態の図面では、発生動力を電力等に変換する機器、例えば発電機類は省略している。機器 In the drawings of the embodiments of the present application, devices for converting generated power into electric power and the like, for example, generators are omitted.
1,61 吸気室
2,62,91 サイレンサー
3,63,96,112 ノズル
4,64 コンプレッサー
5,65 ガスタービン
6,66 廃熱回収熱交換器
7,67 タンク
8,68 ポンプ
9 吸気冷却器
10,74 フィルター
69 圧力センサー
70 IGVアクチュエーター
71 可変角度静翼アクチュエーター
72 燃料調節弁
73 制御盤
92,111 スプリッター
93,94 水配管
95 空気配管
97 吸気ダクト側壁
98 撥水性吸音材
99,100 ブラケット
101 穴あき板
113 吸気ダクト上壁
114,115,116 ノズル噴霧パターン1,61 Intake chamber 2,62,91 Silencer 3,63,96,112 Nozzle 4,64 Compressor 5,65 Gas turbine 6,66 Waste heat recovery heat exchanger 7,67 Tank 8,68 Pump 9 Intake cooler 10 , 74 Filter 69 Pressure sensor 70 IGV actuator 71 Variable angle stationary blade actuator 72 Fuel control valve 73 Control panel 92, 111 Splitter 93, 94 Water pipe 95 Air pipe 97 Intake duct side wall 98 Water repellent sound absorbing material 99, 100 Bracket 101 Perforated Plate 113 Intake duct upper wall 114, 115, 116 Nozzle spray pattern
Claims (2)
ガスタービンへの燃料供給量を、蒸発冷却材を噴霧しない運転条件での燃料供給量に自動的に減少することを特徴とするガスタービンプラント。It consists of a compressor that compresses air, a gas turbine that receives compressed air from the compressor, burns fuel, drives the combustion gas, and converts the power generated by the gas turbine into electric power, etc. In a gas turbine plant that cools intake air by spraying water, when the evaporative coolant evaporates before and inside the compressor and the spray amount of the evaporative coolant suddenly decreases from the spray set amount,
A gas turbine plant wherein the amount of fuel supplied to the gas turbine is automatically reduced to the amount of fuel supplied under operating conditions in which the evaporative coolant is not sprayed.
IGV角度及び静翼の角度を、蒸発冷却材を噴霧しない運転条件での角度に自動的に変更することを特徴とするガスタービンプラント。It consists of a compressor that compresses air, a gas turbine that receives compressed air from the compressor, burns fuel, drives the combustion gas, and converts the power generated by the gas turbine into electric power, etc. In a gas turbine plant that cools intake air by spraying water, when the evaporative coolant evaporates before and inside the compressor and the spray amount of the evaporative coolant suddenly decreases from the spray set amount,
A gas turbine plant, wherein an IGV angle and an angle of a stationary blade are automatically changed to an angle under operating conditions in which the evaporative coolant is not sprayed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003436163A JP2004108379A (en) | 1999-04-05 | 2003-12-02 | Gas turbine plant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13313599 | 1999-04-05 | ||
JP2003436163A JP2004108379A (en) | 1999-04-05 | 2003-12-02 | Gas turbine plant |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35219099A Division JP3538807B2 (en) | 1999-04-05 | 1999-11-05 | Gas turbine plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004108379A true JP2004108379A (en) | 2004-04-08 |
Family
ID=32299911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003436163A Pending JP2004108379A (en) | 1999-04-05 | 2003-12-02 | Gas turbine plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004108379A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008190335A (en) * | 2007-02-01 | 2008-08-21 | Hitachi Ltd | Method of remodelling gas turbine system |
JP2009191635A (en) * | 2008-02-12 | 2009-08-27 | Ihi Corp | Gas machine |
JP2011099450A (en) * | 2006-09-11 | 2011-05-19 | Gas Turbine Efficiency Sweden Ab | System for increasing turbine output and increasing method thereof |
CN103452668A (en) * | 2012-06-01 | 2013-12-18 | 株式会社日立制作所 | Axial compressor and gas turbine having axial compressor |
JP2014029118A (en) * | 2012-07-31 | 2014-02-13 | Hitachi Ltd | Spray device |
CN107939528A (en) * | 2017-11-27 | 2018-04-20 | 北京航空航天大学 | Strong precooling aircraft propulsion based on cooling agent Yu fuel Compound cooling |
CN109915366A (en) * | 2019-03-27 | 2019-06-21 | 成都润洋汽车部件有限公司 | Screw compression device based on automobile production |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54160910A (en) * | 1978-06-08 | 1979-12-20 | Toshiba Corp | Gas turbine controller |
JPS5838328A (en) * | 1981-08-28 | 1983-03-05 | Hitachi Ltd | Control device for inlet guide vane |
JPS63272923A (en) * | 1987-05-01 | 1988-11-10 | Mitsui Eng & Shipbuild Co Ltd | Control method for output of gas turbine |
JPH0968004A (en) * | 1995-09-01 | 1997-03-11 | Toshiba Corp | Safety valve operation testing method in combined cycle power plant |
JPH09125984A (en) * | 1995-10-31 | 1997-05-13 | Kawasaki Heavy Ind Ltd | Steam-injected gas turbine and its controlling method |
JPH09236024A (en) * | 1995-12-28 | 1997-09-09 | Hitachi Ltd | Gas turbine, combined cycle plant and compressor |
JPH10246127A (en) * | 1995-12-28 | 1998-09-14 | Hitachi Ltd | Gas turbine, combined cycle plant, and compressor |
JPH1113486A (en) * | 1997-06-27 | 1999-01-19 | Hitachi Ltd | Gas turbine |
-
2003
- 2003-12-02 JP JP2003436163A patent/JP2004108379A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54160910A (en) * | 1978-06-08 | 1979-12-20 | Toshiba Corp | Gas turbine controller |
JPS5838328A (en) * | 1981-08-28 | 1983-03-05 | Hitachi Ltd | Control device for inlet guide vane |
JPS63272923A (en) * | 1987-05-01 | 1988-11-10 | Mitsui Eng & Shipbuild Co Ltd | Control method for output of gas turbine |
JPH0968004A (en) * | 1995-09-01 | 1997-03-11 | Toshiba Corp | Safety valve operation testing method in combined cycle power plant |
JPH09125984A (en) * | 1995-10-31 | 1997-05-13 | Kawasaki Heavy Ind Ltd | Steam-injected gas turbine and its controlling method |
JPH09236024A (en) * | 1995-12-28 | 1997-09-09 | Hitachi Ltd | Gas turbine, combined cycle plant and compressor |
JPH10246127A (en) * | 1995-12-28 | 1998-09-14 | Hitachi Ltd | Gas turbine, combined cycle plant, and compressor |
JPH1113486A (en) * | 1997-06-27 | 1999-01-19 | Hitachi Ltd | Gas turbine |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011099450A (en) * | 2006-09-11 | 2011-05-19 | Gas Turbine Efficiency Sweden Ab | System for increasing turbine output and increasing method thereof |
JP2008190335A (en) * | 2007-02-01 | 2008-08-21 | Hitachi Ltd | Method of remodelling gas turbine system |
JP2009191635A (en) * | 2008-02-12 | 2009-08-27 | Ihi Corp | Gas machine |
CN103452668A (en) * | 2012-06-01 | 2013-12-18 | 株式会社日立制作所 | Axial compressor and gas turbine having axial compressor |
US9644642B2 (en) | 2012-06-01 | 2017-05-09 | Mitsubishi Hitachi Power Systems, Ltd. | Axial compressor and gas turbine having axial compressor |
JP2014029118A (en) * | 2012-07-31 | 2014-02-13 | Hitachi Ltd | Spray device |
CN107939528A (en) * | 2017-11-27 | 2018-04-20 | 北京航空航天大学 | Strong precooling aircraft propulsion based on cooling agent Yu fuel Compound cooling |
CN107939528B (en) * | 2017-11-27 | 2020-05-05 | 北京航空航天大学 | Strong precooling aircraft propulsion system based on coolant and fuel composite cooling |
CN109915366A (en) * | 2019-03-27 | 2019-06-21 | 成都润洋汽车部件有限公司 | Screw compression device based on automobile production |
CN109915366B (en) * | 2019-03-27 | 2020-10-27 | 成都润洋汽车部件有限公司 | Screw compressor arrangement based on automotive production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5154822B2 (en) | Gas turbine intake air conditioning system and method | |
JP2000352320A (en) | Gas turbine plant | |
US7065953B1 (en) | Supercharging system for gas turbines | |
US6634165B2 (en) | Control system for gas turbine inlet-air water-saturation and supersaturation system | |
US7428818B2 (en) | System and method for augmenting power output from a gas turbine engine | |
US9790858B2 (en) | Intake-air cooling device | |
KR101132936B1 (en) | System and method for augmenting turbine power output | |
US6012279A (en) | Gas turbine engine with water injection | |
JP2877098B2 (en) | Gas turbines, combined cycle plants and compressors | |
CA2254922C (en) | Process and apparatus for achieving power augmentation in gas turbines via wet compression | |
KR100874508B1 (en) | Supercharge system for gas turbine | |
US8402735B2 (en) | Cooling apparatus, gas turbine system using cooling apparatus, heat pump system using cooling system, cooling method, and method for operating cooling apparatus | |
JP5571458B2 (en) | A system for harmonizing airflow entering a turbomachine | |
JP2011038523A (en) | System for conditioning airstream entering turbomachine | |
WO2001000975A1 (en) | Supercharging system for gas turbines | |
JP2005511947A (en) | Method and apparatus for increasing the power of a gas turbine using wet compression | |
JP2005511947A5 (en) | ||
JP2011149426A (en) | System and method for gas turbine power augmentation | |
JP2004108379A (en) | Gas turbine plant | |
JP2001234755A (en) | Gas turbine plant | |
JP3502239B2 (en) | Gas turbine plant | |
JP2002266658A (en) | Gas turbine equipment and method of limiting dangerous process value | |
JP4673765B2 (en) | Turbine exhaust system | |
RU2161715C2 (en) | Gas-turbine unit cooling device | |
JP2011179464A (en) | Intake system for gas turbine, and the gas turbine equipped therewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070710 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071113 |