JP2004106506A - Thermoplastic resin composition for cleaning - Google Patents

Thermoplastic resin composition for cleaning Download PDF

Info

Publication number
JP2004106506A
JP2004106506A JP2002312323A JP2002312323A JP2004106506A JP 2004106506 A JP2004106506 A JP 2004106506A JP 2002312323 A JP2002312323 A JP 2002312323A JP 2002312323 A JP2002312323 A JP 2002312323A JP 2004106506 A JP2004106506 A JP 2004106506A
Authority
JP
Japan
Prior art keywords
resin
thermoplastic resin
cleaning
weight
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002312323A
Other languages
Japanese (ja)
Other versions
JP4155793B2 (en
Inventor
Kiyoto Hiromitsu
弘光 清人
Hiroaki Nomura
野村 弘明
Kaoru Kajino
梶野  薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbide Industries Co Inc
Original Assignee
Nippon Carbide Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Industries Co Inc filed Critical Nippon Carbide Industries Co Inc
Priority to JP2002312323A priority Critical patent/JP4155793B2/en
Publication of JP2004106506A publication Critical patent/JP2004106506A/en
Application granted granted Critical
Publication of JP4155793B2 publication Critical patent/JP4155793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Detergent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition for cleaning which can realize cleaning work for effectively removing, in a short time, a resin burned product, a carbonized matter and the like deposited on a screw or cylinder inner wall surface of a molding machine without the need to dismantle the molding machine for removing the screw for grinding work and without damage to the screw and the cylinder. <P>SOLUTION: This thermoplastic resin composition for cleaning includes 1 to 120 parts by weight of an amino resin powder incorporated in 100 parts by weight of a thermoplastic resin. A pellet comprising the thermoplastic resin composition and a cleaning method using the same are also provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、熱可塑性樹脂の加工成形機の洗浄に使用する洗浄用熱可塑性樹脂組成物、それからなるペレット及びそれを用いた熱可塑性樹脂加工成形機の洗浄方法に関する。
【0002】
【従来の技術】
熱可塑性樹脂は、押出成形、射出成形等の成形機を用いて成形品を得ており、これらの成形加工においては、品種の切替えが頻繁に行われる場合には、品種の切替時には成形機内の洗浄が品質管理の面で必要であり、また、フィルムの製造等の長期間にわたって成形が行われる場合には、原料樹脂や可塑剤等の樹脂コンパウンドに配合される添加剤成分などが押出機のスクリュー部やシリンダー内壁に焼き付いたり、炭化物が付着したりして非常に汚れた状態となる。
【0003】
従来、成形加工中にこのような状態になると清掃作業が必要となり、その作業には、(イ)成形加工機を停止せずにそのまま次に切替加工する品種の樹脂を流して清掃する方法、(ロ)一旦製造を止め、成形加工機を分解しスクリュー、シリンダー内部を清掃する方法が行われていた。
しかし、上記(イ)の次品種で置換していく方法は、人手は要しないものの、多量の置換用樹脂を要する点、清掃が完了するまでに時間を要し、生産性が低下する問題がある。また、上記(ロ)の成形加工機を分解する方法は人手がかかり、洗浄作業に多くの時間を費やすこととなる。
【0004】
これらの問題を解決する手段として、種々の洗浄用熱可塑性樹脂組成物を使用して、切替時の洗浄や汚れ時の洗浄を行う方法が提案されている。
市販されている洗浄用樹脂組成物として、ガラスファイバーを含むものが挙げられるが、スクリューやシリンダー内壁面を磨耗させる等の欠点がある。
また、超高分子量アクリル樹脂タイプが挙げられるが、このものは溶融しにくく、スクリュー回転時に非常に高い負荷がかかり機械の故障の原因となる可能性がある。
その他、界面活性剤、金属石鹸など洗浄効果のある物質を含むもの、発泡剤入りのもの等の樹脂組成物が挙げられるが、これらは樹脂の焼き付き物や炭化物の除去に必要なだけの研磨、摩擦力が乏しく、十分な洗浄効果が得られない等の問題点があった。
【0005】
【特許文献1】
特公昭55−50502号公報
【特許文献2】
特開2000−319636号公報
【0006】
【発明が解決しようとする課題】
本発明は、成形加工機のスクリューやシリンダー内壁面に付着する樹脂焼けや炭化物などを、成形加工機を分解し、スクリューを取り出しての研磨作業をすることなく、また、スクリューやシリンダーを傷つけることなく、効果的に短時間でクリーニング作業ができる洗浄用樹脂組成物を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者等は前述の問題点を解決するために、種々検討した結果、熱可塑性樹脂にアミノ系樹脂、特にメラミン系樹脂粉体を配合した樹脂組成物が優れた洗浄効果を有することを見出し、本発明を完成した。
即ち本発明は、熱可塑性樹脂100重量部に対して、アミノ系樹脂粉体を1〜120重量部配合したことを特徴とする洗浄用熱可塑性樹脂組成物、である。
【0008】
【発明の実施の形態】
以下本発明の実施の形態について詳しく説明する。
本発明に使用する熱可塑性樹脂としては、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等のポリオレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリスチレン、ポリアクリロニトリル、ポリメタクリル樹脂またはMS樹脂(メタクリル酸メチル−スチレン樹脂)、AS樹脂(アクリロニトリル−スチレン樹脂)等これらの共縮合体樹脂、ABS樹脂(アクリロニトリル−ブタジエン−スチレン樹脂)、MBS樹脂(メタクリル酸メチル−ブタジエン−スチレン樹脂)、ポリエステル樹脂、ポリアミド樹脂などを単独または2種以上混合して用いることができる。
【0009】
本発明の洗浄用熱可塑性樹脂組成物は、前述の熱可塑性樹脂100重量部に対して、アミノ系樹脂粉体を1〜120重量部を配合してなるものである。
アミノ系樹脂としては、アミノ成分とホルムアルデヒドとを反応させて得られるアミノ成分樹脂、アミノ成分とホルムアルデヒド及びこれらと共縮合可能な他のアミノ成分を反応させて得られるアミノ系共縮合樹脂及びアミノ成分樹脂同士の混合樹脂を挙げることができる。
尚、アミノ成分としては、メラミン、尿素やチオ尿素、エチレン尿素等の尿素類、ベンゾグアナミンやホルモグアナミン、フェニルアセトグアナミン、アセトグアナミン、CTU−グアナミン等のグアナミン類、グアニジンやジシアンジアミド、パラトルエンスルホン酸アミド等のその他のアミノ化合物等を挙げることができ、これらアミノ成分は併用することもできる。
【0010】
アミノ系樹脂の中ではメラミン系樹脂が好適に用いられる。
メラミン系樹脂としては、例えば、メラミンとホルムアルデヒドとをメラミン1モルに対して1〜4モル程度反応させたメラミン樹脂、メラミンと尿素、チオ尿素、エチレン尿素等の尿素類、ベンゾグアナミン、アセトグアナミン、ホルモグアナミン、フェニルアセトグアナミン、CTU−グアナミン等のグアナミン類、その他のアミノ化合物等から選ばれた1種以上の成分とホルムアルデヒドとを反応したメラミン共縮合樹脂が挙げられる。
アミノ系樹脂、中でもメラミン系樹脂の硬化物は、その硬度(モース硬度)が3〜5程度と、スクリューやシリンダーを傷つけることがないので好ましい。
硬化物は、例えば、特許文献1に記載の方法や、特許文献2に記載の方法で得ることが出来るが、メラミン系樹脂を主体とした成形材料で成形硬化させた成形品の再破砕物や成形の際発生するバリ等を用いることができ、中でも成形品の再破砕物が好ましい。
【0011】
本発明に用いるアミノ系樹脂粉体は、粒子径1〜1000μmの範囲の粉体であることが好ましく、特に好ましくは350〜1000μmの範囲のものである。ここで、粒子径が1〜1000μmの範囲の粉体とは、粒子径が1μmから1000μmまでの粉体が混在している粉体をいい、通常は1〜1000μmの粉体、1〜350μmの粉体、350〜1000μmの粉体などが正規分布をなして混在しているものである。
粒子径が1000μm以上の粉体が存在する場合、洗浄作業時の押出機スクリューに非常に高い負荷がかかり、機械の故障の原因となることがあるので好ましくなく、また、1μm以下の粉体が存在する場合、物理的研磨効果が得られず、洗浄効果が得にくくなる。
また、押出機ダイス、ブレーカープレート、スクリーン等を付けたまま洗浄作業を行う場合には、粉体の粒子径は、スクリーンのメッシュサイズ以下の粒子径を用いることが好ましく、その粒子径は1〜350μmの範囲であり、特に好ましくは1〜150μmの範囲である。
【0012】
本発明のアミノ系樹脂粉体は、熱可塑性樹脂100重量部に対して1〜120重量部、更に好ましくは1〜50重量部配合する。配合量が1重量部未満では、清掃効果が得られず、120重量部を超えては、アミノ系樹脂粉体が残留し、これを排除するために時間を要し、得策ではない。
本発明の洗浄用樹脂組成物は、前記アミノ系樹脂粉体の他にペレット化助剤および押出機の洗浄に使用した場合での離型性向上のため、滑剤を含有させることもできる。
滑剤の配合量としては、熱可塑性樹脂100重量部に対して0.1〜10重量部、好ましくは0.5〜5重量部である。
滑剤が0.1重量部未満では、使用する樹脂や各種条件によっては、ストランド押し出しの際に目ヤニが発生し、ストランドが切れる原因となり安定的な製造が困難となる。また、押出機の洗浄用として使用した際に十分な離型効果が得られず、押出機内部で樹脂の付着が起こり残留の原因となる。10重量部を超えては、押出機のシリンダー内部で樹脂の滑りがあり、洗浄に必要なトルクが得られないため好ましくない。
【0013】
滑剤としては、例えば、ステアリン酸カルシウム、ステアリン酸亜鉛、ミリスチン酸亜鉛等の金属石鹸類、ステアリン酸、オレイン酸、ベヘニン酸等の脂肪酸類、ブチルステアレート、ドデシルステアレート等の脂肪酸エステル類、ステアリン酸モノグリセライド、オレイン酸モノグリセライド、ヒドロキシステアリン酸モノグリセライド、ペンタエリスリトールステアリン酸エステル、ポリグリセリンステアレート、ソルビタントリオレート等の脂肪酸部分エステル類、ラウリン酸アミド、ミリスチン酸アミド、エルカ酸アミド、オレイン酸アミド、ステアリン酸アミド等の脂肪酸アミド類、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド等の脂肪酸ビスアミド類、これらの混合系等を使用することができ、中でも金属石鹸が好ましく、ステアリン酸金属塩が特に好ましい。
【0014】
【実施例】
以下に実施例などを挙げて本発明を更に詳しく説明するが、本発明はこれら実施例などにより何ら限定されるものではない。
(参考例1)
平均重合度1300のポリ塩化ビニール100重量部に対して、可塑剤45重量部、カルシウム−亜鉛系熱安定剤1.5重量部、ジグリセリンモノオレート2.5重量部を含む樹脂組成物を使用し、L/D=28でシリンダー径40mm単軸押出機にて、シリンダー温度180℃、Tダイ190℃、スクリュー回転数68rpmにて押出して、フィルムの製造を2週間連続実施した。これにより押出機は、スクリューやシリンダー内壁に焼き付いた樹脂や炭化物が付着した状態となった。
【0015】
(参考例2)
酢酸ビニル含有量が15%のエチレン酢酸ビニル共重合体(日本ユニカー株式会社製;NUC−3758:商品名)に防曇剤2重量%を含むポリエチレン樹脂組成物をL/D=28でシリンダー径40mm単軸押出機にて、シリンダー温度160℃、ダイス温度185℃、スクリュー回転数70rpmにて押出し、インフレーションによるフィルムの製造を3ヶ月間連続実施した。これにより押出機は、スクリューやシリンダー内壁に焼き付いた樹脂や炭化物が付着した状態となった。
【0016】
(参考例3)
ABS樹脂(アクリロニトリル−ブタジエン−スチレン樹脂)の黒色に着色した樹脂成形材料を、L/D=25でシリンダー径30mm単軸押出機にて、シリンダー温度200℃、スクリュー回転数30rpmにて、ダイスを装着せずに200gを押出した。投入した樹脂は全量全てが押出されず、スクリューおよびシリンダー内壁に若干の樹脂が付着し残留した。
【0017】
(参考例4)
ポリプロピレン(PP)黒色樹脂200gをL/D=25でシリンダー径30mm単軸押出機にて、シリンダー温度190℃、ダイス温度190℃、スクリュー回転数30rpmで押出した。なお、スクリューとダイスの間には80メッシュのスクリーン、ブレーカープレートが装着されている。PP黒色の樹脂の一部はスクリュー表面に付着しシリンダー内に残留した状態となった。
【0018】
〔メラミン系樹脂粉体製造例1〕
メラミン系樹脂の硬化成形物をせん断式破砕機にて粗粉砕し、この粗粉砕物をさらに剪断・摩擦式粉砕機にて細粉砕して、メラミン系樹脂成形物の粉砕物を得た。
一方、20メッシュ(目開き840μm)の篩を上篩、32メッシュ(目開き500μm)の篩を下篩として振動篩機にセットし、20メッシュ篩を通過し、32メッシュ篩上に残留したものを回収できるようにした。なお、32メッシュ篩下にタッピングボールをセットすることで、目詰まりすることなく連続的に篩うことができた。
このようにセットされた振動篩機に、前記の細粉砕で得られた粉砕物を連続的に投入し、粉砕物を得た。この粉砕物の粒子径は350μm〜1000μmの粉砕物が99.6重量%、10μm〜350μmが0.4重量%であった。
【0019】
〔メラミン系樹脂粉体製造例2〕
メラミン系樹脂粉体製造例1と同様にして、メラミン系樹脂成形物の粉砕物を得た後、70メッシュ(目開き210μm)の篩を上篩、285メッシュ(目開き50μm)の篩を下篩として振動篩機にセットする。70メッシュ篩上に残留したものおよび70メッシュ篩を通過し、285メッシュ篩上に残留したものは回収できるようにして、再度粉砕工程へ送られるようにする。285メッシュ篩には超音波発生装置からの超音波振動を与えることで、目詰まりすることなく連続的に篩うことができる。
このようにセットされた振動篩機に、前記の粉砕で得られた粉砕物を連続的に投入し、285メッシュ篩を通過した粉砕物を得た。この粉砕物の粒子径は1μm〜150μmの粉砕物が99.5重量%、1μm以下の粉砕物が0.5重量%であった。
【0020】
(製造例1)
ポリ塩化ビニルコンパウンド4.2kgと、メラミン系樹脂粉体製造例1の破砕物0.8kg(熱可塑性樹脂100重量部に対して、19重量部)を20リットルの高速ミキサーにて回転数500rpmで2分間攪拌して混合した。
この混合物をL/D=28でシリンダー径が40mmの単軸押出機に供給し、シリンダー温度170℃、ダイス温度180℃、スクリュー回転数30rpmでストランドを押出し、水槽中で冷却し、ペレタイザーでカットし、ペレット状の組成物を得た。
【0021】
(製造例2)
低密度ポリエチレン樹脂(日本ユニカー株式会社製;DFD−0118:商品名)4kgと、メラミン系樹脂粉体製造例1の破砕物1kg(熱可塑性樹脂100重量部に対して、25重量部)を20リットルの高速ミキサーにて回転数500rpmで2分間攪拌して混合した。
この混合物をL/D=28でシリンダー径が40mmの単軸押出機に供給し、シリンダー温度140℃、ダイス温度150℃、スクリュー回転数30rpmでストランドを押出し、水槽中で冷却し、ペレタイザーでカットし、ペレット状の組成物を得た。
【0022】
(製造例3)
低密度ポリエチレン樹脂(日本ユニカー株式会社製;DFD−0118:商品名)3.5kgと、メラミン系樹脂粉体製造例1の破砕物1.5kg(熱可塑性樹脂100重量部に対して、43重量部)を20リットルの高速ミキサーにて回転数500rpmで2分間攪拌して混合した。
この混合物をL/D=28でシリンダー径が30mmの2軸押出機に供給し、シリンダー温度140℃、ダイス温度150℃、スクリュー回転数140rpmでストランドを押出し、水槽中で冷却し、ペレタイザーでカットし、ペレット状の組成物を得た。
【0023】
(製造例4)
低密度ポリエチレン樹脂(日本ユニカー株式会社製;DFD−0118:商品名)3.5kgと、メラミン系樹脂粉体製造例2の破砕物1.5kg(熱可塑性樹脂100重量部に対して、43重量部)を20リットルの高速ミキサーにて回転数500rpmで2分間攪拌して混合した。
この混合物をL/D=28でシリンダー径が30mmの2軸押出機に供給し、シリンダー温度140℃、ダイス温度150℃、スクリュー回転数140rpmでストランドを押出し、水槽中で冷却し、ペレタイザーでカットし、ペレット状の組成物を得た。
【0024】
(製造例5)
AS樹脂(アクリロニトリル−スチレン樹脂)3.5kgと、メラミン系樹脂粉体製造例1の破砕物1.5kg(熱可塑性樹脂100重量部に対して、43重量部)、ステアリン酸亜鉛0.175kg(熱可塑性樹脂100重量部に対して、5重量部)を20リットルの高速ミキサーにて回転数500rpmで2分間攪拌して混合した。
この混合物をL/D=28でシリンダー径が40mmの単軸押出機に供給し、シリンダー温度200℃、ストランドダイ温度210℃、スクリュー回転数30rpmでストランドを押出し、自然冷却し、ペレタイザーでカットし、ペレット状の組成物を得た。
【0025】
(製造例6)
低密度ポリエチレン樹脂(日本ユニカー株式会社製;DFD−0118:商品名)2.5kgと、メラミン系樹脂粉体製造例2の破砕物2.5kg(熱可塑性樹脂100重量部に対して、100重量部)を20リットルの高速ミキサーにて回転数500rpmで2分間攪拌して混合した。
この混合物をL/D=28でシリンダー径が30mmの2軸押出機に供給し、シリンダー温度190℃、ダイス温度190℃、スクリュー回転数140rpmでストランドを押出し、水槽中で冷却し、ペレタイザーでカットし、ペレット状の組成物を得た。
【0026】
(製造例7)
ポリプロピレン樹脂(出光石油化学株式会社製;F−200S:商品名)3.5kgと、メラミン系樹脂粉体製造例2の破砕物1.5kg(熱可塑性樹脂100重量部に対して、43重量部)を20リットルの高速ミキサーにて回転数500rpmで2分間攪拌して混合した。
この混合物をL/D=28でシリンダー径が30mmの2軸押出機に供給し、シリンダー温度190℃、ダイス温度190℃、スクリュー回転数140rpmでストランドを押出し、水槽中で冷却し、ペレタイザーでカットし、ペレット状の組成物を得た。
【0027】
(製造例8)
ポリ塩化ビニルコンパウンド4.2kgに、メラミン系樹脂粉体製造例1の破砕物0.8kg(熱可塑性樹脂100重量部に対して、19重量部)を攪拌混合して、洗浄用熱可塑性樹脂組成物の混合物を得た。
(製造例9)
低密度ポリエチレン樹脂ペレット(日本ユニカー株式会社製;DFD−0118:商品名)4kgと、メラミン系樹脂粉体製造例1の破砕物1kg(熱可塑性樹脂100重量部に対して、25重量部)を攪拌混合して、洗浄用熱可塑性樹脂組成物の混合物を得た。
(製造例10)
低密度ポリエチレン樹脂ペレット(日本ユニカー株式会社製;DFD−0118:商品名)2.0kgと、メラミン系樹脂粉体製造例2の破砕物3.0kg(熱可塑性樹脂100重量部に対して、150重量部)を攪拌混合して、洗浄用熱可塑性樹脂組成物の混合物を得た。
【0028】
【実施例1】
参考例1の状態にした押出機に対して、Tダイ、ブレーカープレート、スクリーンを外し、スクリューが見える状態にして残留樹脂を押出した後、シリンダー温度を135℃としてスクリュー回転数を10rpmで製造例1のペレット状混合物3kgを供給し押出すことで洗浄を行った。先端部より混合物が吐出し始めたら回転数を30rpmとすると、焼けた樹脂や炭化物を含んだ黒っぽい着色物が吐出される。吐出物の着色がなくなったら、樹脂混合物をすべて押出した。
洗浄作業後、スクリューを抜き出したところ樹脂の焼き付きや炭化物が付着していることがなくメッキ面は金属光沢があり、また、シリンダー内壁部も懐中電灯にて照らし調査したところ、一様に十分な反射光を得ることができ、汚れがないことを確認できた。
【0029】
【実施例2】
参考例2の状態にした押出機に対して、ダイス、ブレーカープレート、スクリーンを外し、スクリューが見える状態にして残留樹脂を押出した後、シリンダー温度を140℃として、スクリュー回転数を10rpmで製造例2のペレット状混合物3kgを供給し押出すことで洗浄を行った。先端部より混合物が吐出し始めたら回転数を30rpmとすると焼けた樹脂や炭化物が含まれ黒っぽい着色物が吐出される。吐出物の着色がなくなったら、樹脂混合物をすべて押出した。
スクリューを抜き出すと焼けた樹脂や炭化物が付着していることがなくメッキ面は金属光沢があり、また、シリンダー内壁部も懐中電灯にて照らし調査したところ、一様に十分な反射光を得ることができ、汚れがないことを確認できた。
【0030】
【実施例3】
参考例3の状態にした押出機に対して、シリンダー温度を200℃、スクリュー回転数を30rpmで製造例5のペレット状組成物を供給し、押出すことで置換洗浄を行った。先端部より混合物が内部に残留していたABSの黒色着色樹脂とともに吐出された。吐出物は徐々に黒色の着色が薄くなり、約8分後完全に黒色着色がなくなった。
このときまでに吐出された樹脂量は約360gであった。その後、投入した製造例5のペレット状組成物を全て出し切り、同条件にて着色してないABS樹脂を供給し押出すことで残留汚れ、残留樹脂の確認を行った。投入後、先端よりABS樹脂が吐出され、製造例5の残留分は確認されなかった。また、吐出されたABS樹脂への黒色着色は確認されなかった。
【0031】
【実施例4】
参考例1の状態にした押出機に対して、Tダイ、ブレーカープレート、スクリーンを外し、スクリューが見える状態にして残留樹脂を押出した後、シリンダー温度を135℃としてスクリュー回転数を10rpmで製造例8のペレット状組成物3kgを供給し押出すことで洗浄を行う。先端部より混合物が吐出し始めたら回転数を30rpmとすると、焼けた樹脂や炭化物を含んだ黒っぽい着色物が吐出された。吐出物の着色がなくなったら、樹脂混合物をすべて押出した。
洗浄作業後、スクリューを抜き出したところ樹脂の焼き付きや炭化物が付着していることがなくメッキ面は金属光沢があり、また、シリンダー内壁部も懐中電灯にて照らし調査したところ、一様に十分な反射光を得ることができ、汚れがないことを確認できた。
【0032】
【実施例5】
参考例2の状態にした押出機に対して、ダイス、ブレーカープレート、スクリーンを外し、スクリューが見える状態にして残留樹脂を押出した後、シリンダー温度を140℃として、スクリュー回転数を10rpmで製造例9のペレット状組成物3kgを供給し押出すことで洗浄を行った。先端部より混合物が吐出し始めたら回転数を30rpmとすると、焼けた樹脂や炭化物が含まれ黒っぽい着色物が吐出された。吐出物の着色がなくなったら、樹脂混合物をすべて押出した。
スクリューを抜き出すと焼けた樹脂や炭化物が付着していることがなくメッキ面は金属光沢があり、また、シリンダー内壁部も懐中電灯にて照らし調査したところ、一様に十分な反射光を得ることができ、汚れがないことを確認できた。
【0033】
【実施例6】
参考例4の状態にした押出機に対して、シリンダー温度を190℃、スクリュー回転数を30rpmで製造例4のペレット状組成物を供給し、押出すことで置換洗浄を行った。先端部より混合物が内部に残留していたPP黒色着色樹脂とともに吐出された。吐出物は徐々に黒色の着色が薄くなり、約15分後完全に黒色着色がなくなった。
このときまでに吐出された樹脂量は約506gであった。その後、投入した製造例4の粒状組成物を全て出し切り、同条件にて着色してないPE樹脂を供給し押出すことで残留汚れ、残留樹脂の確認を行った。投入後、先端よりPE樹脂が吐出され、製造例4の残留分はわずかに確認された後、確認できなくなった。吐出されたPE樹脂への黒色着色は確認されなかった。
【0034】
【実施例7】
参考例4の状態にした押出機に対して、シリンダー温度を190℃、スクリュー回転数を30rpmで製造例6のペレット状組成物を供給し、押出すことで置換洗浄を行った。先端部より混合物が内部に残留していたPP黒色着色樹脂とともに吐出された。吐出物は徐々に黒色の着色が薄くなり、約10分後完全に黒色着色がなくなった。
このときまでに吐出された樹脂量は約390gであった。その後、投入した製造例6の粒状組成物を全て出し切り、同条件にて着色してないPE樹脂を供給し押出すことで残留汚れ、残留樹脂の確認を行った。投入後、先端よりPE樹脂が吐出され、製造例4の残留分はわずかに確認された後、確認できなくなった。吐出されたPE樹脂への黒色着色は確認されなかった。
【0035】
【比較例1】
製造例1の樹脂の代わりに塩化ビニルコンパウンド6kgを使用する以外は実施例1と同様の条件にて洗浄を行った。
洗浄作業後、スクリューを抜き出したところ、フライトの根本部分には焼けた樹脂が残留付着しているのが確認された。特に、スクリュー先端付近に付着が多く見られた。
この残留付着物をスクリューを傷つけないように除去するため、グラインダーにバフを取り付け、高速回転にて摩擦除去を行ったが、除去完了するまでに2時間以上要した。また、除去作業に時間がかかるとスクリューの温度が低下し、より除去が困難な状況となるとともに、洗浄後の製造再開のための昇温にも時間がかかることとなり、全体的な時間損失が大きかった。
【0036】
【比較例2】
製造例2の樹脂の代わりに、低密度ポリエチレン樹脂(日本ユニカー株式会社製;DFD−0118)6kgを使用する以外は実施例2と同様の条件にて洗浄を行った。
洗浄作業後、スクリューを抜き出したところ、スクリュー先端付近に焼けた樹脂が残留付着しているのが確認された。
この残留付着物の除去作業は比較例1と同様で、除去作業が困難でかつ全体的な時間損失が大きかった。
【0037】
【比較例3】
製造例5の樹脂の代わりに、AS樹脂(アクリロニトリル−スチレン樹脂)を使用する以外は実施例3と同様の条件にて置換洗浄を行った。吐出物の黒色着色は、樹脂投入8分経過後も確認され、約16分経過後完全に黒色着色がなくなった。このときまでに吐出された樹脂量は約580gであった。
その後、投入したAS樹脂を全て出し切り、同条件にて着色していないABS樹脂を供給し押出すことで残留汚れ、残留樹脂の確認を行った。
投入後、先端より透明性のあるAS樹脂が吐出され、内部にAS樹脂が残留していたことを確認した。続いて黄白色のABS樹脂が吐出されるが、若干の黒色着色が確認され、置換洗浄が完全でなかったことが確認できた。
【0038】
【比較例4】
製造例4の樹脂の代わりにPE樹脂(DFD−0118)を使用すること以外は実施例5と同様の条件にて洗浄を行った。吐出物は徐々に黒色の着色が薄くなり、約33分後完全に黒色着色がなくなった。
このときまでに吐出された樹脂量は約1063gであった。その後、ダイス、ブレーカープレートを外してスクリューを抜き出したところ、圧縮部のフライト付け根に除去されなかった黒色の汚れが付着していた。
【0039】
【比較例5】
製造例6の樹脂の代わりに製造例10の樹脂を使用すること以外は実施例7と同様の条件にて洗浄を行った。投入後、先端部より混合物が内部に残留していたPP黒色着色樹脂とともに吐出されるが、徐々に吐出量が減少し、約6分経過した後、混合物の吐出が途絶えた。
スクリューを抜き出したところ、スクリューの供給部を超えて圧縮部に差しかかった部分で混合物が止まっていた。このため洗浄作業はできなかった。
【0040】
【発明の効果】
本発明によれば、熱可塑性樹脂にアミノ系樹脂粉体を添加し押出洗浄することで、スクリューやシリンダー内壁面に傷をつけることなく効果的に焼けた樹脂や炭化物を除去できるため、成形機の洗浄に費やす作業負担、作業時間を大幅に軽減できた。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cleaning thermoplastic resin composition used for cleaning a thermoplastic resin processing and molding machine, a pellet comprising the same, and a method for cleaning a thermoplastic resin processing and molding machine using the same.
[0002]
[Prior art]
The thermoplastic resin is obtained by using a molding machine such as extrusion molding, injection molding, etc., and in these molding processes, when the type is frequently changed, the type in the molding machine is changed when the type is changed. Washing is necessary in terms of quality control, and when molding is performed over a long period of time, such as film production, additives such as raw materials resins and plasticizers are added to the resin compound. It becomes very dirty due to seizure on the screw and the inner wall of the cylinder, and adhesion of carbides.
[0003]
Conventionally, if such a state occurs during the molding process, a cleaning operation is required. The operation includes (a) a method of flowing the resin of the type to be switched next without stopping the molding machine, and cleaning. (B) A method of once stopping production, disassembling a molding machine, and cleaning the inside of a screw and a cylinder has been performed.
However, the method of replacing with the next product of the above (a) does not require manual labor, but requires a large amount of resin for replacement, requires time until cleaning is completed, and lowers productivity. is there. In addition, the method of disassembling the molding machine described in (b) is labor-intensive and requires a lot of time for the cleaning operation.
[0004]
As a means for solving these problems, there has been proposed a method of performing cleaning at the time of switching and cleaning at the time of contamination using various thermoplastic resin compositions for cleaning.
Commercially available cleaning resin compositions include those containing glass fibers, but have drawbacks such as abrasion of the screw and the inner wall of the cylinder.
In addition, an ultrahigh molecular weight acrylic resin type may be used, but it is difficult to melt, and a very high load is applied when the screw is rotated, which may cause a mechanical failure.
In addition, surfactants, those containing substances having a cleaning effect such as metal soaps, and resin compositions such as those containing a foaming agent may be mentioned, but these are only necessary to remove burn-in and carbonized resin, There were problems such as a low frictional force and an insufficient cleaning effect.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 55-50502
[Patent Document 2]
JP 2000-319636 A
[0006]
[Problems to be solved by the invention]
The present invention is to disassemble the molding machine, such as resin burns and carbides adhered to the inner wall surface of the screw or cylinder of the molding machine, without taking out the screw and performing polishing work, and also to damage the screw and cylinder. It is another object of the present invention to provide a cleaning resin composition that can perform a cleaning operation effectively in a short period of time.
[0007]
[Means for Solving the Problems]
The present inventors have conducted various studies to solve the above-mentioned problems, and as a result, have found that a resin composition obtained by blending an amino resin, particularly a melamine resin powder with a thermoplastic resin has an excellent cleaning effect. Thus, the present invention has been completed.
That is, the present invention is a thermoplastic resin composition for cleaning, wherein 1 to 120 parts by weight of an amino resin powder is blended with respect to 100 parts by weight of a thermoplastic resin.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
As the thermoplastic resin used in the present invention, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, polypropylene, polybutene, polyolefins such as polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, Polycondensate resins such as polystyrene, polyacrylonitrile, polymethacrylic resin or MS resin (methyl methacrylate-styrene resin), AS resin (acrylonitrile-styrene resin), ABS resin (acrylonitrile-butadiene-styrene resin), MBS resin ( Methyl methacrylate-butadiene-styrene resin), polyester resin, polyamide resin and the like can be used alone or in combination of two or more.
[0009]
The thermoplastic resin composition for cleaning of the present invention is obtained by blending 1 to 120 parts by weight of an amino resin powder with respect to 100 parts by weight of the above-mentioned thermoplastic resin.
Examples of the amino resin include an amino component resin obtained by reacting an amino component with formaldehyde, an amino copolycondensation resin obtained by reacting an amino component with formaldehyde, and other amino components that can be cocondensed therewith, and an amino component. A mixed resin of resins can be used.
The amino component includes ureas such as melamine, urea, thiourea, and ethylene urea; guanamines such as benzoguanamine and formoguanamine; phenylacetoguanamine, acetoguanamine, and CTU-guanamine; guanidine, dicyandiamide, and paratoluenesulfonic acid amide. And other amino compounds. These amino components can be used in combination.
[0010]
Among the amino resins, melamine resins are preferably used.
Examples of the melamine-based resin include a melamine resin obtained by reacting melamine with formaldehyde in an amount of about 1 to 4 moles per mole of melamine, melamine and urea such as urea, thiourea, and ethylene urea, benzoguanamine, acetoguanamine, and formaldehyde. Examples thereof include melamine co-condensation resins obtained by reacting at least one component selected from guanamines such as guanamine, phenylacetoguanamine, CTU-guanamine, and other amino compounds with formaldehyde.
A cured product of an amino-based resin, particularly a melamine-based resin, has a hardness (Mohs hardness) of about 3 to 5 and is preferable because it does not damage a screw or a cylinder.
The cured product can be obtained, for example, by the method described in Patent Document 1 or the method described in Patent Document 2, and a re-crushed product of a molded product molded and cured with a molding material mainly containing a melamine resin, Burrs or the like generated during molding can be used, and among them, re-crushed products are preferable.
[0011]
The amino resin powder used in the present invention is preferably a powder having a particle diameter in the range of 1 to 1000 μm, and particularly preferably in a range of 350 to 1000 μm. Here, the powder having a particle diameter in the range of 1 to 1000 μm refers to a powder in which a powder having a particle diameter of 1 μm to 1000 μm is mixed, and usually a powder of 1 to 1000 μm, and a powder of 1 to 350 μm. Powders, powders of 350 to 1000 μm, and the like are mixed in a normal distribution.
When a powder having a particle diameter of 1000 μm or more is present, a very high load is applied to the extruder screw during the washing operation, which may cause a mechanical failure. When present, a physical polishing effect cannot be obtained, and a cleaning effect is hardly obtained.
Further, when the washing operation is performed with the extruder dies, the breaker plate, the screen, etc. attached, the particle diameter of the powder is preferably smaller than the mesh size of the screen. It is in the range of 350 μm, particularly preferably in the range of 1 to 150 μm.
[0012]
The amino resin powder of the present invention is blended in an amount of 1 to 120 parts by weight, more preferably 1 to 50 parts by weight, based on 100 parts by weight of the thermoplastic resin. If the amount is less than 1 part by weight, the cleaning effect cannot be obtained. If the amount exceeds 120 parts by weight, amino-based resin powder remains, and it takes time to remove the amino-based resin powder, which is not a good idea.
The resin composition for cleaning of the present invention may contain a pelletizing aid and a lubricant in order to improve releasability when used for cleaning an extruder, in addition to the amino resin powder.
The amount of the lubricant is 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, per 100 parts by weight of the thermoplastic resin.
If the amount of the lubricant is less than 0.1 part by weight, depending on the resin used and various conditions, a strand may be generated during the extrusion of the strand, causing the strand to be cut off, making stable production difficult. Further, when used for cleaning the extruder, a sufficient releasing effect cannot be obtained, and the resin adheres to the inside of the extruder to cause a residue. Exceeding 10 parts by weight is not preferred because the resin slips inside the cylinder of the extruder and the torque required for cleaning cannot be obtained.
[0013]
Examples of the lubricant include metal soaps such as calcium stearate, zinc stearate, and zinc myristate; fatty acids such as stearic acid, oleic acid and behenic acid; fatty acid esters such as butyl stearate and dodecyl stearate; and stearic acid. Fatty acid partial esters such as monoglyceride, monoglyceride oleate, monoglyceride hydroxystearate, pentaerythritol stearate, polyglycerin stearate, sorbitan triolate, lauric amide, myristic amide, erucamide, oleic amide, stearic acid Fatty acid amides such as amides, fatty acid bisamides such as methylenebisstearic acid amide, ethylenebisstearic acid amide, ethylenebisoleic acid amide, and mixtures thereof It can be used, inter alia metallic soaps are preferred, stearic acid metal salts are particularly preferred.
[0014]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the present invention is not limited to these Examples and the like.
(Reference Example 1)
Using a resin composition containing 45 parts by weight of a plasticizer, 1.5 parts by weight of a calcium-zinc heat stabilizer, and 2.5 parts by weight of diglycerin monoolate per 100 parts by weight of polyvinyl chloride having an average degree of polymerization of 1300. Then, the film was extruded at a cylinder temperature of 180 ° C., a T-die of 190 ° C. and a screw rotation speed of 68 rpm by a single screw extruder with a cylinder diameter of 40 mm and L / D = 28, and a film was continuously produced for two weeks. As a result, the extruder was in a state in which the resin and carbides seized on the screws and the inner wall of the cylinder had adhered.
[0015]
(Reference Example 2)
A polyethylene resin composition containing 2% by weight of an antifogging agent in an ethylene vinyl acetate copolymer having a vinyl acetate content of 15% (manufactured by Nippon Unicar Co., Ltd .; NUC-3758: trade name) was prepared. The film was extruded with a 40 mm single screw extruder at a cylinder temperature of 160 ° C., a die temperature of 185 ° C. and a screw rotation speed of 70 rpm, and the production of a film by inflation was continuously performed for three months. As a result, the extruder was in a state in which the resin and carbides seized on the screws and the inner wall of the cylinder had adhered.
[0016]
(Reference Example 3)
A black-colored resin molding material of ABS resin (acrylonitrile-butadiene-styrene resin) was diced at a cylinder temperature of 200 ° C. and a screw rotation speed of 30 rpm using a single screw extruder with a cylinder diameter of 30 mm at L / D = 25. 200 g were extruded without mounting. The entire amount of the charged resin was not extruded, and some resin adhered to the screw and the inner wall of the cylinder and remained.
[0017]
(Reference Example 4)
200 g of polypropylene (PP) black resin was extruded at a cylinder temperature of 190 ° C., a die temperature of 190 ° C. and a screw rotation speed of 30 rpm using a single screw extruder with a cylinder diameter of 30 mm and L / D = 25. An 80-mesh screen and a breaker plate are mounted between the screw and the die. Part of the PP black resin adhered to the screw surface and remained in the cylinder.
[0018]
[Melamine resin powder production example 1]
The cured melamine resin molded product was roughly pulverized with a shear crusher, and the coarsely crushed product was further finely pulverized with a shear / friction type pulverizer to obtain a pulverized melamine resin molded product.
On the other hand, a sieve of 20 mesh (opening of 840 μm) was set as an upper sieve, and a sieve of 32 mesh (opening of 500 μm) was set as a lower sieve in a vibrating sieve, passed through a 20 mesh sieve and remained on a 32 mesh sieve. Can be collected. In addition, by setting the tapping ball under the 32 mesh sieve, it was possible to sieve continuously without clogging.
The pulverized material obtained by the above-mentioned fine pulverization was continuously charged into the vibrating sieve machine set as described above to obtain a pulverized material. The particle size of the pulverized product was 99.6% by weight for the pulverized product having a particle size of 350 μm to 1000 μm, and 0.4% by weight was 10% to 350 μm.
[0019]
[Melamine resin powder production example 2]
After obtaining a pulverized product of the melamine-based resin molded product in the same manner as in Production Example 1 of melamine-based resin powder, a 70-mesh (210-μm opening) sieve is passed through an upper sieve, and a 285-mesh (50-μm opening) sieve is passed down. Set in a vibrating sieve as a sieve. Those remaining on the 70 mesh screen and those passing through the 70 mesh screen and remaining on the 285 mesh screen can be recovered and sent to the grinding step again. By applying ultrasonic vibration from an ultrasonic generator to the 285 mesh sieve, the sieve can be continuously sieved without clogging.
The pulverized material obtained by the above-mentioned pulverization was continuously charged into the vibrating sieve set as described above, and a pulverized material passed through a 285 mesh sieve was obtained. The particle size of the pulverized product was 99.5% by weight for the pulverized product having a particle size of 1 μm to 150 μm, and 0.5% by weight for the pulverized product having a particle size of 1 μm or less.
[0020]
(Production Example 1)
4.2 kg of the polyvinyl chloride compound and 0.8 kg of the crushed product of the melamine-based resin powder production example 1 (19 parts by weight with respect to 100 parts by weight of the thermoplastic resin) are rotated at 500 rpm by a 20-liter high-speed mixer. Stir and mix for 2 minutes.
This mixture is fed to a single screw extruder with L / D = 28 and a cylinder diameter of 40 mm, a strand is extruded at a cylinder temperature of 170 ° C., a die temperature of 180 ° C. and a screw rotation speed of 30 rpm, cooled in a water bath, and cut with a pelletizer. Thus, a pellet-shaped composition was obtained.
[0021]
(Production Example 2)
4 kg of low-density polyethylene resin (manufactured by Nippon Unicar Co., Ltd .; DFD-0118: trade name) and 1 kg of the crushed product of melamine-based resin powder production example 1 (25 parts by weight with respect to 100 parts by weight of thermoplastic resin) were used for 20 The mixture was stirred and stirred at a rotation speed of 500 rpm for 2 minutes with a 1-liter high-speed mixer.
This mixture is fed to a single screw extruder with L / D = 28 and a cylinder diameter of 40 mm, and a strand is extruded at a cylinder temperature of 140 ° C., a die temperature of 150 ° C. and a screw rotation speed of 30 rpm, cooled in a water bath, and cut with a pelletizer. Thus, a pellet-shaped composition was obtained.
[0022]
(Production Example 3)
3.5 kg of low-density polyethylene resin (manufactured by Nippon Unicar; DFD-0118: trade name) and 1.5 kg of crushed product of melamine resin powder production example 1 (43 parts by weight based on 100 parts by weight of thermoplastic resin) Was mixed with a 20-liter high-speed mixer at 500 rpm for 2 minutes with stirring.
This mixture is fed to a twin screw extruder with L / D = 28 and a cylinder diameter of 30 mm, a strand is extruded at a cylinder temperature of 140 ° C., a die temperature of 150 ° C., and a screw rotation speed of 140 rpm, cooled in a water bath, and cut with a pelletizer. Thus, a pellet-shaped composition was obtained.
[0023]
(Production Example 4)
3.5 kg of low-density polyethylene resin (manufactured by Nippon Unicar Co., Ltd .; DFD-0118: trade name) and 1.5 kg of crushed material of melamine resin powder production example 2 (43 parts by weight based on 100 parts by weight of thermoplastic resin) Was mixed with a 20-liter high-speed mixer at 500 rpm for 2 minutes with stirring.
This mixture is fed to a twin screw extruder with L / D = 28 and a cylinder diameter of 30 mm, a strand is extruded at a cylinder temperature of 140 ° C., a die temperature of 150 ° C., and a screw rotation speed of 140 rpm, cooled in a water bath, and cut with a pelletizer. Thus, a pellet-shaped composition was obtained.
[0024]
(Production Example 5)
3.5 kg of AS resin (acrylonitrile-styrene resin), 1.5 kg of crushed product of melamine resin powder production example 1 (43 parts by weight with respect to 100 parts by weight of thermoplastic resin), 0.175 kg of zinc stearate ( 5 parts by weight based on 100 parts by weight of the thermoplastic resin) were mixed by stirring at a rotation speed of 500 rpm for 2 minutes using a 20-liter high-speed mixer.
This mixture is fed to a single-screw extruder with L / D = 28 and a cylinder diameter of 40 mm. The strand is extruded at a cylinder temperature of 200 ° C., a strand die temperature of 210 ° C. and a screw rotation speed of 30 rpm, naturally cooled, and cut with a pelletizer. Thus, a pellet-shaped composition was obtained.
[0025]
(Production Example 6)
2.5 kg of low-density polyethylene resin (manufactured by Nippon Unicar Co., Ltd .; DFD-0118: trade name) and 2.5 kg of the crushed product of melamine-based resin powder production example 2 (100 parts by weight based on 100 parts by weight of thermoplastic resin) Was mixed with a 20-liter high-speed mixer at 500 rpm for 2 minutes with stirring.
This mixture is fed to a twin screw extruder with L / D = 28 and a cylinder diameter of 30 mm, a strand is extruded at a cylinder temperature of 190 ° C., a die temperature of 190 ° C. and a screw rotation speed of 140 rpm, cooled in a water bath and cut with a pelletizer. Thus, a pellet-shaped composition was obtained.
[0026]
(Production Example 7)
3.5 kg of polypropylene resin (manufactured by Idemitsu Petrochemical Co., Ltd .; F-200S: trade name) and 1.5 kg of crushed material of melamine resin powder production example 2 (43 parts by weight based on 100 parts by weight of thermoplastic resin) ) Was mixed with a 20-liter high-speed mixer while stirring at a rotation speed of 500 rpm for 2 minutes.
This mixture is fed to a twin screw extruder with L / D = 28 and a cylinder diameter of 30 mm, a strand is extruded at a cylinder temperature of 190 ° C., a die temperature of 190 ° C. and a screw rotation speed of 140 rpm, cooled in a water bath and cut with a pelletizer. Thus, a pellet-shaped composition was obtained.
[0027]
(Production Example 8)
To 4.2 kg of the polyvinyl chloride compound, 0.8 kg of the crushed product of the melamine-based resin powder production example 1 (19 parts by weight based on 100 parts by weight of the thermoplastic resin) was stirred and mixed to obtain a thermoplastic resin composition for cleaning. A mixture of products was obtained.
(Production Example 9)
4 kg of low-density polyethylene resin pellets (manufactured by Nippon Unicar Co., Ltd .; DFD-0118: trade name) and 1 kg of crushed material of Production Example 1 of melamine-based resin powder (25 parts by weight based on 100 parts by weight of thermoplastic resin) The mixture was stirred and mixed to obtain a mixture of the cleaning thermoplastic resin composition.
(Production Example 10)
2.0 kg of a low-density polyethylene resin pellet (manufactured by Nippon Unicar; DFD-0118: trade name) and 3.0 kg of a crushed product of melamine resin powder production example 2 (150 parts per 100 parts by weight of thermoplastic resin) Parts by weight) with stirring to obtain a mixture of the thermoplastic resin composition for washing.
[0028]
Embodiment 1
After removing the T-die, breaker plate, and screen from the extruder in the state of Reference Example 1, extruding the residual resin in a state where the screw is visible, the cylinder temperature was set to 135 ° C., and the screw rotation speed was set to 10 rpm. Washing was performed by supplying and extruding 3 kg of the pellet mixture of No. 1. When the number of revolutions is set to 30 rpm when the mixture starts to be discharged from the tip, a dark colored substance containing burnt resin or carbide is discharged. When the color of the discharged matter disappeared, the entire resin mixture was extruded.
After the cleaning work, when the screw was pulled out, there was no resin seizure or carbide attached and the plating surface had a metallic luster, and the inner wall of the cylinder was illuminated with a flashlight and investigated. The reflected light was obtained, and it was confirmed that there was no dirt.
[0029]
Embodiment 2
With respect to the extruder in the state of Reference Example 2, the die, the breaker plate, and the screen were removed, and the residual resin was extruded in a state where the screw was visible. Thereafter, the cylinder temperature was set to 140 ° C., and the screw rotation speed was set to 10 rpm. Washing was performed by feeding and extruding 3 kg of the pellet mixture of No. 2. If the number of revolutions is set to 30 rpm when the mixture starts to be discharged from the front end portion, a dark colored substance containing the burnt resin or carbide is discharged. When the color of the discharged matter disappeared, the entire resin mixture was extruded.
When the screw is pulled out, there is no burnt resin or carbide attached and the plated surface has a metallic luster, and the inner wall of the cylinder is illuminated with a flashlight and investigated, and it is possible to obtain uniform and sufficient reflected light It was confirmed that there was no dirt.
[0030]
Embodiment 3
The pellet composition of Production Example 5 was supplied to the extruder in the state of Reference Example 3 at a cylinder temperature of 200 ° C. and a screw rotation speed of 30 rpm, and extruded to perform displacement washing. The mixture was discharged from the tip together with the black colored resin of ABS remaining inside. The black color of the discharged material gradually became light, and after about 8 minutes, the black coloration completely disappeared.
The amount of resin discharged by this time was about 360 g. Thereafter, all the pellet-shaped composition of Production Example 5 was charged and cut off, and an uncolored ABS resin was supplied and extruded under the same conditions to confirm residual stain and residual resin. After the introduction, the ABS resin was discharged from the tip, and the residue of Production Example 5 was not confirmed. In addition, black coloring of the discharged ABS resin was not confirmed.
[0031]
Embodiment 4
After removing the T-die, breaker plate, and screen from the extruder in the state of Reference Example 1, extruding the residual resin in a state where the screw is visible, the cylinder temperature was set to 135 ° C., and the screw rotation speed was set to 10 rpm. Washing is performed by supplying and extruding 3 kg of the pellet composition of No. 8. When the mixture started to be discharged from the tip, the rotational speed was set to 30 rpm, and a dark colored substance containing burnt resin and carbide was discharged. When the color of the discharged matter disappeared, the entire resin mixture was extruded.
After the cleaning work, when the screw was pulled out, there was no resin seizure or carbide attached and the plating surface had a metallic luster, and the inner wall of the cylinder was illuminated with a flashlight and investigated. The reflected light was obtained, and it was confirmed that there was no dirt.
[0032]
Embodiment 5
With respect to the extruder in the state of Reference Example 2, the die, the breaker plate, and the screen were removed, and the residual resin was extruded in a state where the screw was visible. Thereafter, the cylinder temperature was set to 140 ° C., and the screw rotation speed was set to 10 rpm. Washing was performed by supplying and extruding 3 kg of the pellet composition of No. 9. When the number of revolutions was set to 30 rpm when the mixture began to be discharged from the tip, a dark colored substance containing a burned resin or carbide was discharged. When the color of the discharged matter disappeared, the entire resin mixture was extruded.
When the screw is pulled out, there is no burnt resin or carbide attached and the plated surface has a metallic luster, and the inner wall of the cylinder is illuminated with a flashlight and investigated, and it is possible to obtain uniform and sufficient reflected light It was confirmed that there was no dirt.
[0033]
Embodiment 6
The pellet composition of Production Example 4 was supplied to the extruder in Reference Example 4 at a cylinder temperature of 190 ° C. and a screw rotation speed of 30 rpm, and extruded to perform displacement washing. The mixture was discharged from the tip together with the PP black colored resin remaining inside. The black color of the discharged material gradually decreased, and the black color disappeared completely after about 15 minutes.
The amount of resin discharged by this time was about 506 g. Thereafter, all the granular composition of Production Example 4 charged was cut out, and a non-colored PE resin was supplied and extruded under the same conditions to confirm residual stain and residual resin. After the introduction, the PE resin was discharged from the tip, and the residue in Production Example 4 was slightly confirmed, but could not be confirmed. Black coloring of the discharged PE resin was not confirmed.
[0034]
Embodiment 7
The pellet composition of Production Example 6 was supplied to the extruder in the state of Reference Example 4 at a cylinder temperature of 190 ° C. and a screw rotation speed of 30 rpm, and was subjected to displacement washing by extruding. The mixture was discharged from the tip together with the PP black colored resin remaining inside. The black color of the discharged material gradually faded, and after about 10 minutes, the black coloration completely disappeared.
The amount of resin discharged up to this time was about 390 g. Thereafter, all of the charged particulate composition of Production Example 6 was cut out, and a non-colored PE resin was supplied and extruded under the same conditions to confirm residual stain and residual resin. After the introduction, the PE resin was discharged from the tip, and the residue in Production Example 4 was slightly confirmed, but could not be confirmed. Black coloring of the discharged PE resin was not confirmed.
[0035]
[Comparative Example 1]
Washing was carried out under the same conditions as in Example 1 except that 6 kg of vinyl chloride compound was used instead of the resin of Production Example 1.
After the washing operation, the screw was pulled out, and it was confirmed that the burnt resin remained adhered to the root portion of the flight. In particular, a large amount of adhesion was observed near the tip of the screw.
A buff was attached to the grinder and friction was removed by high-speed rotation in order to remove the remaining deposits without damaging the screw, but it took two hours or more to complete the removal. In addition, if the removal operation takes a long time, the temperature of the screw decreases, making removal more difficult.At the same time, it takes time to raise the temperature for resuming the production after washing, and overall time loss is reduced. It was big.
[0036]
[Comparative Example 2]
Washing was performed under the same conditions as in Example 2 except that 6 kg of a low-density polyethylene resin (manufactured by Nippon Unicar; DFD-0118) was used instead of the resin of Production Example 2.
After the washing operation, the screw was pulled out, and it was confirmed that the burnt resin remained adhered near the screw tip.
The operation of removing the remaining deposits was the same as in Comparative Example 1, and the removal operation was difficult and the overall time loss was large.
[0037]
[Comparative Example 3]
Substitution washing was performed under the same conditions as in Example 3 except that an AS resin (acrylonitrile-styrene resin) was used instead of the resin of Production Example 5. The black coloring of the ejected matter was confirmed even after 8 minutes from the introduction of the resin, and completely disappeared after about 16 minutes. The amount of resin discharged up to this time was about 580 g.
Thereafter, all of the AS resin charged was cut out, and a non-colored ABS resin was supplied and extruded under the same conditions to check for residual stain and residual resin.
After the charging, it was confirmed that a transparent AS resin was discharged from the tip, and the AS resin remained inside. Subsequently, the yellow-white ABS resin was discharged, but a slight black coloring was confirmed, and it was confirmed that the replacement washing was not complete.
[0038]
[Comparative Example 4]
Washing was performed under the same conditions as in Example 5 except that a PE resin (DFD-0118) was used instead of the resin of Production Example 4. The color of the discharged material gradually became black, and after about 33 minutes, the black color completely disappeared.
The amount of resin discharged up to this time was about 1063 g. After that, when the die and the breaker plate were removed and the screw was extracted, the unremoved black stain was adhered to the flight root of the compression part.
[0039]
[Comparative Example 5]
Washing was performed under the same conditions as in Example 7 except that the resin of Production Example 10 was used instead of the resin of Production Example 6. After the introduction, the mixture was discharged from the front end together with the PP black colored resin remaining inside, but the discharge amount gradually decreased, and after about 6 minutes, the discharge of the mixture was stopped.
When the screw was pulled out, the mixture stopped at the portion where the screw reached the compression section beyond the supply section. Therefore, the washing operation could not be performed.
[0040]
【The invention's effect】
According to the present invention, by adding an amino resin powder to a thermoplastic resin and performing extrusion washing, it is possible to effectively remove burned resin and carbide without damaging the screw or cylinder inner wall surface. The work load and time required for cleaning the garbage can be greatly reduced.

Claims (10)

熱可塑性樹脂100重量部に対して、アミノ系樹脂粉体1〜120重量部を配合したことを特徴とする洗浄用熱可塑性樹脂組成物。A thermoplastic resin composition for cleaning, comprising 1 to 120 parts by weight of an amino resin powder per 100 parts by weight of a thermoplastic resin. アミノ系樹脂粉体の配合量が1〜50重量部であることを特徴とする請求項1記載の洗浄用熱可塑性樹脂組成物。The thermoplastic resin composition for cleaning according to claim 1, wherein the compounding amount of the amino resin powder is 1 to 50 parts by weight. アミノ系樹脂粉体の粒子径が1〜1000μmの範囲であることを特徴とする請求項1又は2記載の洗浄用熱可塑性樹脂組成物。The thermoplastic resin composition for cleaning according to claim 1 or 2, wherein the particle diameter of the amino resin powder is in the range of 1 to 1000 µm. アミノ系樹脂粉体の粒子径が1〜350μmの範囲であることを特徴とする請求項3記載の洗浄用熱可塑性樹脂組成物。4. The thermoplastic resin composition for cleaning according to claim 3, wherein the amino resin powder has a particle diameter in a range of 1 to 350 [mu] m. アミノ系樹脂粉体の粒子径が350〜1000μmの範囲であることを特徴とする請求項3記載の洗浄用熱可塑性樹脂組成物。The thermoplastic resin composition for cleaning according to claim 3, wherein the particle diameter of the amino resin powder is in a range of 350 to 1000 µm. アミノ系樹脂粉体がメラミン系樹脂粉体であることを特徴とする請求項1〜5のいずれかに記載の洗浄用熱可塑性樹脂組成物。The thermoplastic resin composition for cleaning according to any one of claims 1 to 5, wherein the amino resin powder is a melamine resin powder. アミノ系樹脂粉体が硬化成形物の再破砕物であることを特徴とする請求項1〜6のいずれかに記載の洗浄用熱可塑性樹脂組成物。The thermoplastic resin composition for cleaning according to any one of claims 1 to 6, wherein the amino resin powder is a re-crushed product of a cured molded product. 請求項1〜7のいずれかに記載の洗浄用熱可塑性樹脂組成物がペレット状であることを特徴とするペレット状の洗浄用熱可塑性樹脂組成物。A pellet-like thermoplastic resin composition for cleaning, wherein the thermoplastic resin composition for cleaning according to any one of claims 1 to 7 is in the form of pellets. 洗浄用熱可塑性樹脂組成物が熱可塑性樹脂100重量部に対して、滑剤0.1〜10重量部を含有してなることを特徴とする請求項1〜8のいずれかに記載の洗浄用熱可塑性樹脂組成物。The heat for cleaning according to any one of claims 1 to 8, wherein the thermoplastic resin composition for cleaning contains 0.1 to 10 parts by weight of a lubricant with respect to 100 parts by weight of the thermoplastic resin. Plastic resin composition. 請求項1〜9のいずれかに記載の洗浄用熱可塑性樹脂組成物を熱可塑性樹脂加工成形機の洗浄に用いることを特徴とする熱可塑性樹脂加工成形機の洗浄方法。A method for cleaning a thermoplastic resin processing and molding machine, comprising using the thermoplastic resin composition for cleaning according to any one of claims 1 to 9 for cleaning a thermoplastic resin processing and molding machine.
JP2002312323A 2001-10-31 2002-10-28 Thermoplastic resin composition for cleaning Expired - Fee Related JP4155793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312323A JP4155793B2 (en) 2001-10-31 2002-10-28 Thermoplastic resin composition for cleaning

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001333730 2001-10-31
JP2002145617 2002-05-21
JP2002216075 2002-07-25
JP2002312323A JP4155793B2 (en) 2001-10-31 2002-10-28 Thermoplastic resin composition for cleaning

Publications (2)

Publication Number Publication Date
JP2004106506A true JP2004106506A (en) 2004-04-08
JP4155793B2 JP4155793B2 (en) 2008-09-24

Family

ID=32303612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312323A Expired - Fee Related JP4155793B2 (en) 2001-10-31 2002-10-28 Thermoplastic resin composition for cleaning

Country Status (1)

Country Link
JP (1) JP4155793B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179549A (en) * 2009-02-05 2010-08-19 Nippon Synthetic Chem Ind Co Ltd:The Purging agent and purging method using the same
US7826940B2 (en) * 2005-03-01 2010-11-02 Peugeot Citroen Automobiles Sa Method for starting on an up slope or with a high load
JP2011005770A (en) * 2009-06-26 2011-01-13 Nippon Synthetic Chem Ind Co Ltd:The Purging agent and purging method
WO2014122075A1 (en) * 2013-02-05 2014-08-14 Basf Se Lubricant compositions for thermoplastic polymers
JP2015189863A (en) * 2014-03-28 2015-11-02 出光ライオンコンポジット株式会社 resin composition and cleaning method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9956703B2 (en) * 2008-12-30 2018-05-01 Corning Incorporated Methods for cleaning dies

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7826940B2 (en) * 2005-03-01 2010-11-02 Peugeot Citroen Automobiles Sa Method for starting on an up slope or with a high load
JP2010179549A (en) * 2009-02-05 2010-08-19 Nippon Synthetic Chem Ind Co Ltd:The Purging agent and purging method using the same
JP2011005770A (en) * 2009-06-26 2011-01-13 Nippon Synthetic Chem Ind Co Ltd:The Purging agent and purging method
WO2014122075A1 (en) * 2013-02-05 2014-08-14 Basf Se Lubricant compositions for thermoplastic polymers
JP2015189863A (en) * 2014-03-28 2015-11-02 出光ライオンコンポジット株式会社 resin composition and cleaning method using the same

Also Published As

Publication number Publication date
JP4155793B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
US8211341B2 (en) Fiber pellets method of making, and use in making fiber reinforced polypropylene composites
EP2565004B1 (en) Method of manufacturing composite pellets for extrusion, and composite pellets thus produced
JP4936483B2 (en) Cleaning agent and resin molding machine cleaning method using the same
JPH05209090A (en) Thermoplastic molding material, its production, and molded article produced therefrom
JP2011012183A (en) Molding material for extrusion foam molding, process for producing the same, woody molded foam produced from the molding material and process and apparatus for producing the woody molded foam
KR20090080524A (en) Method and device for producing wood composite material
JP4155793B2 (en) Thermoplastic resin composition for cleaning
US10465146B2 (en) Cleaning agent for cleaning polymer processing equipment, method for producing it and its use
JP2002120224A (en) Method for recycling glass fiber-reinforced thermoplastic resin
JP2004323780A (en) Thermoplastic resin composition for cleaning
JP2023011323A (en) Thermoplastic polymer granule and method for producing thermoplastic polymer granule
JP6914541B2 (en) Molding machine for thermoplastic resin composition and manufacturing method
US8309223B2 (en) Polyimide based purge media and methods relating thereto
CN102020800B (en) Raw material proportion in granulating process and method thereof
JP2009149744A (en) Production method for thermoplastic resin composition containing frp powder
JP2003103517A (en) Method for manufacturing thermoplastic resin composition
JP2004058481A (en) Method for producing recycled resin product and resin component for car
JPS61169221A (en) Board and manufacture thereof
JPH11105098A (en) Production of backing resin for carpet
KR102398913B1 (en) Manufacturing apparatus for molded articles, method thereof and molded articles
JPH09225963A (en) Method for removal of foreign matter stuck to cylinder or screw of plastic injection molding machine, and detergent used for the removing method
JP3194702B2 (en) Foaming agent masterbatch for polyacetal resin, method for producing the same, and method for producing a foam molded article using the same
JP2011131508A (en) Method of producing sheet for molding minute paper powder-containing resin
JP2007045854A (en) Resin composition for molding
JP2009137192A (en) Method for molding marble-tone molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees