JP2004105609A - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
JP2004105609A
JP2004105609A JP2002274902A JP2002274902A JP2004105609A JP 2004105609 A JP2004105609 A JP 2004105609A JP 2002274902 A JP2002274902 A JP 2002274902A JP 2002274902 A JP2002274902 A JP 2002274902A JP 2004105609 A JP2004105609 A JP 2004105609A
Authority
JP
Japan
Prior art keywords
spring
rigidity
variable
stiffness
drive device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002274902A
Other languages
Japanese (ja)
Other versions
JP3706848B2 (en
Inventor
Yasuo Hayashibara
林原 靖男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMA SPRING KK
Original Assignee
TAMA SPRING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMA SPRING KK filed Critical TAMA SPRING KK
Priority to JP2002274902A priority Critical patent/JP3706848B2/en
Publication of JP2004105609A publication Critical patent/JP2004105609A/en
Application granted granted Critical
Publication of JP3706848B2 publication Critical patent/JP3706848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rehabilitation Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive device such as a knee joint training device for flexibly varying a preset trajectory according to resistance force from a patient so as to train by a human hand. <P>SOLUTION: A constitution of this drive device is provided with a holding member arranged so as to hold a driven part and moving along the movement of the driven part, a rigidity variable mechanism for imparting variable rigidity to the holding member and a drive mechanism for allowing the moving of a constant trajectory existing in the driven part by changing a rigidity center position made by the rigidity variable mechanism. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は駆動装置に関し、特に、膝関節やその他の関節を訓練する医療装置およびロボット(ヒューマノイド)に適用可能な駆動装置に関する。以下、本発明の駆動装置を膝関節訓練装置に関連して説明するが、本発明は膝関節訓練装置に限定されるものではない。
【0002】
【従来の技術】
患者の膝を手術した後、膝の手術後の回復のために一定期間膝を固定し動かないようにしている。この結果、膝の可動範囲に狭くなりリハビリテーションが必要となる。従来、リハビリテーションの訓練装置としてはCPM(連続的受動運動)を用いることが、例えば、特開平06−105877号公報、特開平08−196585号公報、特開平11−192273号公報等に提案されている。
【特許文献1】特開平06−105877号公報
【特許文献2】特開平08−196585号公報
【特許文献3】特開平11−192273号公報
【0003】
【発明が解決しようとする課題】
前述の従来例のCPMでは、膝を中心として大腿部に対して下腿部を回動させることを繰り返し行うようになっているが、人の手で訓練するのとは異なり、設定した軌道を患者からの抵抗力に合わせて柔軟に可変することはできなかった。
【0004】
したがって、本発明の目的は、人の手で訓練するように、設定した軌道を患者からの抵抗力に合わせて柔軟に可変することのできる膝関節訓練装置等の駆動装置を提供することにある。
【0005】
【課題を解決するための手段】
前述の目的を達成するために、本発明は被駆動部を保持するように配置され、被駆動部の動きに沿うように動く保持部材と、該保持部材に可変な剛性を与える剛性可変機構と、該剛性可変機構で作り出される剛性の中心位置を変化させ、被駆動部にある一定の軌道の動きをさせる駆動機構と、を有することを特徴とする駆動装置を採用するものである。
【0006】
【発明の実施の形態】
図面を参照して、本発明の実施の形態を説明する。図1は本発明の剛性可変機構を用いた膝関節訓練装置を説明するための構成図である。図2は本発明の剛性可変機構の原理を説明するための図である。図3は本発明の非線形ばねの動作特性を説明するための図である。図4は非線形ばねの2次特性を説明するための図である。図5は2つの2次特性ばねによる剛性可変を説明するための図である。図6は2つの非線形ばねによる剛性可変を説明するためのグラフである。図7は剛性の中心位置を変更する機構を説明するための図である。図8は2次特性ばねの例の円錐形のばねの構成を示す図である。図9は円錐形のばねの特性を示すグラフである。
【0007】
最初に、図2を参照して、本発明の剛性可変機構の原理を説明する。この剛性可変機構10は、端的に言えば、2つの2次(2乗)特性を持つ非線形ばね11を組み合わせることにより剛性可変の線形ばね特性を拮抗点の部材12を得るものである。
【0008】
拮抗点の部材12は例えばスライダからなり、部材が動く方向の両端には、お互いに逆方向に力が加わるように非線形ばね11が配置される。非線形ばねの他端はばねを圧縮するための部材があり、そのばねを圧縮するための部材13の距離はサーボモータ14により変更することができる。
【0009】
このように構成された剛性可変機構では、各サーボモータ14でばねを圧縮するための部材13を移動させると、ばね11は圧縮されることになる。両方のばね11が拮抗点の部材12で連結されているので、お互いの力が拮抗するまで,拮抗点の部材12が移動して停止することになる。この所定位置は拮抗点における線形ばね特性の剛性に依存することになる。
【0010】
次に、図3から図6を参照して、どのようにして拮抗点の部材12に線形ばね特性が与えられるかについて説明する。図3には、非線形ばね特性(特に2次ばね特性)を持つ不等ピッチコイルばね11が示されている。すなわち、コイルのピッチが2次ばね特性に対応するように徐々に変化させられてものである。不等ピッチコイルばねとしては同一径のコイル部分を持つものばかりでなく、コイル径が徐々に縮小する円錐形の不等ピッチコイルばねであってもよい。図8及び図9は,例として2次特性をもつ円錐形のばねの構造および2次特性をもつ円錐形のばねの特性を示している。また、特開平2000−337415号公報には非線形異形コイルが示されており、この非線形異形コイルから2次特性のばねを作製できるので、本発明で用いる2次特性のばねとして用いることができる。
【0011】
2次ばね特性を持つばねが圧縮されると、圧縮量(移動位置)に対してばね力は図4に示すように2次特性を示す。
【0012】
今、図4に示すような2次特性を持つ2つのばねを図5に示すように配置すると仮定する。ここで、ばねの自由長をx(m)とすると、非線形ばねの長さx(m)と力f(N)との関係は、
f=k(x−x               (1)
と表すことができる。ただしkは2乗に比例する定数で単位はN/mである。ここで、2つのばねが図5に示す位置で拮抗したとすると、支持点間の距離を2l(m)、中心からの距離をx(m)とすると、それぞれのばねに生じる圧縮力f、fは、
=k(l+x−x)             (2)
=k(l−x−x)             (3)
となり、合成力f12
12=4k(l−x)x
となり、4k(l−x)を比例定数とする線形ばねの特性が得られる。
なお、上記式の算出においては、簡略化のためにx、x等の範囲条件を省略している。
【0013】
この結果、図6のグラフに示すように剛性が可変のものが得られる。
【0014】
次に、図1を参照して、本発明の剛性可変機構を用いた膝関節訓練装置を説明する。剛性可変機構10が設けられており、その詳細は図2に関連して既に説明しているので、省略する。
【0015】
膝関節訓練装置100は剛性可変機構10に加えて、その剛性可変機構で作り出される剛性の中心位置を変動させ、脚部50にある一定の軌道の動きをさせる駆動機構20を備える。駆動機構20は、図7に示すように、例えば,スライダ21とボールネジ22とサーボモータ23からなる。サーボモータにより、スライダ上の剛性可変気候10を移動することで、剛性の中心位置を変動させることができる。
【0016】
これら剛性可変機構10と剛性の中心位置を変動する駆動機構20で使用するモータはモータコントローラを含む軌道・剛性特性入力装置40により制御され、訓練に用いる軌道と剛性を生成する。
【0017】
さらに、膝関節訓練装置100は、これら剛性可変機構10と剛性中心の駆動機構20で生成される動きと力を、患者の脚部50に伝えるために,脚部保持部材30を備えている。この脚部保持部材30は、患者の脚部50を保持するように配置され,脚部の動きに沿うように動く。また脚部保持部材30は、剛性可変機構10の拮抗点の部材12と連結されており、その姿勢の変動と関節の剛性の調整は、剛性可変機構10のサーボモータ14と剛性中心の駆動機構20のサーボモータ23によって行われる。このように姿勢と剛性を調整することで、患者にとって最適な条件でリハビリテーションの訓練を受けることができる。
【0018】
以上、本発明の駆動装置を膝関節訓練装置を例として説明してきたが、本発明は膝関節ばかりでなく、他の関節にも適用できるものであり、また、ロボット(ヒューマノイド)にも適用可能である。
【0019】
【発明の効果】
以上説明したように、本発明によれば、例えば、人の手で訓練するように、設定した軌道を患者からの抵抗力に合わせて柔軟に可変することはできる膝関節訓練装置等の駆動装置が得られる。
【0020】
その他、以下のような効果が得られる。
(1)サーボモータの速度が遅くてもやわらかさを実現できる。また,トルクも比較的小さくできる。
(2)電源が停止しても柔らかさを保持できる。
(3)力センサが必要ない。また、力センサで感知することのできない場所に力を加えても反応する。
【図面の簡単な説明】
【図1】図1は本発明の剛性可変機構を用いた膝関節訓練装置を説明するための構成図である。
【図2】図2は本発明の剛性可変機構の原理を説明するための図である。
【図3】図3は本発明の非線形ばねの動作特性を説明するための図である。
【図4】図4は非線ばねの2次特性を説明するための図である。
【図5】図5は2つの2次特性ばねによる剛性可変を説明するための図である。
【図6】図6は2つの2次特性ばねによる剛性可変を説明するためのグラフである。
【図7】図7は剛性の中心位置を変更する機構を説明するための図である。
【図8】図8は2次特性ばねの例の円錐形のばねの構成を示す図である。
【図9】図9は円錐形のばねの特性を示すグラフである。
【符号の説明】
10    剛性可変機構
11    非線形ばね
12    拮抗点の部材
13    ばねを圧縮するための部材
14    ばねを圧縮するサーボモータ
20    剛性の中心位置を変更する駆動機構
21    スライダ
22    ボールネジ
23    剛性の中心位置を変更するサーボモータ
30    脚部保持部材
40    モータコントローラを含む軌道。剛性特性入力装置
50    患者の脚部
100   膝関節訓練装置
20    下腿部保持部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a driving device, and more particularly to a driving device applicable to a medical device and a robot (humanoid) for training a knee joint and other joints. Hereinafter, the drive device of the present invention will be described in relation to a knee joint training device, but the present invention is not limited to a knee joint training device.
[0002]
[Prior art]
After operating on the patient's knee, the knee is fixed and immobilized for a period of time for post-operative recovery of the knee. As a result, the range of movement of the knee is reduced, and rehabilitation is required. Conventionally, the use of CPM (continuous passive exercise) as a rehabilitation training device has been proposed in, for example, JP-A-06-105877, JP-A-08-196585, and JP-A-11-192273. I have.
[Patent Document 1] JP-A-06-105877 [Patent Document 2] JP-A-08-196585 [Patent Document 3] JP-A-11-192273 [0003]
[Problems to be solved by the invention]
In the above-described conventional CPM, the lower leg is repeatedly rotated about the knee with respect to the thigh. However, unlike training by human hands, the set trajectory is set. Could not be flexibly varied according to the resistance from the patient.
[0004]
Therefore, an object of the present invention is to provide a driving device such as a knee joint training device capable of flexibly changing a set trajectory in accordance with resistance from a patient so that training is performed by a human hand. .
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a holding member that is arranged to hold a driven portion, moves along the movement of the driven portion, and a stiffness variable mechanism that gives the holding member a variable stiffness. And a drive mechanism that changes the center position of the rigidity created by the variable rigidity mechanism and causes the driven section to move along a certain orbit.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram for explaining a knee joint training apparatus using the variable stiffness mechanism of the present invention. FIG. 2 is a diagram for explaining the principle of the variable stiffness mechanism of the present invention. FIG. 3 is a diagram for explaining the operation characteristics of the nonlinear spring of the present invention. FIG. 4 is a diagram for explaining secondary characteristics of the nonlinear spring. FIG. 5 is a diagram for explaining rigidity variation by two secondary characteristic springs. FIG. 6 is a graph for explaining stiffness variation by two nonlinear springs. FIG. 7 is a diagram for explaining a mechanism for changing the center position of rigidity. FIG. 8 is a diagram showing a configuration of a conical spring as an example of the secondary characteristic spring. FIG. 9 is a graph showing characteristics of a conical spring.
[0007]
First, the principle of the variable stiffness mechanism of the present invention will be described with reference to FIG. In short, the variable rigidity mechanism 10 obtains a member 12 having a linear spring characteristic of variable rigidity by combining two nonlinear springs 11 having two quadratic (square) characteristics.
[0008]
The member 12 at the antagonistic point is made of, for example, a slider, and non-linear springs 11 are arranged at both ends in the direction in which the member moves so that forces are applied in opposite directions. The other end of the non-linear spring has a member for compressing the spring, and the distance of the member 13 for compressing the spring can be changed by the servomotor 14.
[0009]
In the variable stiffness mechanism configured as described above, when the member 13 for compressing the spring is moved by each servomotor 14, the spring 11 is compressed. Since the two springs 11 are connected by the member 12 at the antagonistic point, the member 12 at the antagonistic point moves and stops until the mutual forces are opposed. This predetermined position will depend on the stiffness of the linear spring characteristic at the antagonistic point.
[0010]
Next, with reference to FIGS. 3 to 6, how the antagonistic point member 12 is given a linear spring characteristic will be described. FIG. 3 shows an unequal pitch coil spring 11 having a non-linear spring characteristic (particularly a secondary spring characteristic). That is, the coil pitch is gradually changed so as to correspond to the secondary spring characteristic. The unequal-pitch coil spring may be a conical unequal-pitch coil spring in which the coil diameter is gradually reduced as well as the one having a coil portion having the same diameter. 8 and 9 show, by way of example, the structure of a conical spring with secondary characteristics and the characteristics of a conical spring with secondary characteristics. Japanese Unexamined Patent Application Publication No. 2000-337415 discloses a non-linear deformed coil. Since a spring having a secondary characteristic can be manufactured from the non-linear deformed coil, it can be used as a spring having a secondary characteristic used in the present invention.
[0011]
When the spring having the secondary spring characteristic is compressed, the spring force exhibits the secondary characteristic with respect to the compression amount (movement position) as shown in FIG.
[0012]
Now, it is assumed that two springs having secondary characteristics as shown in FIG. 4 are arranged as shown in FIG. Here, assuming that the free length of the spring is x 0 (m), the relationship between the length x (m) of the nonlinear spring and the force f (N) is as follows.
f = k (x−x 0 ) 2 (1)
It can be expressed as. Here, k is a constant proportional to the square and the unit is N / m 2 . Here, assuming that the two springs antagonize at the position shown in FIG. 5, assuming that the distance between the support points is 21 (m) and the distance from the center is x c (m), the compression force f generated in each spring. 1 , f 2 is
f 1 = k (l + x c −x 0 ) (2)
f 2 = k (l-x c -x 0) (3)
Next, the resultant force f 12 is f 12 = 4k (l-x 0) x c
Next, the characteristics of a linear spring to 4k a (l-x 0) proportionality constant is obtained.
In the calculation of the above formula, x for simplicity, are omitted range conditions such as x c.
[0013]
As a result, as shown in the graph of FIG.
[0014]
Next, a knee joint training apparatus using the variable stiffness mechanism of the present invention will be described with reference to FIG. A variable stiffness mechanism 10 is provided, the details of which are already described with reference to FIG.
[0015]
The knee joint training apparatus 100 includes, in addition to the variable stiffness mechanism 10, a drive mechanism 20 that changes the center position of the stiffness created by the variable stiffness mechanism and causes the leg 50 to move in a certain orbit. The drive mechanism 20 includes, for example, a slider 21, a ball screw 22, and a servomotor 23, as shown in FIG. By moving the stiffness variable climate 10 on the slider by the servo motor, the center position of the stiffness can be changed.
[0016]
The motors used in the variable stiffness mechanism 10 and the drive mechanism 20 that changes the center position of the stiffness are controlled by a trajectory / rigidity characteristic input device 40 including a motor controller, and generate a trajectory and a stiffness used for training.
[0017]
Further, the knee joint training apparatus 100 includes a leg holding member 30 for transmitting the movement and the force generated by the rigidity variable mechanism 10 and the rigidity-centered driving mechanism 20 to the leg 50 of the patient. The leg holding member 30 is arranged to hold the leg 50 of the patient, and moves along with the movement of the leg. Further, the leg holding member 30 is connected to the member 12 at the antagonistic point of the variable stiffness mechanism 10. This is performed by 20 servomotors 23. By adjusting the posture and rigidity in this way, rehabilitation training can be received under optimal conditions for the patient.
[0018]
Although the driving device of the present invention has been described by taking the knee joint training device as an example, the present invention can be applied not only to the knee joint but also to other joints, and can also be applied to a robot (humanoid). It is.
[0019]
【The invention's effect】
As described above, according to the present invention, for example, a driving device such as a knee joint training device capable of flexibly changing a set trajectory in accordance with the resistance force from a patient, such as training with human hands Is obtained.
[0020]
In addition, the following effects can be obtained.
(1) Softness can be achieved even when the speed of the servo motor is low. Also, the torque can be relatively small.
(2) Softness can be maintained even when the power supply stops.
(3) No force sensor is required. In addition, it responds even if a force is applied to a place where it cannot be sensed by the force sensor.
[Brief description of the drawings]
FIG. 1 is a configuration diagram for explaining a knee joint training apparatus using a variable stiffness mechanism of the present invention.
FIG. 2 is a diagram for explaining the principle of the variable stiffness mechanism of the present invention.
FIG. 3 is a diagram for explaining the operation characteristics of the nonlinear spring of the present invention.
FIG. 4 is a diagram for explaining secondary characteristics of the non-linear spring.
FIG. 5 is a diagram for explaining rigidity variation by two secondary characteristic springs.
FIG. 6 is a graph for explaining stiffness variation by two secondary characteristic springs.
FIG. 7 is a diagram for explaining a mechanism for changing a center position of rigidity.
FIG. 8 is a diagram showing a configuration of a conical spring as an example of a secondary characteristic spring.
FIG. 9 is a graph showing characteristics of a conical spring.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Variable stiffness mechanism 11 Nonlinear spring 12 Member of antagonistic point 13 Member for compressing spring 14 Servo motor 20 for compressing spring Drive mechanism 21 for changing center position of rigidity Slider 22 Ball screw 23 Servo for changing center position of rigidity Motor 30 Leg holding member 40 A track including a motor controller. Stiffness characteristic input device 50 Patient's leg 100 Knee joint training device 20 Lower leg holding member

Claims (3)

被駆動部を保持するように配置され、被駆動部の動きに沿うように動く保持部材と、
該保持部材に可変な剛性を与える剛性可変機構と、
該剛性可変機構で作り出される剛性の中心位置を変化させ、被駆動部にある一定の軌道の動きをさせる駆動機構と、
を有することを特徴とする駆動装置。
A holding member that is arranged to hold the driven part, and that moves along the movement of the driven part;
A variable stiffness mechanism that provides variable stiffness to the holding member;
A drive mechanism that changes the center position of the rigidity created by the rigidity variable mechanism and moves the driven section along a certain orbit;
A driving device, comprising:
請求項1記載の駆動装置において、前記剛性は線形であり、前記剛性可変機構は2つの2次特性ばねの組合せによって構成されることを特徴とする駆動装置。The drive device according to claim 1, wherein the rigidity is linear, and the rigidity variable mechanism is configured by a combination of two secondary characteristic springs. 請求項1記載の駆動装置において、前記剛性可変機構は、
2次特性を持つ第1ばねと、
2次特性を持つ第2ばねと、
第1および第2ばねの端部を連結するワイヤーと、
第1および第2ばねの圧縮とその作用する位置を制御する2つのサーボモータと、
を有し、
前記サーボモータによって作用力が加えられた第1ばねと第2ばねの拮抗に基づいて前記剛性が決められ、また拮抗する点を移動することでその剛性の中心が決められる、
ことを特徴とする駆動装置。
The drive device according to claim 1, wherein the variable stiffness mechanism includes:
A first spring having secondary characteristics;
A second spring having secondary characteristics;
A wire connecting the ends of the first and second springs;
Two servomotors for controlling the compression of the first and second springs and their operating position;
Has,
The stiffness is determined based on the antagonism of the first spring and the second spring to which the acting force is applied by the servomotor, and the center of the stiffness is determined by moving a point of antagonism.
A drive device characterized by the above-mentioned.
JP2002274902A 2002-09-20 2002-09-20 Drive device Expired - Fee Related JP3706848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274902A JP3706848B2 (en) 2002-09-20 2002-09-20 Drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274902A JP3706848B2 (en) 2002-09-20 2002-09-20 Drive device

Publications (2)

Publication Number Publication Date
JP2004105609A true JP2004105609A (en) 2004-04-08
JP3706848B2 JP3706848B2 (en) 2005-10-19

Family

ID=32271251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274902A Expired - Fee Related JP3706848B2 (en) 2002-09-20 2002-09-20 Drive device

Country Status (1)

Country Link
JP (1) JP3706848B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149488A (en) * 2004-11-25 2006-06-15 Natl Inst Of Radiological Sciences Drive unit, kymographic system and kymography
WO2009122557A1 (en) * 2008-03-31 2009-10-08 パナソニック電工株式会社 Exercise aiding apparatus
CN101385682B (en) * 2008-10-08 2010-09-01 刘海宁 Lower limb function rehabiliation apparatus of paraplegia patient
KR101002388B1 (en) 2008-06-27 2010-12-20 연세대학교 산학협력단 Apparatus for pressurize partial region
JP2011083884A (en) * 2009-10-19 2011-04-28 Yaskawa Electric Corp Variable rigidity mechanism and robot
JP2013514135A (en) * 2009-12-16 2013-04-25 ベクトン・ディキンソン・アンド・カンパニー Self injection device
CN108852749A (en) * 2018-06-25 2018-11-23 衢州学院 A kind of rotary leg arm myoelectricity comprehensive rehabilitation training device
CN112426327A (en) * 2020-11-13 2021-03-02 合肥工业大学 Variable rigidity flexible cable driver based on nonlinear mechanism

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665181B2 (en) * 2004-11-25 2011-04-06 独立行政法人放射線医学総合研究所 Driving device, dynamic photographing system, and dynamic photographing method
JP2006149488A (en) * 2004-11-25 2006-06-15 Natl Inst Of Radiological Sciences Drive unit, kymographic system and kymography
JPWO2009122557A1 (en) * 2008-03-31 2011-07-28 パナソニック電工株式会社 Exercise assistance device
WO2009122557A1 (en) * 2008-03-31 2009-10-08 パナソニック電工株式会社 Exercise aiding apparatus
CN101983050A (en) * 2008-03-31 2011-03-02 松下电工株式会社 Exercise aiding apparatus
KR101002388B1 (en) 2008-06-27 2010-12-20 연세대학교 산학협력단 Apparatus for pressurize partial region
CN101385682B (en) * 2008-10-08 2010-09-01 刘海宁 Lower limb function rehabiliation apparatus of paraplegia patient
JP2011083884A (en) * 2009-10-19 2011-04-28 Yaskawa Electric Corp Variable rigidity mechanism and robot
JP2013514135A (en) * 2009-12-16 2013-04-25 ベクトン・ディキンソン・アンド・カンパニー Self injection device
US9579461B2 (en) 2009-12-16 2017-02-28 Becton, Dickinson And Company Self-injection device
CN108852749A (en) * 2018-06-25 2018-11-23 衢州学院 A kind of rotary leg arm myoelectricity comprehensive rehabilitation training device
CN112426327A (en) * 2020-11-13 2021-03-02 合肥工业大学 Variable rigidity flexible cable driver based on nonlinear mechanism
CN112426327B (en) * 2020-11-13 2022-02-22 合肥工业大学 Variable rigidity flexible cable driver based on nonlinear mechanism

Also Published As

Publication number Publication date
JP3706848B2 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
Chen et al. An elbow exoskeleton for upper limb rehabilitation with series elastic actuator and cable-driven differential
Van Ham et al. Compliant actuator designs
Buongiorno et al. WRES: a novel 3 DoF WRist ExoSkeleton with tendon-driven differential transmission for neuro-rehabilitation and teleoperation
Vanderborght et al. Variable impedance actuators: A review
KR101514245B1 (en) Variable Stiffness Actuator
Cherelle et al. The MACCEPA actuation system as torque actuator in the gait rehabilitation robot ALTACRO
Saglia et al. A high performance 2-dof over-actuated parallel mechanism for ankle rehabilitation
US8950967B2 (en) Articulated joint
dos Santos et al. Impedance control of a rotary series elastic actuator for knee rehabilitation
EP2409203B1 (en) Method to control a robot device and robot device
KR20150129921A (en) A force-controllable actuator module for a wearable hand exoskeleton and a hand exoskeleton system using the module
EP4324435A2 (en) Decentralized rotary actuator
US20210053208A1 (en) Exoskeleton device with improved actuation system
US11305420B2 (en) Articulated multi-link robotic tail systems and methods
Paskarbeit et al. A self-contained, elastic joint drive for robotics applications based on a sensorized elastomer coupling—Design and identification
JP3706848B2 (en) Drive device
Sutapun et al. A 4-DOF upper limb exoskeleton for stroke rehabilitation: kinematics mechanics and control
Tao et al. A new variable stiffness robot joint
Li et al. Mechatronics design and testing of a cable-driven upper limb rehabilitation exoskeleton with variable stiffness
WO2018159400A1 (en) Active manipulator device
Tao et al. Design and modeling of a new variable stiffness robot joint
Wang et al. Mechanically stiffness-adjustable actuator using a leaf spring for safe physical human-robot interaction
Kordasz et al. Study on possible control algorithms for lower limb rehabilitation system
Cheng et al. Design and control of a sitting/lying style lower limb rehabilitation robot with magnetorheological actuators
Van Ham et al. Maccepa: The mechanically adjustable compliance and controllable equilibrium position actuator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees