JP2004103967A - Method for manufacturing substrate with built-in capacitor - Google Patents

Method for manufacturing substrate with built-in capacitor Download PDF

Info

Publication number
JP2004103967A
JP2004103967A JP2002266316A JP2002266316A JP2004103967A JP 2004103967 A JP2004103967 A JP 2004103967A JP 2002266316 A JP2002266316 A JP 2002266316A JP 2002266316 A JP2002266316 A JP 2002266316A JP 2004103967 A JP2004103967 A JP 2004103967A
Authority
JP
Japan
Prior art keywords
capacitor
layer
dielectric layer
electrode layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002266316A
Other languages
Japanese (ja)
Other versions
JP4270364B2 (en
Inventor
Takashi Kajino
楫野 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002266316A priority Critical patent/JP4270364B2/en
Publication of JP2004103967A publication Critical patent/JP2004103967A/en
Application granted granted Critical
Publication of JP4270364B2 publication Critical patent/JP4270364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a substrate having a built-in capacitor for manufacturing a large capacitance capacitor with the high accuracy, the high reliability, excellent high frequency characteristics and an excellent mass productivity. <P>SOLUTION: There are provided a first electrode layer forming step of concurrently forming a wiring conductor 12 and a first electrode layer 11 serving as one electrode conductor of a capacitor on a conductive transfer substrate 10 by a pattern plating method; a dielectric layer forming step of forming a dielectric layer 30 so as to cover at least the overall surface of the first electrode layer; a second electrode layer forming step of forming a second electrode layer 51 serving as the other electrode conductor of the capacitor at a predetermined position on the dielectric layer by the pattern plating method; and a transfer step of transferring the first electrode layer 11, the dielectric layer 30 and the second electrode layer 51 into an insulated sheet 60 with the first electrode layer 11 outside. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、配線基板内にコンデンサを内蔵したコンデンサ内蔵基板の製造方法に関する。
【0002】
【従来の技術】
従来の基板内部のコンデンサ形成方法は、表面に電極を形成した転写基板を2枚作成し、それら転写基板間に高誘電率のプリプレグを挟んでプレスし、図2のようにプリプレグ1の両側に電極2を配置してコンデンサとするのが一般的であった。プリプレグ1の厚みは約60μm程度であり、電極2間に介在するプリプレグ厚みは20μm程度となる。
【0003】
【発明が解決しようとする課題】
上記図2の構成のコンデンサの場合、以下の問題があった。
【0004】
▲1▼ 電極間に介在するプリプレグはピンホール等の欠陥があり、薄型化が不可能である。
【0005】
▲2▼ 電極はめっき法で形成するが、塩素等のめっき成分が不純物として混在しており、これが信頼性の低下を招く場合がある。
【0006】
▲3▼ プリプレグに使用する樹脂そのものに塩素等の不純物が混在している場合がある。
【0007】
▲4▼ 電極パターンのある基板の樹脂層の表面及び内部にめっき液又はエッチング液等の電解質溶液が残留している場合があり、信頼性に悪影響を及ぼしている。
【0008】
▲5▼ プレス中に樹脂が軟化して流動するので、膜厚がパターン形状及び基板内部の位置によって変化し、コンデンサ容量の精度が悪い。
【0009】
なお、コンデンサを内蔵した基板では、コンデンサの電極をエッチングで所要パターンとする場合、ハロゲンを含むエッチング処理があり、信頼性等に悪影響を及ぼすきらいがある。また、内蔵されたコンデンサの電極層と配線層とは別々の層であり、配線層形成のために別工程が必要であり、工数が多い(例えば、下記特許文献1を参照)。また、プロセス用基板上にコンデンサを形成して実装基板に転写するものである場合、プロセス用基板はガラス基板のような絶縁性のものであり、コンデンサの電極を蒸着等の薄膜技術で形成することを前提としており、量産性の点で不利であり、また配線層はコンデンサとは別に形成する必要がある(例えば、下記特許文献2を参照)。
【特許文献1】
特開平11−26943号公報
【特許文献2】
特開2000−323845号公報
【0010】
本発明は、上記の点に鑑み、高精度かつ高信頼性の高周波特性に優れる大容量コンデンサを基板内部に作製可能で、量産性に優れたコンデンサ内蔵基板の製造方法を提供することを目的とする。
【0011】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本願請求項1の発明に係るコンデンサ内蔵基板の製造方法は、導電性転写基板上に配線導体及びコンデンサの一方の電極導体となる第1の電極層をパターンめっき法で同時形成する第1の電極層形成工程と、
少なくとも前記第1の電極層の全面を覆うように誘電体層を形成する誘電体層形成工程と、
前記誘電体層上にコンデンサの他方の電極導体となる第2の電極層を所定位置にパターンめっき法で形成する第2の電極層形成工程と、
前記第1の電極層、前記誘電体層及び前記第2の電極層を、前記第1の電極層を外側にして絶縁シートに転写する転写工程とを備えたことを特徴とする。
【0013】
本願請求項2の発明に係るコンデンサ内蔵基板の製造方法は、請求項1において、前記第1及び第2の電極層をピロリン酸銅めっきで形成することを特徴としている。
【0014】
本願請求項3の発明に係るコンデンサ内蔵基板の製造方法は、請求項1又は2において、前記誘電体層の上下にバリア層を形成することを特徴としている。
【0015】
本願請求項4の発明に係るコンデンサ内蔵基板の製造方法は、請求項3において、前記第2の電極層をマスクにして前記バリア層及び前記誘電体層を一括でドライエッチングすることを特徴としている。
【0016】
本願請求項5の発明に係るコンデンサ内蔵基板の製造方法は、請求項1,2,3又は4において、前記誘電体層が有機系材料であることを特徴としている。
【0017】
本願請求項6の発明に係るコンデンサ内蔵基板の製造方法は、請求項1,2,3,4又は5において、前記誘電体層を蒸着重合法で形成することを特徴としている。
【0018】
本願請求項7の発明に係るコンデンサ内蔵基板の製造方法は、請求項1,2,3,4,5又は6において、前記誘電体層がポリ尿素、ポリイミド又はポリパラキシリレンであることを特徴としている。
【0019】
本願請求項8の発明に係るコンデンサ内蔵基板の製造方法は、請求項1,2,3,4,5,6又は7において、前記導電性転写基板が表面を不動態処理したステンレスであることを特徴としている。
【0020】
【発明の実施の形態】
以下、本発明に係るコンデンサ内蔵基板の製造方法の実施の形態を図面に従って説明する。
【0021】
図1は本発明に係るコンデンサ内蔵基板の製造方法の実施の形態を示す。まず、図1(A)のように、表面を不動態処理したステンレス等の導電性転写基板10上に、所定パターンの配線導体12及びコンデンサの一方の電極導体13を含む第1の電極層11を数μm〜数10μm(例えば10μm)の膜厚でパターンめっき法で形成することにより第1の電極層形成工程を行う。ここで、第1の電極層11を形成するための電気めっきは、めっき処理にハロゲンを含まないハロゲンフリーめっき、例えばピロリン酸銅めっきとする。めっきされる金属の種類は銅に限定されることなく、Au,Ag,Ni,Sn等めっき可能な金属を用いることができる。
【0022】
前記パターンめっき法は、パターニングにエッチングを用いないフルアディティブ法、セミアディティブ法の両者を含むものとする。パターンめっき法を用いる理由は、▲1▼エッチング法により電極層パターンを形成するのに比べてパターン精度を向上させることができ、ファインパターンに対応でき、▲2▼エッチング法ではエッチング液が残留してコンデンサの信頼性に悪影響を与えるからである。
【0023】
ステンレス等の導電性転写基板10の表面を不動態処理するのは、導体パターンの剥離性を向上させるためであり、また基板表面に適度の凹凸を設けることで、アンカー効果により転写前に電極層が導電性転写基板10から剥離することを防止する。ステンレスの材質は例えばSUS304TA材を挙げることができる。またパターンの密着性を確保するための凹凸の程度は、例えばRmaxで0.1μm〜10μm、好ましくは0.2μm〜2μmの範囲である。
【0024】
次に、図1(B)のように、コンデンサの一方の電極導体13上に、その全面を覆う高純度バリア層20をスパッター、蒸着等の乾式薄膜工法により形成することでバリア層形成工程を行う。この高純度バリア層20を設ける理由は、後工程で重ねて形成される誘電体層30中に第1の電極層11を形成している金属又は不純物が拡散して絶縁不良となるのを防止するためである。バリア層20の材質は例えば、Ti,TiN,Ta,TaN,Cr,Ni等であり、その膜厚はバリア効果が確保できる範囲内でできるだけ薄くすることが好ましい。例をあげると0.01μm〜1μm、好ましくは0.02μm〜0.2μmである。
【0025】
次に、図1(C)のように、バリア層20を介在させて前記第1の電極層11のうち電極導体13全面を覆うように高Q誘電体層30をバリア層20上に熱分解法(CVD)、蒸着、スパッター、蒸着重合法等の乾式薄膜工法で形成して誘電体層形成工程を行う。誘電体層30は、できるだけ薄く、ピンホールの無い高純度(イオン性の不純物のない)の高Q材料であることが好ましい。また、誘電体層を有機材料にすると無機材料に比べ、フレキシビリティが向上し、基板の曲げ時等に発生するクラックを防止でき、好ましい。例えばポリ尿素、ポリイミド又はポリパラキシリレン(商品名:パリレンN)が好ましい。とくに、ポリパラキシリレンの誘電体層30は蒸着重合法で、高Q、高純度の0.1〜25μmのピンホールの無いフィルムとして容易に形成でき、かつ膜厚の制御性も良好であり、耐熱性、耐薬品性及び電気絶縁性共に優れている。その電気絶縁性は280kV/mm、比誘電率ε=2.6(於1kHz)、Q=5000(於1kHz)である。その上、蒸着重合法はステップカバレッジにも優れており、仮に下地電極に凹凸があっても均一な膜付けが可能である。誘電体層30の膜厚は0.1μmより薄くすることはピンホールの可能性や絶縁耐圧の点から困難であるが、静電容量を十分確保する上では10μmより薄く形成することが望ましい。なお、電着による誘電体層形成では膜厚を薄くすることは困難で、膜厚約10μm以上となり、またイオン性の不純物が残留する場合があり、好ましくない。誘電体層は基板の全面に形成しても良いし、またメタルマスク等でマスキングを施してコンデンサの電極部のみに形成しても良い。
【0026】
その後、図1(D)のように、誘電体層30を覆う高純度バリア層40をスパッター、蒸着等の乾式薄膜工法により形成することでバリア層形成工程を行う。バリア層40の形成の範囲はコンデンサ電極上の誘電体層を全て覆う必要があり、その他の高純度バリア層40を設ける理由は前述したバリア層20を設ける理由と同じであり、材質もバリア層20と同じでよい。セミアディティブ法でパターン形成を行う場合は、バリア層の電気抵抗が充分低いときは、バリア層を下地導体層に用いることができる。そうでない場合は、バリア層の上にCu等の電気抵抗の低い金属の薄膜を基板全体に形成する。抵抗の目安は、例えばシート抵抗で5Ω以下である。Cuの場合の膜厚の例では0.05μm〜0.3μm、好ましくは0.07μm〜0.15μmである。
【0027】
次に、図1(E)のように、コンデンサの他方の電極導体となる所定パターンの第2の電極層51を数μm〜数10μm(例えば10μm)の膜厚でパターンめっき法で形成することにより第2の電極層形成工程を行う。ここで、第2の電極層51を形成するための電気めっきは、めっき処理にハロゲンを含まないハロゲンフリーめっき、例えばピロリン酸銅めっきが好ましい(第1の電極層形成工程と同様である)。
【0028】
そして、図1(F)のように、第2の電極層51をマスクとし、CFとOの混合ガスを用いてバリア層20,40及び誘電体層30を一括で(同時に)ドライエッチングして不要部分を除去することでドライエッチング工程を行う。これにより、導電性転写基板10上に、第1及び第2の電極層11,51、バリア層20,40及び誘電体層30からなるコンデンサ及び配線導体12が形成されることになる。ドライエッチング装置は、プラズマエッチング、マイクロ波励起ケミカルドライエッチング、マイクロ波プラズマエッチング、リアクティブイオンエッチング、イオンミリング等が利用できる。また、処理条件はバリア層と誘電体層で異ならせることができる。例えば、CFとOの混合ガスを用いる場合、前者(バリア層)の処理ではCFを多く、逆に後者(誘電体層)ではOを多くすることが好ましい。
【0029】
第1及び第2の電極層11,51、バリア層20,40及び誘電体層30が形成され、かつ前記ドライエッチング工程終了後の導電性転写基板10を、図1(G)の転写工程では、数100μm程度の厚さのビニルベンジル等の樹脂シート(転写実行時には半硬化状態となっているプリプレグ)60の一方の面に対して反転して重ね合わせて加圧し、その後、導電性転写基板10を剥離することで、第1の電極層11が外側(上側)となるように樹脂シート60に対して第1及び第2の電極層11,51、バリア層20,40及び誘電体層30(つまり、コンデンサ及び配線導体12)を転写し、埋設状態で一体化する。このとき、樹脂シート60の他方の面にも配線導体層70を転写する場合には、別途、表面を不動態処理したステンレス等の導電性転写基板80上に配線導体層70をパターンめっき法で形成したものを予め用意し、図1(G)の転写工程の際に樹脂シート60の上下を、所要の層が形成済みの導電性転写基板10,80で挟む配置として加圧後、導電性転写基板10,80を剥離すればよい。
【0030】
図1(H)のドライエッチング工程では、コンデンサ及び配線導体をなす第1及び第2の電極層11,51、バリア層20,40及び誘電体層30を転写、一体化後に樹脂シート60表面に残存しているバリア層20をCFとOの混合ガスを用いて除去し、これにより完成状態のコンデンサ内蔵基板が得られる。なお、バリア層20が絶縁層である場合、またバリア層をコンデンサ電極上にのみ形成した場合は除去を省略できる場合がある。
【0031】
この実施の形態によれば、次の通りの効果を得ることができる。
【0032】
(1) 誘電体層30の両側の第1及び第2の電極層11,51は、ハロゲンを用いないめっき(例えば、ピロリン酸銅めっき)処理で形成するため、電極中に不純物として塩素等のハロゲンを含有せず信頼性が高い。
【0033】
(2) Ti,TiN,Ta,TaN,Cr,Ni等の高純度バリア層20,40を誘電体層30と第1及び第2の電極層11,51間に介在させており、電極層11,51の金属(Cu等)や不純物が誘電体層中に拡散するのを防止でき、この点でも信頼性を高めることができ、誘電体層30を薄くしても絶縁不良が発生しないので大容量のコンデンサを基板内に構成できる。
【0034】
(3) コンデンサを構成する主要部はドライエッチングしているので、ウエットエッチングの場合のエッチング液中の電解質が誘電体層中に入り込んで信頼性を低下させることを回避できる。
【0035】
(4) 誘電体層30を熱分解法(CVD)、蒸着、スパッター、蒸着重合法等の乾式薄膜工法で高純度に精度良く形成でき、信頼性が良好である。とくに、ポリパラキシリレンの誘電体層30は蒸着重合法で、高Q、高純度の0.1〜25μmのピンホールの無いフィルムとして容易に形成可能であり、耐熱性、耐薬品性及び電気絶縁性共に良好であるので好ましく、高精度かつ高信頼性で大きな静電容量の内蔵コンデンサが得られる。
【0036】
(5) 第1及び第2の電極層11,51の誘電体層側の表面は、ピロリン酸銅めっき等の光沢電気めっきで電極層を形成することにより、導電性基板に多少の凹凸がある場合でも平滑に形成でき、誘電体層の膜厚の均一化、ピンホールレス化を実現でき、また電極凹凸に起因する電界集中は発生せず、この点でもコンデンサを薄型化できる。
【0037】
(6) 誘電体層30を薄膜技術で成膜するときに、導電性転写基板10及びその上の形成層に有機材料を含まないので、耐熱性が良好であり、また脱ガスも少なく、良質な誘電体薄膜を高速で成膜できる。すなわち、高純度の誘電体層を薄く形成するために、熱分解法(CVD)、蒸着、スパッター、蒸着重合法等の乾式薄膜工法が好ましく用いられるが、その際に導電性転写基板10側の温度が上昇し、膜形成の際に導電性転写基板10側に有機の構造体が含まれていると、脱ガス等により、誘電体層の密着不良、純度低下等の信頼性上重大な支障を引き起こす。本実施の形態では、誘電体層の成膜の際に導電性転写基板10側(基板10、電極層11、バリア層20)は全て無機材料なので上記問題は回避できる。
【0038】
(7) 誘電体層30は有機材料である樹脂シート60に転写されるため、誘電体層30が無機材料であると、樹脂シート30の撓みにより割れ、クラックが生じる場合があるが、本実施の形態では誘電体層30がポリ尿素、ポリイミド又はポリパラキシリレン等の有機材料であるため、そのような問題は発生しない。
【0039】
【実施例】
以下、本発明に係るコンデンサ内蔵基板の製造方法を実施例で詳述する。
【0040】
まず、図1(A)の導電性転写基板10として、0.1mm厚のステンレス(SUS304)板の表面を不動態処理したものを用意した。
【0041】
次に、不動態処理した導電性転写基板10上にスピンコーターで乾燥後の膜厚が20μmになるように液状レジストを塗布した。次に、フォトリソグラフィー法で露光、現像することにより、1mm角のコンデンサ上部電極形成のためのパターン及び配線パターン(第1の電極層11を形成するためのパターンであって導電性転写基板10が露出している部分)を直径約80mmのエリアに形成し、前記導電性転写基板10が露出したパターンに対して高純度ピロリン酸銅めっきにて高さ15μmの銅パターンを第1の電極層11として形成し、その後、レジストを有機系の剥離液を用いて剥離し、図1(A)のように導電性転写基板10上に第1の電極層11を残こすことで、パターンめっき法による第1の電極層形成工程を実行した。
【0042】
次に、図1(B)のように、第1の電極層11に含まれるコンデンサの一方の電極導体13上に、その全面を覆う高純度バリア層20として0.1μm厚のチタン膜をスパッターで形成することでバリア層形成工程を実行した。
【0043】
それから、図1(C)のように、少なくともバリア層20を介在させて前記第1の電極層11のうち電極導体13全面を覆うように誘電体層30としての5μm厚のポリパラキシリレン膜を蒸着重合法で形成して誘電体層形成工程を実行した。
【0044】
その後、図1(D)のように、誘電体層30の全面を覆う高純度バリア層40として0.1μm厚のチタン膜をスパッターで形成することでバリア層形成工程を実行した。
【0045】
次に、図1(E)のように、コンデンサの他方の電極導体となる所定パターンの第2の電極層51を第1の電極層と同様にパターンめっき法による第2の電極層形成工程で作製した。
【0046】
そして、図1(F)のように、AG製多用途プラズマ装置SYSTEM400を用い、第2の電極層51をマスクとし、CFとOの混合ガスでバリア層20,40及び誘電体層30を一括で(同時に)ドライエッチングして不要部分を除去することによってドライエッチング工程を実行した。
【0047】
図1(G)の樹脂シート60としての厚さ100μmのビニルベンジルのプリプレグに対して、第1及び第2の電極層11,51、バリア層20,40及び誘電体層30が形成され、かつ前記ドライエッチング工程終了後の導電性転写基板10を反転して重ね合わせて加圧し、その後導電性転写基板10を剥離することで、第1の電極層11が外側(上側)となるように樹脂シート60に対して第1及び第2の電極層11,51、バリア層20,40及び誘電体層30を転写し、一体化することで、樹脂シート60にコンデンサを埋設した基板を作製した。
【0048】
これにより、高信頼性の高周波特性に優れる高精度な大容量コンデンサを基板内部に備え、量産性に優れたコンデンサ内蔵基板を実現できた。
【0049】
以上本発明の実施の形態及び実施例について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0050】
【発明の効果】
以上説明したように、本発明に係るコンデンサ内蔵基板の製造方法は、高精度かつ高信頼性で高周波特性に優れた大容量コンデンサを基板内部に作製可能であり、しかも量産性の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明に係るコンデンサ内蔵基板の製造方法の実施の形態を示す説明図である。
【図2】従来のコンデンサ内蔵基板の製造方法の説明図である。
【符号の説明】
10,80 導電性転写基板
11 第1の電極層
12 配線導体
13 電極導体
20,40 バリア層
30 誘電体層
51 第2の電極層
60 樹脂シート
70 配線導体層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a substrate with a built-in capacitor in which a capacitor is built in a wiring board.
[0002]
[Prior art]
The conventional method for forming a capacitor inside a substrate is to prepare two transfer substrates having electrodes formed on the surface, press a prepreg having a high dielectric constant between the transfer substrates, and press the prepreg on both sides of the prepreg 1 as shown in FIG. Generally, a capacitor was formed by arranging the electrodes 2. The thickness of the prepreg 1 is about 60 μm, and the thickness of the prepreg interposed between the electrodes 2 is about 20 μm.
[0003]
[Problems to be solved by the invention]
In the case of the capacitor having the configuration shown in FIG. 2, there are the following problems.
[0004]
{Circle around (1)} The prepreg interposed between the electrodes has defects such as pinholes and cannot be reduced in thickness.
[0005]
{Circle around (2)} The electrodes are formed by a plating method, but plating components such as chlorine are mixed as impurities, which may cause a decrease in reliability.
[0006]
(3) In some cases, impurities such as chlorine are mixed in the resin used for the prepreg itself.
[0007]
(4) An electrolyte solution such as a plating solution or an etching solution may remain on the surface and inside of the resin layer of the substrate having the electrode pattern, which adversely affects reliability.
[0008]
{Circle around (5)} Since the resin softens and flows during pressing, the film thickness varies depending on the pattern shape and the position inside the substrate, and the accuracy of the capacitor capacity is poor.
[0009]
In the case of a substrate having a built-in capacitor, when the electrode of the capacitor is formed into a required pattern by etching, there is an etching process including halogen, which may adversely affect reliability and the like. Further, the electrode layer and the wiring layer of the built-in capacitor are separate layers, and a separate process is required for forming the wiring layer, and the number of steps is large (for example, see Patent Document 1 below). In the case where a capacitor is formed on a process substrate and transferred to a mounting substrate, the process substrate is an insulating material such as a glass substrate, and the electrodes of the capacitor are formed by thin film technology such as evaporation. This is disadvantageous in terms of mass productivity, and the wiring layer must be formed separately from the capacitor (for example, see Patent Document 2 below).
[Patent Document 1]
JP-A-11-26943 [Patent Document 2]
JP 2000-323845 A
The present invention has been made in view of the above circumstances, and has as its object to provide a method of manufacturing a capacitor built-in substrate which is capable of manufacturing a large-capacity capacitor excellent in high-precision and high-reliability high-frequency characteristics inside a substrate and excellent in mass productivity. I do.
[0011]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a method of manufacturing a substrate with a built-in capacitor according to the invention of claim 1 of the present application is a method of forming a first electrode layer serving as one of a wiring conductor and a capacitor on a conductive transfer substrate by a pattern plating method. A first electrode layer forming step of forming simultaneously at
Forming a dielectric layer so as to cover at least the entire surface of the first electrode layer;
A second electrode layer forming step of forming a second electrode layer serving as the other electrode conductor of the capacitor on the dielectric layer at a predetermined position by a pattern plating method;
A transfer step of transferring the first electrode layer, the dielectric layer, and the second electrode layer to an insulating sheet with the first electrode layer outside.
[0013]
A method of manufacturing a substrate with a built-in capacitor according to a second aspect of the present invention is characterized in that, in the first aspect, the first and second electrode layers are formed by copper pyrophosphate plating.
[0014]
A method of manufacturing a substrate with a built-in capacitor according to a third aspect of the present invention is characterized in that, in the first or second aspect, barrier layers are formed above and below the dielectric layer.
[0015]
A method of manufacturing a substrate with a built-in capacitor according to a fourth aspect of the present invention is characterized in that, in the third aspect, the barrier layer and the dielectric layer are collectively dry-etched using the second electrode layer as a mask. .
[0016]
According to a fifth aspect of the present invention, there is provided a method of manufacturing a substrate with a built-in capacitor, wherein the dielectric layer is made of an organic material.
[0017]
The method of manufacturing a substrate with a built-in capacitor according to the invention of claim 6 of the present application is characterized in that in claim 1, 2, 3, 4, or 5, the dielectric layer is formed by vapor deposition polymerization.
[0018]
The method of manufacturing a substrate with a built-in capacitor according to claim 7 of the present invention is characterized in that in claim 1, 2, 3, 4, 5, or 6, the dielectric layer is made of polyurea, polyimide or polyparaxylylene. And
[0019]
According to a method of manufacturing a substrate with a built-in capacitor according to claim 8 of the present invention, the conductive transfer substrate according to claim 1, 2, 3, 4, 5, 6, or 7 is made of stainless steel whose surface is passivated. Features.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a method of manufacturing a substrate with a built-in capacitor according to the present invention will be described with reference to the drawings.
[0021]
FIG. 1 shows an embodiment of a method of manufacturing a substrate with a built-in capacitor according to the present invention. First, as shown in FIG. 1A, a first electrode layer 11 including a wiring conductor 12 having a predetermined pattern and one electrode conductor 13 of a capacitor is formed on a conductive transfer substrate 10 made of stainless steel or the like whose surface is passivated. Is formed in a thickness of several μm to several tens μm (for example, 10 μm) by a pattern plating method to perform the first electrode layer forming step. Here, the electroplating for forming the first electrode layer 11 is halogen-free plating containing no halogen in the plating process, for example, copper pyrophosphate plating. The type of metal to be plated is not limited to copper, and a metal that can be plated, such as Au, Ag, Ni, or Sn, can be used.
[0022]
The pattern plating method includes both a full additive method and a semi-additive method that do not use etching for patterning. The reason for using the pattern plating method is that (1) the pattern accuracy can be improved compared to forming the electrode layer pattern by the etching method, and the fine pattern can be handled. (2) The etching solution remains in the etching method. This adversely affects the reliability of the capacitor.
[0023]
The surface of the conductive transfer substrate 10 made of stainless steel or the like is subjected to the passivation treatment in order to improve the releasability of the conductor pattern. Also, by providing appropriate irregularities on the substrate surface, the electrode layer can be transferred before the transfer by the anchor effect. Is prevented from peeling off from the conductive transfer substrate 10. As the material of stainless steel, for example, SUS304TA material can be cited. The degree of unevenness for ensuring the adhesion of the pattern is, for example, in a range of 0.1 μm to 10 μm, preferably 0.2 μm to 2 μm in Rmax.
[0024]
Next, as shown in FIG. 1B, a barrier layer forming step is performed by forming a high-purity barrier layer 20 covering the entire surface of one electrode conductor 13 of the capacitor by a dry thin film method such as sputtering or vapor deposition. Do. The reason for providing the high-purity barrier layer 20 is to prevent the metal or impurities forming the first electrode layer 11 from diffusing into the dielectric layer 30 formed in a later step and causing insulation failure. To do that. The material of the barrier layer 20 is, for example, Ti, TiN, Ta, TaN, Cr, Ni, or the like, and its thickness is preferably as thin as possible within a range where the barrier effect can be secured. For example, it is 0.01 μm to 1 μm, preferably 0.02 μm to 0.2 μm.
[0025]
Next, as shown in FIG. 1C, a high-Q dielectric layer 30 is thermally decomposed on the barrier layer 20 so as to cover the entire surface of the electrode conductor 13 of the first electrode layer 11 with the barrier layer 20 interposed therebetween. The dielectric layer is formed by a dry thin film method such as a method (CVD), vapor deposition, sputtering and vapor deposition polymerization. The dielectric layer 30 is preferably made of a high-purity (no ionic impurities) high-Q material that is as thin as possible and free of pinholes. Further, when the dielectric layer is made of an organic material, flexibility is improved as compared with an inorganic material, and cracks that occur when the substrate is bent or the like can be prevented, which is preferable. For example, polyurea, polyimide or polyparaxylylene (trade name: Parylene N) is preferable. In particular, the dielectric layer 30 of polyparaxylylene can be easily formed as a high-Q, high-purity 0.1 to 25 μm pinhole-free film by a vapor deposition polymerization method, and the controllability of the film thickness is good. Excellent in heat resistance, chemical resistance and electrical insulation. Its electrical insulation is 280 kV / mm, relative permittivity ε = 2.6 (at 1 kHz), and Q = 5000 (at 1 kHz). In addition, the vapor deposition polymerization method is excellent in step coverage, and can form a uniform film even if the underlying electrode has irregularities. It is difficult to make the film thickness of the dielectric layer 30 thinner than 0.1 μm from the viewpoint of the possibility of pinholes and dielectric strength, but it is desirable to form the film thinner than 10 μm in order to secure sufficient capacitance. Incidentally, it is difficult to reduce the film thickness by forming a dielectric layer by electrodeposition, and the film thickness becomes about 10 μm or more, and ionic impurities may remain, which is not preferable. The dielectric layer may be formed on the entire surface of the substrate, or may be formed only on the electrode portion of the capacitor by masking with a metal mask or the like.
[0026]
Thereafter, as shown in FIG. 1D, a barrier layer forming step is performed by forming a high-purity barrier layer 40 covering the dielectric layer 30 by a dry thin film method such as sputtering or vapor deposition. The formation range of the barrier layer 40 needs to cover all the dielectric layers on the capacitor electrodes, and the other reason for providing the high-purity barrier layer 40 is the same as the reason for providing the barrier layer 20 described above. It may be the same as 20. In the case of forming a pattern by the semi-additive method, when the electric resistance of the barrier layer is sufficiently low, the barrier layer can be used as the underlying conductor layer. Otherwise, a thin film of a metal such as Cu having a low electric resistance is formed on the entire substrate on the barrier layer. The standard of the resistance is, for example, 5Ω or less in sheet resistance. In the case of Cu, the film thickness is 0.05 μm to 0.3 μm, preferably 0.07 μm to 0.15 μm.
[0027]
Next, as shown in FIG. 1E, the second electrode layer 51 having a predetermined pattern to be the other electrode conductor of the capacitor is formed by pattern plating with a thickness of several μm to several tens μm (for example, 10 μm). To form a second electrode layer forming step. Here, the electroplating for forming the second electrode layer 51 is preferably halogen-free plating containing no halogen in the plating process, for example, copper pyrophosphate plating (similar to the first electrode layer forming step).
[0028]
Then, as shown in FIG. 1F, the barrier layers 20 and 40 and the dielectric layer 30 are collectively (simultaneously) dry-etched using the second electrode layer 51 as a mask and a mixed gas of CF 4 and O 2. Then, a dry etching process is performed by removing unnecessary portions. As a result, on the conductive transfer substrate 10, the capacitor and the wiring conductor 12 including the first and second electrode layers 11, 51, the barrier layers 20, 40, and the dielectric layer 30 are formed. As the dry etching apparatus, plasma etching, microwave-excited chemical dry etching, microwave plasma etching, reactive ion etching, ion milling, and the like can be used. Further, processing conditions can be made different between the barrier layer and the dielectric layer. For example, when a mixed gas of CF 4 and O 2 is used, it is preferable to increase the amount of CF 4 in the former (barrier layer) process and increase the amount of O 2 in the latter (dielectric layer).
[0029]
The conductive transfer substrate 10 on which the first and second electrode layers 11 and 51, the barrier layers 20 and 40, and the dielectric layer 30 have been formed, and after the dry etching step has been completed, is subjected to the transfer step of FIG. A sheet of vinyl benzyl or the like having a thickness of about several hundred μm (prepreg which is in a semi-cured state at the time of transfer) is turned over and superposed on one surface, and then the conductive transfer substrate The first and second electrode layers 11 and 51, the barrier layers 20 and 40, and the dielectric layer 30 are separated from the resin sheet 60 so that the first electrode layer 11 is on the outside (upper side) by peeling off the first electrode layer 10. (That is, the capacitor and the wiring conductor 12) are transferred and integrated in a buried state. At this time, when the wiring conductor layer 70 is transferred to the other surface of the resin sheet 60, the wiring conductor layer 70 is separately formed on a conductive transfer substrate 80 such as stainless steel whose surface is passivated by a pattern plating method. The formed one is prepared in advance, and the upper and lower portions of the resin sheet 60 are sandwiched between the conductive transfer substrates 10 and 80 on which the required layers have been formed at the time of the transfer step of FIG. The transfer substrates 10 and 80 may be peeled off.
[0030]
In the dry etching step of FIG. 1H, the first and second electrode layers 11, 51, barrier layers 20, 40, and dielectric layer 30, which constitute a capacitor and a wiring conductor, are transferred and integrated, and are then transferred to the surface of the resin sheet 60 after integration. The remaining barrier layer 20 is removed using a mixed gas of CF 4 and O 2 , thereby obtaining a completed capacitor built-in substrate. When the barrier layer 20 is an insulating layer, or when the barrier layer is formed only on the capacitor electrode, the removal may be omitted in some cases.
[0031]
According to this embodiment, the following effects can be obtained.
[0032]
(1) Since the first and second electrode layers 11 and 51 on both sides of the dielectric layer 30 are formed by plating (for example, copper pyrophosphate plating) using no halogen, impurities such as chlorine or the like are contained in the electrodes. High reliability without halogen.
[0033]
(2) The high-purity barrier layers 20 and 40 of Ti, TiN, Ta, TaN, Cr, Ni, etc. are interposed between the dielectric layer 30 and the first and second electrode layers 11 and 51. , 51 and the like (Cu and the like) and impurities can be prevented from diffusing into the dielectric layer. In this respect, the reliability can be improved, and even if the dielectric layer 30 is thinned, insulation failure does not occur. Capacitors of capacitance can be configured in the substrate.
[0034]
(3) Since the main part of the capacitor is dry-etched, it is possible to prevent the electrolyte in the etchant from entering the dielectric layer in the case of wet etching and lowering the reliability.
[0035]
(4) The dielectric layer 30 can be formed with high purity and high precision by a dry thin film method such as a thermal decomposition method (CVD), vapor deposition, sputtering, vapor deposition polymerization method, and the reliability is good. In particular, the polyparaxylylene dielectric layer 30 can be easily formed as a high-Q, high-purity 0.1 to 25 μm pinhole-free film by a vapor deposition polymerization method, and has heat resistance, chemical resistance, and electric resistance. It is preferable because both insulating properties are good, and a built-in capacitor with high accuracy and high reliability and large capacitance can be obtained.
[0036]
(5) The surfaces of the first and second electrode layers 11 and 51 on the dielectric layer side are slightly uneven on the conductive substrate by forming the electrode layers by bright electroplating such as copper pyrophosphate plating. Even in this case, the dielectric layer can be formed smoothly, the thickness of the dielectric layer can be made uniform, the pinhole can be reduced, and the electric field concentration due to the electrode unevenness does not occur.
[0037]
(6) Since the organic material is not contained in the conductive transfer substrate 10 and the layer formed thereon when the dielectric layer 30 is formed by the thin film technology, the heat resistance is good, the degassing is small, and the quality is good. A dielectric thin film can be formed at high speed. That is, in order to form a high-purity dielectric layer thinly, a dry thin film method such as thermal decomposition (CVD), vapor deposition, sputtering, or vapor deposition polymerization is preferably used. If the temperature rises and an organic structure is included on the conductive transfer substrate 10 side during the film formation, serious problems in reliability such as poor adhesion of the dielectric layer and reduced purity due to degassing and the like. cause. In the present embodiment, since the conductive transfer substrate 10 side (substrate 10, electrode layer 11, and barrier layer 20) is an inorganic material when forming the dielectric layer, the above problem can be avoided.
[0038]
(7) Since the dielectric layer 30 is transferred to the resin sheet 60 made of an organic material, if the dielectric layer 30 is made of an inorganic material, the resin sheet 30 may be cracked or cracked by bending. In the embodiment described above, such a problem does not occur because the dielectric layer 30 is made of an organic material such as polyurea, polyimide, or polyparaxylylene.
[0039]
【Example】
Hereinafter, a method for manufacturing a substrate with a built-in capacitor according to the present invention will be described in detail with reference to examples.
[0040]
First, as the conductive transfer substrate 10 in FIG. 1A, a substrate obtained by passivating the surface of a stainless steel (SUS304) plate having a thickness of 0.1 mm was prepared.
[0041]
Next, a liquid resist was applied on the conductive transfer substrate 10 subjected to the passivation treatment by a spin coater so that the film thickness after drying became 20 μm. Next, by exposing and developing by photolithography, a pattern for forming a 1 mm square capacitor upper electrode and a wiring pattern (a pattern for forming the first electrode layer 11 and the conductive transfer substrate 10 (Exposed portion) is formed in an area having a diameter of about 80 mm, and a copper pattern having a height of 15 μm is formed on the pattern where the conductive transfer substrate 10 is exposed by high-purity copper copper pyrophosphate plating on the first electrode layer 11. After that, the resist is peeled off using an organic peeling liquid, and the first electrode layer 11 is left on the conductive transfer substrate 10 as shown in FIG. A first electrode layer forming step was performed.
[0042]
Next, as shown in FIG. 1B, a titanium film having a thickness of 0.1 μm is sputtered on one electrode conductor 13 of the capacitor included in the first electrode layer 11 as a high-purity barrier layer 20 covering the entire surface thereof. Thus, a barrier layer forming step was performed.
[0043]
Then, as shown in FIG. 1C, a 5 μm-thick polyparaxylylene film as a dielectric layer 30 is formed so as to cover the entire surface of the electrode conductor 13 of the first electrode layer 11 with at least the barrier layer 20 interposed therebetween. Was formed by a vapor deposition polymerization method, and a dielectric layer forming step was performed.
[0044]
Thereafter, as shown in FIG. 1D, a barrier layer forming step was performed by forming a titanium film having a thickness of 0.1 μm as a high-purity barrier layer 40 covering the entire surface of the dielectric layer 30 by sputtering.
[0045]
Next, as shown in FIG. 1E, a second electrode layer 51 having a predetermined pattern to be the other electrode conductor of the capacitor is formed in a second electrode layer forming step by pattern plating in the same manner as the first electrode layer. Produced.
[0046]
Then, as shown in FIG. 1 (F), using the AG made versatile plasma device SYSTEM400, the second electrode layer 51 as a mask, the barrier layer in a mixed gas of CF 4 and O 2 20, 40 and the dielectric layer 30 Were dry-etched at the same time (simultaneously) to remove unnecessary portions, thereby performing a dry-etching step.
[0047]
The first and second electrode layers 11 and 51, the barrier layers 20 and 40, and the dielectric layer 30 are formed on a 100 μm-thick vinylbenzyl prepreg as the resin sheet 60 in FIG. The conductive transfer substrate 10 after the completion of the dry etching step is turned upside down, superposed and pressed, and then the conductive transfer substrate 10 is peeled off so that the first electrode layer 11 is on the outside (upper side). By transferring and integrating the first and second electrode layers 11 and 51, the barrier layers 20 and 40, and the dielectric layer 30 onto the sheet 60, a substrate having a capacitor embedded in the resin sheet 60 was manufactured.
[0048]
As a result, a high-precision large-capacity capacitor having high reliability and excellent high-frequency characteristics is provided inside the substrate, and a substrate with a built-in capacitor excellent in mass productivity can be realized.
[0049]
Although the embodiments and examples of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited to these and various modifications and changes can be made within the scope of the claims. There will be.
[0050]
【The invention's effect】
As described above, the method for manufacturing a substrate with a built-in capacitor according to the present invention makes it possible to manufacture a large-capacity capacitor having high precision, high reliability, and excellent high-frequency characteristics inside the substrate, and to improve mass productivity. Can be.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of a method of manufacturing a substrate with a built-in capacitor according to the present invention.
FIG. 2 is an explanatory view of a conventional method for manufacturing a substrate with a built-in capacitor.
[Explanation of symbols]
10, 80 conductive transfer substrate 11 first electrode layer 12 wiring conductor 13 electrode conductor 20, 40 barrier layer 30 dielectric layer 51 second electrode layer 60 resin sheet 70 wiring conductor layer

Claims (8)

導電性転写基板上に配線導体及びコンデンサの一方の電極導体となる第1の電極層をパターンめっき法で同時形成する第1の電極層形成工程と、
少なくとも前記第1の電極層の全面を覆うように誘電体層を形成する誘電体層形成工程と、
前記誘電体層上にコンデンサの他方の電極導体となる第2の電極層を所定位置にパターンめっき法で形成する第2の電極層形成工程と、
前記第1の電極層、前記誘電体層及び前記第2の電極層を、前記第1の電極層を外側にして絶縁シートに転写する転写工程とを備えたことを特徴とするコンデンサ内蔵基板の製造方法。
A first electrode layer forming step of simultaneously forming a first electrode layer to be a wiring conductor and one electrode conductor of a capacitor on a conductive transfer substrate by a pattern plating method;
Forming a dielectric layer so as to cover at least the entire surface of the first electrode layer;
A second electrode layer forming step of forming a second electrode layer serving as the other electrode conductor of the capacitor at a predetermined position on the dielectric layer by pattern plating;
A step of transferring the first electrode layer, the dielectric layer and the second electrode layer to an insulating sheet with the first electrode layer facing outward. Production method.
前記第1及び第2の電極層をピロリン酸銅めっきで形成する請求項1記載のコンデンサ内蔵基板の製造方法。2. The method of manufacturing a substrate with a built-in capacitor according to claim 1, wherein the first and second electrode layers are formed by copper pyrophosphate plating. 前記誘電体層の上下にバリア層を形成する請求項1又は2記載のコンデンサ内蔵基板の製造方法。3. The method according to claim 1, wherein a barrier layer is formed above and below the dielectric layer. 前記第2の電極層をマスクにして前記バリア層及び前記誘電体層を一括でドライエッチングする請求項3記載のコンデンサ内蔵基板の製造方法。4. The method according to claim 3, wherein the barrier layer and the dielectric layer are collectively dry-etched using the second electrode layer as a mask. 前記誘電体層が有機系材料である請求項1,2,3又は4記載のコンデンサ内蔵基板の製造方法。5. The method according to claim 1, wherein said dielectric layer is an organic material. 前記誘電体層を蒸着重合法で形成する請求項1,2,3,4又は5記載のコンデンサ内蔵基板の製造方法。The method for manufacturing a substrate with a built-in capacitor according to claim 1, 2, 3, 4, or 5, wherein the dielectric layer is formed by vapor deposition polymerization. 前記誘電体層がポリ尿素、ポリイミド又はポリパラキシリレンである請求項1,2,3,4,5又は6記載のコンデンサ内蔵基板の製造方法。7. The method according to claim 1, wherein said dielectric layer is made of polyurea, polyimide or polyparaxylylene. 前記導電性転写基板が表面を不動態処理したステンレスである請求項1,2,3,4,5,6又は7記載のコンデンサ内蔵基板の製造方法。8. The method for manufacturing a substrate with a built-in capacitor according to claim 1, wherein the conductive transfer substrate is stainless steel whose surface is passivated.
JP2002266316A 2002-09-12 2002-09-12 Manufacturing method of substrate with built-in capacitor Expired - Lifetime JP4270364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266316A JP4270364B2 (en) 2002-09-12 2002-09-12 Manufacturing method of substrate with built-in capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266316A JP4270364B2 (en) 2002-09-12 2002-09-12 Manufacturing method of substrate with built-in capacitor

Publications (2)

Publication Number Publication Date
JP2004103967A true JP2004103967A (en) 2004-04-02
JP4270364B2 JP4270364B2 (en) 2009-05-27

Family

ID=32265162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266316A Expired - Lifetime JP4270364B2 (en) 2002-09-12 2002-09-12 Manufacturing method of substrate with built-in capacitor

Country Status (1)

Country Link
JP (1) JP4270364B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173544A (en) * 2004-12-20 2006-06-29 Shinko Electric Ind Co Ltd Method for manufacturing wiring board
JP2006237132A (en) * 2005-02-23 2006-09-07 Ngk Spark Plug Co Ltd Wiring board and its production process
KR100861618B1 (en) * 2007-03-02 2008-10-07 삼성전기주식회사 Printed circuit board for improving tolerance of embedded capacitors, and process for manufacturing the same
WO2011118308A1 (en) * 2010-03-26 2011-09-29 三洋電機株式会社 Capacitor element, substrate with built-in capacitor, element sheet, and production methods for same
JP2017183528A (en) * 2016-03-30 2017-10-05 Tdk株式会社 Thin film component sheet, substrate with built-in electronic component, and manufacturing method of thin film component sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173544A (en) * 2004-12-20 2006-06-29 Shinko Electric Ind Co Ltd Method for manufacturing wiring board
JP4649198B2 (en) * 2004-12-20 2011-03-09 新光電気工業株式会社 Wiring board manufacturing method
JP2006237132A (en) * 2005-02-23 2006-09-07 Ngk Spark Plug Co Ltd Wiring board and its production process
JP4667070B2 (en) * 2005-02-23 2011-04-06 日本特殊陶業株式会社 Wiring board and method of manufacturing wiring board
KR100861618B1 (en) * 2007-03-02 2008-10-07 삼성전기주식회사 Printed circuit board for improving tolerance of embedded capacitors, and process for manufacturing the same
US8022311B2 (en) 2007-03-02 2011-09-20 Samsung Electro-Mechanics Co., Ltd. Printed circuit board for improving tolerance of embedded capacitors, and method of manufacturing the same
WO2011118308A1 (en) * 2010-03-26 2011-09-29 三洋電機株式会社 Capacitor element, substrate with built-in capacitor, element sheet, and production methods for same
JP2017183528A (en) * 2016-03-30 2017-10-05 Tdk株式会社 Thin film component sheet, substrate with built-in electronic component, and manufacturing method of thin film component sheet
US10658200B2 (en) 2016-03-30 2020-05-19 Tdk Corporation Thin film component sheet, board with built-in electronic component, and method of manufacturing the thin film component sheet

Also Published As

Publication number Publication date
JP4270364B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
EP0046525B1 (en) Planar multi-level metal-insulator structure comprising a substrate, a conductive interconnection pattern and a superposed conductive structure and a method to form such a structure
CA1284692C (en) Multilayer interconnection system for multichip high performance semiconductor packaging
JP3630777B2 (en) Multi-chip module manufacturing method
EP0899992A2 (en) Embedded thin film passive components
JPS5828736B2 (en) How to form a flat thin film
JP6233445B2 (en) Electronic components
CN102687251B (en) Etching solution and use its manufacture method of semiconductor device
KR100777994B1 (en) Process to manufacture tight tolerance embedded elements for printed circuit boards
JP4270364B2 (en) Manufacturing method of substrate with built-in capacitor
EP1983532B1 (en) Capacitor and manufacturing method thereof
JPS59144162A (en) Manufacture of thin film circuit
JP3960302B2 (en) Substrate manufacturing method
JP5929540B2 (en) Electronic components
CN110400741A (en) A kind of preparation method of the passive Resistor-Capacitor Unit of LCP flexible base board
JP2018181953A (en) Manufacturing method of through electrode substrate and through electrode substrate
US20100246090A1 (en) Thin film capacitor
JP2002025854A (en) Thin-film capacitor
JP2022548586A (en) Electrode tab and method of forming same
JP4328134B2 (en) Method for manufacturing printed wiring board
JPS61187346A (en) Semiconductor device
JPS5950095B2 (en) Manufacturing method of semiconductor device
JP2778885B2 (en) Multilayer circuit board and method of manufacturing the same
CN113078107A (en) Preparation method of array substrate, array substrate and display panel
RU2076396C1 (en) Integrated microwave device manufacturing process
JPH04188791A (en) Manufacture of thin film multilayer substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4270364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

EXPY Cancellation because of completion of term