JP2004104768A - Receiver - Google Patents

Receiver Download PDF

Info

Publication number
JP2004104768A
JP2004104768A JP2003205242A JP2003205242A JP2004104768A JP 2004104768 A JP2004104768 A JP 2004104768A JP 2003205242 A JP2003205242 A JP 2003205242A JP 2003205242 A JP2003205242 A JP 2003205242A JP 2004104768 A JP2004104768 A JP 2004104768A
Authority
JP
Japan
Prior art keywords
signal
definition television
frequency
television signal
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003205242A
Other languages
Japanese (ja)
Other versions
JP3617521B2 (en
Inventor
Hiroyasu Ikedo
池戸 浩靖
Hiroyuki Mizukami
水上 博之
Toshio Nagashima
長嶋 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003205242A priority Critical patent/JP3617521B2/en
Publication of JP2004104768A publication Critical patent/JP2004104768A/en
Application granted granted Critical
Publication of JP3617521B2 publication Critical patent/JP3617521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To receive a high definition television signal with high precision. <P>SOLUTION: The high definition television signal is converted into a first IF signal having higher frequency than 10GHz by a first mixer 10, and the fist IF signal is converted into a second IF signal having a frequency band equal to the IF signal of the NTSC signal by a second mixer 13. A double superheterodyne system is used for separating a tuned channel from the second IF signal by an IF filter 15 which is a SAW (surface acoustic wave) filter for the high definition television signal. A bandpass filter having in-band flatness and low group delay deviation is used as an IF filter 11 to be supplied the first IF signal from the first mixer 10. The channel signal abstracted by the IF filter 15 for the high definition television signal is demodulated by a demodulator 50 for the high definition television signal after being converted into a signal having lower frequency band by a fourth mixer 39. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高精細テレビジョン信号と通常のテレビジョン信号とを受信することが可能な受信装置で、特に、高精細テレビジョン信号として6MHzの帯域に圧縮された信号と、通常のテレビジョン信号として6MHzの帯域を有するNTSC信号を共用受信する受信装置に関する。
【0002】
【従来の技術】
近年、従来からのテレビジョン放送(NTSC,PAL等)に加えて、高精細テレビジョン放送方式の確立が各国で進められている。これに伴い、受信装置においても、高精細テレビジョン信号受信時の画質・音室劣化が少ない受信装置が必要となってきた。図13に従来のシングルスーパーヘテロダイン方式テレビジョン受信装置を示す。同図において、1は信号入力端子、2は選局信号入力端子、4は映像及び音声信号出力端子、17,21は可変同調回路、18,20は可変減衰器、19はRF増幅器、22は周波数変換器、23,25はIF増幅器、24はIFフィルタ、26は局部発振器、29はローパスフィルタ、31はPLL(フェーズロックループ)回路、34はAM復調器である。また、これ以降は、例として標準TV信号にNTSC信号を用いて説明していく。
【0003】
信号入力端子1から入力されるNTSC信号でAM変調されたRF信号のうち希望信号は、局部発振器26の発信周波数に追従してその通過帯域の中心周波数が可変する可変同調回路17,21で選択的に通過され、希望信号が所望の受信レベルとなるよう可変減衰器18,20及びRF増幅器19で適宜増幅あるいは減衰され、周波数変換器22に入力される。周波数変換器22では、選局信号入力端子2から入力される選局信号により希望チャンネルに対応して周波数で発振を行うPLL回路31、ローパスフィルタ29でフィードバックを形成してなる局部発振器26からの局部発振信号と混合し、45MHz帯のIF信号を出力する。IF信号は第1,第2のIF増幅器23,25で増幅されると共に、SAWフィルタなどで構成されるIFフィルタ24で所望の帯域のみが通過され、AM復調器34で復調され、ベースバンドの映像及び音声信号が出力される。AGCはAM復調器34の内部と可変減衰器18,20を用いて行う。また、AFCは局部発振器26の発振周波数を微調して行う。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の受信装置は、NTSC等通常のテレビジョン信号を受信するものであり、高精細テレビジョン信号の受信は考慮されていない。また、通常のテレビジョン信号と高精細テレビジョン信号を共に受信することも考慮されていない。
【0005】
本発明の目的は、高精細テレビジョン信号を受信すること、あるいは通常のテレビジョン信号と高精細テレビジョン信号を共に受信することが可能で、特に、通常のテレビジョン信号として6MHzの帯域を有するNTSC信号や、高精細テレビジョン信号として6MHzの帯域に圧縮された信号を受信可能な受信装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は、NTSC信号の処理をシングルスーパーヘテロダイン方式で行い、高精細テレビジョン信号の処理を第1,第2のミクサを有するダブルスーパーヘテロダイン方式で行う構成とし、そのダブルスーパーヘテロダイン方式については、第1のIF信号周波数を1GHz以上に設定し、第1のIFフィルタに高精細テレビジョン信号の復調を劣化させない帯域内平坦度と低群遅延偏差を有するバンドパスフィルタを用い、第2のIFフィルタとして高精細テレビジョン信号用SAWを設け、復調部として高精細テレビジョン信号用復調器を設けた。
【0007】
かかる構成によると、NTSC信号と高精細テレビジョン信号を受信可能な受信装置を提供できる。また、選局回路,局部発振器,第1のミクサをNTSC信号と高精細テレビジョン信号の受信時に共用し、第2のIFフィルタあるいはIFフィルタと復調器をNTSC信号と高精細テレビジョン信号それぞれ用に個別に設けることで、回路規模の低減したNTSC信号,高精細テレビジョン信号を受信する受信装置を構成できる。
【0008】
【発明の実施の形態】
以下、本発明の実施形態を図面により説明する。
【0009】
図1は本発明による受信装置の第1の実施形態を示すブロック図である。
【0010】
同図において、1は信号入力端子、2は選局信号入力端子、3は高精細テレビジョン信号入力端子、4はNTSC用映像及び音声信号出力端子、5は分配器、6は入力フィルタ、7,9,18,20は可変減衰器、8,19は第1,第2のRF増幅器、10は第1のミクサ、11は第1のIFフィルタ、12は第1のIF増幅器、13は第2のミクサ、14は第1のIF増幅器、15は高精細テレビジョン信号用IFフィルタ、16は第2のIF増幅器、17,21は可変同調回路、22は第3のミクサ、23は第3のIF増幅器、24はNTSC信号用IFフィルタ、25は第4のIF増幅器、26は第3の局部発振器、27は第1の局部発振器、28は第2の局部発振器、29、30はローパスフィルタ、31,32はPLL回路、33は高精細テレビジョン信号用復調器、34はNTSC信号用AM復調器、35は高精細テレビジョン信号用信号レベル検波器、36はローパスフィルタ、37はAGC電圧増幅器である。同図において、図13と同様の動作を行う部分には、図13と同一の番号を付し説明を略す。
【0011】
NTSC信号が入力された場合には、従来例で述べた信号処理と同じなのでここでは説明を省略する。信号入力端子1から、NTSC信号でAM変調されたRF信号と、高精細テレビジョンの原信号をA/D変換後データ圧縮しQAM(直交軸振幅変調)等でデジタル変調された6MHzの帯域を有する高精細テレビジョンのRF信号を入力し、分配器5で分配し、該高精細テレビジョンのRF信号については入力フィルタ6でVHF帯、UHF帯(さらには、VHF帯を低域,中域,高域に分割する場合もある。)に分割し、希望チャネルを含む帯域を選択的に通過させる。その希望チャネルに対し、所望の信号レベルとなるよう可変減衰器7,9及びRF増幅器8で適宜増幅あるいは減衰し、第1のミクサ10へ入力する。第1のミクサ10では、選局信号入力端子2から入力させる選局信号により希望チャネルに対応した周波数で発振を行うよう基準発振器や分周器を内蔵したPLL回路32,ローパスフィルタ30でフィードバックを形成してなる局部発振器27からの局部発振信号と混合し、第1のIF信号を出力する。第1のIF信号周波数は受信信号の相互変調妨害などを低減するため、NTSCテレビジョン信号の地上伝送帯域やCATV伝送帯域の上限周波数以上に設定する。具体的には、第1の局部発振信号や第2の局部発振信号及びその高調波信号による相互干渉妨害も考慮して、1GHz以上で、1.2GHz帯,1.7GHz帯,2.6GHz帯,3GHz帯等に設定する。これらの周波数帯に設定された第1のIF信号を第1のIFフィルタ11で選択的に通過させる。高精細テレビジョン信号の復調はNTSC信号より精度の高い復調を必要とする。高精細テレビジョン信号の復調特性を劣化させないため、第1のIFフィルタには帯域内平坦度と低群遅延偏差を有するバンドパスフィルタを用いる。第1のIF信号は第1のIF増幅器12で増幅した後第2のミクサ13に入力する。第2のミクサでは第2の局部発振器28からの局部発振信号と混合し、第2のIF信号を出力する。第2のIF信号周波数は現行NTSC信号受信時と同じ45MHz帯とする。第2のIF信号を第1のIF増幅器14で増幅した後、SAWフィルタ等で構成される高精細テレビジョン信号用IFフィルタ15に入力する。IFフィルタで希望受信チャネルの帯域のみを通過させる。高精細テレビジョン信号を受信する場合には、第2のIF増幅器16で希望受信チャネルを増幅し高精細テレビジョン信号用復調器33に入力し、変調方式に応じた復調を行い、データ圧縮された高精細テレビジョン信号を出力端子3から出力する。出力された信号はデータ伸長やD/A変換などを行うデジタル信号処理回路へ入力され、高精細テレビジョンに映像及び音声あるいはデータを出力する。一方、NTSC信号を受信する場合には、第4のIF増幅器25で希望受信チャネルを増幅しNTSC信号用AM復調器34に入力し、AM復調され、ベースバンドの映像及び音声信号が出力端子4から出力される。AGCは、高精細テレビジョン信号を受信する場合は第2のIF増幅器16の出力から分岐した信号を信号レベル検波器35で検波し、ローパスフィルタ36,AGC電圧増幅器37によってAGC電圧を生成し、可変減衰器7,9に印加して行う。またNTSC信号を受信する場合はAM復調器34の内部と内部で不足した分を可変減衰器18,20を用いて行う。また、AFCは高精細テレビジョン信号用復調器33,NTSC信号用AM復調器34からのそれぞれのAFC電圧を用い、第2の局部発振器28,第3の局部発振器26の発振周波数を微調して行う。なお、後述するが、高精細テレビジョン信号はNTSC信号と同一のチャネルで伝送される場合も考慮されており、NTSC信号からの干渉妨害を避けるため、NTSC信号中エネルギーの高い映像及び音声搬送波と色副搬送波の近傍には、予め高精細テレビジョン信号のスペクトルを配置しない図7に示した信号を用いることや高精細テレビジョン信号用復調器33に上記NTSC信号の搬送波,副搬送波を除去するノッチフィルタを設けることなどが必要である。
【0012】
以上説明したように、本実施形態の受信装置は、NTSC信号と高精細テレビジョン信号の受信が可能であるだけでなく、高精細テレビジョン信号を高精度に復調することが可能である。
【0013】
図2は本発明による受信装置の第2の実施形態を示すブロック図である。同図において、図1と同様の動作を行う部分には、図1と同一の番号を付し説明を略す。
【0014】
この第2の実施形態は回路規模の低減を考慮したものである。即ち、上記第1の実施形態では高精細テレビジョン信号用に第1の局部発振器27とPLL回路32、NTSC信号用に第3の局部発振器26とPLL回路31を用いて、希望受信チャネルを第1のIF信号あるいはIF信号に変換する局部発振信号周波数の制御を行い、高精細テレビジョン信号受信時には、AFC電圧を用いた微調整を第2の局部発振器28で行っていたのに対し、本実施形態では、図2に示すように、局部発振器26とPLL回路31を共有し、AFC電圧を用いた微調整もPLL回路31内で高精細テレビジョン信号用復調器33,NTSC信号用AM復調器34からのAFC電圧を受信信号に応じて切換えて局部発振器26の発振周波数制御を行っている。
【0015】
この第2の実施形態では、第1の実施形態で述べた効果に加え、高精細テレビジョン信号処理部とNTSC信号処理部で局部発振器とPLL回路を共用することにより、回路規模の低減が図れ、周波数制御を局部発振器26だけで行う簡便な選局手段が得られる。
【0016】
図3は本発明による受信装置の第3の実施形態を示すブロック図である。同図において、図1,図2と同様の動作を行う部分には、図1,図2と同一の番号を付し説明を略す。
【0017】
この第3の実施形態も回路規模の低減を考慮したものである。即ち、上記第1,第2の実施形態では高精細テレビジョン信号用に第1のミクサ10,NTSC信号用に第3ミクサ22を用いて、希望受信チャネルを第1のIF信号あるいはIF信号に変換する周波数変換を行っていたのに対し、第3の実施形態では、図3に示すように、ミクサ10を共用し周波数変換を行っている。
【0018】
この第3の実施形態では、第1,第2の実施形態で述べた効果に加え、高精細テレビジョン信号処理部とNTSC信号処理部でミクサ10を共用することにより、回路規模の低減が図れる。
【0019】
また、図示していないが、第1のIF増幅器14と第3のIF増幅器23のいずれかを高精細テレビジョン信号処理部とNTSC信号処理部で共用することにより、上記と同様な効果が得られる。
【0020】
図4は本発明による受信装置の第4の実施形態を示すブロック図である。同図において、図2に示した実施形態と同様の動作を行う部分には、図2と同一の番号を付し説明を略す。同図において、39は第4ミクサ、40は第4の局部発振器、50はベースバンドでの高精細テレビジョン信号用復調器である。
【0021】
この第4の実施形態は高精細テレビジョン信号に対し、第2のIF信号をさらにベースバンドへ周波数変換し復調を行うことを特徴とする。即ち、上記第2の実施形態では高精細テレビジョン信号に対し、第2のミクサ13から出力した45HMz帯の第2のIF信号を第1,第2のIF増幅器14,16で増幅し、高精細テレビジョン信号用IFフィルタ15で帯域選択した後、高精細テレビジョン信号用復調器33に入力し、変調方式に応じた復調を行っていたのに対し、この第4の実施形態では、図4に示すように、第4ミクサで第2のIF信号と第4の局部発振器40からの45HMz帯、58MHz帯などの標準周波数帯の局部発振信号と混合し、ベースバンドの高精細テレビジョン信号を出力する。この信号をローパスフィルタ41で選択通過させ、ベースバンドでの高精細テレビジョン信号用復調器50で復調を行う。
【0022】
この第4の実施形態では、第1,第2の実施形態で述べた効果に加え、高精細テレビジョン信号の復調を低周波域のベースバンドで行えるため、高精細テレビジョン信号用復調器の構成が簡単になる。
【0023】
図5は本発明による受信装置の第5の実施形態を示すブロック図である。同図において、図4に示した実施形態と同様の動作を行う部分には、図4と同一の番号を付し説明を略す。同図において、31は基準発振器を含まないPLL回路、42は分周器である。
【0024】
この第5の実施形態は、図5に示すように、第4の局部発振器40の発振信号を分周して、局部発振器26の発振周波数を制御するPLL回路31の基準発振信号として用いることを特徴とする。高精細テレビジョン信号のIF信号をベースバンドへ周波数変換する第4ミクサ39では、周波数精度の高い局部発振信号が必要になる。従って、第4の局部発振器40では水晶振動子やSAW共振子等を用いた周波数安定度の高い発振回路を構成している。このため、上記第2の実施形態でPLL回路31に含まれていた基準発振器に替えて、第4の局部発振器40の発振信号を分周器42で分周していた。
【0025】
この第5の実施形態では、第4の実施形態で述べた効果に加え、第4の局部発振器40の発振信号を分周器42で分周してPLL回路31の基準発振信号として用いるので、受信装置の発振器部分の回路規模低減が図れると共に、高精細テレビジョン信号の高精度な復調が可能である。
【0026】
以下、高精細テレビジョン信号の形式に基づいて、より具体的な実施形態を図面を用いて説明する。
【0027】
図6は本発明による受信装置の第6の実施形態を示すブロック図、図7は第6の実施形態を補足する信号帯域図である。図6において、図5に示した実施形態と同様の動作を行う部分には、図5と同一の番号を付し説明を略す。同図において、60は高精細テレビジョン信号用の第1のIFフィルタ、61は高精細テレビジョン信号用の第2のIFフィルタ、62は第5のIF増幅器、63は第5ミクサ、64,65はローパスフィルタ、66,67ベースバンド信号用増幅器である。
【0028】
この第6の実施形態は、図7に示すベースバンド信号帯域を有する高精細テレビジョン信号と、NTSC信号を受信することを特徴とする。図7には高精細テレビジョン信号の周波数スペクトルに、比較のためNTSC信号の映像及び音声搬送波(fv,fs)と色副搬送波(fc)を示した。6MHzの信号帯域に圧縮する高精細テレビジョン信号の形式については、米国等で検討されており、例えば福井氏「次世代テレビ方式の欧米における動向」pp.506−508、テレビジョン学会1992年年次大会等に詳細に述べられている。高精細テレビジョン信号はNTSC信号と同一のチャネルで伝送される場合も考慮されており、NTSC信号からの干渉妨害を避けるため、NTSC信号中エネルギーの高い映像及び音声搬送波の近傍には、予め高精細テレビジョン信号のスペクトルを配置しない図7に示した信号を用いることが提案されている。図7はQAMされた高精細テレビジョン信号に対し、NTSC信号の映像搬送波周波数以下を優先度の高い信号(HP部),映像搬送波周波数以上をそれ以外の信号(SP部)に分割して伝送する信号形式である。この第6の実施形態は、図6に示すように、二重周波数変換された高精細テレビジョン信号の第2のIF信号から、SAWフィルタで構成した高精細テレビジョン信号用の第1のIFフィルタ60及び第2のIFフィルタ61により、このHP部,SP部を分割し、第2のIF増幅器16及び第5のIF増幅器62で増幅した後、第4ミクサ39及び第5ミクサ63でそれぞれベースバンドへ周波数変換する。ベースバンドに変換したHP部,SP部はそれぞれローパスフィルタ64,65を通過後、ベースバンド信号用増幅器66,67で所望の信号レベルとして高精細テレビジョン信号用復調器50へ入力し、復調する。なお、高精細テレビジョン信号用の第1のIFフィルタ60及び第2のIFフィルタ61は、それぞれ分離されたSAWフィルタで構成したが、同一の基板上に構成されたフィルタでも帯域分離は可能である。
【0029】
この第6の実施形態では、第5の実施形態で述べた効果を有すると共に、図7に示した信号帯域の高精細テレビジョン信号に対し、二重周波数変換後、帯域を分割して信号処理を行うため、両帯域間の干渉や同一チャネルで伝送されるNTSC信号からの妨害を十分に低減することが可能となる。
【0030】
図8は本発明による受信装置の第7の実施形態を示すブロック図である。同図において、図6に示した実施形態と同様の動作を行う部分には、図6と同一の番号を付し説明を略す。同図において、70は第1のQAM検波器、71は第2のQAM検波器、72,73は90度移相器、74は第1のキャリア及びクロック再生回路、75は第2のキャリア及びクロック再生回路、76は第5の発振器、77は第6の発振器、78はAFC電圧発生回路、51はデータ復調器である。この第7の実施形態は、図8に示すように、二重周波数変換された高精細テレビジョン信号の第2のIF信号から、SAWフィルタで構成した高精細テレビジョン信号用の第1のIFフィルタ60及び第2のIFフィルタ61により、上記高精細テレビジョン信号のHP部,SP部を分離し、第2のIF増幅器16及び第5のIF増幅器62で増幅した後、それぞれを第1及び第2のQAM検波器70,71で、第5及び第6の発振器76,77の発振信号を90度移相器72,73で移相して互いに90度の位相差を有する2信号を用いて検波する。この際、AFC電圧発生回路78で局部発振器26の発振周波数を制御し、第1及び第2のキャリア及びクロック再生回路74,75でのキャリア及びクロック信号再生を最良状態となるように周波数制御を行う。検波された信号はデータ復調器51へ入力し、復調する。なお、ここでは局部発振器26の発振周波数を制御したが、第2の局部発振器28の発振周波数を制御する構成や第5及び第6の発振器76,77の発振周波数を制御する構成でもよい。
【0031】
この第7の実施形態では、第6の実施形態で述べた効果を有すると共に、図7に示した信号帯域の高精細テレビジョン信号のHP部,SP部に対し、それぞれQAM復調を行うため、両帯域間の干渉や同一チャネルで伝送されるNTSC信号からの妨害をさらに低減することが可能で、より高精度のデータ復調が可能となる。また、局部発振器26の発振周波数を制御してQAM復調を行うため、高精度な高精細テレビジョン信号の復調が可能となる。
【0032】
図9は本発明による受信装置の第8の実施形態を示すブロック図、図10はこの第8の実施形態を補足する信号帯域図である。図9において、図2に示した実施形態と同様の動作を行う部分には、図2と同一の番号を付し説明を略す。同図において、52は高精細テレビジョン信号用復調器である。
【0033】
この第8の実施形態は、図10に示すベースバンド信号帯域を有する高精細テレビジョン信号と、NTSC信号を受信することを特徴とする。図10には図7と同様高精細テレビジョン信号の周波数スペクトルに、比較のためNTSC信号の映像及び音声搬送波(fv,fs)と色副搬送波(fc)を示した。同図は6MHzの信号帯域に圧縮する高精細テレビジョン信号の他のデジタル変調形式として4値の残留側波帯振幅変調(VSB)を用いた信号帯域図である。この第8の実施形態は、図9に示すように、二重周波数変換された高精細テレビジョン信号の第2のIF信号をSAWフィルタで構成した高精細テレビジョン信号用のIFフィルタ15で選択通過させ、第2のIF増幅器16で増幅した後、NTSC信号のIF信号と同様に、AM復調器34に入力し、復調する。NTSC信号を復調した場合にはAM復調器34から復調信号を出力するが、高精細テレビジョン信号を復調した場合には、さらに高精細テレビジョン信号用復調器52に入力し、復調を行う。なお、同一チャネルで伝送されるNTSC信号からの妨害を低減するため、AM復調器34の中には高精細テレビジョン信号受信時に動作する上記NTSC信号の搬送波,副搬送波を除去するノッチフィルタを設けている。また、入力フィルタ6に、1チャネル分の帯域幅を有し、局部発振器26の発振周波数に追従してその通過帯域の中心周波数を可変するバンドパスフィルタを設け、希望受信信号に比べて強電界の妨害信号が入力した場合にも、妨害の発生を低減している。
【0034】
この第8の実施形態では、第2の実施形態で述べた効果に加え、高精細テレビジョン信号もAM変調されているので、高精細信号の復調の一部をNTSC信号の復調器を用いて行うことができ、またAGC電圧やAFC電圧の制御も共通に行うことができ、受信装置の回路構成が簡略化され、回路規模を縮小することが可能となる。また、この第8の実施形態では高精細テレビジョン信号用IFフィルタ15とNTSC信号用IFフィルタ24を別個に設けたが、高精細テレビジョン信号とNTSC信号の残留側波帯幅やロールオフ特性が類似している場合には両者を共有することができ、さらに回路規模が縮小される。
【0035】
図11は本発明による受信装置の第9の実施形態を示すブロック図、図12はこの第9の実施形態を補足する信号帯域図である。同図において、図2及び図8に示した実施形態と同様の動作を行う部分には、図2及び図8と同一の番号を付し説明を略す。同図において、53は高精細テレビジョン信号用データ復調器である。
【0036】
この第9の実施形態は、図12に示すベースバンド信号帯域を有する高精細テレビジョン信号と、NTSC信号を受信することを特徴とする。図12には図7と同様高精細テレビジョン信号の周波数スペクトルに、比較のためNTSC信号の映像及び音声搬送波(fv,fs)と色副搬送波(fc)を示した。同図は6MHzの信号帯域に圧縮する高精細テレビジョン信号の他の形式として16値あるいは32値のQAM変調を用いた信号帯域図である。この第9の実施形態は、図11に示すように、二重周波数変換された高精細テレビジョン信号の第2のIF信号をSAWフィルタで構成した高精細テレビジョン信号用のIFフィルタ15で選択通過させ、第2のIF増幅器16で増幅した後、第1のQAM検波器70で、第5の発振器76の発振信号を90度移相器72で移相して互いに90度の位相差を有する2信号を用いて検波する。この際、AFC電圧発生回路78で局部発振器26の発振周波数を制御し、第1及び第2のキャリア及びクロック再生回路74,75でのキャリア及びクロック信号再生を最良状態となるように周波数制御を行う。検波された信号はデータ復調器53へ入力し、復調する。なお、ここでは局部発振器26の発振周波数を制御したが、第2の局部発振器28の発振周波数を制御する構成や第5の発振器76の発振周波数を制御する構成でもよい。また、同一チャネルで伝送されるNTSC信号からの妨害を低減するため、QAM検波器70には上記NTSC信号の搬送波,副搬送波を除去するためノッチフィルタを設けている。
【0037】
この第9の実施形態では、第2の実施形態で述べた効果に加え、局部発振器26の発振周波数を制御してQAM復調を行うため、高精度な高精細テレビジョン信号の復調が可能となる。
【0038】
なお、これまで述べた実施形態は、NTSC信号と高精細テレビジョン信号を信号入力端子1から入力し、分配器5で分配する構成としているが、入力端子を2個設けて、それぞれの信号処理部に入力する構成としても同様な効果が得られる。
【0039】
また、これまでの実施形態は、NTSC信号と高精細テレビジョン信号を受信する受信装置として、主にTV,VTR機器での使用を述べたが、前記受信装置はディジタル通信等の通信分野へ応用しても同様な効果が得られる。
【0040】
【発明の効果】
以上説明したように、本発明によれば、NTSC信号や6MHzの帯域に圧縮されて伝送する高精細テレビジョン信号を受信可能な受信壮値を提供できる。また、選局回路,局部発振器,第1のミクサをNTSC信号と高精細テレビジョン信号で共用し、IFフィルタと復調器をNTSC信号と高精細テレビジョン信号用に個別に設けることで、回路規模を低減したNTSC信号,高精細テレビジョン信号を受信する受信装置が構成できる。
【図面の簡単な説明】
【図1】本発明による受信装置の第1の実施形態を示すブロック図である。
【図2】本発明による受信装置の第2の実施形態を示すブロック図である。
【図3】本発明による受信装置の第3の実施形態を示すブロック図である。
【図4】本発明による受信装置の第4の実施形態を示すブロック図である。
【図5】本発明による受信装置の第5の実施形態を示すブロック図である。
【図6】本発明による受信装置の第6の実施形態を示すブロック図である。
【図7】図6に示した第6の実施形態を補足する信号帯域図である。
【図8】本発明による受信装置の第7の実施形態を示すブロック図である。
【図9】本発明による受信装置の第8の実施形態を示すブロック図である。
【図10】図9に示した第8の実施形態を補足する信号帯域図である。
【図11】本発明による受信装置の第9の実施形態を示すブロック図である。
【図12】図11に示した第9の実施形態を補足する信号帯域図である。
【図13】従来の受信装置の一例を示すブロック図である。
【符号の説明】
1 信号入力端子
2 選局信号端子
3 高精細テレビジョン信号出力端子
4 NTSC信号出力端子
5 分配器
7,9,18,20 可変減衰器
8,19 第1,2のRF増幅器
10 第1のミクサ
11 第1のIFフィルタ
12 第1のIF増幅器
13 第2のミクサ
14 第1のIF増幅器
15,60,61 高精細テレビジョン信号用IFフィルタ
16 第2のIF増幅器
17,21 可変同調回路
22 第3のミクサ
23 第3のIF増幅器
24 NTSC信号用IFフィルタ
25 第4のIF増幅器
26 第3の局部発振器
27 高精細テレビジョン信号用の第1の局部発振器
28 第2の局部発振器
29,30,36,41,64,65 ローパスフィルタ
31,32 PLL回路
33,50,51,52,53 高精細テレビジョン信号用復調器
34 NTSC信号用復調器
35 高精細テレビジョン信号用レベル検出器
37 AGC電圧増幅器
39 第4のミクサ
40 第4の局部発振器
42 分周器
62 第5のIF増幅器
63 第5のミクサ
66,67 ベースバンド信号用増幅器
70,71 QAM検波器
72,73 90度移相器
74,75 キャリア及びクロック再生回路
76,77 基準発振器
78 AFC電圧発生器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a receiving device capable of receiving a high-definition television signal and a normal television signal, and particularly to a signal compressed as a high-definition television signal into a 6 MHz band and a normal television signal. The present invention relates to a receiving apparatus for commonly receiving an NTSC signal having a 6 MHz band.
[0002]
[Prior art]
In recent years, in addition to the conventional television broadcasting (NTSC, PAL, etc.), establishment of a high-definition television broadcasting system is being promoted in each country. Along with this, there has been a need for a receiving apparatus that has little deterioration in image quality and sound room when receiving a high-definition television signal. FIG. 13 shows a conventional single superheterodyne television receiver. In the figure, 1 is a signal input terminal, 2 is a tuning signal input terminal, 4 is a video and audio signal output terminal, 17 and 21 are variable tuning circuits, 18 and 20 are variable attenuators, 19 is an RF amplifier, and 22 is A frequency converter, 23 and 25 are IF amplifiers, 24 is an IF filter, 26 is a local oscillator, 29 is a low-pass filter, 31 is a PLL (phase locked loop) circuit, and 34 is an AM demodulator. Hereinafter, description will be made using an NTSC signal as a standard TV signal as an example.
[0003]
The desired signal among the RF signals AM-modulated with the NTSC signal input from the signal input terminal 1 is selected by the variable tuning circuits 17 and 21 which follow the oscillation frequency of the local oscillator 26 and vary the center frequency of the pass band. The signal is appropriately amplified or attenuated by the variable attenuators 18 and 20 and the RF amplifier 19 so that the desired signal has a desired reception level, and is input to the frequency converter 22. In the frequency converter 22, a PLL circuit 31 that oscillates at a frequency corresponding to a desired channel based on a tuning signal input from a tuning signal input terminal 2 and a local oscillator 26 that forms feedback by a low-pass filter 29 are output. It mixes with the local oscillation signal and outputs an IF signal in the 45 MHz band. The IF signal is amplified by the first and second IF amplifiers 23 and 25, passed through only a desired band by an IF filter 24 composed of a SAW filter or the like, demodulated by an AM demodulator 34, and converted to a baseband signal. Video and audio signals are output. AGC is performed using the inside of the AM demodulator 34 and the variable attenuators 18 and 20. AFC is performed by finely adjusting the oscillation frequency of the local oscillator 26.
[0004]
[Problems to be solved by the invention]
However, the above-mentioned receiving apparatus receives a normal television signal such as NTSC, and does not consider receiving a high-definition television signal. Also, it is not considered to receive both a normal television signal and a high definition television signal.
[0005]
An object of the present invention is to receive a high-definition television signal or to receive both a normal television signal and a high-definition television signal. In particular, the present invention has a 6-MHz band as a normal television signal. It is an object of the present invention to provide a receiving apparatus capable of receiving an NTSC signal or a signal compressed to a 6 MHz band as a high definition television signal.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a configuration in which processing of an NTSC signal is performed by a single superheterodyne method and processing of a high-definition television signal is performed by a double superheterodyne method having first and second mixers, For the double superheterodyne method, the first IF signal frequency is set to 1 GHz or more, and the first IF filter has a band pass having a flatness within a band and a low group delay deviation which does not deteriorate the demodulation of a high definition television signal. A high-definition television signal SAW was provided as a second IF filter using a filter, and a high-definition television signal demodulator was provided as a demodulation unit.
[0007]
According to such a configuration, it is possible to provide a receiving device capable of receiving the NTSC signal and the high definition television signal. Further, the tuning circuit, the local oscillator, and the first mixer are shared when receiving the NTSC signal and the high-definition television signal, and the second IF filter or the IF filter and the demodulator are used for the NTSC signal and the high-definition television signal, respectively. , A receiving device that receives an NTSC signal and a high-definition television signal with a reduced circuit scale can be configured.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
FIG. 1 is a block diagram showing a first embodiment of a receiving device according to the present invention.
[0010]
In the figure, 1 is a signal input terminal, 2 is a tuning signal input terminal, 3 is a high definition television signal input terminal, 4 is an NTSC video and audio signal output terminal, 5 is a distributor, 6 is an input filter, 7 , 9, 18, and 20 are variable attenuators, 8 and 19 are first and second RF amplifiers, 10 is a first mixer, 11 is a first IF filter, 12 is a first IF amplifier, and 13 is a first IF amplifier. 2 is a first IF amplifier, 15 is an IF filter for a high definition television signal, 16 is a second IF amplifier, 17 and 21 are tunable circuits, 22 is a third mixer, and 23 is a third mixer. , An IF filter for NTSC signal, 25 a fourth IF amplifier, 26 a third local oscillator, 27 a first local oscillator, 28 a second local oscillator, 29 and 30 low-pass filters , 31 and 32 are PLL circuits, 33 High definition TV signal demodulator, 34 AM demodulator for NTSC signal, 35 is a signal level detector for high-definition television signals, 36 is a low pass filter, 37 is the AGC voltage amplifier. In this figure, parts performing the same operations as those in FIG. 13 are denoted by the same reference numerals as those in FIG.
[0011]
When the NTSC signal is input, the signal processing is the same as the signal processing described in the conventional example, and the description is omitted here. From the signal input terminal 1, an RF signal modulated by an NTSC signal and an original signal of a high-definition television are subjected to A / D conversion, data compression, and a 6 MHz band digitally modulated by QAM (quadrature axis amplitude modulation) or the like. The RF signal of the high-definition television is input and distributed by the distributor 5, and the RF signal of the high-definition television is input to the input filter 6 in the VHF band, the UHF band (and the VHF band is a low band and a middle band). , May be divided into high bands.), And selectively passes a band including a desired channel. The desired channel is appropriately amplified or attenuated by the variable attenuators 7 and 9 and the RF amplifier 8 so as to have a desired signal level, and input to the first mixer 10. In the first mixer 10, feedback is provided by a PLL circuit 32 and a low-pass filter 30 incorporating a reference oscillator and a frequency divider so as to oscillate at a frequency corresponding to a desired channel according to a tuning signal input from a tuning signal input terminal 2. It mixes with the local oscillation signal from the formed local oscillator 27 and outputs a first IF signal. The first IF signal frequency is set to be equal to or higher than the upper limit frequency of the terrestrial transmission band of the NTSC television signal or the CATV transmission band in order to reduce intermodulation interference of the received signal. More specifically, in consideration of the mutual interference by the first local oscillation signal, the second local oscillation signal, and its higher harmonic signal, the frequency is 1 GHz or more, 1.2 GHz band, 1.7 GHz band, and 2.6 GHz band. , 3 GHz band, etc. The first IF signals set in these frequency bands are selectively passed by the first IF filter 11. Demodulation of high definition television signals requires more accurate demodulation than NTSC signals. In order not to deteriorate the demodulation characteristics of the high-definition television signal, a band-pass filter having in-band flatness and low group delay deviation is used as the first IF filter. The first IF signal is amplified by a first IF amplifier 12 and then input to a second mixer 13. The second mixer mixes with the local oscillation signal from the second local oscillator 28 and outputs a second IF signal. The second IF signal frequency is set to the same 45 MHz band as when the current NTSC signal is received. After the second IF signal is amplified by the first IF amplifier 14, it is input to the high-definition television signal IF filter 15 composed of a SAW filter or the like. The IF filter passes only the band of the desired reception channel. When a high-definition television signal is received, the desired receiving channel is amplified by the second IF amplifier 16, input to the high-definition television signal demodulator 33, demodulated according to the modulation method, and subjected to data compression. The high-definition television signal is output from the output terminal 3. The output signal is input to a digital signal processing circuit that performs data expansion, D / A conversion, and the like, and outputs video, audio, or data to a high-definition television. On the other hand, when receiving the NTSC signal, the fourth IF amplifier 25 amplifies the desired receiving channel and inputs the amplified signal to the NTSC signal AM demodulator 34 where the signal is AM-demodulated and the baseband video and audio signals are output to the output terminal 4. Output from The AGC detects a signal branched from the output of the second IF amplifier 16 by a signal level detector 35 when receiving a high definition television signal, and generates an AGC voltage by a low-pass filter 36 and an AGC voltage amplifier 37. This is performed by applying the voltage to the variable attenuators 7 and 9. In the case of receiving an NTSC signal, the inside and outside of the AM demodulator 34 are compensated for by using the variable attenuators 18 and 20. The AFC uses the respective AFC voltages from the high-definition television signal demodulator 33 and the NTSC signal AM demodulator 34 to fine-tune the oscillation frequencies of the second local oscillator 28 and the third local oscillator 26. Do. As will be described later, the case where the high-definition television signal is transmitted on the same channel as the NTSC signal is also considered, and in order to avoid interference from the NTSC signal, a high-energy video and audio carrier wave in the NTSC signal is used. In the vicinity of the color subcarrier, the signal shown in FIG. 7 in which the spectrum of the high-definition television signal is not arranged in advance is used, or the carrier and the subcarrier of the NTSC signal are removed by the high-definition television signal demodulator 33. It is necessary to provide a notch filter.
[0012]
As described above, the receiving apparatus of the present embodiment can not only receive the NTSC signal and the high-definition television signal, but also can demodulate the high-definition television signal with high accuracy.
[0013]
FIG. 2 is a block diagram showing a second embodiment of the receiving device according to the present invention. In this figure, parts performing the same operations as in FIG. 1 are assigned the same reference numerals as in FIG. 1 and their explanation is omitted.
[0014]
The second embodiment is designed to reduce the circuit scale. That is, in the first embodiment, the first local oscillator 27 and the PLL circuit 32 are used for high-definition television signals, and the third local oscillator 26 and the PLL circuit 31 are used for NTSC signals. In contrast to the case where the second local oscillator 28 performs fine adjustment using the AFC voltage when receiving a high-definition television signal, the second local oscillator 28 controls In the embodiment, as shown in FIG. 2, the local oscillator 26 and the PLL circuit 31 are shared, and the fine adjustment using the AFC voltage is also performed in the PLL circuit 31 by the high-definition television signal demodulator 33 and the NTSC signal AM demodulation. The oscillation frequency of the local oscillator 26 is controlled by switching the AFC voltage from the unit 34 according to the received signal.
[0015]
In the second embodiment, in addition to the effects described in the first embodiment, the circuit scale can be reduced by sharing the local oscillator and the PLL circuit between the high-definition television signal processing unit and the NTSC signal processing unit. Thus, a simple channel selecting means for controlling the frequency only by the local oscillator 26 can be obtained.
[0016]
FIG. 3 is a block diagram showing a third preferred embodiment of the receiving device according to the present invention. In this figure, parts performing the same operations as those in FIGS. 1 and 2 are denoted by the same reference numerals as those in FIGS. 1 and 2, and description thereof is omitted.
[0017]
This third embodiment also takes into account a reduction in circuit scale. That is, in the first and second embodiments, the first mixer 10 is used for a high-definition television signal, and the third mixer 22 is used for an NTSC signal. In contrast to the frequency conversion for conversion, in the third embodiment, as shown in FIG. 3, the mixer 10 is shared to perform frequency conversion.
[0018]
In the third embodiment, in addition to the effects described in the first and second embodiments, the circuit scale can be reduced by sharing the mixer 10 between the high-definition television signal processing unit and the NTSC signal processing unit. .
[0019]
Although not shown, the same effect as described above can be obtained by sharing one of the first IF amplifier 14 and the third IF amplifier 23 with the high-definition television signal processing unit and the NTSC signal processing unit. Can be
[0020]
FIG. 4 is a block diagram showing a fourth embodiment of the receiving device according to the present invention. In this figure, parts performing the same operations as in the embodiment shown in FIG. 2 are assigned the same reference numerals as those in FIG. 2 and their explanation is omitted. In the figure, reference numeral 39 denotes a fourth mixer, 40 denotes a fourth local oscillator, and 50 denotes a baseband high-definition television signal demodulator.
[0021]
The fourth embodiment is characterized in that a high-definition television signal is further frequency-converted into a baseband signal and demodulated. That is, in the second embodiment, the second IF signal of the 45 HMz band output from the second mixer 13 is amplified by the first and second IF amplifiers 14 and 16 for the high-definition television signal. After the band is selected by the high-definition television signal IF filter 15, the signal is input to the high-definition television signal demodulator 33 and demodulation is performed according to the modulation method. As shown in FIG. 4, the second IF signal is mixed with a local oscillation signal of a standard frequency band such as a 45 MHZ band or a 58 MHz band from the fourth local oscillator 40 by a fourth mixer to obtain a baseband high-definition television signal. Is output. This signal is selectively passed by a low-pass filter 41 and demodulated by a high-definition television signal demodulator 50 in a base band.
[0022]
In the fourth embodiment, in addition to the effects described in the first and second embodiments, the demodulation of a high-definition television signal can be performed in a low-frequency baseband. The configuration is simplified.
[0023]
FIG. 5 is a block diagram showing a receiving apparatus according to a fifth embodiment of the present invention. In this figure, parts performing the same operations as in the embodiment shown in FIG. 4 are assigned the same reference numerals as those in FIG. 4 and their explanation is omitted. In the figure, 31 is a PLL circuit not including a reference oscillator, and 42 is a frequency divider.
[0024]
In the fifth embodiment, as shown in FIG. 5, the oscillation signal of the fourth local oscillator 40 is frequency-divided and used as a reference oscillation signal of a PLL circuit 31 for controlling the oscillation frequency of the local oscillator 26. Features. The fourth mixer 39 that converts the frequency of the IF signal of the high-definition television signal into baseband requires a local oscillation signal with high frequency accuracy. Therefore, the fourth local oscillator 40 constitutes an oscillation circuit having high frequency stability using a crystal oscillator, a SAW resonator, or the like. For this reason, the oscillation signal of the fourth local oscillator 40 is divided by the frequency divider 42 instead of the reference oscillator included in the PLL circuit 31 in the second embodiment.
[0025]
In the fifth embodiment, in addition to the effects described in the fourth embodiment, the oscillation signal of the fourth local oscillator 40 is frequency-divided by the frequency divider 42 and used as the reference oscillation signal of the PLL circuit 31. The circuit scale of the oscillator part of the receiving device can be reduced, and high-definition television signals can be demodulated with high accuracy.
[0026]
Hereinafter, more specific embodiments will be described with reference to the drawings based on the format of a high definition television signal.
[0027]
FIG. 6 is a block diagram showing a sixth embodiment of the receiving apparatus according to the present invention, and FIG. 7 is a signal band diagram supplementing the sixth embodiment. In FIG. 6, parts performing the same operations as those in the embodiment shown in FIG. 5 are denoted by the same reference numerals as in FIG. 5, and description thereof will be omitted. In the figure, reference numeral 60 denotes a first IF filter for a high-definition television signal, 61 denotes a second IF filter for a high-definition television signal, 62 denotes a fifth IF amplifier, 63 denotes a fifth mixer, 64, 65 is a low-pass filter and 66 and 67 are baseband signal amplifiers.
[0028]
The sixth embodiment is characterized in that a high-definition television signal having a baseband signal band shown in FIG. 7 and an NTSC signal are received. FIG. 7 shows the frequency spectrum of the high-definition television signal, the video and audio carriers (fv, fs) and the color subcarrier (fc) of the NTSC signal for comparison. The format of a high-definition television signal compressed to a signal band of 6 MHz has been studied in the United States and the like. 506-508, 1992 Annual Conference of the Institute of Television Engineers of Japan. Consideration is also given to the case where a high-definition television signal is transmitted on the same channel as the NTSC signal. In order to avoid interference from the NTSC signal, a high-energy video signal and a high-energy carrier in the NTSC signal are placed beforehand. It has been proposed to use the signal shown in FIG. 7 without arranging the spectrum of the definition television signal. FIG. 7 shows the transmission of a QAM-high-definition television signal by dividing the video carrier frequency below the NTSC signal into a high-priority signal (HP unit) and the signal above the video carrier frequency into other signals (SP unit). Signal format. In the sixth embodiment, as shown in FIG. 6, a second IF signal of a high-definition television signal subjected to dual frequency conversion is converted into a first IF for a high-definition television signal constituted by a SAW filter. The HP section and the SP section are divided by the filter 60 and the second IF filter 61 and amplified by the second IF amplifier 16 and the fifth IF amplifier 62, and then are respectively separated by the fourth mixer 39 and the fifth mixer 63. Frequency conversion to baseband. The HP section and the SP section converted into the baseband pass through the low-pass filters 64 and 65, respectively, and are input to the high-definition television signal demodulator 50 as desired signal levels by the baseband signal amplifiers 66 and 67 and demodulated. . Although the first IF filter 60 and the second IF filter 61 for high-definition television signals are each configured by a separated SAW filter, band separation can be performed by a filter configured on the same substrate. is there.
[0029]
The sixth embodiment has the effects described in the fifth embodiment, and performs signal processing by dividing the frequency band after high-definition television signals in the signal band shown in FIG. Therefore, it is possible to sufficiently reduce the interference between the two bands and the interference from the NTSC signal transmitted on the same channel.
[0030]
FIG. 8 is a block diagram showing a seventh embodiment of the receiving device according to the present invention. In this figure, parts performing the same operations as those in the embodiment shown in FIG. 6 are denoted by the same reference numerals as those in FIG. 6, and description thereof is omitted. In the figure, 70 is a first QAM detector, 71 is a second QAM detector, 72 and 73 are 90-degree phase shifters, 74 is a first carrier and clock recovery circuit, 75 is a second carrier and A clock recovery circuit, 76 is a fifth oscillator, 77 is a sixth oscillator, 78 is an AFC voltage generation circuit, and 51 is a data demodulator. In the seventh embodiment, as shown in FIG. 8, a second IF signal of a high-definition television signal subjected to dual frequency conversion is converted into a first IF for a high-definition television signal constituted by a SAW filter. The HP section and the SP section of the high-definition television signal are separated by the filter 60 and the second IF filter 61, and are amplified by the second IF amplifier 16 and the fifth IF amplifier 62. In the second QAM detectors 70 and 71, the oscillation signals of the fifth and sixth oscillators 76 and 77 are phase-shifted by 90-degree phase shifters 72 and 73, and two signals having a phase difference of 90 degrees are used. To detect. At this time, the AFC voltage generation circuit 78 controls the oscillation frequency of the local oscillator 26, and the first and second carrier and clock recovery circuits 74 and 75 control the frequency so that the carrier and clock signal recovery is in the best state. Do. The detected signal is input to the data demodulator 51 and demodulated. Although the oscillation frequency of the local oscillator 26 is controlled here, a configuration for controlling the oscillation frequency of the second local oscillator 28 or a configuration for controlling the oscillation frequencies of the fifth and sixth oscillators 76 and 77 may be used.
[0031]
The seventh embodiment has the effects described in the sixth embodiment and performs QAM demodulation on the HP and SP sections of the high-definition television signal in the signal band shown in FIG. 7, respectively. It is possible to further reduce the interference between the two bands and the interference from the NTSC signal transmitted on the same channel, thereby enabling more accurate data demodulation. In addition, since the QAM demodulation is performed by controlling the oscillation frequency of the local oscillator 26, it is possible to demodulate the television signal with high accuracy and high precision.
[0032]
FIG. 9 is a block diagram showing an eighth embodiment of the receiving apparatus according to the present invention, and FIG. 10 is a signal band diagram supplementing the eighth embodiment. In FIG. 9, parts performing the same operations as those in the embodiment shown in FIG. 2 are assigned the same reference numerals as those in FIG. 2 and their explanation is omitted. In the figure, reference numeral 52 denotes a high-definition television signal demodulator.
[0033]
The eighth embodiment is characterized in that a high-definition television signal having a baseband signal band shown in FIG. 10 and an NTSC signal are received. FIG. 10 shows the frequency spectrum of the high-definition television signal, and the video and audio carriers (fv, fs) and the color subcarrier (fc) of the NTSC signal for comparison, as in FIG. FIG. 1 is a signal band diagram using quaternary vestigial sideband amplitude modulation (VSB) as another digital modulation format of a high definition television signal compressed to a signal band of 6 MHz. In the eighth embodiment, as shown in FIG. 9, a second IF signal of a high-definition television signal subjected to dual frequency conversion is selected by an IF filter 15 for a high-definition television signal constituted by a SAW filter. After passing through and amplifying by the second IF amplifier 16, the signal is input to the AM demodulator 34 and demodulated similarly to the IF signal of the NTSC signal. When the NTSC signal is demodulated, a demodulated signal is output from the AM demodulator 34. When the high-definition television signal is demodulated, the demodulated signal is further input to the high-definition television signal demodulator 52 and demodulated. In order to reduce interference from the NTSC signal transmitted on the same channel, the AM demodulator 34 is provided with a notch filter that operates at the time of receiving a high-definition television signal and removes the carrier and the subcarrier of the NTSC signal. ing. The input filter 6 is provided with a band-pass filter having a bandwidth for one channel and varying the center frequency of the pass band following the oscillation frequency of the local oscillator 26. , The occurrence of interference is reduced.
[0034]
In the eighth embodiment, in addition to the effects described in the second embodiment, since a high-definition television signal is also AM-modulated, a part of the demodulation of the high-definition signal is performed by using an NTSC signal demodulator. The AGC voltage and the AFC voltage can be controlled in common, so that the circuit configuration of the receiving device can be simplified and the circuit scale can be reduced. Although the high-definition television signal IF filter 15 and the NTSC signal IF filter 24 are separately provided in the eighth embodiment, the residual sideband width and roll-off characteristics of the high-definition television signal and the NTSC signal are provided. Are similar, both can be shared, and the circuit scale is further reduced.
[0035]
FIG. 11 is a block diagram showing a ninth embodiment of the receiving apparatus according to the present invention, and FIG. 12 is a signal band diagram supplementing the ninth embodiment. In this figure, parts performing the same operations as those in the embodiment shown in FIGS. 2 and 8 are denoted by the same reference numerals as those in FIGS. 2 and 8, and description thereof is omitted. In the figure, reference numeral 53 denotes a data demodulator for a high definition television signal.
[0036]
The ninth embodiment is characterized in that it receives a high definition television signal having a baseband signal band shown in FIG. 12 and an NTSC signal. FIG. 12 shows the frequency spectrum of the high-definition television signal, and the video and audio carrier (fv, fs) and the color subcarrier (fc) of the NTSC signal for comparison, as in FIG. FIG. 1 is a signal band diagram using 16- or 32-value QAM modulation as another format of a high-definition television signal compressed to a 6-MHz signal band. In the ninth embodiment, as shown in FIG. 11, a second IF signal of a high-definition television signal subjected to dual frequency conversion is selected by an IF filter 15 for a high-definition television signal constituted by a SAW filter. After passing through and amplifying by the second IF amplifier 16, the first QAM detector 70 shifts the phase of the oscillation signal of the fifth oscillator 76 by the 90-degree phase shifter 72, and a phase difference of 90 degrees is obtained. Detection is performed using the two signals. At this time, the AFC voltage generation circuit 78 controls the oscillation frequency of the local oscillator 26, and the first and second carrier and clock recovery circuits 74 and 75 control the frequency so that the carrier and clock signal recovery is in the best state. Do. The detected signal is input to the data demodulator 53 and demodulated. Although the oscillation frequency of the local oscillator 26 is controlled here, a configuration for controlling the oscillation frequency of the second local oscillator 28 or a configuration for controlling the oscillation frequency of the fifth oscillator 76 may be used. Further, in order to reduce interference from the NTSC signal transmitted on the same channel, the QAM detector 70 is provided with a notch filter for removing the carrier and the subcarrier of the NTSC signal.
[0037]
In the ninth embodiment, in addition to the effects described in the second embodiment, since the QAM demodulation is performed by controlling the oscillation frequency of the local oscillator 26, it is possible to demodulate a high-precision high-definition television signal. .
[0038]
In the above-described embodiments, the NTSC signal and the high-definition television signal are input from the signal input terminal 1 and distributed by the distributor 5. However, two input terminals are provided and each signal processing is performed. A similar effect can be obtained even when the input is made to the section.
[0039]
In the embodiments described above, the receivers for receiving NTSC signals and high-definition television signals are mainly used in TV and VTR devices. However, the receivers are applied to communication fields such as digital communication. A similar effect can be obtained.
[0040]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a reception value that can receive an NTSC signal or a high-definition television signal compressed and transmitted in a 6 MHz band. In addition, the tuning circuit, the local oscillator, and the first mixer are shared by the NTSC signal and the high-definition television signal, and the IF filter and the demodulator are separately provided for the NTSC signal and the high-definition television signal. A receiving device that receives an NTSC signal and a high-definition television signal with reduced noise can be configured.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment of a receiving device according to the present invention.
FIG. 2 is a block diagram showing a second embodiment of the receiving device according to the present invention.
FIG. 3 is a block diagram showing a third preferred embodiment of a receiving device according to the present invention.
FIG. 4 is a block diagram showing a fourth embodiment of the receiving device according to the present invention.
FIG. 5 is a block diagram showing a fifth embodiment of the receiving device according to the present invention.
FIG. 6 is a block diagram showing a sixth embodiment of the receiving device according to the present invention.
FIG. 7 is a signal band diagram supplementing the sixth embodiment shown in FIG. 6;
FIG. 8 is a block diagram showing a seventh embodiment of the receiving device according to the present invention.
FIG. 9 is a block diagram showing an eighth embodiment of the receiving device according to the present invention.
FIG. 10 is a signal band diagram supplementing the eighth embodiment shown in FIG.
FIG. 11 is a block diagram showing a ninth embodiment of a receiving device according to the present invention.
FIG. 12 is a signal band diagram supplementing the ninth embodiment shown in FIG. 11;
FIG. 13 is a block diagram illustrating an example of a conventional receiving device.
[Explanation of symbols]
1 signal input terminal
2 Tuning signal terminal
3 High definition television signal output terminal
4 NTSC signal output terminal
5 distributor
7,9,18,20 Variable attenuator
8,19 First and second RF amplifier
10 The first mixer
11 1st IF filter
12 First IF amplifier
13 Second Mixer
14 1st IF amplifier
15,60,61 IF filter for high definition television signal
16 Second IF amplifier
17,21 Variable tuning circuit
22 Third Mixer
23 Third IF Amplifier
24 IF filter for NTSC signal
25 Fourth IF amplifier
26 Third Local Oscillator
27. First local oscillator for high definition television signal
28 Second Local Oscillator
29, 30, 36, 41, 64, 65 Low-pass filter
31, 32 PLL circuit
33,50,51,52,53 Demodulator for high definition television signal
34 Demodulator for NTSC signal
35 Level detector for high definition television signal
37 AGC voltage amplifier
39 Fourth Mixer
40 fourth local oscillator
42 divider
62 Fifth IF amplifier
63 Fifth Mixer
66,67 Baseband signal amplifier
70, 71 QAM detector
72,73 90 degree phase shifter
74,75 carrier and clock recovery circuit
76,77 Reference oscillator
78 AFC voltage generator

Claims (8)

デジタルテレビジョン信号を受信する受信装置であって、
受信されたデジタルデレジョン信号を、標準テレビジョン信号用の中間周波数と実質的に等しい周波数に変換し、出力する第1の周波数変換手段と、
前記第1の周波数変換手段の出力信号の中から所定のチャンネルの信号を抽出し、出力する抽出手段と、
前記抽出手段の出力信号を、前記第1の周波数変換手段の出力信号よりも低い周波数に変換し、出力する第2の周波数変換手段と、
前記第2の周波数変換手段の出力信号を復調する復調手段と
を備えてなることを特徴とする受信装置。
A receiving device for receiving a digital television signal,
First frequency conversion means for converting the received digital deviation signal to a frequency substantially equal to the intermediate frequency for a standard television signal and outputting the same;
Extracting means for extracting a signal of a predetermined channel from an output signal of the first frequency converting means and outputting the signal;
A second frequency conversion unit that converts an output signal of the extraction unit to a lower frequency than an output signal of the first frequency conversion unit and outputs the second output signal;
A demodulating means for demodulating an output signal of the second frequency converting means.
前記デジタルテレビジョン信号は6MHzの周波数帯域を有することを特徴とする請求項1に記載の受信装置。The receiving device according to claim 1, wherein the digital television signal has a frequency band of 6 MHz. 前記デジタルテレビジョン信号はQAM変調されていることを特徴とする請求項1に記載の受信装置。The receiving device according to claim 1, wherein the digital television signal is QAM-modulated. 前記第1の周波数変換手段は、前記デジタルテレビジョン信号を2段階に周波数変換することを特徴とする請求項1に記載の受信装置。2. The receiving apparatus according to claim 1, wherein the first frequency converting means converts the frequency of the digital television signal in two stages. 前記抽出手段はSAWフィルタであることを特徴とする請求項1に記載の受信装置。The receiving device according to claim 1, wherein the extracting unit is a SAW filter. 前記第1の周波数変換手段内の局部発振器の発振周波数を制御するPLL手段を備えたことを特徴とする請求項1に記載の受信装置。2. The receiver according to claim 1, further comprising a PLL unit that controls an oscillation frequency of a local oscillator in the first frequency conversion unit. 前記抽出手段の出力信号をもとにAGCを行うAGC手段を備えたことを特徴とする請求項1に記載の受信装置。2. The receiver according to claim 1, further comprising AGC means for performing AGC based on an output signal of said extracting means. 前記復調手段の出力信号をもとにAFCを行うAFC手段を備えたことを特徴とする請求項1に記載の受信装置。The receiving apparatus according to claim 1, further comprising AFC means for performing AFC based on an output signal of the demodulation means.
JP2003205242A 2003-08-01 2003-08-01 Receiver Expired - Lifetime JP3617521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205242A JP3617521B2 (en) 2003-08-01 2003-08-01 Receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205242A JP3617521B2 (en) 2003-08-01 2003-08-01 Receiver

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25769399A Division JP3495656B2 (en) 1999-09-10 1999-09-10 Receiver

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004264798A Division JP4300170B2 (en) 2004-09-13 2004-09-13 Receiver

Publications (2)

Publication Number Publication Date
JP2004104768A true JP2004104768A (en) 2004-04-02
JP3617521B2 JP3617521B2 (en) 2005-02-09

Family

ID=32290637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205242A Expired - Lifetime JP3617521B2 (en) 2003-08-01 2003-08-01 Receiver

Country Status (1)

Country Link
JP (1) JP3617521B2 (en)

Also Published As

Publication number Publication date
JP3617521B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
KR0157531B1 (en) Digital carrier wave restoring apparatus and method at tv signal receiver
US7098967B2 (en) Receiving apparatus
US6118499A (en) Digital television signal receiver
US7831198B2 (en) Broadcast receiving apparatus
JPH0364217A (en) Receiver for ground amplitude modulation and satellite frequency modulation high frequency television broadcast signal
JPH06334553A (en) Intermediate frequency fm receiver for increasing bandwidth by using analog over-sampling
KR100515551B1 (en) Receiver apparatus of broadcast
JPH09512408A (en) Combined TV / FM receiver
US7233368B2 (en) Down-converter
JP3128371B2 (en) Receiver
JP3617521B2 (en) Receiver
JP3038280B2 (en) Receiver
JP3617513B2 (en) Receiver
JP4300170B2 (en) Receiver
JP3495661B2 (en) Receiver
JP2010183257A (en) Receiver for digital broadcasting
JP3495656B2 (en) Receiver
JP3495657B2 (en) Receiver
JP3495662B2 (en) Receiver
US20080309827A1 (en) Filter Device, Circuit Arrangement Comprising Such Filter Device as Well as Method of Operating Such Filter Device
KR930006667B1 (en) Wide band receiver using up-conversion and direct synchronization method
JPH10233971A (en) Broadcast receiver
JP3583760B2 (en) CATV receiver
KR20130073576A (en) Analog and digital satellite wave tuner
JPH0681066B2 (en) Receiver

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Effective date: 20040913

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20111119

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20111119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

EXPY Cancellation because of completion of term