JP2004107748A - Method for treating zinc leaching residue - Google Patents

Method for treating zinc leaching residue Download PDF

Info

Publication number
JP2004107748A
JP2004107748A JP2002273745A JP2002273745A JP2004107748A JP 2004107748 A JP2004107748 A JP 2004107748A JP 2002273745 A JP2002273745 A JP 2002273745A JP 2002273745 A JP2002273745 A JP 2002273745A JP 2004107748 A JP2004107748 A JP 2004107748A
Authority
JP
Japan
Prior art keywords
zinc
leaching residue
zinc leaching
treating
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002273745A
Other languages
Japanese (ja)
Inventor
Takefumi Sugiyama
杉山 岳文
Kazunori Onaka
大中 一徳
Tomoki Shibata
芝田 智樹
Koji Matsui
松井 宏司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002273745A priority Critical patent/JP2004107748A/en
Publication of JP2004107748A publication Critical patent/JP2004107748A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating zinc leaching residue with which metallic iron and metallic zinc can quickly be recovered from the zinc leaching residue at a high yield. <P>SOLUTION: In the method for treating the zinc leaching residue, with which granulated material of the zinc leaching residue and carbonaceous material are prepared and valuable metals are recovered by heating this granulated material in a rotary hearth furnace, the rotary hearth furnace is driven under the condition of 0.9-1.1 air ratio in a burner and 1150-1250°C temperature in the furnace. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は亜鉛浸出残渣の処理方法に関し、更に詳しくは、亜鉛浸出残渣から有価金属、とりわけ亜鉛と金属鉄を高い収率で回収することができる新規な亜鉛浸出残渣の処理方法に関する。
【0002】
【従来の技術】
湿式亜鉛精錬で発生した亜鉛浸出残渣には、浸出しきれなかった可成りの量の亜鉛、鉄、その他の有価金属が酸化物の形態で含有されている。その代表的なものは、希硫酸に難溶性のZnO・Feである。
そのため、この残渣から亜鉛などを分離・回収するとともに、ZnO・Feの形態で残存する鉄分は鉄源となり得るために、この鉄分の回収に関しても様々な方法が実施されている。
【0003】
例えば、ヘマタイトプロセスでは、高純度の金属鉄の回収が可能である。しかしながらその回収工程は非常に複雑であり、同時に極めて長い処理時間を要するという問題がある。
また、ウェルツ炉を運転して行うウェルツ法では、酸化鉄を還元して鉄分を回収し、また還元揮発した亜鉛などを粗酸化亜鉛して回収している。しかしながら、このウェルツ法は、還元能力が劣るため亜鉛回収率は低くなり、また処理時間も長いという問題がある。
【0004】
このように、亜鉛浸出残渣から亜鉛や鉄分を回収するために従来から実施されている代表的な方法には、上記したような問題があるため、亜鉛浸出残渣から亜鉛や鉄分を高収率で、簡便に、そして短時間で回収できる方法が望まれている。
一方、金属酸化物に還元処理を行って金属を回収する方法に関しては、例えば、回転床炉法を適用して金属酸化物の還元処理が行われている(例えば、特許文献1と特許文献2を参照)。
【0005】
金属酸化物の還元処理を進める回転床炉法は、操作は簡便で、しかも迅速な処理が可能であるという利点を備えている。
しかしながら、現在までのところ、亜鉛浸出残渣に対して回転床炉法を適用して金属鉄と亜鉛を回収したという事例はない。
【0006】
【特許文献1】
特公昭46−5223号公報
【特許文献2】
特開平11−241125号公報
【0007】
【発明が解決しようとする課題】
本発明は、亜鉛浸出残渣に対して回転床炉法を適用して有価金属を回収することを目的とする。その際に還元対象が亜鉛浸出残渣であるがゆえに必要な条件を見出すことにより、高収率で金属鉄と亜鉛を回収することを可能にした亜鉛浸出残渣の処理方法の提供を目的とする。
【0008】
【課題を解決するための手段】
上記した目的を達成するために、本発明においては、亜鉛浸出残渣と炭材との造粒物を調製し、前記造粒物を回転床炉内で加熱して有価金属を回収することを特徴とする亜鉛浸出残渣の処理方法が提供される。
具体的には、前記回転床炉は、バーナの空気比:0.9〜1.1、炉内温度:1150〜1250℃の条件下で運転され、前記造粒物における炭材の重量割合は、前記亜鉛浸出残渣内における酸化鉄、酸化亜鉛、酸化鉛として存在する酸素の総重量に対する相対重量で0.75〜1.2である亜鉛浸出残渣の処理方法が提供される。
【0009】
【発明の実施の形態】
本発明は、亜鉛浸出残渣と炭材で造粒物を調製する工程と、その造粒物を特定の運転条件の回転床炉法で処理する工程とに大別される。
本発明においては、まず、亜鉛浸出残渣と、還元材である炭材を用い、混合によりバインダ成分である生石灰を加えて造粒物が製造される。
【0010】
この造粒物の製造に用いる炭材の量は、亜鉛浸出残渣の中に鉄酸化物(酸化鉄)、亜鉛酸化物(酸化亜鉛)、鉛酸化物の形態で含まれている酸素の総重量に対して、炭材中の固定炭素が相対重量で0.75〜1.2に設定される。
この炭材の量が0.75より少ない場合は、上記した酸化鉄や酸化亜鉛の還元に必要な炭素量が不足するので、後述する加熱還元時に鉄金属化率や脱亜鉛率は低下する。また、炭材の量を1.2より多くすると、造粒物の製造が困難になるとともに、加熱還元時に造粒物が崩壊しやすくなる。なお、加熱還元時に造粒物が崩壊すると、造粒物の溶融が起こりやすくなるので不都合である。
【0011】
ここで、鉄金属化率と脱亜鉛率を以下のように定義する。
鉄金属化率:造粒物中の全鉄濃度をA(質量%)とし、後述する加熱還元後における処理物中の金属鉄の濃度をA(質量%)としたとき、次式:
100×A/A(%)
で計算された値のことをいう。
【0012】
脱亜鉛率:造粒物中の全亜鉛濃度をB(質量%)とし、加熱還元後における処理物中の亜鉛濃度をB(質量%)としたとき、次式:
100×(B−A・B/A)/B
で計算された値のことをいう。
なお、製造された造粒物における水分量が11質量%以上になると、その造粒物を回転床炉に投入したときに爆裂を起こすようになるので、水添加の場合には、水分量を11質量%より少なくなるようにすることが好ましい。
【0013】
このようにして製造された造粒物を、回転床炉に投入して加熱還元が行われる。
その場合、回転床炉は以下の条件で運転されることが必要である。
まず、炉内温度は1150〜1250℃の範囲に設定される。炉内温度が1150℃よりも低い場合は、鉄金属化率と脱亜鉛率の双方とも、前記した従来のウェルツ法の場合と同程度であり、回収率は低くなる。また、炉内温度が1250℃より高くなると、炉内では還元は進行するが、溶融してしまうからである。
【0014】
本発明においては、上記した温度はバーナの空気比を0.9〜11の条件で運転して実現されることが必要である。
空気比を1.1より大きくすると、鉄金属化率と脱亜鉛率が低下するだけではなく、炉内温度が低いときにも造粒物の溶融が起こりはじめる。また、空気比を0.9より小さくすると、炉内の加熱に要する燃料の消費量が増加するからである。
【0015】
【実施例】
実施例1〜7
亜鉛浸出残渣と生石灰とコークス粉(炭材)を用いて表1で示した各種の造粒物を製造した。これらの造粒物を、表1で示した条件で運転する回転床炉に装入して加熱還元した。得られた処理物の成分と鉄金属化率、脱亜鉛率を表1に示した。
【0016】
【表1】

Figure 2004107748
【0017】
表1から次のことが明らかである。
(1)1300℃と高い炉内温度で処理された実施例5の場合、鉄金属化率、脱亜鉛率の双方は高水準になっているが、炉内で溶融してしまい、その取り扱いが困難になってしまう。また、1100℃と低い炉内温度で処理された実施例7の場合、溶融は起こらないものの、鉄金属化率、脱亜鉛率のいずれもが極めて低水準の値になってしまう。
【0018】
(2)また、空気比が1.4である実施例6の場合、脱亜鉛率は高水準にあるが鉄金属化率は74%と低く、かつ溶解してしまった。
実施例8
表1で示した実施例3の造粒物につき、バーナの空気比を1.02と一定にした状態で炉内温度を変化させて加熱還元を行い、脱亜鉛率を測定した。その結果を図1に示した。
【0019】
図1から明らかなように、炉内温度が1150〜1250℃で15分間加熱処理した際の脱亜鉛率は98%以上の高い水準にある。
【0020】
【発明の効果】
以上の説明で明らかなように、本発明方法によれば、亜鉛浸出残渣から金属鉄と亜鉛を高収率で回収することができる。
これは、回転床炉を適用し、そしてそのときの炉の運転条件を前記したような条件に設定したことによって得られた効果である。
【0021】
したがって、本発明方法は、亜鉛浸出残渣から有価金属を高収率でしかも短時間で回収する方法としてその工業的価値は大である。
【図面の簡単な説明】
【図1】実施例8における炉内温度と脱亜鉛率との関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating zinc leaching residue, and more particularly, to a novel method for treating zinc leaching residue that can recover valuable metals, particularly zinc and metallic iron, from zinc leaching residue in high yield.
[0002]
[Prior art]
The zinc leaching residue generated in the wet zinc refining contains a considerable amount of zinc, iron, and other valuable metals that cannot be leached in the form of oxides. A typical example is ZnO.Fe 2 O 3 which is hardly soluble in dilute sulfuric acid.
Therefore, zinc and the like are separated and recovered from the residue, and the iron remaining in the form of ZnO.Fe 2 O 3 can serve as an iron source. Therefore, various methods have been implemented for recovering the iron.
[0003]
For example, in the hematite process, high-purity metallic iron can be recovered. However, the recovery process is very complicated, and at the same time, requires a very long processing time.
Further, in the Welz method performed by operating a Weltz furnace, iron oxide is reduced to recover iron, and zinc that has been reduced and volatilized is recovered as crude zinc oxide. However, this Welz method has a problem that the zinc recovery rate is low due to poor reducing ability, and the treatment time is long.
[0004]
As described above, typical methods that have been conventionally performed for recovering zinc and iron from zinc leaching residues have the above-described problems, and therefore, zinc and iron can be recovered from zinc leaching residues in high yield. There is a demand for a method which can be recovered simply and in a short time.
On the other hand, with respect to a method of recovering a metal by performing a reduction treatment on a metal oxide, for example, a reduction treatment of the metal oxide is performed by applying a rotary bed furnace method (for example, Patent Documents 1 and 2). See).
[0005]
The rotary bed furnace method for promoting the reduction treatment of metal oxides has the advantage that the operation is simple and the processing can be performed quickly.
However, to date, there has been no case of recovering metallic iron and zinc by applying a rotary bed furnace method to zinc leaching residue.
[0006]
[Patent Document 1]
JP-B-46-5223 [Patent Document 2]
JP-A-11-241125
[Problems to be solved by the invention]
An object of the present invention is to recover valuable metals by applying a rotary bed furnace method to zinc leaching residues. An object of the present invention is to provide a method for treating a zinc leaching residue that enables recovery of metallic iron and zinc in a high yield by finding necessary conditions because the object to be reduced is a zinc leaching residue.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is characterized in that a granulated product of a zinc leaching residue and a carbon material is prepared, and the granulated material is heated in a rotary bed furnace to recover valuable metals. And a method for treating a zinc leaching residue.
Specifically, the rotary bed furnace is operated under the conditions of an air ratio of a burner: 0.9 to 1.1 and a furnace temperature: 1150 to 1250 ° C., and the weight ratio of the carbon material in the granulated product is And a method for treating a zinc leaching residue having a relative weight of 0.75 to 1.2 relative to the total weight of oxygen present as iron oxide, zinc oxide and lead oxide in the zinc leaching residue.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is broadly divided into a step of preparing a granulated material from a zinc leaching residue and a carbon material, and a step of treating the granulated material by a rotary bed furnace method under specific operating conditions.
In the present invention, first, a granulated product is produced by using zinc leaching residue and a carbon material as a reducing agent, and adding quicklime as a binder component by mixing.
[0010]
The amount of carbonaceous material used in the production of this granulated product is the total weight of oxygen contained in the form of iron oxide (iron oxide), zinc oxide (zinc oxide), and lead oxide in the zinc leaching residue. On the other hand, the fixed carbon in the carbon material is set to 0.75 to 1.2 in relative weight.
If the amount of the carbon material is less than 0.75, the amount of carbon necessary for the reduction of the iron oxide and the zinc oxide described above is insufficient, so that the iron metallization ratio and the dezincification ratio are reduced during the heat reduction described below. On the other hand, if the amount of the carbonaceous material is larger than 1.2, it becomes difficult to produce the granulated material, and the granulated material is liable to collapse during heat reduction. In addition, if the granulated material collapses during heat reduction, the granulated material is likely to melt, which is inconvenient.
[0011]
Here, the iron metallization ratio and the dezincification ratio are defined as follows.
Iron metallization ratio: Assuming that the total iron concentration in the granulated material is A 0 (% by mass) and the concentration of metallic iron in the treated material after heat reduction described below is A (% by mass), the following formula:
100 × A / A 0 (%)
Means the value calculated in
[0012]
Dezincification ratio: Assuming that the total zinc concentration in the granulated product is B 0 (% by mass) and the zinc concentration in the treated product after heat reduction is B (% by mass), the following formula:
100 × (B 0 −A 0 · B / A) / B 0
Means the value calculated in
If the water content of the manufactured granules is 11% by mass or more, the granules will explode when charged into a rotary bed furnace. It is preferred that the amount be less than 11% by mass.
[0013]
The granulated material thus produced is put into a rotary bed furnace and reduced by heating.
In that case, the rotary hearth furnace needs to be operated under the following conditions.
First, the furnace temperature is set in the range of 1150-1250 ° C. When the furnace temperature is lower than 1150 ° C., both the iron metallization rate and the dezincification rate are almost the same as in the case of the above-mentioned conventional Welz method, and the recovery rate is low. If the temperature in the furnace is higher than 1250 ° C., the reduction proceeds in the furnace but is melted.
[0014]
In the present invention, the above-mentioned temperature needs to be realized by operating the burner at an air ratio of 0.9 to 11.
When the air ratio is larger than 1.1, not only the iron metallization ratio and the dezincification ratio decrease, but also the melting of the granules starts to occur even when the furnace temperature is low. Also, if the air ratio is smaller than 0.9, the consumption of fuel required for heating the furnace increases.
[0015]
【Example】
Examples 1 to 7
Using the zinc leaching residue, quicklime and coke powder (charcoal), various granules shown in Table 1 were produced. These granules were charged into a rotary bed furnace operated under the conditions shown in Table 1 and reduced by heating. Table 1 shows the components of the obtained treated product, the metallization ratio of iron, and the zinc removal ratio.
[0016]
[Table 1]
Figure 2004107748
[0017]
The following is clear from Table 1.
(1) In the case of Example 5 where the treatment was performed at a high furnace temperature of 1300 ° C., both the iron metallization ratio and the dezincification ratio were at high levels, but they were melted in the furnace, and the handling was difficult. It will be difficult. In the case of Example 7, which was treated at a furnace temperature as low as 1100 ° C., although melting did not occur, both the iron metallization rate and the dezincification rate were extremely low.
[0018]
(2) In the case of Example 6 in which the air ratio was 1.4, the dezincing rate was at a high level, but the iron metallization rate was as low as 74% and was dissolved.
Example 8
The granulated product of Example 3 shown in Table 1 was subjected to heat reduction while changing the furnace temperature while keeping the burner air ratio constant at 1.02, and the zinc removal rate was measured. The result is shown in FIG.
[0019]
As is clear from FIG. 1, the dezincing rate at the time of heat treatment at a furnace temperature of 1150 to 1250 ° C. for 15 minutes is as high as 98% or more.
[0020]
【The invention's effect】
As is clear from the above description, according to the method of the present invention, metallic iron and zinc can be recovered in high yield from zinc leaching residue.
This is the effect obtained by applying a rotary hearth furnace and then setting the operating conditions of the furnace to the conditions described above.
[0021]
Therefore, the method of the present invention has great industrial value as a method for recovering valuable metals from zinc leaching residues in high yield in a short time.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a furnace temperature and a dezincing rate in Example 8.

Claims (4)

亜鉛浸出残渣と炭材との造粒物を調製し、前記造粒物を回転床炉内で加熱して有価金属を回収することを特徴とする亜鉛浸出残渣の処理方法。A method for treating a zinc leaching residue, comprising preparing a granulated product of a zinc leaching residue and a carbonaceous material, and heating the granulated material in a rotary bed furnace to recover valuable metals. 前記回転床炉は、バーナの空気比:0.9〜1.1、炉内温度:1150〜1250℃の条件下で運転される請求項1の亜鉛浸出残渣の処理方法。The method for treating zinc leaching residue according to claim 1, wherein the rotary bed furnace is operated under the conditions of an air ratio of a burner: 0.9 to 1.1 and a furnace temperature: 1150 to 1250 ° C. 前記造粒物における炭材の重量割合は、前記亜鉛浸出残渣内における酸化鉄、酸化亜鉛、酸化鉛として存在する酸素の総重量に対する相対重量で0.75〜1.2である請求項1の亜鉛浸出残渣の処理方法。The weight ratio of the carbonaceous material in the granulated product is 0.75 to 1.2 as a relative weight to the total weight of oxygen present as iron oxide, zinc oxide, and lead oxide in the zinc leaching residue. How to treat zinc leaching residue. 前記造粒物における水分の含有量は、11質量%以下である請求項1の亜鉛浸出残渣の処理方法。The method for treating a zinc leached residue according to claim 1, wherein the water content of the granulated material is 11% by mass or less.
JP2002273745A 2002-09-19 2002-09-19 Method for treating zinc leaching residue Pending JP2004107748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273745A JP2004107748A (en) 2002-09-19 2002-09-19 Method for treating zinc leaching residue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273745A JP2004107748A (en) 2002-09-19 2002-09-19 Method for treating zinc leaching residue

Publications (1)

Publication Number Publication Date
JP2004107748A true JP2004107748A (en) 2004-04-08

Family

ID=32270422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273745A Pending JP2004107748A (en) 2002-09-19 2002-09-19 Method for treating zinc leaching residue

Country Status (1)

Country Link
JP (1) JP2004107748A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133777A1 (en) * 2005-06-13 2006-12-21 Umicore Separation of metal values in zinc leaching residues
CN104232931A (en) * 2014-09-24 2014-12-24 株洲火炬工业炉有限责任公司 Oxygen-enriched nozzle for zinc leaching residue volatilizezing kiln
CN106119535A (en) * 2016-08-01 2016-11-16 江苏省冶金设计院有限公司 Process the method and system of zinc leaching residue
CN110788113A (en) * 2019-10-17 2020-02-14 宝武集团环境资源科技有限公司 Method for inhibiting zinc-containing dust pellets from reduction degradation in rotary hearth furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133777A1 (en) * 2005-06-13 2006-12-21 Umicore Separation of metal values in zinc leaching residues
EA013690B1 (en) * 2005-06-13 2010-06-30 Юмикор Separation of metal values in zinc leaching residues
CN104232931A (en) * 2014-09-24 2014-12-24 株洲火炬工业炉有限责任公司 Oxygen-enriched nozzle for zinc leaching residue volatilizezing kiln
CN106119535A (en) * 2016-08-01 2016-11-16 江苏省冶金设计院有限公司 Process the method and system of zinc leaching residue
CN110788113A (en) * 2019-10-17 2020-02-14 宝武集团环境资源科技有限公司 Method for inhibiting zinc-containing dust pellets from reduction degradation in rotary hearth furnace
CN110788113B (en) * 2019-10-17 2021-06-29 宝武集团环境资源科技有限公司 Method for inhibiting zinc-containing dust pellets from reduction degradation in rotary hearth furnace

Similar Documents

Publication Publication Date Title
JPH11310832A (en) Treatement of metal oxide of steel making waste
CN106661668A (en) Method for smelting nickel oxide ore
JP2013139618A (en) Treatment method for smoke ash
JP2008545888A (en) Separation of valuable metal from zinc leaching residue
US4144056A (en) Process for recovering nickel, cobalt and manganese from their oxide and silicate ores
JP6335519B2 (en) Method for treating antimony-containing material discharged from tin smelting process
JP3317658B2 (en) Metal recovery from steel industry waste.
KR101470123B1 (en) Refining method of Tin sludge
JP2004107748A (en) Method for treating zinc leaching residue
JP7151404B2 (en) Method for producing zinc oxide ore
JP2021188067A (en) Preparation method of raw material to be melted, and valuable metal recovery method
JP2009030121A (en) Method for recovering zinc oxide from electric furnace dust
JP2012021176A (en) Method for producing metallic lead
JP4485987B2 (en) Method for recovering valuable metals from waste containing V, Mo and Ni
JP2006316333A (en) Zinc-containing dust pellet, and zinc recovering method using the same
CN109306410B (en) Method for separating antimony and lead from lead-containing antimony slag by pyrogenic process
JP6820689B2 (en) Manufacturing method of metallic manganese
JPS5929659B2 (en) Indium separation method
JPH05202436A (en) Method for recovering high-grade metal zinc from steel making dust
JP4274069B2 (en) Reuse method of copper alloy and mat obtained by slag fuming method
JPS6254037A (en) Method for recovering gold and silver from silicate ore
WO2024018692A1 (en) Method for smelting nickel-containing oxide ore
JP2003342649A (en) Process for operating rotary kiln used for reducing iron and steel dust
CN109022811B (en) Method for extracting lead from pyrite cinder in rotary kiln
KR100679632B1 (en) Method for extracting valuable metal from residual products of antimony oxide