JP2004108224A - Direct injection type internal combustion engine - Google Patents

Direct injection type internal combustion engine Download PDF

Info

Publication number
JP2004108224A
JP2004108224A JP2002271002A JP2002271002A JP2004108224A JP 2004108224 A JP2004108224 A JP 2004108224A JP 2002271002 A JP2002271002 A JP 2002271002A JP 2002271002 A JP2002271002 A JP 2002271002A JP 2004108224 A JP2004108224 A JP 2004108224A
Authority
JP
Japan
Prior art keywords
fuel
air
injection
volume
formation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002271002A
Other languages
Japanese (ja)
Inventor
Taketoshi Fujikawa
藤川 武敏
Makoto Koike
小池 誠
Yoshiaki Hattori
服部 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2002271002A priority Critical patent/JP2004108224A/en
Publication of JP2004108224A publication Critical patent/JP2004108224A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure improvement in the fuel consumption in the partial loading and to reduce the load for reducing emission in a direct injection type internal combustion engine. <P>SOLUTION: The volume of a fuel/air mixture forming area 30 is controlled by forming a volume variable fuel/air mixture area 30 in a sub chamber 24 by movable pistons 28-1 and 28-2, and controlling the positions of the movable pistons 28-1 and 28-2 according to the injection quantity of the fuel injected from an injection valve 20 into the fuel/air mixture forming area 30. When the load is adjusted by the fuel injection, the load can be adjusted in a substantially uniform air-fuel ratio without forming the fuel/air mixture concentration distribution in the fuel/air mixture forming area 30 in a stratified manner. Therefore, improvement in the fuel consumption is ensured in the partial loading, and the load in reducing emission can be reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料を燃焼室内に直接噴射する筒内噴射式内燃機関に関する。
【0002】
【従来の技術】
従来の筒内噴射式内燃機関の一例が特開平9−158736号公報(特許文献1)に示されている。この従来の筒内噴射式内燃機関においては、燃料を直接燃焼室内に噴射して混合気を形成している。部分負荷時には、点火プラグに近い程空燃比がリッチになるように混合気を成層的に形成し、点火プラグによりプラグ近傍のリッチ混合気を点火してリッチ混合気からリーン混合気へ火炎伝播させている。これによって、希薄燃焼を可能としており、部分負荷時の燃費改善を図っている。
【0003】
【特許文献1】
特開平9−158736号公報
【0004】
【発明が解決しようとする課題】
この従来の筒内噴射式内燃機関においては、部分負荷時に混合気を成層的に形成するため、燃焼室内の混合気濃度分布は理論空燃比を挟んでリッチ空燃比からリーン空燃比まで広範囲の分布を有する。リッチ混合気の部分については煤の発生原因となる可能性があり、リーン混合気の部分については未燃HCの発生原因となる可能性がある。したがって、この従来の筒内噴射式内燃機関においては、部分負荷時の燃費改善は実現できるものの、燃焼室内の混合気濃度がリッチ空燃比からリーン空燃比まで広範囲の分布を有するので、煤や未燃HC等のエミッションの低減に負担がかかるという課題があった。
【0005】
本発明は上記課題に鑑みてなされたものであり、部分負荷時の燃費改善を確保すると同時に、エミッション低減の負担を減らすことができる筒内噴射式内燃機関を提供することを目的とする。
【0006】
【課題を解決するための手段】
このような目的を達成するために、第1の本発明に係る筒内噴射式内燃機関は、シリンダ内に空気を吸入し、ピストンにより吸入空気を圧縮するとともに、噴射弁により燃料を燃焼室内に直接噴射して混合気を形成し、該混合気を燃焼させることで回転力を発生させる筒内噴射式内燃機関であって、燃焼室内に容積可変の混合気形成領域を形成する領域形成手段と、噴射弁から混合気形成領域内へ噴射される燃料噴射量に応じて、領域形成手段により形成された混合気形成領域の容積を制御する容積制御手段と、を有することを特徴とする。
【0007】
このように、燃焼室内に容積可変の混合気形成領域を形成し、噴射弁から混合気形成領域内へ噴射される燃料噴射量に応じて混合気形成領域の容積を制御することにより、燃料噴射量で負荷の調整を行う場合に、混合気形成領域内の混合気濃度分布を成層的に形成しないで、ほぼ均一空燃比とした状態で負荷の調整を行うことができる。したがって、部分負荷時の燃費改善を確保すると同時に、エミッション低減の負担を減らすことができる。
【0008】
第2の本発明に係る筒内噴射式内燃機関は、第1の本発明に記載の内燃機関であって、前記噴射弁は、燃料の噴射広がり角度が可変であり、燃料噴射量に応じて燃料の噴射広がり角度を変化させる広がり角度制御手段をさらに有することを特徴とする。
【0009】
このように、噴射弁は燃料の噴射広がり角度が可変であり、燃料噴射量に応じて燃料の噴射広がり角度を変化させることにより、燃料噴射量で負荷の調整を行う場合に、混合気形成領域内の混合気濃度分布をより均一化することができる。したがって、エミッション低減の負担をさらに減らすことができる。
【0010】
第3の本発明に係る筒内噴射式内燃機関は、第1または第2の本発明に記載の内燃機関であって、前記噴射弁は複数備えられ、混合気形成領域内へ噴射される燃料噴射量に応じて燃料を噴射する噴射弁の数を変化させる噴射弁制御手段をさらに有することを特徴とする。
【0011】
このように、混合気形成領域内へ噴射される燃料噴射量に応じて燃料を噴射する噴射弁の数を変化させることにより、燃料噴射量で負荷の調整を行う場合に、混合気形成領域内の混合気濃度分布をより均一化することができる。したがって、エミッション低減の負担をさらに減らすことができる。
【0012】
第4の本発明に係る筒内噴射式内燃機関は、第1〜3の本発明のいずれか1に記載の内燃機関であって、前記容積制御手段は、(混合気形成領域の容積)/(燃料噴射量)の値が所望の一定値にほぼ保たれるように、混合気形成領域の容積を制御することを特徴とする。
【0013】
このように、(混合気形成領域の容積)/(燃料噴射量)の値が所望の一定値にほぼ保たれるように、混合気形成領域の容積が制御されることにより、燃料噴射量で負荷の調整を行う場合に、負荷の高低に関係なく空燃比を所望の一定値にほぼ保つことができる。したがって、エミッション低減の負担をさらに減らすことができる。
【0014】
第5の本発明に係る筒内噴射式内燃機関は、第1〜3の本発明のいずれか1に記載の内燃機関であって、前記容積制御手段は、(混合気形成領域の容積)/(燃料噴射量)の値を燃料噴射量に応じて予め決められた値になるように、混合気形成領域の容積を制御することを特徴とする。
【0015】
このように、(混合気形成領域の容積)/(燃料噴射量)の値が、燃料噴射量に応じて予め決められた値になるように、混合気形成領域の容積が制御されることにより、例えば、低負荷時には空燃比をリーンにすることができ、高負荷時には空燃比をリッチにすることができる。したがって、低負荷時のさらなる燃費低減及び高負荷時の高回転力を実現できる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)を、図面に従って説明する。
【0017】
図1,2は、本発明の実施形態に係る筒内噴射式内燃機関の内部構成の概略を示す図であり、図1は側面図であり、図2は上面図である。そして、本実施形態においては、火花点火式内燃機関に本発明を適用した場合を示す。本実施形態の筒内噴射式内燃機関は、例えば車両駆動用の原動機として利用され、シリンダ10、シリンダヘッド12、ピストン14、吸気弁16、排気弁18、噴射弁20、点火プラグ22を備えている。そして、シリンダヘッド12には略円筒形状の副室24が形成され、副室24が燃焼室となっている。副室24とシリンダ10内とは連通口26を介してつながっている。そして、噴射弁20、点火プラグ22は副室24の周壁24aに設けられている。また、ピストン14は図示しないコネクティングロッドを介して図示しないクランク軸と連結されている。
【0018】
吸気行程においては、吸気弁16が開きシリンダ10内に空気が吸入される。圧縮行程においては、吸気弁16が閉じピストン14により吸入空気が圧縮されるとともに、噴射弁20により燃料が副室24内に直接噴射されて副室24内に混合気が形成される。そして、点火プラグ22により副室24内の混合気を点火して燃焼させる。膨張行程においては、燃焼ガスが膨張して図示しないクランク軸に回転力を発生させ、排気行程においては、排気弁18が開きシリンダ10内の燃焼ガスが排気弁18から排出される。なお、筒内噴射式内燃機関においては、噴射弁20からの燃料噴射量を調整することで負荷を調整し、図示しない電子制御装置により燃料の噴射量及び噴射タイミングを制御する。
【0019】
本実施形態においては、副室24内に周壁24aに沿って摺動可能な領域形成手段としての2つの可動ピストン28−1,28−2が設けられている。この2つの可動ピストン28によって副室24内に混合気形成領域30が形成される。可動ピストン28−1,28−2の周囲にはガスシールリング36−1,36−2がそれぞれ設けられ、ガスシールリング36−1,36−2が周壁24aと接触している。そして、可動ピストン28−1,28−2の各々はロッド32−1,32−2とそれぞれ連結され、ロッド32−1,32−2は副室24内から壁面24bを貫いて副室24外へ延びている。壁面24b位置でのロッド32−1,32−2の周囲にガスシールリング34−1,34−2がそれぞれ設けられており、これによって副室24内の気密が保たれている。ロッド32−1,32−2は図示しないリニアアクチュエータと連結されており、リニアアクチュエータを駆動して可動ピストン28−1,28−2を周壁24aに沿って互いに逆方向に駆動することで、混合気形成領域30の容積を変化させることができる。なお、噴射弁20及び点火プラグ22は、混合気形成領域30が形成される位置の周壁24aに設けられている。そして、混合気形成領域30とそれ以外の副室24の部分とは連通口26を介して連通している。また、可動ピストン28−1,28−2及びロッド32−1,32−2の材料としては燃焼ガスの温度に対して十分な耐熱性を有する材料を使用することが好ましい。
【0020】
そして、本実施形態では、噴射弁20から混合気形成領域30内へ噴射される燃料噴射量に応じて、リニアアクチュエータにより可動ピストン28−1,28−2の位置を制御することで、混合気形成領域30の容積を制御する。すなわち図示しない電子制御装置は、燃料噴射量を示す制御指令値からリニアアクチュエータへの制御指令値を算出して出力する容積制御手段を有している。ここで、噴射弁20からの燃料噴射量は内燃機関の負荷に基づいて設定されるため、内燃機関の負荷に基づいて燃料噴射量及び混合気形成領域30の容積が制御されることになる。より具体的には、負荷が増大するときは、燃料噴射量及び混合気形成領域30の容積をともに増大させ、負荷が減少するときは、燃料噴射量及び混合気形成領域30の容積をともに減少させる。
【0021】
本実施形態の圧縮行程時には、図3(A)に示すように、シリンダ10内の空気が連通口26を通って副室24内に流入し、副室24内では周壁24aの形状に沿って旋回気流が発生する。さらに、圧縮行程時に、噴射弁20から混合気形成領域30内へ燃料が噴射され、図3(B)に示すように、噴射された燃料は空気と混合される。その際に旋回気流によって混合が促進されるため、図3(C)に示すように、混合気形成領域30内の混合気濃度分布は略均一となる。さらに、混合気は旋回気流によって混合気形成領域30外へはほとんど拡散しない。そして、略均一の濃度分布となっている混合気形成領域30内の混合気を点火プラグ22により点火して燃焼させる。この混合気形成領域30内における略均一な濃度分布の混合気の形成については、負荷が変化しても維持される。すなわち従来の筒内噴射式内燃機関においては、部分負荷時には混合気濃度分布を成層的に形成していたのに対し、本実施形態の筒内噴射式内燃機関においては、部分負荷時にも混合気形成領域30内の混合気濃度分布は略均一状態を維持する。ただし、略均一状態であるときの空燃比については、後述するように負荷に応じて変化する場合もある。
【0022】
圧縮行程における噴射弁20からの燃料噴射タイミングについては、機関回転速度に応じて変化させてもよい。例えば、図4(A)に示すように、機関回転速度が高回転になるとともに燃料噴射タイミングを早めることにより、高回転時においても濃度分布の略均一な混合気の形成を確保することができる。さらに、噴射弁20からの燃料噴射タイミングを負荷に応じて変化させてもよく、例えば、図4(B)に示すように、負荷の増大とともに燃料噴射タイミングを早めることにより、燃料噴射量の多い高負荷時においても濃度分布の略均一な混合気の形成を確保することができる。
【0023】
次に、燃料噴射量に応じて混合気形成領域30の容積をどのように制御するかについて、電子制御装置内に記憶されている燃料噴射量−混合気形成領域容積特性の具体例を幾つか挙げて説明する。
【0024】
図5(A)においては、燃料噴射量−混合気形成領域容積特性が略正比例関係にある場合を示している。すなわち図5(A)においては、(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0にほぼ保たれている。ここでの規定の一定値A0については、混合気形成領域30内の濃度分布が略均一に形成されたときの空燃比が理論空燃比となるための値に設定される。図5(A)に示す特性になるように混合気形成領域30の容積を制御する場合、混合気形成領域30内における略均一の空燃比は、図5(B)に示すように、負荷の高低に関係なく理論空燃比にほぼ保たれる。
【0025】
図6(A)においては、燃料噴射量が所定値L1以下のときは、燃料噴射量−混合気形成領域容積特性が図5(A)と同様の略正比例関係を保ち、燃料噴射量が所定値L1より大きいときは、(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0より小さくなる場合を示している。なお、燃料噴射量の所定値L1は、図5(B)の負荷の高低に関係なく理論空燃比に保たれる場合の最大噴射量にほぼ等しい値が好ましい。図6(A)に示す特性になるように混合気形成領域30の容積を制御する場合、混合気形成領域30内における略均一の空燃比は、図6(B)に示すように、低中負荷時には理論空燃比にほぼ保たれ、高負荷時には理論空燃比よりリッチになる。
【0026】
図7(A)においては、燃料噴射量が所定範囲L2〜L3内のときは(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0より大きく、燃料噴射量が所定範囲の下限値L2近傍のときは(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0にほぼ等しく、燃料噴射量が所定範囲の上限値L3より大きいときは(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0より小さくなる場合を示している。図7(A)に示す特性になるように混合気形成領域30の容積を制御する場合、混合気形成領域30内における略均一の空燃比は、図7(B)に示すように、極低負荷時にはほぼ理論空燃比となり、低中負荷時には理論空燃比よりリーンになり、高負荷時には理論空燃比よりリッチになる。
【0027】
図8(A)においては、燃料噴射量が所定範囲L4〜L5内のときは(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0より小さい一定値A1をほぼ保ち、燃料噴射量が所定範囲の上限値L5より大きいときは(混合気形成領域30の容積)/(燃料噴射量)の値が一定値A1より小さくなる場合を示している。図8(A)に示す特性になるように混合気形成領域30の容積を制御する場合、混合気形成領域30内における略均一の空燃比は、図8(B)に示すように、低中負荷時には理論空燃比より若干リッチになり、高負荷時には低中負荷時よりさらにリッチになる。
【0028】
本実施形態においては、可動ピストン28−1,28−2によって副室24内に容積可変の混合気形成領域30を形成している。そして、噴射弁20から混合気形成領域30内へ噴射される燃料噴射量に応じて、可動ピストン28−1,28−2の位置を制御することで、混合気形成領域30の容積を制御している。したがって、燃料噴射量で負荷の調整を行う場合に、混合気形成領域30内の混合気濃度分布を成層的に形成しないで、ほぼ均一空燃比とした状態で負荷の調整を行うことができる。例えば、低負荷時には混合気形成領域30の容積を高負荷時の容積より小さくすることで、燃料噴射量が少なくても混合気濃度分布を成層的に形成しないで安定した燃焼を実現できる。したがって、部分負荷時の燃費改善を確保すると同時に、エミッション低減の負担を減らすことができる。
【0029】
そして、図5(A)の燃料噴射量−混合気形成領域容積特性に示すように混合気形成領域30の容積が制御される場合、混合気形成領域30内における略均一の空燃比は負荷の高低に関係なく理論空燃比にほぼ保たれるので、全負荷域においてエミッション低減の負担をさらに減らすことができる。
【0030】
また、図6(A)の燃料噴射量−混合気形成領域容積特性に示すように混合気形成領域30の容積が制御される場合、混合気形成領域30内における略均一の空燃比は、低中負荷時には理論空燃比にほぼ保たれ、高負荷時には理論空燃比よりリッチになる。したがって、低中負荷時にはエミッション低減の負担をさらに減らすことができ、高負荷時には回転力を増大させることができる。
【0031】
また、図7(A)の燃料噴射量−混合気形成領域容積特性に示すように混合気形成領域30の容積が制御される場合、混合気形成領域30内における略均一の空燃比は、極低負荷時にはほぼ理論空燃比となり、低中負荷時には理論空燃比よりリーンになり、高負荷時には理論空燃比よりリッチになる。したがって、極低負荷時には燃焼を安定させ、低中負荷時にはNOx低減及び燃費改善を実現し、高負荷時には回転力を増大させることができる。
【0032】
また、図8(A)の燃料噴射量−混合気形成領域容積特性に示すように混合気形成領域30の容積が制御される場合、混合気形成領域30内における略均一の空燃比は、低中負荷時には理論空燃比より若干リッチになり、高負荷時には低中負荷時よりさらにリッチになる。したがって、例えば冷間始動時のような触媒の早期暖気が必要な場合に排気温度を短時間で高めることができ、高負荷時には回転力を増大させることができる。
【0033】
さらに、本実施形態の噴射弁20は燃料の噴射広がり角度を変化させることができ、電子制御装置は燃料噴射量に応じて燃料の噴射広がり角度を変化させる広がり角度制御手段を有していてもよい。ここで、燃料の噴射広がり角度を変化させるための噴射弁の構成については、特開平11−351103号公報に開示の構成を用いて実現でき、以下、図9,10を用いてこの構成について説明する。
【0034】
図9は噴射弁における噴射孔付近の先端部を示した断面図であり、図10はそのサック部43を取り出して示した断面図である。サック部43には2つの噴射孔48,49が貫通形成されている。噴射孔48,49は図10(B)、(C)の断面図に示すように広がり角度が互いに異なっており、噴射孔48の広がり角度α1は噴射孔49の広がり角度α2より小さい。ニードル弁44はその先端に噴射孔選択部45を有している。噴射孔選択部45はサック部43の内壁に沿って摺動可能であり、その内部には外部と連通する燃料通路51が形成されている。ニードル弁44は電気的または機械的駆動手段によりその位置が制御されることで、噴射孔選択部45の位置が制御される。ニードル弁44の外側には燃料通路50が形成されており、ニードル弁44の駆動により燃料が燃料通路50から燃料通路51へと流れ込む。図9(A)に示すように、燃料通路51と噴射孔48とが連通するように噴射孔選択部45の位置を制御すれば燃料は広がり角度α1で噴射され、図9(B)に示すように、燃料通路51と噴射孔49とが連通するように噴射孔選択部45の位置を制御すれば燃料は広がり角度α2で噴射される。このように、噴射孔選択部45の位置を制御して燃料通路51と連通させる噴射孔を選択することにより、噴射広がり角度を変化させることができる。
【0035】
広がり角度制御手段は、燃料噴射量が所定値L6以下すなわち混合気形成領域30の容積の値が所定値V6以下の場合は、燃料通路51と噴射孔48とを連通させて図11(A)の上面図に示すように狭い噴射広がり角度α1で燃料が噴射されるように、噴射孔選択部45の位置を制御する。一方、燃料噴射量が所定値L6より大きいすなわち混合気形成領域30の容積の値が所定値V6より大きい場合は、燃料通路51と噴射孔49とを連通させて図11(B)の上面図に示すように広い噴射広がり角度α2で燃料が噴射されるように、噴射孔選択部45の位置を制御する。このように、燃料噴射量が少ないすなわち混合気形成領域30の容積が小さい場合は狭い噴射広がり角度で燃料を噴射し、燃料噴射量が多いすなわち混合気形成領域30の容積が大きい場合は広い噴射広がり角度で燃料を噴射することで、混合気形成領域30内により均一に燃料を噴射することができ、広範囲の負荷の変動に対して混合気形成領域30内の混合気濃度分布をより均一化することができる。したがって、エミッション低減の負担をさらに減らすことができる。
【0036】
図9〜11においては、燃料の噴射広がり角度を2段階に変化させる場合について説明しているが、同様の原理を用いて燃料の噴射広がり角度を3段階以上に変化させてもよい。
【0037】
さらに、噴射弁20は副室24の周壁24aの異なる位置に複数備えられ、電子制御装置は混合気形成領域30内へ噴射される燃料噴射量に応じて燃料を噴射する噴射弁20の数を変化させる噴射弁制御手段を有していてもよい。このとき、点火プラグ22については、噴射弁20の各々に対応して副室24の周壁24aに複数設けられ、点火に用いるプラグの数を燃料を噴射する噴射弁20の数に応じて変化させることが好ましい。噴射弁制御手段は、図12の上面図に示すように、燃料噴射量の増大すなわち混合気形成領域30の容積の増大に応じて、燃料を噴射する噴射弁20の数を増加させる。このように、混合気形成領域30の容積の増加に応じて燃料を噴射する噴射弁20の数を増加させるので、混合気形成領域30内により均一に燃料を噴射することができ、広範囲の負荷の変動に対して混合気形成領域30内の混合気濃度分布をより均一化することができる。したがって、エミッション低減の負担をさらに減らすことができる。
【0038】
図12においては、3つの噴射弁20を備えた場合について説明しているが、噴射弁20の数については任意に設定することができる。
【0039】
また、図13(A)の側面図に示すように、ピストン14はその頂部に突起38を備え、上死点付近で突起38がシリンダ10内と副室24とを連通する連絡口26に収まるようにしてもよい。これによって、混合気がほとんど拡散しない連絡口26分の容積を減少させて燃焼室中の混合気形成領域30の割合を増やすことができるので、高負荷時にさらに高い回転力を実現できる。
【0040】
さらに、図13(B)の側面図に示すように、連絡口26は副室24側へ向かうにつれて開口面積が小さくなるテーパ形状で、ピストン14の突起38も上死点付近で連絡口26に収まるようなテーパ形状であってもよい。これによって、シリンダ10内の空気が副室24内へ流入するときの効率を高めることができ、さらに突起38の過熱も回避できる。
【0041】
なお、混合気形成領域30の容積を変化させるための構成は図2に示す構成に限るものではなく、例えば図14〜17の上面図に示す構成においても混合気形成領域30の容積を変化させることができる。ただし、図14〜16においては、副室24及びその周辺の構成のみ図示し、他の構成の図示を省略している。
【0042】
図14においては、可動ピストン28−1,28−2の側面にスライダ61−1,61−2がそれぞれ連結されており、スライダ61−1,61−2は周壁24aに設けられた開口部24cを通過して副室24外へ延びている。スライダ61−1,61−2はシャフト62の回転によりシャフト軸方向に互いに逆方向に並進駆動されることで、可動ピストン28−1,28−2が周壁24aに沿って互いに逆方向に駆動される。スライダ61−1,61−2をシャフト軸方向に並進駆動する機構は例えばボールねじを用いることで実現でき、ねじを互いに逆方向に切ることでスライダ61−1,61−2の互いに逆方向の並進駆動を実現できる。シャフト62は図示しないアクチュエータによって回転駆動される。副室24は開口部24cを介して図示しないブローバイガス回収装置と連通しており、開口部24cを通って漏れてくる僅かな燃焼ガスはブローバイガス回収装置で回収される。他の構成については図2に示す構成と同様であるため説明を省略する。また、スライダ61−1,61−2及びシャフト62の材料としては燃焼ガスの温度に対して十分な耐熱性を有する材料を使用することが好ましい。
【0043】
図15においては、可動ピストン28−1,28−2内部にラック71−1,71−2がそれぞれ連結されており、ラック71−1,71−2はシャフト72−1,72−2の略中央部に設けられたピニオン73−1,73−2とそれぞれ噛み合っている。シャフト72−1,72−2が同方向に回転駆動されることで、ラック71−1,71−2が互いに逆方向に並進駆動されて可動ピストン28−1,28−2が周壁24aに沿って互いに逆方向に駆動される。シャフト72−1,72−2は、可動ピストン28−1,28−2の側面をそれぞれ貫通し、さらに周壁24aを貫通して副室24外へ延びている。そして、シャフト72−1,72−2は図示しないアクチュエータによって回転駆動される。周壁24a位置でのシャフト72−1,72−2周囲にガスシールリング74−1,74−2がそれぞれ設けられており、これによって副室24内の気密が保たれている。他の構成については図2に示す構成と同様であるため説明を省略する。また、ラック71−1,71−2及びシャフト72−1,72−2の材料としては燃焼ガスの温度に対して十分な耐熱性を有する材料を使用することが好ましい。
【0044】
図16においては、可動片81及び固定片82−1,82−2によって副室24が形成されている。可動片81は副室24内に混合気形成領域30を形成するための仕切壁83を備えている。可動片81は例えば油圧シリンダ84等のアクチュエータによって固定片82−1,82−2の側面に沿って並進駆動されることで、混合気形成領域30の容積を変化させることができる。可動片81の側面と固定片82−1の側面の間及び可動片81の側面と固定片82−2の側面の間にはガスシールリング85−1,85−2がそれぞれ設けられており、これによって副室24内の気密が保たれている。噴射弁20及び点火プラグ(図示せず)は可動片81側面の混合気形成領域30側に設けられている。他の構成については図2に示す構成と同様であるため説明を省略する。
【0045】
図17においては、可動ピストン28−1,28−2及びスライダ61−1,61−2に、可動ピストンとスライダとが互いに引き合う磁石が設けられ、可動ピストン28−1とスライダ61−1との相対位置関係及び可動ピストン28−2とスライダ61−2との相対位置関係が磁力によって規定される。スライダ61−1,61−2はシャフト62の回転によりシャフト軸方向に互いに逆方向に並進駆動され、スライダ61−1,61−2の互いに逆方向の並進駆動に連動して可動ピストン28−1,28−2が周壁24aに沿って互いに逆方向に駆動される。スライダ61−1,61−2をシャフト軸方向に並進駆動する機構は例えばボールねじを用いることで実現でき、ねじを互いに逆方向に切ることでスライダ61−1,61−2の互いに逆方向の並進駆動を実現できる。シャフト62は図示しないアクチュエータによって回転駆動される。他の構成については図2に示す構成と同様であるため説明を省略する。
【0046】
以上の説明においては、点火プラグにより混合気を点火させる火花点火式内燃機関の場合について説明したが、本発明の適用が可能な筒内噴射式内燃機関は火花点火式内燃機関に限るものではなく、混合気を圧縮着火させる圧縮着火式内燃機関の場合でも本発明の適用が可能である。圧縮着火式内燃機関において、燃料噴射量に応じて混合気形成領域30の容積を変化させることにより、燃料噴射量の増減による自着火時期の変化を少なくすることができ、自着火運転範囲を大幅に広げることができる。
【0047】
図18,19に示す燃料噴射量−混合気形成領域容積特性においては、部分負荷時には混合気を点火プラグにより点火させずに圧縮着火させて燃焼させる場合の特性を示している。
【0048】
図18(A)においては、燃料噴射量が所定範囲の下限値L7より小さいときは(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0より十分大きく、燃料噴射量が所定範囲L7〜L8内のときは(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0にほぼ等しく、燃料噴射量が所定範囲の上限L8より大きいときは(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0より小さくなる場合を示している。そして、燃料噴射量が所定範囲の下限値L7より小さいときは圧縮着火運転を行い、それ以外のときは火花点火運転を行う。図18(A)に示す特性になるように混合気形成領域30の容積を制御する場合、混合気形成領域30内における略均一の空燃比は、図18(B)に示すように、低中負荷時には理論空燃比より極めてリーンになり、中負荷時にはほぼ理論空燃比となり、高負荷時には理論空燃比よりリッチになる。これによって、低中負荷時にはさらなるNOx低減及び燃費改善を実現し、高負荷時には回転力を増大させることができる。
【0049】
図19(A)においては、燃料噴射量が所定範囲の下限値L9より小さいときは(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0にほぼ等しいか若干大きく、燃料噴射量が所定範囲L9〜L10内のときは(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0より十分大きく、燃料噴射量が所定範囲L10〜L11内のときは(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0にほぼ等しく、燃料噴射量が所定範囲の上限値L11より大きいときは(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0より小さくなる場合を示している。そして、燃料噴射量が所定範囲L9〜L10内のときは圧縮着火運転を行い、それ以外のときは火花点火運転を行う。図19(A)に示す特性になるように混合気形成領域30の容積を制御する場合、混合気形成領域30内における略均一の空燃比は、図19(B)に示すように、極低負荷時にはほぼ理論空燃比か理論空燃比より若干リーンとなり、低中負荷時には理論空燃比より極めてリーンになり、中負荷時にはほぼ理論空燃比となり、高負荷時には理論空燃比よりリッチになる。これによって、極低負荷時には燃焼を安定させ、低中負荷時にはさらなるNOx低減及び燃費改善を実現し、高負荷時には回転力を増大させることができる。
【0050】
図20に示す燃料噴射量−混合気形成領域容積特性においては、部分負荷時には圧縮行程途中に燃料を噴射して圧縮着火により混合気を燃焼させ、高負荷時には圧縮行程末期に燃料を噴射してディーゼル燃焼させる場合の特性の一例を示している。図20(A)においては、燃料噴射量が所定値L12以下のときは(混合気形成領域30の容積)/(燃料噴射量)の値が規定の一定値A0より十分大きく、燃料噴射量が所定値L12より大きいときは(混合気形成領域30の容積)/(燃料噴射量)の値が、規定の一定値A0より大きく、かつ燃料噴射量が所定値L12以下のときの値より小さくなる場合を示している。そして、燃料噴射量が所定値L12以下のときは圧縮行程途中に燃料を噴射して圧縮着火により混合気を燃焼させ、それ以外のときは圧縮行程末期に燃料を噴射してディーゼル燃焼させる。図20(A)に示す特性になるように混合気形成領域30の容積を制御する場合、混合気形成領域30内における略均一の空燃比は、図20(B)に示すように、低中負荷時には理論空燃比より極めてリーンになり、高負荷時には低中負荷時よりリッチで理論空燃比よりリーンになる。これによって、低中負荷時にはさらなるNOx低減及び燃費改善を実現できる。
【0051】
圧縮着火式内燃機関においても、圧縮行程における噴射弁20からの燃料噴射タイミングについては、機関回転速度に応じて変化させてもよい。例えば、図21(A)に示すように、圧縮行程途中に燃料を噴射して圧縮着火運転を行う機関回転速度の範囲内において、高回転になるとともに燃料噴射タイミングを早めることにより、濃度分布の略均一な混合気の形成を確保することができる。なお、圧縮着火運転を行う機関回転速度の範囲を超えた場合は、燃料噴射タイミングを圧縮行程末期まで遅らせてディーゼル燃焼による運転に切り換える。
【0052】
さらに、噴射弁20からの燃料噴射タイミングを負荷に応じて変化させてもよく、例えば、図21(B)に示すように、圧縮行程途中に燃料を噴射して圧縮着火運転を行う負荷の範囲内において、負荷の増大とともに燃料噴射タイミングを早めることにより、濃度分布の略均一な混合気の形成を確保することができる。なお、圧縮着火運転を行う負荷の範囲を超えた場合は、燃料噴射タイミングを圧縮行程末期まで遅らせてディーゼル燃焼による運転に切り換える。
【0053】
【発明の効果】
以上説明したように、本発明によれば、燃焼室内に容積可変の混合気形成領域を形成し、噴射弁から混合気形成領域内へ噴射される燃料噴射量に応じて混合気形成領域の容積を制御することにより、部分負荷時の燃費改善を確保すると同時にエミッション低減の負担を減らすことができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る筒内噴射式内燃機関の内部構成の概略を示す側面図である。
【図2】本発明の実施形態に係る筒内噴射式内燃機関の内部構成の概略を示す上面図である。
【図3】本発明の実施形態に係る筒内噴射式内燃機関の圧縮行程を説明する図である。
【図4】本発明の実施形態における燃料噴射タイミング制御の一例を説明する図である。
【図5】本発明の実施形態における燃料噴射量−混合気形成領域容積特性の一例を示す図である。
【図6】本発明の実施形態における燃料噴射量−混合気形成領域容積特性の一例を示す図である。
【図7】本発明の実施形態における燃料噴射量−混合気形成領域容積特性の一例を示す図である。
【図8】本発明の実施形態における燃料噴射量−混合気形成領域容積特性の一例を示す図である。
【図9】本発明の他の実施形態に用いられる噴射弁の構成を示す断面図である。
【図10】本発明の他の実施形態に用いられる噴射弁の構成を示す断面図である。
【図11】本発明の他の実施形態に用いられる噴射弁の構成を示す断面図である。
【図12】本発明の他の実施形態に係る筒内噴射式内燃機関の動作を説明する上面図である。
【図13】本発明の他の実施形態に係る筒内噴射式内燃機関の動作を説明する上面図である。
【図14】本発明の実施形態における混合気形成領域の容積を変化させる他の構成の概略を示す上面図である。
【図15】本発明の実施形態における混合気形成領域の容積を変化させる他の構成の概略を示す上面図である。
【図16】本発明の実施形態における混合気形成領域の容積を変化させる他の構成の概略を示す上面図である。
【図17】本発明の実施形態における混合気形成領域の容積を変化させる他の構成の概略を示す上面図である。
【図18】本発明の他の実施形態における燃料噴射量−混合気形成領域容積特性の一例を示す図である。
【図19】本発明の他の実施形態における燃料噴射量−混合気形成領域容積特性の一例を示す図である。
【図20】本発明の他の実施形態における燃料噴射量−混合気形成領域容積特性の一例を示す図である。
【図21】本発明の他の実施形態における燃料噴射タイミング制御の一例を説明する図である。
【符号の説明】
20 噴射弁、22 点火プラグ、24 副室、28−1,28−2 可動ピストン、30 混合気形成領域。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a direct injection internal combustion engine that injects fuel directly into a combustion chamber.
[0002]
[Prior art]
An example of a conventional in-cylinder injection type internal combustion engine is disclosed in Japanese Patent Application Laid-Open No. 9-158736 (Patent Document 1). In this conventional direct injection internal combustion engine, fuel is directly injected into a combustion chamber to form an air-fuel mixture. At the time of partial load, the air-fuel ratio is formed stratified so that the air-fuel ratio becomes richer as it is closer to the ignition plug, and the rich air-fuel mixture near the plug is ignited by the ignition plug and flame is propagated from the rich air-fuel mixture to the lean air-fuel mixture ing. This enables lean burn and improves fuel efficiency at partial load.
[0003]
[Patent Document 1]
JP-A-9-158736
[0004]
[Problems to be solved by the invention]
In this conventional in-cylinder injection type internal combustion engine, since the air-fuel mixture is formed stratified at partial load, the air-fuel mixture concentration distribution in the combustion chamber ranges from a rich air-fuel ratio to a lean air-fuel ratio across the stoichiometric air-fuel ratio. Having. A portion of the rich mixture may cause soot generation, and a portion of the lean mixture may generate unburned HC. Therefore, in this conventional in-cylinder injection type internal combustion engine, although fuel efficiency can be improved at a partial load, since the mixture concentration in the combustion chamber has a wide distribution from a rich air-fuel ratio to a lean air-fuel ratio, soot and unburned There is a problem that a burden is imposed on reduction of emissions such as fuel HC.
[0005]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an in-cylinder injection type internal combustion engine that can improve fuel efficiency at a partial load and reduce the burden of reducing emissions.
[0006]
[Means for Solving the Problems]
In order to achieve such an object, the direct injection internal combustion engine according to the first aspect of the present invention draws air into a cylinder, compresses intake air with a piston, and moves fuel into a combustion chamber with an injection valve. An in-cylinder injection internal combustion engine that directly generates an air-fuel mixture by injecting the air-fuel mixture to generate a rotational force by burning the air-fuel mixture, and a region forming unit that forms a variable-volume air-fuel mixture formation region in a combustion chamber. And volume control means for controlling the volume of the mixture formation region formed by the region formation means in accordance with the fuel injection amount injected from the injection valve into the mixture mixture formation region.
[0007]
As described above, the fuel injection is performed by forming the variable-volume mixture forming region in the combustion chamber and controlling the volume of the mixture forming region according to the fuel injection amount injected from the injection valve into the mixture forming region. When the load is adjusted by the amount, the load can be adjusted with a substantially uniform air-fuel ratio without forming a mixture concentration distribution in the mixture formation region in a stratified manner. Therefore, it is possible to secure the improvement of the fuel efficiency at the time of the partial load and to reduce the burden of reducing the emission.
[0008]
A direct injection internal combustion engine according to a second aspect of the present invention is the internal combustion engine according to the first aspect of the present invention, wherein the injection valve has a variable fuel injection divergence angle, The fuel cell system further includes a spread angle control means for changing a fuel injection spread angle.
[0009]
As described above, the injection valve has a variable fuel injection divergence angle, and the fuel injection divergence angle is changed according to the fuel injection amount to adjust the load with the fuel injection amount. The mixture concentration distribution in the inside can be made more uniform. Therefore, the burden of emission reduction can be further reduced.
[0010]
The in-cylinder injection internal combustion engine according to a third aspect of the present invention is the internal combustion engine according to the first or second aspect of the present invention, wherein a plurality of the injection valves are provided, and fuel is injected into the mixture formation region. The fuel cell system further comprises injection valve control means for changing the number of injection valves for injecting fuel according to the injection amount.
[0011]
As described above, when the load is adjusted with the fuel injection amount by changing the number of injection valves that inject fuel according to the fuel injection amount injected into the mixture formation region, Can be made more uniform. Therefore, the burden of emission reduction can be further reduced.
[0012]
According to a fourth aspect of the present invention, there is provided an in-cylinder injection internal combustion engine according to any one of the first to third aspects of the present invention, wherein the volume control means includes: It is characterized in that the volume of the air-fuel mixture formation region is controlled so that the value of (fuel injection amount) is substantially maintained at a desired constant value.
[0013]
As described above, the volume of the air-fuel mixture formation region is controlled so that the value of (volume of the air-fuel mixture formation region) / (fuel injection amount) is substantially maintained at a desired constant value. When the load is adjusted, the air-fuel ratio can be kept substantially at a desired constant value regardless of the level of the load. Therefore, the burden of emission reduction can be further reduced.
[0014]
According to a fifth aspect of the present invention, there is provided an in-cylinder injection type internal combustion engine according to any one of the first to third aspects of the present invention, wherein the volume control means comprises: It is characterized in that the volume of the air-fuel mixture formation region is controlled such that the value of (fuel injection amount) becomes a predetermined value according to the fuel injection amount.
[0015]
As described above, the volume of the air-fuel mixture formation region is controlled such that the value of (volume of the air-fuel mixture formation region) / (fuel injection amount) becomes a predetermined value according to the fuel injection amount. For example, when the load is low, the air-fuel ratio can be made lean, and when the load is high, the air-fuel ratio can be made rich. Therefore, it is possible to further reduce fuel consumption at a low load and achieve high rotational force at a high load.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter, referred to as embodiments) will be described with reference to the drawings.
[0017]
1 and 2 are views schematically showing an internal configuration of a direct injection internal combustion engine according to an embodiment of the present invention. FIG. 1 is a side view, and FIG. 2 is a top view. This embodiment shows a case where the present invention is applied to a spark ignition type internal combustion engine. The in-cylinder injection internal combustion engine of the present embodiment is used, for example, as a motor for driving a vehicle, and includes a cylinder 10, a cylinder head 12, a piston 14, an intake valve 16, an exhaust valve 18, an injection valve 20, and a spark plug 22. I have. A substantially cylindrical sub chamber 24 is formed in the cylinder head 12, and the sub chamber 24 is a combustion chamber. The sub-chamber 24 and the inside of the cylinder 10 are connected via a communication port 26. The injection valve 20 and the spark plug 22 are provided on the peripheral wall 24a of the sub chamber 24. The piston 14 is connected to a not-shown crankshaft via a not-shown connecting rod.
[0018]
In the intake stroke, the intake valve 16 opens and air is sucked into the cylinder 10. In the compression stroke, the intake valve 16 is closed, the intake air is compressed by the piston 14, and the fuel is directly injected into the sub-chamber 24 by the injection valve 20 to form an air-fuel mixture in the sub-chamber 24. Then, the air-fuel mixture in the sub chamber 24 is ignited by the ignition plug 22 and burned. In the expansion stroke, the combustion gas expands to generate a rotational force on a crankshaft (not shown), and in the exhaust stroke, the exhaust valve 18 opens and the combustion gas in the cylinder 10 is discharged from the exhaust valve 18. In the direct injection type internal combustion engine, the load is adjusted by adjusting the fuel injection amount from the injection valve 20, and the fuel injection amount and the injection timing are controlled by an electronic control unit (not shown).
[0019]
In the present embodiment, two movable pistons 28-1 and 28-2 are provided in the sub-chamber 24 as region forming means slidable along the peripheral wall 24a. An air-fuel mixture formation region 30 is formed in the sub chamber 24 by the two movable pistons 28. Gas seal rings 36-1 and 36-2 are provided around the movable pistons 28-1 and 28-2, respectively, and the gas seal rings 36-1 and 36-2 are in contact with the peripheral wall 24a. Each of the movable pistons 28-1 and 28-2 is connected to a rod 32-1 and 32-2, respectively, and the rods 32-1 and 32-2 penetrate the wall surface 24b from inside the sub-chamber 24 and outside the sub-chamber 24. Extending to Gas seal rings 34-1 and 34-2 are provided around the rods 32-1 and 32-2 at the position of the wall surface 24b, respectively, so that the airtightness in the sub chamber 24 is maintained. The rods 32-1 and 32-2 are connected to a linear actuator (not shown), and the linear actuators are driven to move the movable pistons 28-1 and 28-2 in opposite directions along the peripheral wall 24a to mix the rods. The volume of the gas forming region 30 can be changed. Note that the injection valve 20 and the spark plug 22 are provided on the peripheral wall 24a at a position where the mixture formation region 30 is formed. The mixture formation region 30 and the other portion of the sub chamber 24 communicate with each other through the communication port 26. Further, as the material of the movable pistons 28-1 and 28-2 and the rods 32-1 and 32-2, it is preferable to use a material having sufficient heat resistance to the temperature of the combustion gas.
[0020]
In the present embodiment, the position of the movable pistons 28-1 and 28-2 is controlled by the linear actuator in accordance with the amount of fuel injected from the injection valve 20 into the air-fuel mixture formation region 30, so that the air-fuel mixture is controlled. The volume of the formation region 30 is controlled. That is, the electronic control unit (not shown) has a volume control unit that calculates and outputs a control command value to the linear actuator from a control command value indicating the fuel injection amount. Here, since the fuel injection amount from the injection valve 20 is set based on the load of the internal combustion engine, the fuel injection amount and the volume of the mixture formation region 30 are controlled based on the load of the internal combustion engine. More specifically, when the load increases, both the fuel injection amount and the volume of the mixture formation region 30 increase, and when the load decreases, both the fuel injection amount and the volume of the mixture formation region 30 decrease. Let it.
[0021]
In the compression stroke of the present embodiment, as shown in FIG. 3A, the air in the cylinder 10 flows into the sub chamber 24 through the communication port 26, and follows the shape of the peripheral wall 24a in the sub chamber 24. A swirling airflow is generated. Further, during the compression stroke, fuel is injected from the injection valve 20 into the air-fuel mixture formation region 30, and the injected fuel is mixed with air as shown in FIG. At that time, the mixing is promoted by the swirling airflow, so that the air-fuel mixture concentration distribution in the air-fuel mixture forming region 30 is substantially uniform, as shown in FIG. Further, the air-fuel mixture hardly diffuses outside the air-fuel mixture formation region 30 due to the swirling airflow. Then, the air-fuel mixture in the air-fuel mixture forming region 30 having a substantially uniform concentration distribution is ignited by the ignition plug 22 and burned. The formation of the air-fuel mixture having a substantially uniform concentration distribution in the air-fuel mixture formation region 30 is maintained even when the load changes. That is, in the conventional direct injection internal combustion engine, the mixture concentration distribution is formed stratified at the time of partial load, whereas in the direct injection internal combustion engine of the present embodiment, the mixture is also maintained at the partial load. The mixture concentration distribution in the formation region 30 maintains a substantially uniform state. However, the air-fuel ratio in a substantially uniform state may change according to the load as described later.
[0022]
The fuel injection timing from the injection valve 20 during the compression stroke may be changed according to the engine speed. For example, as shown in FIG. 4 (A), by increasing the engine rotation speed and increasing the fuel injection timing, it is possible to ensure the formation of a mixture having a substantially uniform concentration distribution even during high rotation. . Further, the fuel injection timing from the injection valve 20 may be changed in accordance with the load. For example, as shown in FIG. 4B, the fuel injection timing is advanced as the load increases, so that the fuel injection amount is increased. Even under a high load, formation of an air-fuel mixture having a substantially uniform concentration distribution can be ensured.
[0023]
Next, some specific examples of the fuel injection amount-mixture formation region volume characteristics stored in the electronic control unit will be described as to how to control the volume of the mixture formation region 30 according to the fuel injection amount. I will explain it.
[0024]
FIG. 5A shows a case where the fuel injection amount-air-fuel mixture formation region volume characteristic is substantially directly proportional. That is, in FIG. 5A, the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) is almost kept at a prescribed constant value A0. Here, the prescribed constant value A0 is set to a value such that the air-fuel ratio when the concentration distribution in the air-fuel mixture formation region 30 is formed substantially uniformly becomes the stoichiometric air-fuel ratio. When the volume of the air-fuel mixture formation region 30 is controlled so as to have the characteristics shown in FIG. 5A, the substantially uniform air-fuel ratio in the air-fuel mixture formation region 30 becomes as shown in FIG. The stoichiometric air-fuel ratio is almost maintained regardless of the height.
[0025]
In FIG. 6A, when the fuel injection amount is equal to or less than the predetermined value L1, the fuel injection amount-mixture formation region volume characteristic maintains a substantially directly proportional relationship similar to that of FIG. When the value is larger than the value L1, it indicates a case where the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) becomes smaller than a predetermined constant value A0. Preferably, the predetermined value L1 of the fuel injection amount is substantially equal to the maximum injection amount when the stoichiometric air-fuel ratio is maintained regardless of the level of the load in FIG. When the volume of the air-fuel mixture formation region 30 is controlled so as to have the characteristics shown in FIG. 6A, the substantially uniform air-fuel ratio in the air-fuel mixture formation region 30 becomes low, medium, and low as shown in FIG. At the time of load, the stoichiometric air-fuel ratio is substantially maintained, and at the time of high load, the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio.
[0026]
In FIG. 7A, when the fuel injection amount is within the predetermined range L2 to L3, the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) is larger than a predetermined constant value A0, Is near the lower limit value L2 of the predetermined range, the value of (volume of the fuel / air mixture formation region 30) / (fuel injection amount) is substantially equal to the prescribed constant value A0, and the fuel injection amount is larger than the upper limit value L3 of the predetermined range. At this time, the case where the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) becomes smaller than a predetermined constant value A0 is shown. When the volume of the air-fuel mixture formation region 30 is controlled so as to have the characteristics shown in FIG. 7A, the substantially uniform air-fuel ratio in the air-fuel mixture formation region 30 becomes extremely low as shown in FIG. At the time of load, the stoichiometric air-fuel ratio becomes almost the same, at low and medium loads, the air-fuel ratio becomes leaner, and at the time of high load, the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio.
[0027]
In FIG. 8A, when the fuel injection amount is within the predetermined range L4 to L5, the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) is set to a constant value A1 smaller than a predetermined constant value A0. When the fuel injection amount is substantially kept and is larger than the upper limit L5 of the predetermined range, the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) becomes smaller than the fixed value A1. When the volume of the air-fuel mixture formation region 30 is controlled so as to have the characteristics shown in FIG. 8A, the substantially uniform air-fuel ratio in the air-fuel mixture formation region 30 becomes as shown in FIG. At the time of load, the air-fuel ratio becomes slightly richer than the stoichiometric air-fuel ratio.
[0028]
In the present embodiment, the movable pistons 28-1 and 28-2 form a variable-volume air-fuel mixture formation region 30 in the sub chamber 24. The volume of the mixture formation region 30 is controlled by controlling the positions of the movable pistons 28-1 and 28-2 according to the amount of fuel injected from the injection valve 20 into the mixture mixture formation region 30. ing. Therefore, when the load is adjusted by the fuel injection amount, the load can be adjusted with a substantially uniform air-fuel ratio without forming a mixture concentration distribution in the mixture formation region 30 in a stratified manner. For example, by setting the volume of the air-fuel mixture formation region 30 at a low load to be smaller than that at a high load, stable combustion can be realized without forming a mixture concentration distribution even if the fuel injection amount is small. Therefore, it is possible to secure the improvement of the fuel efficiency at the time of the partial load and to reduce the burden of reducing the emission.
[0029]
When the volume of the air-fuel mixture formation region 30 is controlled as shown in the fuel injection amount-air-fuel mixture formation region volume characteristic of FIG. 5A, the substantially uniform air-fuel ratio in the air-fuel mixture formation region 30 is reduced by the load. Since the stoichiometric air-fuel ratio is substantially maintained irrespective of the height, the burden of emission reduction can be further reduced over the entire load range.
[0030]
When the volume of the mixture formation region 30 is controlled as shown in the fuel injection amount-mixture formation region volume characteristic of FIG. 6A, the substantially uniform air-fuel ratio in the mixture formation region 30 is low. At a medium load, the stoichiometric air-fuel ratio is substantially maintained, and at a high load, the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio. Therefore, the burden of emission reduction can be further reduced at low and medium loads, and the rotational force can be increased at high loads.
[0031]
When the volume of the mixture formation region 30 is controlled as shown in the fuel injection amount-mixture formation region volume characteristic of FIG. 7A, the substantially uniform air-fuel ratio in the mixture formation region 30 is extremely small. At low load, the stoichiometric air-fuel ratio becomes almost the same, at low-medium load, leaner than the stoichiometric air-fuel ratio, and at high load, richer than the stoichiometric air-fuel ratio. Therefore, combustion can be stabilized at extremely low loads, NOx can be reduced and fuel efficiency can be improved at low and medium loads, and the rotational force can be increased at high loads.
[0032]
Further, when the volume of the mixture formation region 30 is controlled as shown in the fuel injection amount-mixture formation region volume characteristic of FIG. 8A, the substantially uniform air-fuel ratio in the mixture formation region 30 is low. At a medium load, the air-fuel ratio becomes slightly richer than the stoichiometric air-fuel ratio, and at a high load, the air-fuel ratio becomes further richer than at a low air load. Therefore, for example, when the catalyst needs to be warmed up early, such as during a cold start, the exhaust gas temperature can be increased in a short time, and the rotational force can be increased at a high load.
[0033]
Further, the injection valve 20 of the present embodiment can change the fuel injection spread angle, and the electronic control unit has a spread angle control unit that changes the fuel injection spread angle according to the fuel injection amount. Good. Here, the configuration of the injection valve for changing the fuel injection divergence angle can be realized by using the configuration disclosed in Japanese Patent Application Laid-Open No. 11-351103. Hereinafter, this configuration will be described with reference to FIGS. I do.
[0034]
FIG. 9 is a cross-sectional view showing a tip portion near an injection hole in the injection valve, and FIG. 10 is a cross-sectional view showing the sack portion 43 taken out. Two injection holes 48 and 49 are formed through the sack portion 43. As shown in the sectional views of FIGS. 10 (B) and 10 (C), the spray holes 48 and 49 have different spread angles, and the spread angle α1 of the spray hole 48 is smaller than the spread angle α2 of the spray hole 49. The needle valve 44 has an injection hole selector 45 at the tip. The injection hole selection part 45 is slidable along the inner wall of the sack part 43, and a fuel passage 51 communicating with the outside is formed inside the injection hole selection part 45. The position of the injection valve selector 45 is controlled by controlling the position of the needle valve 44 by electric or mechanical driving means. A fuel passage 50 is formed outside the needle valve 44, and fuel flows from the fuel passage 50 into the fuel passage 51 by driving the needle valve 44. As shown in FIG. 9A, if the position of the injection hole selector 45 is controlled so that the fuel passage 51 and the injection hole 48 communicate with each other, the fuel is injected at the spread angle α1, and the fuel is injected as shown in FIG. 9B. As described above, if the position of the injection hole selection unit 45 is controlled so that the fuel passage 51 and the injection hole 49 communicate with each other, the fuel is injected at the spread angle α2. As described above, by controlling the position of the injection hole selection unit 45 and selecting the injection holes that communicate with the fuel passage 51, the injection spread angle can be changed.
[0035]
When the fuel injection amount is equal to or less than a predetermined value L6, that is, when the value of the volume of the air-fuel mixture formation region 30 is equal to or less than a predetermined value V6, the divergence angle control means connects the fuel passage 51 and the injection hole 48 to each other as shown in FIG. The position of the injection hole selector 45 is controlled so that fuel is injected at a narrow injection spread angle α1 as shown in the top view of FIG. On the other hand, when the fuel injection amount is larger than the predetermined value L6, that is, when the value of the volume of the mixture formation region 30 is larger than the predetermined value V6, the fuel passage 51 and the injection holes 49 are communicated with each other, and the top view of FIG. The position of the injection hole selector 45 is controlled so that the fuel is injected at a wide injection spread angle α2 as shown in FIG. As described above, when the fuel injection amount is small, that is, when the volume of the air-fuel mixture formation region 30 is small, the fuel is injected at a narrow injection spread angle, and when the fuel injection amount is large, that is, when the volume of the air-fuel mixture formation region 30 is large, a wide injection is performed. By injecting the fuel at the spread angle, the fuel can be more uniformly injected into the mixture forming region 30, and the mixture concentration distribution in the mixture forming region 30 becomes more uniform with respect to a wide range of load fluctuation. can do. Therefore, the burden of emission reduction can be further reduced.
[0036]
9 to 11 illustrate the case where the fuel injection spread angle is changed in two steps, but the fuel injection spread angle may be changed in three or more steps using the same principle.
[0037]
Further, a plurality of injection valves 20 are provided at different positions on the peripheral wall 24a of the sub-chamber 24, and the electronic control unit determines the number of the injection valves 20 for injecting fuel in accordance with the fuel injection amount injected into the mixture formation region 30. You may have the injection valve control means to change. At this time, a plurality of ignition plugs 22 are provided on the peripheral wall 24a of the sub chamber 24 corresponding to each of the injection valves 20, and the number of plugs used for ignition is changed according to the number of injection valves 20 for injecting fuel. Is preferred. As shown in the top view of FIG. 12, the injection valve control means increases the number of injection valves 20 for injecting fuel in accordance with an increase in the fuel injection amount, that is, an increase in the volume of the mixture formation region 30. As described above, since the number of the injection valves 20 that inject fuel is increased in accordance with the increase in the volume of the mixture forming region 30, the fuel can be more uniformly injected in the mixture forming region 30, and a wide range of load can be obtained. In this case, the mixture concentration distribution in the mixture formation region 30 can be made more uniform with respect to the variation of the mixture. Therefore, the burden of emission reduction can be further reduced.
[0038]
FIG. 12 illustrates a case where three injection valves 20 are provided, but the number of injection valves 20 can be arbitrarily set.
[0039]
Further, as shown in the side view of FIG. 13A, the piston 14 has a projection 38 at the top thereof, and the projection 38 fits in the communication port 26 communicating the inside of the cylinder 10 and the sub chamber 24 near the top dead center. You may do so. As a result, the volume of the air-fuel mixture forming region 30 in the combustion chamber can be increased by reducing the volume of the communication port 26 where the air-fuel mixture hardly diffuses, so that a higher rotational force can be realized at a high load.
[0040]
Further, as shown in the side view of FIG. 13B, the communication port 26 has a tapered shape in which the opening area decreases toward the sub-chamber 24 side, and the projection 38 of the piston 14 is also connected to the communication port 26 near the top dead center. It may have a tapered shape to fit. Thereby, the efficiency when the air in the cylinder 10 flows into the sub chamber 24 can be enhanced, and the overheating of the projection 38 can be avoided.
[0041]
The configuration for changing the volume of the air-fuel mixture formation region 30 is not limited to the configuration shown in FIG. 2. For example, the volume of the air-fuel mixture formation region 30 is also changed in the configurations shown in the top views of FIGS. be able to. However, in FIGS. 14 to 16, only the configuration of the sub-chamber 24 and its surroundings are shown, and illustration of other configurations is omitted.
[0042]
In FIG. 14, sliders 61-1 and 61-2 are respectively connected to side surfaces of movable pistons 28-1 and 28-2, and sliders 61-1 and 61-2 are provided with openings 24c provided in peripheral wall 24a. And extends outside the sub chamber 24. The movable pistons 28-1 and 28-2 are driven in opposite directions along the peripheral wall 24a by the translational driving of the sliders 61-1 and 61-2 in the opposite direction in the shaft axis direction by the rotation of the shaft 62. You. The mechanism for translationally driving the sliders 61-1 and 61-2 in the shaft axis direction can be realized by using, for example, a ball screw. By cutting the screws in opposite directions, the sliders 61-1 and 61-2 can be moved in opposite directions. Translational drive can be realized. The shaft 62 is driven to rotate by an actuator (not shown). The sub chamber 24 communicates with a blow-by gas recovery device (not shown) through an opening 24c, and a small amount of combustion gas leaking through the opening 24c is recovered by the blow-by gas recovery device. The other configuration is the same as the configuration shown in FIG. Further, it is preferable to use a material having sufficient heat resistance to the temperature of the combustion gas as the material of the sliders 61-1 and 61-2 and the shaft 62.
[0043]
In FIG. 15, racks 71-1 and 71-2 are connected to the insides of the movable pistons 28-1 and 28-2, respectively, and the racks 71-1 and 71-2 are substantially equivalent to shafts 72-1 and 72-2. They are in mesh with the pinions 73-1 and 73-2 provided at the center, respectively. When the shafts 72-1 and 72-2 are driven to rotate in the same direction, the racks 71-1 and 71-2 are driven to translate in opposite directions, and the movable pistons 28-1 and 28-2 move along the peripheral wall 24a. Are driven in opposite directions. The shafts 72-1 and 72-2 pass through the side surfaces of the movable pistons 28-1 and 28-2, respectively, and further extend through the peripheral wall 24a and out of the sub chamber 24. The shafts 72-1 and 72-2 are driven to rotate by an actuator (not shown). Gas seal rings 74-1 and 74-2 are provided around the shafts 72-1 and 72-2 at the position of the peripheral wall 24a, respectively, so that the airtightness in the sub chamber 24 is maintained. The other configuration is the same as the configuration shown in FIG. Further, as the material of the racks 71-1, 71-2 and the shafts 72-1, 72-2, it is preferable to use a material having sufficient heat resistance to the temperature of the combustion gas.
[0044]
In FIG. 16, the sub chamber 24 is formed by the movable piece 81 and the fixed pieces 82-1 and 82-2. The movable piece 81 includes a partition wall 83 for forming the mixture formation region 30 in the sub chamber 24. The movable piece 81 is driven to translate along the side surfaces of the fixed pieces 82-1 and 82-2 by an actuator such as a hydraulic cylinder 84, so that the volume of the mixture formation region 30 can be changed. Gas seal rings 85-1 and 85-2 are provided between the side of the movable piece 81 and the side of the fixed piece 82-1 and between the side of the movable piece 81 and the side of the fixed piece 82-2, respectively. Thereby, the airtightness in the sub chamber 24 is maintained. The injection valve 20 and a spark plug (not shown) are provided on the side of the movable piece 81 on the side of the mixture formation region 30. The other configuration is the same as the configuration shown in FIG.
[0045]
In FIG. 17, the movable pistons 28-1 and 28-2 and the sliders 61-1 and 61-2 are provided with magnets for attracting the movable piston and the slider to each other. The relative positional relationship between the movable piston 28-2 and the slider 61-2 is defined by the magnetic force. The sliders 61-1 and 61-2 are translationally driven in the direction opposite to each other in the shaft axis direction by the rotation of the shaft 62. The movable piston 28-1 is interlocked with the translational drive of the sliders 61-1 and 61-2 in the opposite direction. , 28-2 are driven in opposite directions along the peripheral wall 24a. The mechanism for translationally driving the sliders 61-1 and 61-2 in the shaft axis direction can be realized by using, for example, a ball screw. By cutting the screws in opposite directions, the sliders 61-1 and 61-2 can be moved in opposite directions. Translational drive can be realized. The shaft 62 is driven to rotate by an actuator (not shown). The other configuration is the same as the configuration shown in FIG.
[0046]
In the above description, the case of a spark ignition type internal combustion engine in which an air-fuel mixture is ignited by a spark plug has been described, but the in-cylinder injection type internal combustion engine to which the present invention can be applied is not limited to the spark ignition type internal combustion engine. The present invention is also applicable to a compression ignition type internal combustion engine that compresses and ignites an air-fuel mixture. In the compression ignition type internal combustion engine, by changing the volume of the air-fuel mixture formation region 30 according to the fuel injection amount, the change in the self-ignition timing due to the increase or decrease in the fuel injection amount can be reduced, and the self-ignition operation range can be greatly increased. Can be spread out.
[0047]
The fuel injection amount-mixture formation region volume characteristics shown in FIGS. 18 and 19 show characteristics in the case where the air-fuel mixture is compressed and ignited without being ignited by the spark plug and burned at the partial load.
[0048]
In FIG. 18A, when the fuel injection amount is smaller than the lower limit value L7 of the predetermined range, the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) is sufficiently larger than the predetermined constant value A0, When the injection amount is within the predetermined range L7 to L8, the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) is substantially equal to the prescribed constant value A0, and the fuel injection amount is larger than the upper limit L8 of the predetermined range. At this time, the case where the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) becomes smaller than a predetermined constant value A0 is shown. When the fuel injection amount is smaller than the lower limit L7 of the predetermined range, the compression ignition operation is performed, and otherwise, the spark ignition operation is performed. When the volume of the air-fuel mixture formation region 30 is controlled so as to have the characteristics shown in FIG. 18A, the substantially uniform air-fuel ratio in the air-fuel mixture formation region 30 becomes low, medium, and low as shown in FIG. At the time of load, the air-fuel ratio becomes extremely leaner than the stoichiometric air-fuel ratio. At the time of medium load, the air-fuel ratio becomes substantially the stoichiometric air-fuel ratio. As a result, it is possible to further reduce NOx and improve fuel efficiency at low and medium loads, and to increase the rotational force at high loads.
[0049]
In FIG. 19 (A), when the fuel injection amount is smaller than the lower limit value L9 of the predetermined range, the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) is substantially equal to or slightly equal to the prescribed constant value A0. When the fuel injection amount is large and is within the predetermined range L9 to L10, the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) is sufficiently larger than the prescribed constant value A0, and the fuel injection amount is within the predetermined range L10 to L10. When the fuel injection amount is within L11, the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) is substantially equal to the prescribed constant value A0, and when the fuel injection amount is larger than the upper limit L11 of the predetermined range, the value of (air-fuel mixture formation) The case where the value of (volume of the region 30) / (fuel injection amount) becomes smaller than a predetermined constant value A0 is shown. The compression ignition operation is performed when the fuel injection amount is within the predetermined range L9 to L10, and the spark ignition operation is performed otherwise. When the volume of the air-fuel mixture formation region 30 is controlled so as to have the characteristics shown in FIG. 19A, the substantially uniform air-fuel ratio in the air-fuel mixture formation region 30 becomes extremely low as shown in FIG. At the time of load, the stoichiometric air-fuel ratio becomes slightly leaner than the stoichiometric air-fuel ratio, at low and medium loads, becomes extremely lean than the stoichiometric air-fuel ratio, becomes almost stoichiometric at the medium load, and becomes richer than the stoichiometric air-fuel ratio at the time of high load. As a result, combustion can be stabilized at extremely low loads, NOx reduction and fuel efficiency can be further improved at low and medium loads, and the rotational force can be increased at high loads.
[0050]
In the fuel injection amount-fuel mixture formation region volume characteristic shown in FIG. 20, fuel is injected during the compression stroke during partial load to burn the air-fuel mixture by compression ignition, and during high load, fuel is injected at the end of the compression stroke. The example of the characteristic at the time of carrying out diesel combustion is shown. In FIG. 20 (A), when the fuel injection amount is equal to or less than the predetermined value L12, the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) is sufficiently larger than a prescribed constant value A0, and the fuel injection amount is reduced. When the value is larger than the predetermined value L12, the value of (volume of the air-fuel mixture formation region 30) / (fuel injection amount) is larger than the predetermined constant value A0 and smaller than the value when the fuel injection amount is equal to or smaller than the predetermined value L12. Shows the case. When the fuel injection amount is equal to or less than the predetermined value L12, fuel is injected during the compression stroke to burn the air-fuel mixture by compression ignition, and otherwise, fuel is injected at the end of the compression stroke to perform diesel combustion. When controlling the volume of the air-fuel mixture formation region 30 so as to have the characteristics shown in FIG. 20A, the substantially uniform air-fuel ratio in the air-fuel mixture formation region 30 becomes as shown in FIG. At the time of load, the air-fuel ratio becomes extremely leaner than the stoichiometric air-fuel ratio, and at the time of high load, the air-fuel ratio becomes richer than at the time of low-medium load and becomes leaner than the stoichiometric air-fuel ratio. This makes it possible to further reduce NOx and improve fuel efficiency at low and medium loads.
[0051]
Also in the compression ignition type internal combustion engine, the fuel injection timing from the injection valve 20 in the compression stroke may be changed according to the engine speed. For example, as shown in FIG. 21A, in the range of the engine speed at which the fuel is injected during the compression stroke to perform the compression ignition operation, the engine speed is increased and the fuel injection timing is advanced to thereby increase the concentration distribution. A substantially uniform mixture can be formed. If the engine speed exceeds the range of the engine speed at which the compression ignition operation is performed, the fuel injection timing is delayed until the end of the compression stroke, and the operation is switched to diesel combustion.
[0052]
Further, the fuel injection timing from the injection valve 20 may be changed according to the load. For example, as shown in FIG. 21B, the range of the load in which the fuel is injected during the compression stroke to perform the compression ignition operation In this case, the fuel injection timing is advanced along with the increase in the load, so that the formation of an air-fuel mixture having a substantially uniform concentration distribution can be ensured. When the load exceeds the range for performing the compression ignition operation, the fuel injection timing is delayed until the end of the compression stroke to switch the operation to diesel combustion.
[0053]
【The invention's effect】
As described above, according to the present invention, a variable-volume air-fuel mixture formation region is formed in the combustion chamber, and the volume of the air-fuel mixture formation region is changed according to the fuel injection amount injected from the injection valve into the air-fuel mixture formation region. , It is possible to secure the improvement of fuel efficiency at the time of partial load and at the same time to reduce the burden of emission reduction.
[Brief description of the drawings]
FIG. 1 is a side view schematically showing an internal configuration of a direct injection internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a top view schematically showing an internal configuration of the direct injection internal combustion engine according to the embodiment of the present invention.
FIG. 3 is a diagram illustrating a compression stroke of the direct injection internal combustion engine according to the embodiment of the present invention.
FIG. 4 is a diagram illustrating an example of fuel injection timing control according to the embodiment of the present invention.
FIG. 5 is a diagram showing an example of a fuel injection amount-air-fuel mixture formation region volume characteristic in the embodiment of the present invention.
FIG. 6 is a diagram showing an example of a fuel injection amount-air-fuel mixture formation region volume characteristic in the embodiment of the present invention.
FIG. 7 is a diagram illustrating an example of a fuel injection amount-air-fuel mixture formation region volume characteristic in the embodiment of the present invention.
FIG. 8 is a diagram illustrating an example of a fuel injection amount-air-fuel mixture formation region volume characteristic in the embodiment of the present invention.
FIG. 9 is a cross-sectional view illustrating a configuration of an injection valve used in another embodiment of the present invention.
FIG. 10 is a sectional view showing a configuration of an injection valve used in another embodiment of the present invention.
FIG. 11 is a cross-sectional view illustrating a configuration of an injection valve used in another embodiment of the present invention.
FIG. 12 is a top view illustrating the operation of a direct injection internal combustion engine according to another embodiment of the present invention.
FIG. 13 is a top view illustrating the operation of a direct injection internal combustion engine according to another embodiment of the present invention.
FIG. 14 is a top view schematically showing another configuration for changing the volume of the mixture formation region in the embodiment of the present invention.
FIG. 15 is a top view schematically showing another configuration for changing the volume of the air-fuel mixture formation region in the embodiment of the present invention.
FIG. 16 is a top view schematically showing another configuration for changing the volume of the air-fuel mixture formation region in the embodiment of the present invention.
FIG. 17 is a top view schematically showing another configuration for changing the volume of the air-fuel mixture formation region in the embodiment of the present invention.
FIG. 18 is a diagram showing an example of a fuel injection amount-mixture formation region volume characteristic in another embodiment of the present invention.
FIG. 19 is a diagram showing an example of a fuel injection amount-air-fuel mixture formation region volume characteristic in another embodiment of the present invention.
FIG. 20 is a view showing an example of a fuel injection amount-mixture formation region volume characteristic in another embodiment of the present invention.
FIG. 21 is a diagram illustrating an example of fuel injection timing control according to another embodiment of the present invention.
[Explanation of symbols]
Reference Signs List 20 injection valve, 22 spark plug, 24 sub-chamber, 28-1, 28-2 movable piston, 30 mixture formation region.

Claims (5)

シリンダ内に空気を吸入し、ピストンにより吸入空気を圧縮するとともに、噴射弁により燃料を燃焼室内に直接噴射して混合気を形成し、該混合気を燃焼させることで回転力を発生させる筒内噴射式内燃機関であって、
燃焼室内に容積可変の混合気形成領域を形成する領域形成手段と、
噴射弁から混合気形成領域内へ噴射される燃料噴射量に応じて、領域形成手段により形成された混合気形成領域の容積を制御する容積制御手段と、
を有することを特徴とする筒内噴射式内燃機関。
In-cylinder, in which air is sucked into a cylinder, compressed air is sucked by a piston, and fuel is directly injected into a combustion chamber by an injection valve to form an air-fuel mixture, and the air-fuel mixture is burned to generate a rotational force. An injection-type internal combustion engine,
Region forming means for forming a variable volume mixture forming region in the combustion chamber;
Volume control means for controlling the volume of the mixture formation region formed by the region formation means in accordance with the fuel injection amount injected from the injection valve into the mixture formation region;
A direct injection internal combustion engine, comprising:
請求項1に記載の筒内噴射式内燃機関であって、
前記噴射弁は、燃料の噴射広がり角度が可変であり、
燃料噴射量に応じて燃料の噴射広がり角度を変化させる広がり角度制御手段をさらに有することを特徴とする筒内噴射式内燃機関。
The direct injection internal combustion engine according to claim 1,
The injection valve has a variable fuel injection spread angle,
An in-cylinder injection type internal combustion engine further comprising a spread angle control means for changing a fuel injection spread angle according to a fuel injection amount.
請求項1または2に記載の筒内噴射式内燃機関であって、
前記噴射弁は複数備えられ、
混合気形成領域内へ噴射される燃料噴射量に応じて燃料を噴射する噴射弁の数を変化させる噴射弁制御手段をさらに有することを特徴とする筒内噴射式内燃機関。
The direct injection internal combustion engine according to claim 1 or 2,
A plurality of the injection valves are provided,
An in-cylinder injection type internal combustion engine, further comprising: an injection valve control means for changing the number of injection valves for injecting fuel in accordance with a fuel injection amount injected into the mixture mixture region.
請求項1〜3のいずれか1に記載の筒内噴射式内燃機関であって、
前記容積制御手段は、(混合気形成領域の容積)/(燃料噴射量)の値が所望の一定値にほぼ保たれるように、混合気形成領域の容積を制御することを特徴とする筒内噴射式内燃機関。
An in-cylinder injection internal combustion engine according to any one of claims 1 to 3,
The volume control means controls the volume of the mixture formation region such that the value of (volume of mixture formation region) / (fuel injection amount) is substantially maintained at a desired constant value. Internal injection type internal combustion engine.
請求項1〜3のいずれか1に記載の筒内噴射式内燃機関であって、
前記容積制御手段は、(混合気形成領域の容積)/(燃料噴射量)の値を燃料噴射量に応じて予め決められた値になるように、混合気形成領域の容積を制御することを特徴とする筒内噴射式内燃機関。
An in-cylinder injection internal combustion engine according to any one of claims 1 to 3,
The volume control means controls the volume of the air-fuel mixture region such that the value of (volume of the air-fuel mixture region) / (fuel injection amount) becomes a predetermined value according to the fuel injection amount. In-cylinder injection internal combustion engine.
JP2002271002A 2002-09-18 2002-09-18 Direct injection type internal combustion engine Pending JP2004108224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002271002A JP2004108224A (en) 2002-09-18 2002-09-18 Direct injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002271002A JP2004108224A (en) 2002-09-18 2002-09-18 Direct injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004108224A true JP2004108224A (en) 2004-04-08

Family

ID=32268443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002271002A Pending JP2004108224A (en) 2002-09-18 2002-09-18 Direct injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004108224A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085181A (en) * 2005-09-20 2007-04-05 Nissan Motor Co Ltd Indirect injection internal combustion engine
JP2007198140A (en) * 2006-01-23 2007-08-09 Nissan Motor Co Ltd Auxiliary chamber type internal combustion engine
JP4686647B1 (en) * 2010-08-29 2011-05-25 康仁 矢尾板 Engine operation method to switch compression ratio
FR2962163A1 (en) * 2010-07-05 2012-01-06 Roger Laumain Combustion spark ignition engine, has spark plug that is in contact with combustion chamber by cylinder neck, and elective hump that is realized on head of piston, where combustion chamber is housed in piston

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085181A (en) * 2005-09-20 2007-04-05 Nissan Motor Co Ltd Indirect injection internal combustion engine
JP2007198140A (en) * 2006-01-23 2007-08-09 Nissan Motor Co Ltd Auxiliary chamber type internal combustion engine
FR2962163A1 (en) * 2010-07-05 2012-01-06 Roger Laumain Combustion spark ignition engine, has spark plug that is in contact with combustion chamber by cylinder neck, and elective hump that is realized on head of piston, where combustion chamber is housed in piston
JP4686647B1 (en) * 2010-08-29 2011-05-25 康仁 矢尾板 Engine operation method to switch compression ratio
WO2012029151A1 (en) * 2010-08-29 2012-03-08 Yaoita Yasuhito Operation method for engine for changing compression ratio
JP2012047136A (en) * 2010-08-29 2012-03-08 Yasuhito Yaoita Operating method of compression ratio switching engine

Similar Documents

Publication Publication Date Title
JP4782836B2 (en) Method of operating an externally ignited internal combustion engine
KR101016924B1 (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
JP2001323828A (en) Compression self-ignition gasoline engine
KR20070031410A (en) Strategy for fueling a diesel engine by selective use of fueling maps to provide hcci, hcci+cd, and cd combustion modes
JP2002081334A (en) Self-ignition type engine
JP2009532624A (en) Driving method for internal combustion engine
JP3629879B2 (en) Compression ignition internal combustion engine
US7263982B2 (en) Method for operating and internal combustion engine
JP5015415B2 (en) Method for expanding the load range of premixed compression ignition, and system and method for realizing a high load two stroke HCCI engine cycle in an internal combustion engine that normally operates with a four stroke HCCI engine cycle
JP4093074B2 (en) An internal combustion engine capable of self-ignition operation in which the air-fuel mixture is compressed and self-ignited
JP2006316777A (en) Internal combustion engine
JP2005256734A (en) Cylinder injection engine
JP2004108224A (en) Direct injection type internal combustion engine
JP3873560B2 (en) Combustion control device for internal combustion engine
JP2001214741A (en) Compressed self-ignition type internal combustion engine
JP4232590B2 (en) Combustion control system for compression ignition internal combustion engine
JP4023434B2 (en) Internal combustion engine capable of premixed compression self-ignition operation using two types of fuel
JP2006257999A (en) Internal combustion engine
JP3978965B2 (en) Combustion control device for internal combustion engine
JP2005163686A (en) Internal combustion engine capable of self-ignition operation for permitting compressive self-ignition of air-fuel mixture
JP4031662B2 (en) Internal combustion engine
JP2019044668A (en) Internal combustion engine
JP2006348809A (en) Internal combustion engine
JP2015124738A (en) Control device of direct injection engine
JP2005201127A (en) Four-cycle internal combustion engine