JP2004108118A - Sea water exchanging method - Google Patents

Sea water exchanging method Download PDF

Info

Publication number
JP2004108118A
JP2004108118A JP2002276049A JP2002276049A JP2004108118A JP 2004108118 A JP2004108118 A JP 2004108118A JP 2002276049 A JP2002276049 A JP 2002276049A JP 2002276049 A JP2002276049 A JP 2002276049A JP 2004108118 A JP2004108118 A JP 2004108118A
Authority
JP
Japan
Prior art keywords
area
density
siphon
sea
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002276049A
Other languages
Japanese (ja)
Inventor
Koichi Tsuruya
鶴谷 広一
Osamu Matsuda
松田 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO KYUEI KK
Tokyo Kyuei Co Ltd
Original Assignee
TOKYO KYUEI KK
Tokyo Kyuei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO KYUEI KK, Tokyo Kyuei Co Ltd filed Critical TOKYO KYUEI KK
Priority to JP2002276049A priority Critical patent/JP2004108118A/en
Publication of JP2004108118A publication Critical patent/JP2004108118A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sea water exchanging method which reduces operational costs in a closed sea and a surrounding ocean area, and a sea water exchanging apparatus. <P>SOLUTION: The sea water exchanging method is constituted as follows: a high-density area of density stratification 2 which is formed in the closed sea 1, and an underwater area of a surrounding ocean area 3 are connected to each other by a siphon pipeline 4 which makes a water head on a density-stratification boundary in the high-density area on the side of the closed sea 1 higher than a water head in the ocean area 3; and sea water in the high-density area within the closed sea 1 is made to flow out to the ocean area 3 via the siphon pipeline 4. The sea-water exchanging apparatus comprises the siphon pipeline 4 for connecting the high-density area of the density stratification 2 with the underwater area of the ocean area 3 in such a manner that the water head on the density-stratification boundary in the high-density area on the the side of the closed sea 1 is made higher than the water head in the ocean area 3, and a starting pump 5 for starting the siphon pipeline 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、海水交換方法、およびこれに使用する海水交換装置に関するものである。
【0002】
【従来の技術】
近時、港湾等において、潜堤や半島等により底層部が隔離された海域の場合、夏季の高水温時に閉鎖海域部分において、表層の水温だけが上昇し、底層部が冷水塊となり、鉛直混合が阻害され貧酸素状態となる水質悪化が問題になっており、その対応策として閉鎖海域や湾奥部分における海水交換が注目されるに至っている。
【0003】
そして、従来、このような海水交換の方法としては、商用電力によりポンプを稼動して外海水を導入することが行われているが、動力を要するために、運用コストが高くつくという欠点がある。
【0004】
また、近年、流れの中に揚水口を設けて、その付近を通過する潮汐による流れにより生じる負圧を利用した、鉛直循環式の海水交換装置が考案されているが(非特許文献1参照)、最も海水交換の必要性が高い夏季の高水温時には、表層の水温だけが上昇し、底層部が冷水塊となっている場合があるので、流れにより生じる負圧により揚水する力に対し、水温差による密度差が、流れを留める方向に影響し、海水交換効率が低下するという欠点がある。
【0005】
【非特許文献1】
小沢、外5名、「負圧を利用した海水交換潜堤の揚水特性の基礎的検討」、海岸工学論文集、土木学会、2000年、第47巻、p.1161−1165
【0006】
【発明が解決しようとする課題】
本発明は、以上の欠点を解消すべくなされたものであって、運用コストの低廉な海水交換方法、および海水交換装置の提供を目的とする。
【0007】
【課題を解決するための手段】
本発明によれば、上記目的は、
閉鎖海域1に形成された密度成層2の高密度域と周辺海域3の海中域との間を閉鎖海域1側の高密度域の密度成層境界における水頭が周辺海域3でのそれより高くなるサイフォン管路4で連結し、
該サイフォン管路4を介して閉鎖海域1内の高密度域内の海水を周辺海域3に流出させる海水交換方法を提供することにより達成される。
【0008】
図2に本発明を示す。図2において1は潜堤等の堤10により底層部が周辺海域3から隔離された閉鎖海域を示す。周辺海域3と閉鎖海域1の双方には、温度の違いによる密度成層2が複数層形成され、夏場等においては、堤10により海水交換が妨げられる閉鎖海域1の海底近傍には、高密度域の密度成層2(冷水塊11)が形成される。なお、図2において密度成層2の境界を破線で示す。
【0009】
4は周辺海域3と閉鎖海域1の海底間を堤10を跨いで連結するサイフォン管路であり、閉鎖海域1側の管路端(以下、「サイフォン始点4a」)は、冷水塊11の境界面レベル11aより深部に配置される。
【0010】
いま、冷水塊11の境界面レベル11aとサイフォン管路4の周辺海域3側の管路端(以下、「サイフォン終点4b」)の高低差をhbd 、サイフォン始点4aにおける海水(冷水塊)の密度をρ1 、サイフォン終点4bにおける海水の密度をρ2 とすると、サイフォン始点4aとサイフォン終点4bとの間に生じている海水の密度差による水頭差(Hbd )は、
bd =(ρ1 −ρ2 )/ρ1 ・hbd ・・・(1)
で与えられる。
【0011】
冷水塊11の存在により、ρ1 −ρ2 >0であるから、Hbd >0となり、サイフォン管路4内には、サイフォン始点4aからサイフォン終点4bに向かう水流を作り出すことができる。
【0012】
サイフォン管路4内の通水量(Q)は、サイフォン管路4内の損失水頭(HL )とバランスするだけの水量で、以下のように求められる。すなわち、
管内流速をv、管内通水面積をA、摩擦損失を含む各種損失係数をfとすると、
L =Hbd ・・・(2)
L =f・v2 /(2・g) ・・・(3)
より、
v=(Hbd ・2・g/f )1/2 ・・・(4)
が成立する。
【0013】
一方、Qとvとの間には、
Q=A・v
=A・(Hbd ・2・g/f )1/2 ・・・(5)
の関係が成立する。
【0014】
よって、最も海水交換の必要性が高い夏季の高水温時等、表層と底層の温度差が大きければ大きいほど密度差Hbd が大きくなり、通水量Qも多くなり、結果的に海水交換率が高くなることがわかる。
【0015】
サイフォン始点4a近傍の高密度側の海水を一旦サイフォン管路4の頂点4cまで持ち上げ、管路内全てをサイフォン始点4a近傍の海水密度にしてサイフォン管路4を起動するために、サイフォン管路4の頂点4cには起動ポンプ5が設置される(図3(b)参照)。この起動ポンプ5の必要揚程は、以下のようにして求められる。
【0016】
すなわち、サイフォン起動に必要な密度差による静水圧Hbc は、サイフォン管路4の頂点4cの当初の密度をρ3 、冷水塊の境界面レベル11aとサイフォン管路4の頂点4cとの高低差をhbc とすると、
bc =(ρ1 −ρ3 )/ρ1 ・hbc =H ・・・(6)
で与えられる。
【0017】
したがって、上記(5)式の通水量Qを、静水圧Hbc(=揚程Ha )だけ持ち上げられる能力を持つポンプ等の起動用の機器を用意すれば、密度差(水温差)がある限り、サイフォン始点4aよりサイフォン終点4bに向かって流れが生じ、海水が交換される。
【0018】
なお、サイフォン管路4の頂点4cが水面よりも上にある場合の揚程Ha は、水面からサイフォン管路4の頂点4cの高低差をhec 、水面までの高低差をhbe とすると、
bc =(ρ1 −ρ3 )/ρ1 ・hbe +hec =H ・・・(7)
で与えられる。
【0019】
これら起動に要する揚程は比較的少なく、太陽光や風力を利用した自然エネルギーでも十分まかなえるため、少ない維持管理費による運用が可能である。
【0020】
【発明の実施の形態】
図1に本発明が適用された港湾の平面図を示す。図中10は海底の潜堤(堤)、1は潜堤等の堤10により底層部が周辺海域3から隔離された閉鎖海域、3は周辺海域を示し、上述したように、閉鎖海域1中に冷水塊11が形成される。
【0021】
4は堤10を跨いで配置されるサイフォン管路であり、図2に示すように、一端が閉鎖海域1の冷水塊11に、他端が周辺海域3の海中域に配置される。
【0022】
このサイフォン管路4は、冷水塊11から周辺海域3への海水移動が発生するサイフォンとして機能するための如上の条件を満足するように設計される。また、サイフォンを維持して継続的に水流を発生させるために、以下に示すように、密度フルード数に対する考慮がなされる。
【0023】
すなわち、上記(4)式により求められたvが小さい場合には、サイフォン管路4内で密度成層2が形成されてしまい、密度サイフォンが切れる可能性がある。サイフォン管路4内で密度成層2が形成されるかどうかは、経験的に密度フルード数(Fd )を確認する事で判断でき、
d ≧1.0   ・・・(8)
であれば、サイフォン管路4内で密度成層2は形成されないことが知られている。
【0024】
この密度フルード数Fd は、サイフォン始点4aの密度をρ1 、サイフォン管路4の頂点4cの当初の密度をρ3 、サイフォン管路4の径(もしくは水路断面の高さ寸法)をdとすると、
d =v/{ g・(ρ1 −ρ3 )/ρ1 ・d }1/2 ・・・(9)
で与えられ、管路径は上記(8)、(9)式を満足するように設定される。
【0025】
密度成層2が形成される可能性がある場合には、図3(a)に示すように、サイフォン管路4内部に螺旋条等の管路内水流の撹拌、混合手段12を設けたり、あるいは頂点4c部分の管の形状を薄く(上記(7)式のdを小さく)することにより、密度成層2の発生を防止することが望ましい。なお、本実施の形態においては堤10に対してサイフォン管路4が一本配設されるが、管の径dが小さくなることなどにより必要な通水量Qが確保できない場合には、サイフォン管路4を複数本配設すればよい。
【0026】
以上のサイフォン管路4を起動するための起動ポンプ5は、図3(b)に示すように、頂点4cにおいてサイフォン管路4内に収容される。この場合、起動用ポンプ5としてエゼクターポンプ13を使用してサイフォン終点4b近傍に配置すると、図3(c)において矢印で示すように、起動と同時にサイフォン管路4を通ってくる低水温の海水と周辺の高水温の海水を混合させ、放流部付近の水温上昇によるサイフォン切れを防止することができる。
【0027】
上述したように、必要揚程が比較的少ないために起動ポンプ5に必要な原動機の出力も小さくなることから、太陽光発電を利用した場合にも、比較的小さな設置面積の太陽電池モジュールによって十分な電気を供給することができる。このように太陽光発電を利用することにより、運用コストをさらに低廉なものにすることができる。
【0028】
【発明の効果】
以上の説明から明らかなように、本発明によれば、閉鎖海域や湾奥部分における海水交換の運用コストを低廉にすることができる。したがって、安価なコストによって閉鎖海域等の低層部の水質悪化を改善、防止することができる。
【図面の簡単な説明】
【図1】本発明の海水交換装置が設置された港湾を示す平面図である。
【図2】本発明を示す図で、図1の1A−1A線断面図である。
【図3】本発明の実施の形態における部分拡大図で、(a)は撹拌、混合手段を示す図、(b)は起動ポンプの設置状態を示す図、(c)はエゼクターポンプの稼働状況を示す図である。
【符号の説明】
1  閉鎖海域
2  密度成層
3  周辺海域
4  サイフォン管路
5  起動ポンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a seawater exchange method and a seawater exchange device used for the method.
[0002]
[Prior art]
Recently, in the case of sea areas where the bottom layer is isolated by harbors, peninsulas, etc. in harbors, etc., only the surface water temperature rises in the closed sea area at high summer water temperatures, the bottom layer becomes a cold water mass, and vertical mixing occurs. The problem is the deterioration of water quality, which results in poor oxygen levels due to the disturbed water quality, and attention has been paid to seawater exchange in closed sea areas and deeper bays as a countermeasure.
[0003]
Conventionally, as such a method of exchanging seawater, a pump is operated by commercial power to introduce outside seawater. However, since power is required, the operation cost is high. .
[0004]
In recent years, a vertical circulation type seawater exchange device has been devised in which a pumping port is provided in a flow and a negative pressure generated by a flow due to tide passing in the vicinity thereof is used (see Non-Patent Document 1). However, at the high water temperature in summer when seawater exchange is most necessary, only the surface water temperature rises and the bottom layer may be a cold water mass. There is a disadvantage that the density difference due to the temperature difference affects the direction in which the flow is stopped, and the seawater exchange efficiency is reduced.
[0005]
[Non-patent document 1]
Ozawa, et al., "Basic Examination of Pumping Characteristics of Seawater Exchange Submerge Using Negative Pressure", Journal of Coastal Engineering, Japan Society of Civil Engineers, 2000, Vol. 47, p. 1161-1165
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned drawbacks, and an object of the present invention is to provide a seawater exchange method and a seawater exchange device with low operating costs.
[0007]
[Means for Solving the Problems]
According to the invention, the object is
A siphon whose head at the density stratification boundary of the high-density area on the closed sea area 1 side is higher than that in the surrounding sea area 3 between the high-density area of the density stratification 2 formed in the closed sea area 1 and the middle area of the surrounding sea area 3 Connected by pipe 4
This is achieved by providing a seawater exchange method in which seawater in a high-density area in the closed sea area 1 flows out to the surrounding sea area 3 through the siphon pipe 4.
[0008]
FIG. 2 shows the present invention. In FIG. 2, reference numeral 1 denotes a closed sea area in which the bottom layer is isolated from the surrounding sea area 3 by a dike 10 such as a submerged dike. In both the surrounding sea area 3 and the closed sea area 1, a plurality of density stratification layers 2 are formed due to the difference in temperature. In summer or the like, a high density area is formed near the seabed of the closed sea area 1 in which seawater exchange is hindered by the levee 10. , A stratified layer 2 (cold water mass 11) is formed. In FIG. 2, the boundary of the density stratification 2 is indicated by a broken line.
[0009]
Reference numeral 4 denotes a siphon pipe connecting the surrounding sea area 3 and the seabed of the closed sea area 1 across the dike 10. A pipe end on the closed sea area 1 side (hereinafter, “siphon starting point 4 a”) is a boundary of the cold water mass 11. It is arranged deeper than the surface level 11a.
[0010]
Now, the height difference between the boundary surface level 11a of the chilled water mass 11 and the pipeline end on the side of the sea area 3 around the siphon pipeline 4 (hereinafter, “siphon end point 4b”) is h bd , and the seawater (cold water mass) at the siphon starting point 4a is 1 a density [rho, when the density of the sea water in the siphon ending 4b and [rho 2, the water head difference due to difference in density between the seawater occurring between the siphon start point 4a and siphon ending 4b (H bd) is
H bd = (ρ 1 −ρ 2 ) / ρ 1 · h bd (1)
Given by
[0011]
Due to the presence of the cold water mass 11, ρ 1 −ρ 2 > 0, so that H bd > 0, and a water flow from the siphon start point 4a to the siphon end point 4b can be created in the siphon pipeline 4.
[0012]
The water flow rate (Q) in the siphon pipeline 4 is a water volume that balances the head loss (H L ) in the siphon pipeline 4 and is obtained as follows. That is,
Assuming that the flow velocity in the pipe is v, the water passage area in the pipe is A, and various loss factors including friction loss are f,
H L = H bd (2)
H L = f · v 2 / (2 · g) (3)
Than,
v = (H bd · 2 · g / f) 1/2 (4)
Holds.
[0013]
On the other hand, between Q and v,
Q = A · v
= A · (H bd · 2 · g / f) 1/2 (5)
Is established.
[0014]
Therefore, the higher the temperature difference between the surface layer and the bottom layer is, for example, at the time of high water temperature in summer when the need for seawater exchange is the highest, the greater the density difference Hbd , the larger the water flow rate Q, and the larger the seawater exchange rate. It turns out that it becomes high.
[0015]
In order to raise the seawater on the high-density side near the siphon starting point 4a to the vertex 4c of the siphon pipe 4 once, and to set the entire seawater to the seawater density near the siphon starting point 4a, the siphon pipe 4 is activated. The starting pump 5 is installed at the vertex 4c (see FIG. 3B). The required head of the starting pump 5 is obtained as follows.
[0016]
That is, the hydrostatic pressure H bc due to the density difference necessary for siphon activation is ρ 3 , the initial density of the vertex 4 c of the siphon pipe 4, and the height difference between the boundary surface level 11 a of the cold water mass and the vertex 4 c of the siphon pipe 4. Let hbc be
H bc = (ρ 1 -ρ 3 ) / ρ 1 · h bc = H a ··· (6)
Given by
[0017]
Therefore, if a starting device such as a pump having the ability to raise the water flow rate Q of the above equation (5) by the hydrostatic pressure H bc (= head H a ) is prepared, as long as there is a density difference (water temperature difference), Then, a flow is generated from the siphon start point 4a toward the siphon end point 4b, and the seawater is exchanged.
[0018]
Incidentally, lift H a when the vertex 4c of the siphon pipe 4 is above the water surface, h ec the height difference between the vertex 4c siphon conduit 4 out of the water, when the height difference of up to the water surface and h BE,
H bc = (ρ 1 −ρ 3 ) / ρ 1 · h be + h ec = H a (7)
Given by
[0019]
The head required for these start-ups is relatively small, and natural energy using sunlight or wind power is sufficient, so operation with low maintenance costs is possible.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a plan view of a port to which the present invention is applied. In the figure, reference numeral 10 denotes a submarine levee (bank), 1 denotes a closed sea area whose bottom layer is separated from the surrounding sea area 3 by a levee 10 or the like, and 3 denotes a surrounding sea area. , A cold water mass 11 is formed.
[0021]
Numeral 4 denotes a siphon pipeline arranged across the bank 10, one end of which is arranged in the cold water body 11 in the closed sea area 1 and the other end is arranged in the underwater area of the surrounding sea area 3, as shown in FIG.
[0022]
The siphon pipe 4 is designed so as to satisfy the above conditions for functioning as a siphon in which seawater moves from the cold water mass 11 to the surrounding sea area 3. Also, in order to maintain the siphon and generate a continuous water flow, consideration is given to the density Froude number as described below.
[0023]
That is, when v obtained by the above equation (4) is small, the density stratification 2 is formed in the siphon pipe 4 and the density siphon may be cut off. Whether or not the density stratification 2 is formed in the siphon pipeline 4 can be determined by empirically confirming the density Froude number (F d ),
F d ≧ 1.0 (8)
, It is known that the density stratification 2 is not formed in the siphon conduit 4.
[0024]
The density Froude number F d is 1 the density of the siphon start point 4a [rho, and the initial density [rho 3 vertices 4c siphon pipe 4, the diameter of the siphon pipe 4 (or height dimension of the channel cross-section) d Then
F d = v / {g · (ρ 1 −ρ 3 ) / ρ 1 · d 1/2 (9)
And the pipe diameter is set so as to satisfy the above equations (8) and (9).
[0025]
In the case where the density stratification 2 is likely to be formed, as shown in FIG. 3 (a), a stirrer for the water flow in the pipe such as a spiral strip and the mixing means 12 are provided inside the siphon pipe 4, or It is desirable to prevent the density stratification 2 from occurring by reducing the shape of the pipe at the vertex 4c (making d in the above equation (7) smaller). In the present embodiment, one siphon pipe 4 is provided for the embankment 10. However, when the required water flow Q cannot be secured due to a decrease in the diameter d of the pipe, the siphon pipe 4 is not provided. A plurality of roads 4 may be provided.
[0026]
The starting pump 5 for starting the siphon pipeline 4 described above is housed in the siphon pipeline 4 at the vertex 4c, as shown in FIG. In this case, if the ejector pump 13 is used as the start-up pump 5 and it is arranged near the siphon end point 4b, as shown by an arrow in FIG. And the surrounding high-temperature seawater can be mixed to prevent siphon breakage due to a rise in water temperature near the discharge section.
[0027]
As described above, since the output of the prime mover required for the starting pump 5 is also reduced because the required head is relatively small, even when using solar power generation, a solar cell module having a relatively small installation area is sufficient. Can supply electricity. By using the photovoltaic power generation in this way, the operation cost can be further reduced.
[0028]
【The invention's effect】
As is clear from the above description, according to the present invention, it is possible to reduce the operation cost of seawater exchange in a closed sea area or a deep part of a bay. Therefore, it is possible to improve and prevent the deterioration of the water quality in the lower part such as the closed sea area at a low cost.
[Brief description of the drawings]
FIG. 1 is a plan view showing a port where a seawater exchange device of the present invention is installed.
FIG. 2 shows the present invention, and is a cross-sectional view taken along line 1A-1A of FIG.
FIGS. 3A and 3B are partially enlarged views of the embodiment of the present invention, in which FIG. 3A shows a stirring and mixing means, FIG. 3B shows an installation state of a starting pump, and FIG. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Closed sea area 2 Density stratification 3 Surrounding sea area 4 Siphon line 5 Starting pump

Claims (2)

閉鎖海域に形成された密度成層の高密度域と周辺海域の海中域との間を閉鎖海域側の高密度域の密度成層境界における水頭が周辺海域でのそれより高くなるサイフォン管路で連結し、
該サイフォン管路を介して閉鎖海域内の高密度域内の海水を周辺海域に流出させる海水交換方法。
The high-density stratification boundary of the high-density area on the closed sea side is connected between the high-density area of the density stratification formed in the closed sea area and the mid-sea area of the surrounding sea area by a siphon pipe with a higher head than that in the surrounding sea area. ,
A seawater exchange method for discharging seawater in a high-density area in a closed sea area to a surrounding sea area through the siphon pipe.
閉鎖海域に形成された密度成層の高密度域と周辺海域の海中域との間を閉鎖海域側の高密度域の密度成層境界における水頭が周辺海域でのそれより高くなるように連結するサイフォン管路と、
前記サイフォン管路を起動する起動ポンプとを有する海水交換装置。
A siphon pipe that connects the high density area of the dense stratification formed in the closed sea area and the middle area of the surrounding sea so that the head at the density stratification boundary of the high density area on the closed sea side is higher than that in the surrounding sea area Road and
A seawater exchange device comprising: a starting pump that starts the siphon pipeline.
JP2002276049A 2002-09-20 2002-09-20 Sea water exchanging method Pending JP2004108118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002276049A JP2004108118A (en) 2002-09-20 2002-09-20 Sea water exchanging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276049A JP2004108118A (en) 2002-09-20 2002-09-20 Sea water exchanging method

Publications (1)

Publication Number Publication Date
JP2004108118A true JP2004108118A (en) 2004-04-08

Family

ID=32272053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276049A Pending JP2004108118A (en) 2002-09-20 2002-09-20 Sea water exchanging method

Country Status (1)

Country Link
JP (1) JP2004108118A (en)

Similar Documents

Publication Publication Date Title
ES2719224T3 (en) Hydropneumatic energy storage system
US8664784B2 (en) Louvered turbine for generating electric power from a water current
JP6122550B2 (en) Multi-function mounting device for tidal current generator and method of using the same
JP2011032940A (en) Installation structure of hydraulic power generating apparatus
CN102953940A (en) Wind turbine
KR101507761B1 (en) Floating body and power generating method for tidal current power generation
JP3220944U (en) Seawater power generator
KR101416761B1 (en) Structure for tidal power generation
JP3687790B2 (en) Hydroelectric power generation equipment
EP1010811A1 (en) System for protecting coastal land from rise of surface of the sea
KR100822089B1 (en) A tide generation system
JP2004108118A (en) Sea water exchanging method
JP2002081362A (en) Hydraulic power generating system
JP6675633B2 (en) Power generator
US20230323849A1 (en) An Improved Apparatus And Method For Extracting Energy From A Fluid
JPH11210612A (en) Tidal electric power generating method
KR101870363B1 (en) Floating breakwater system for combining having cylinder-rotated wave power generation, and operation method for the same
JP2003333955A (en) Fishing ground
JP2020055511A (en) Deep water raising and dispersion device
JP7273207B1 (en) electronics cooling system
JP5120905B1 (en) Hydroelectric power generation system using difference in water level between high tide and low tide.
KR102287189B1 (en) Energy generation and storage system
JP4902800B1 (en) Ship
CN210164571U (en) Auxiliary equipment for water power generation
CN218971328U (en) Floating type photovoltaic system comprehensively utilizing tidal energy