JP2004103964A - Solid-state imaging element and imaging device using the same - Google Patents

Solid-state imaging element and imaging device using the same Download PDF

Info

Publication number
JP2004103964A
JP2004103964A JP2002266171A JP2002266171A JP2004103964A JP 2004103964 A JP2004103964 A JP 2004103964A JP 2002266171 A JP2002266171 A JP 2002266171A JP 2002266171 A JP2002266171 A JP 2002266171A JP 2004103964 A JP2004103964 A JP 2004103964A
Authority
JP
Japan
Prior art keywords
carrier
solid
imaging device
light receiving
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002266171A
Other languages
Japanese (ja)
Other versions
JP4271917B2 (en
Inventor
Takashi Tokuda
徳田 崇
Atsushi Ota
太田 淳
Keiichiro Kagawa
香川 景一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Institute of Science and Technology NUC
Original Assignee
Nara Institute of Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Institute of Science and Technology NUC filed Critical Nara Institute of Science and Technology NUC
Priority to JP2002266171A priority Critical patent/JP4271917B2/en
Publication of JP2004103964A publication Critical patent/JP2004103964A/en
Application granted granted Critical
Publication of JP4271917B2 publication Critical patent/JP4271917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state imaging element enabling visible and infrared ray imaging at low costs, and to contrive miniaturization. <P>SOLUTION: An infrared ray receiving layer 13 is formed on the back of a silicon substrate 10 formed with a PN junction photodiode on a surface, and carriers are produced by the infrared ray passing inside the substrate 10. In a visible ray imaging mode, the surface of the substrate 10 near an N-type area 11 is short-circuited to a lower surface of the infrared ray receiving layer 13, and the entrance of the carriers into a cavity layer 12 is restricted. In an infrared ray imaging mode, the cavity layer 12 is enlarged by applying a negative voltage to a lower surface of the infrared ray receiving layer 13, and the carriers generated in the infrared ray receiving layer 13 are promoted to enter the cavity layer 12. The carriers (electrons) entered the cavity layer 12 are promptly moved to the N-type area 11 by an electric field and are excluded to the outside. Thus, it is possible to manufacture an infrared charge-coupled device by a production process at the substantially same degree as a conventional Si charge-coupled device, and to curtail the costs fairly with a small device size. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は固体撮像素子(一般にはイメージセンサと呼ばれる)及び該素子を用いた撮像装置に関し、更に詳しくは、可視光領域のみならず赤外光領域にも感度を有する可視光/赤外光両用の固体撮像素子、及び該素子を用いた撮像装置に関する。
【0002】
【従来の技術】
近年、固体撮像素子は、デジタルカメラ、カメラ一体型VTR、ファクシミリ、カメラ機能付き携帯電話などの様々な電子機器に利用されており、その性能の進歩には著しいものがある。最も一般的であるシリコン(Si)系の固体撮像素子は、多数の画素が2次元的に配列された構成となっており、各画素は主として受光素子(光電変換部)と電荷読出し回路とで構成されている。受光素子の構造として現在主流であるのは、PN接合フォトダイオード又はフォトゲート構造であり、いずれも入射光によって生成される電子正孔対であるキャリア(フォトキャリア)を検出することで撮像機能を実現している。
【0003】
図9は従来知られている素子構造の例であり、(A)はPN接合フォトダイオード構造の概略縦断面図、(B)はMOSフォトゲート構造の概略断面図である(例えば、非特許文献1など参照)。
【0004】
図9(A)の例では、光電変換部に光が入射すると、主として、N型領域であるソース領域51の接合境界付近に形成される空乏層52内部でキャリアが発生する。発生したキャリアのうち、正孔は基板50を通して排出され、他方、電子は空乏層52内部に蓄積される。その後、ゲート電極53に所定電圧を印加すると、ゲート電極53直下にチャネル54が形成され、このチャネル54を通してN型領域であるドレイン領域55に電子が流れ、ドレイン領域55に接続された信号線56から信号として取り出される。
【0005】
図9(B)の例では、光電変換部に光が入射すると、主として、直流電圧が印加されるフォトゲート電極61の直下に形成されるMOSキャパシタ領域62内部でキャリアが発生する。発生したキャリアのうち、正孔は基板60を通して排出され、他方、電子はMOSキャパシタ領域62内部に蓄積される。その後、ゲート電極63に所定電圧を印加すると、ゲート電極63直下の転送領域64で電位障壁が下がり、この電位障壁を乗り越えてN型領域65に電子が流れ、N型領域65に接続された信号線66から信号として取り出される。
【0006】
こうした固体撮像素子を用いた撮像装置では、上記のように、画素毎に光電変換部で蓄積された電子の量に応じた信号をそれぞれ検出し、その画素信号を画像処理回路で処理することにより、2次元画像を構成することができる。
【0007】
【非特許文献1】
安藤隆男、菰淵寛仁著、「固体撮像素子の基礎−電子の目のしくみ」、映像情報メディア学会、1999年
【0008】
【発明が解決しようとする課題】
ところで、こうした固体撮像素子の応用分野の1つである監視カメラ、暗視カメラ、或いは監視管理システムなどでは、赤外光や近赤外光による撮像の強い要求がある。Si固体撮像素子では、Siの禁制帯域が1.11[eV]程度であるという制約から、上記のような構造のいかんに拘わらず、概ね1.1[μm]以上の波長の赤外光に対しては殆ど感度を持たない。そのため、波長1.1[μm]以上の光を用いた撮像には、従来一般にInGaAs固体撮像素子や赤外ビジコン管などが利用されている。
【0009】
しかしながら、InGaAs固体撮像素子はSi固体撮像素子に比べて格段に高価であるため、撮像装置のコスト低減を阻む大きな要因となっている。また、赤外ビジコン管は固体撮像素子に比べて装置が大形で消費電力も大きく、コスト的にも多くの場合高価になる。
【0010】
本発明はかかる課題に鑑みて成されたものであり、その主たる目的は、赤外光を用いた撮像が行える固体撮像素子を従来に比べて安価なコストで提供するとともに、そのサイズも小さくすることである。また、本発明の別の目的は、可視光を用いた撮像機能を有したまま赤外光撮像機能を追加することができ、必要に応じて、可視光、赤外光両方の撮像や一方のみの選択的な撮像を行うことができる固体撮像素子及び撮像装置を提供することである。
【0011】
【課題を解決するための手段、及び効果】
上記課題を解決するために成された本発明に係る固体撮像素子は、
a)シリコン基板上の光照射面に形成され、少なくとも可視帯域の光を受けてキャリアを生成する又はキャリアを生成した後に蓄積するキャリア収集領域を有する可視受光手段と、
b)前記基板を挟んで前記可視受光手段の裏側の面又は該可視受光手段と同一面であってその近傍に設けられ、赤外帯域の光を受けてキャリアを生成する赤外受光手段と、
c)前記赤外受光手段で生成されたキャリアが前記キャリア収集領域まで移動することを促進する、又は逆に該キャリアがキャリア収集領域に到達することを抑制するように、前記基板内部でのキャリアの移動を制御するキャリア移動制御手段と、
を備えることを特徴としている。
【0012】
ここでいう「赤外帯域」とは近赤外を含む波長帯域であって、可視光の長波長端である0.76〜0.83[μm]以上であるが、実用的には、おおよそ1.1[μm]以上の波長を指す。こうした波長帯域の光に感度を有する赤外受光手段としては、例えばGe、III−V族化合物半導体であるInAs、InGaAs等、禁制帯幅がSiよりも小さな半導体材料の薄膜層を、P型、N型、P型/N型、又はN型/P型のいずれかの構造で設けたものとすることができるが、有機材料などそれ以外の材料も考え得る。
【0013】
本発明に係る固体撮像素子では、可視光に対する検出信号を取得したい場合に、キャリア移動制御手段は、赤外受光手段で生成されたキャリアがキャリア収集領域にできるだけ到達しないように該キャリアの移動を制御する。そのため、入射光に赤外帯域の光が含まれていて、その赤外光により赤外受光手段でキャリアが発生しても、該キャリアはキャリア収集領域には全く又は殆ど入り込まず、検出信号としては利用されない。一方、入射光に含まれる可視帯域の光によってキャリア収集領域にはキャリアが発生するから、該キャリア収集領域で発生した又は発生した後に蓄積されたキャリアに応じた信号電流や信号電圧を取り出すことにより、赤外光の影響を受けない、可視光による画像信号を得ることができる。
【0014】
赤外光に対する検出信号を取得したい場合には、キャリア移動制御手段は、赤外受光手段で生成されたキャリアがキャリア収集領域まで移動するように該キャリアの移動を制御する。それにより、赤外光により赤外受光手段で発生したキャリアはキャリア収集領域に移動し、あたかも該領域内部で発生したかのように取り扱われる。入射光に可視帯域の光が含まれている場合には、可視光によりキャリア収集領域で発生したキャリアと上記赤外受光手段から移動して来たキャリアとが混じり合うから、該キャリア収集領域に存在するキャリアに応じた信号電流や信号電圧を取り出すことにより、赤外光と可視光の両方による画像信号を得ることができる。また、入射光に可視帯域の光が含まれていない場合には、キャリア収集領域には赤外受光手段から移動して来たキャリアのみが存在するから、赤外光による画像信号を得ることができる。
【0015】
更にまた、キャリア移動制御手段により、赤外受光手段で生成されたキャリアのうちキャリア収集領域まで移動する量(又はキャリア収集領域まで移動する割合)の制御が行える構成としておけば、可視光に対する受光感度と赤外光に対する受光感度とを適宜に調整することができ、相対的に赤外光による信号強度を高めたり逆に低めたりすることができる。
【0016】
なお、上記可視受光手段は従来知られている各種の形態とすることができるが、具体的には、例えばPN接合フォトダイオードやMOSフォトゲート等とすることができる。PN接合フォトダイオードの場合には、キャリア収集領域は接合境界付近に形成される空乏層(空乏領域と呼ばれることもある)であり、MOSフォトゲートの場合には、キャリア収集領域はMOSキャパシタ領域である。可視光に対してキャリアは必ずしもキャリア収集領域内部のみで発生するのではないが、その大部分がキャリア収集領域で発生することから、実質的に可視光によるキャリアはキャリア収集領域で発生するとみることができる。
【0017】
上述したように、本発明に係る固体撮像素子によれば、従来一般的であるシリコン基板を用いたSi固体撮像素子の構造を基本とし、これに赤外受光手段とキャリア移動制御手段を設けることにより、1.1[μm]以上の赤外帯域までの撮像を可能とすることができる。基板としては標準的なシリコン基板を用いることができ、製造工程としては従来のSi固体撮像素子の製造工程に若干の追加を行えばよいので、従来のInGaAs固体撮像素子やビジコン管等の赤外撮像素子に比べて大幅なコストの削減が達成できる。また、ビジコン管と比べて大幅な小型化ができるのはもちろんのこと、MOS型とすることにより光電変換部以外では非常な微細化が可能で、しかも周辺回路を同一基板上に搭載するのも容易である。それによって、この素子自体の小型化はもちろん、該素子を用いた撮像装置の小型化が達成できる。
【0018】
また、特に1.4[μm]以上の赤外帯域の光はアイセーフ光と呼ばれ、人間の目のの被爆許容量が大きいことが知られている。本発明に係る固体撮像素子では、こうした赤外帯域の光を容易に利用することができるため、強い光を用いた能動的暗視システムの構築が可能となる。また、太陽光は1.1[μm]以上の成分を多く含むが、目に安全な1.4[μm]以上の明るい光源を利用することにより、太陽光の影響を受けにくい撮像が行える能動的撮像システムを構築することもできる。こうした撮像技術は従来のSi固体撮像素子では実現できないものである。
【0019】
更にまた、本発明に係る固体撮像素子によれば、単に赤外撮像が可能となるだけでなく、必要に応じて、赤外光を用いない可視光のみによる撮像や、赤外光と可視光との両方による撮像、可視光を用いない赤外光のみによる撮像を、1個の素子で選択的に行うことができる。従って、こうした各種の撮像を切り替えて行うような撮像装置を低コストで具現化でき、そのサイズも小型化することができる。
【0020】
本発明に係る固体撮像素子の好ましい態様としては、赤外受光手段は基板の裏側の面に設けられ、該基板内部を通過してきた赤外光を受けてキャリアを生成する構成とすることができる。
【0021】
このように、基板の裏面に赤外受光手段として赤外受光層を設ける方法としては、貼付けや蒸着などが一般的であるが、有機材料等、液体が利用できる場合には、塗布などによって薄膜層を形成するようにしてもよい。
【0022】
この好ましい態様の構成によれば、赤外受光手段を基板の裏面に設けているため、基板表面に可視受光手段を形成する面積を広く確保することができ、精細度等の性能を向上させるのに有利である。また、可視受光手段やそのほかの回路(例えば信号読み出し回路など)には影響なく赤外受光手段を形成することができるため、従来のSi固体撮像素子の製造工程に簡単な工程を追加しさえすればよく、コスト的にも有利である。更にまた、基板の表裏で可視受光手段及び赤外受光手段を一対とすることにより、いずれの受光手段でもほぼ同一範囲に照射された光を利用することができるので、例えば赤外撮像と可視撮像とを切り替える際に両者の画像の対応関係が良好になり、また、赤外光と可視光の両方を利用する場合には、画像のにじみやぼけを少なくすることができる。
【0023】
なお、赤外受光手段を基板の裏面に設ける場合、研磨等により基板を薄くした上で赤外受光手段を形成するとよい。これにより、赤外受光手段からキャリア収集領域までの距離が短くなるとともに、表側の光照射面から入射した光が赤外受光手段に到達する際の光の拡がりが抑制される。それによって、赤外受光手段で発生したキャリアをキャリア収集領域で一層効率よく収集することができる。従って、赤外光の受光感度を向上させることができるとともに、隣接する画素のキャリア収集領域への漏れ込みを軽減することができ、画像のにじみやぼけの改善にも有効である。
【0024】
本発明に係る固体撮像素子において、キャリア移動制御手段の一態様としては、赤外受光手段とキャリア収集領域との間に電位差を与える又は該電位差を増大させることにより、赤外受光手段からキャリア収集領域までのキャリアの移動を促進する構成とすることができる。
【0025】
具体的には、例えば可視受光手段がPN接合フォトダイオードである場合、赤外受光手段とキャリア収集領域との間に所定の電位差を与える又は既に電位差がある場合でもその電位差を増大させることにより、キャリア収集領域である空乏層を拡大し、しかも該空乏層内に適宜の電界を形成することができる。空乏層が赤外受光手段の間近まで広がることによって、赤外受光手段で発生したキャリアは空乏層に捉えられ易くなり、また空乏層内ではキャリアの移動性は非常に高いから、赤外光により発生したキャリアを効率よく収集することができる。
【0026】
赤外受光手段を基板の裏面に設ける構成にあっては、キャリア収集領域は相対的に基板表面側に位置するから、上記「赤外受光手段とキャリア収集領域との間に電位差を与える又は該電位差を増大させる」ための一方法としては、基板表面と赤外受光手段との間に電位差を与える又は該電位差を増大させるようにすればよい。なお、その際の電位差の極性はキャリアとして電子又は正孔のいずれを利用するのかに依存する。
【0027】
また本発明に係る固体撮像素子において、キャリア移動制御手段の一態様として、キャリア収集領域の外側にキャリアの通り易い仮想的なキャリア通過経路を形成することにより、該キャリアがキャリア収集領域に到達する構成とすることができる。
【0028】
具体的には、キャリア収集領域の外側に基板に接触する電極を設け、赤外受光手段で発生したキャリアがキャリア収集領域にでなく上記電極に向かって移動するようにすればよい。赤外受光手段を基板の裏面に設ける構成にあっては、例えば、基板表面に設けた電極と赤外受光手段とを短絡又は実質的に短絡したのとほぼ同じ状態とすれば、仮想的なキャリア通過経路が基板内部に形成される。
【0029】
また、本発明に係る固体撮像素子において、キャリア移動制御手段は、可視受光手段の周囲に形成されたP型及び/又はN型の拡散領域と、該拡散領域に所定電圧を印加する電圧印加手段と、を含む構成とすることができる。
【0030】
この構成では、拡散領域に印加する電圧を調整することにより、基板内部や基板表面に形成される電界の電位分布を適宜に定め、それによって、赤外受光手段で発生したキャリアを効果的にキャリア収集領域まで移動させたり、或いは、赤外受光手段で発生したキャリアのうち、隣接画素に対して妨害や干渉となる可能性の高いキャリアを引き抜くことができる。従って、画像のにじみやぼけなどを改善し、画質を向上させることができる。
【0031】
また、本発明に係る固体撮像素子を用いた撮像装置は、上記本発明に係る固体撮像素子と、可視帯域の光を遮断する光学フィルタと、該光学フィルタを前記固体撮像素子の光照射面の手前に挿入する又は該光照射面の手前から取り除くフィルタ駆動手段と、を備え、その光学フィルタを固体撮像素子の光照射面の手前に挿入した状態で、キャリア移動制御手段により、赤外受光手段で生成されたキャリアがキャリア収集領域まで移動することを促進することによって、可視帯域の光を除去した、赤外帯域の光による画像信号を取得するようにしたことを特徴としている。
【0032】
すなわち、この撮像装置によれば、上記のような固体撮像素子と光学フィルタとを組み合わせることにより、比較的簡単な制御で、可視光の影響を受けない、赤外撮像を実現することができ、上述したような赤外撮像を利用した各種のシステムの構築に有利である。
【0033】
【発明の実施の形態】
以下、本発明に係る固体撮像素子について、具体的な例を挙げ、図面を参照して説明する。
【0034】
図1は、本発明の一実施例である第1実施例の固体撮像素子における1画素の光電変換部の縦断面構造を示す概略図である。この第1実施例は、可視受光手段として図9(A)に示したものと同様のPN接合フォトダイオードを利用したものである。図1(及び以降の説明で用いる図2〜図7)では、光電変換部のみを記載しているが、これは、本発明に特徴的な構成が光電変換部にあるからである。
【0035】
すなわち、一般に、固体撮像素子では、その構造に応じて、光電変換部の後段に、電圧/電流変換部、信号読み出し部等を備えているが、これら構成要素はどのようなものでもよい。例えば信号の読み出しはCMOS型でもCCD型でもよい。また、多くの場合、光電変換部のキャリア収集領域ではキャリアを蓄積するが、こうしたキャリアの蓄積は必須ではなく、生成されたキャリアを即座に読み出すものであっても本発明は適用可能である。
【0036】
図1に従って説明すると、P型のシリコン基板(以下、単に「基板」と称す)10の表面には、従来と同様にN型領域11を設けることでPN接合フォトダイオードが形成されており、その接合境界付近に形成される空乏層12内で主として可視光に対するキャリアを生成する。また、基板10の裏面には、III−V族化合物半導体であるInGaAs、InAs等の薄膜層から成る赤外受光層13が赤外受光手段として形成されている。赤外受光層13は、基板10の表面に照射された光のうち、基板10内部を通過して来た光を受けてキャリアを生成する機能を有する。
【0037】
但し、赤外受光層13の材料はこれに限るものではなく、赤外光(ここでは1.1[μm]以上の波長帯域)に対して充分な感度を有する材料であれば他のものでもよい。また、赤外受光層13の形成方法も特に問わないが、例えば、予め形成した赤外受光層を基板10の裏面に貼り合わせる方法、スパッタリングなどの蒸着による方法などが利用できる。また、材料が液体である場合には、塗布法や吹付法などによることもできる。
【0038】
また、通常、基板10の厚さは数百[μm]であることが多いが、後述するような空乏層12の拡大によるキャリアの収集効率を高めるには、基板10を研磨し30〜百[μm]程度まで薄くすることが好ましい。なお、そのとき赤外受光層13の膜厚は数百[nm]〜数[μm]程度とすることができる。
【0039】
N型領域11から適宜離れた位置には基板10に対する接触を確保するための第1電極14が設けられ、一方、赤外受光層13の下面には該赤外受光層13に対する接触を確保するための第2電極15が設けられている。第1電極14と第2電極15との間には図示しない制御信号により切り替わるスイッチ16が設けられ、該スイッチ16の他端子には直流電源17が接続される。スイッチ16は後述するように、本固体撮像素子の撮像モードを切り替える機能を有する。なお、図1において、スイッチ16は基板10とは別に描いているが、その機能を基板10上に形成できることは当然である。
【0040】
図3は上記第1実施例による固体撮像素子の受光動作を説明するための概念図である。ここでは、従来のSi固体撮像素子本来の受光モードを可視光(通常)撮像モードと呼び、本素子に特有の赤外光撮像状態を赤外光撮像モードと呼ぶ。
【0041】
1.可視光撮像モード(図3(A)参照)
スイッチ16を左側に倒すことによって、基板10表面の第1電極14と赤外受光層13下面の第2電極15とを短絡する(又はごく小さな負荷を介して接続してもよい)。上方から光電変換部に照射された光のうち、可視光によって空乏層12内にはキャリアが生成されて蓄積される。一方、PN接合フォトダイオードは赤外光に対しては殆ど感度を有さないため、赤外光は途中でエネルギを失うことなく基板10内部に深く入り込み、基板10を突き抜けて裏面の赤外受光層13にまで到達する。赤外受光層13は赤外光に対して高い感度を有しているから、赤外受光層13でキャリアが生成される。しかしながら、上述したように第1電極14と第2電極15とは短絡されているため、基板10内部では第1電極14と第2電極との間でキャリア(ここでは電子)が通過し易くなっている。そのため、赤外受光層13で発生したキャリアは上記経路を通ってすぐに散逸してしまい、空乏層12には殆ど入り込まない。従って、赤外受光層13で発生したキャリアは利用されないから、従来のSi固体撮像素子と同じように動作するものと捉えることができる。
【0042】
2.赤外光撮像モード(図3(B)参照)
スイッチ16を右側に倒すことにより、赤外受光層13に接触する第2電極15に負電圧を印加する。これによって、図示したようにPN接合境界の空乏層12は赤外受光層13の間近まで拡大し、またそれに伴い空乏層12内部に形成される電界によってキャリアの移動性が大きく向上する。このような状態で、赤外受光層13でキャリアが生成されると、キャリアのうちの電子は空乏層12へと容易に入り込み、上記電界の作用によって空乏層12内部をN型領域11近くまで迅速に移動しつつ蓄積される。入射光に可視光が含まれている場合には、可視光によって空乏層12内でキャリアが生成される。従って、空乏層12内部には可視光によるキャリアと赤外光によるキャリアとが混在し、可視光と赤外光の両方に対する検出出力が得られる。
【0043】
本固体撮像素子を用いて、赤外光のみによる撮像と可視光のみによる撮像とを切り替えて行いたい場合には、例えば図8に示すような撮像装置の構成をとることができる。
【0044】
すなわち、本固体撮像素子100と集光レンズ系106との間に所望の赤外光のみを通過させるような波長特性を有する光学フィルタ104を挿脱自在に設置する。赤外撮像を行う場合には、制御部103はフィルタ駆動部105により光学フィルタ104を集光レンズ系106と固体撮像素子100の間に挿入する。撮像対象物107による投影光が光学フィルタ104を通過する際に可視帯域の光は除去され、赤外光のみが固体撮像素子100に入射する。固体撮像素子100は制御部103により上記赤外光撮像モードで動作するように制御される。それにより、固体撮像素子100からは上述したように赤外受光層13で生成されたキャリアのみに基づいた検出信号を取り出され、画像処理部101を介して画像モニタ102には赤外画像が映し出される。
【0045】
また、上述したように第2電極15に負電圧を印加することにより空乏層12を裏面方向に拡大することができ、その空乏層12の広がり度合によって、赤外受光層13で発生したキャリアが空乏層12に入り込む度合が変化する。従って、第2電極15に印加する電圧(厳密には基板10表面の電圧と赤外受光層13の電圧との電圧差)を適宜制御して、空乏層12の広がりを制御することにより赤外光に対する受光感度を調整することができる。それにより、最終的に再現される画像において、赤外光への相対的な依存性を調整して様々な画像を得ることができる。
【0046】
次に、本発明の第2実施例として、可視受光手段としてMOSフォトゲートを利用した例について説明する。図2は、第2実施例の固体撮像素子の1画素の光電変換部の縦断面構造を示す概略図である。
【0047】
基板20の表面には、酸化膜28を挟んでフォトゲート電極21が設けられており、フォトゲート電極21直下に形成されるMOSキャパシタ領域22内で主として可視光に対するキャリアを生成する。更に、第1実施例と同様に、基板10の裏面に赤外受光層23が形成されている。フォトゲート電極21の近傍には基板20に対する接触を確保するための第1電極24が設けられ、一方、赤外受光層23の下面には該赤外受光層23に対する接触を確保するための第2電極25が設けられている。そして、第1電極24と第2電極25との間には制御信号により切り替わるスイッチ26が設けられ、該スイッチ26の他端子には直流電源27が接続される。
【0048】
図4は上記第2実施例による固体撮像素子の受光動作を説明するための概念図である。可視光撮像モード(図4(A)参照)及び赤外光撮像モード(図4(B)参照)における基本的な動作は、可視光によるキャリアの蓄積動作が異なるだけで、それ以外は上記第1実施例と同じであるので簡単に説明する。
【0049】
1.可視光撮像モード(図4(A)参照)
スイッチ26を左側に倒すことにより、第1電極24と赤外受光層23下面の第2電極25とを短絡する。上方から光電変換部に照射された光のうち、可視光によってMOSキャパシタ領域22内にはキャリアが生成されて蓄積される。一方、赤外光は途中でエネルギを失うことなく基板20内部に深く入り込み、基板20を突き抜けて裏面の赤外受光層23にまで到達する。赤外受光層23は赤外光に対して高い感度を有しているから、赤外受光層23でキャリアが生成されるがすぐに散逸してしまいMOSキャパシタ領域22に殆ど入り込むことはないため、赤外受光層23は撮像には実質的に寄与せず、従来のフォトゲート型の固体撮像素子と同様の動作となる。
【0050】
2.赤外光撮像モード(図4(B)参照)
スイッチ26を右側に倒すことにより、赤外受光層23に接触する第2電極25に負電圧を印加する。これにより、図示したようにMOSキャパシタ領域22は赤外受光層23の間近まで拡大し、それに伴ってMOSキャパシタ領域22内に形成される電界によりキャリアの移動性が大きく向上する。このような状態で赤外受光層23でキャリアが生成されると、そのうちの電子はMOSキャパシタ領域22内へ容易に入り込み、上記電界の作用によって該領域22の上部まで迅速に移動し蓄積される。MOSキャパシタ領域22内には可視光により生成されたキャリアも存在するから、例えば図示しない転送ゲートが開かれると、赤外光によるキャリアと可視光によるキャリアとが同時に横方向へと送られる。
【0051】
このようにして、この第2実施例の固体撮像素子でも、第1実施例と同様に、可視光撮像モード、赤外光撮像モードを切り替えて実行することができ、赤外光のみによる撮像を行いたい場合には上記第1実施例と同様の手法を利用すればよい。
【0052】
第1及び第2実施例に係る上記説明では、1個の画素についての構成及び動作について説明したが、実際の固体撮像素子では、多数の画素が互いに近接して配置されている。そのため、動作の安定性確保と性能の向上を図るためには、例えば、可視光撮像モードにおいて、或る画素の赤外受光層で発生したキャリアが隣接した画素の空乏層に漏れ込むといった、画素間の干渉や妨害などの防止に配慮した構成とすることが好ましい。
【0053】
次に、このような点に配慮した固体撮像素子の構造と動作について説明する。図5は可視受光手段がPN接合フォトダイオードである縦断面構造の例、図6は可視受光手段がフォトゲートである縦断面構造の例であり、図1、図2と同様の構成要素には同一符号を付している。可視受光手段を除き、基本的な構造はいずれも同じであるので、図5についてのみ説明する。
【0054】
隣接する画素のN型領域11の間に基板10とは逆の伝導性(この例ではN型)の第1拡散領域30を形成するとともに、第1拡散領域30と各画素のN型領域11との間に基板10と同伝導性(この例ではP型)の第2拡散領域31を形成する。第1拡散領域30、第2拡散領域31にはそれぞれ適当な電圧DC1、DC2を印加する。
【0055】
第1拡散領域30に適宜の電圧を印加することにより、基板10内部での電位分布の均一性を高めることができ、それによって、空乏層12直下の赤外受光層13で生成されたキャリアを安定的に空乏層12へと導くことができる。また、隣接画素の中間の赤外受光層13で発生したキャリアを引き抜くことによって、他の画素の空乏層12への漏れ込みを防止し、それにより画像のにじみやぼけ等の画質劣化を改善することもできる。
【0056】
一方、第2拡散領域31に適宜の電圧を印加することにより、基板10表面付近での電位分布の均一性を高めることができ、それによって、基板10内のキャリアの挙動を一層安定させることができる。また、上述したような第1拡散領域30によるキャリアの引抜きを補助し、画像のにじみやぼけ等の画質劣化を一層改善することができる。
【0057】
また、上記のような構成を採ることによって隣接画素の影響を軽減できるため、多数の画素に対して基板10、20の裏面に形成した赤外受光層13、23は共通(つまり画素毎に分離されていない)であってもよいが、画素毎に、又は複数の画素をグループ化した各画素グループ毎に、赤外受光層13、23を分離した構成としてもよい。このような構成とすれば、素子の製造工程は若干複雑になるものの、隣接画素の影響を一層軽減して、画質のさらなる改善が可能となる。
【0058】
また、上記実施例はいずれも赤外受光層13、23を基板10、20の裏面に形成していたが、例えば図7に示すように、基板10の表面でN型領域11と重ならない位置に形成するようにしてもよい。この場合には、赤外受光層13に負電圧を印加すると空乏層12が横方向に拡大し、赤外受光層13で生成されたキャリアが空乏層12に到達し易くなる。
【0059】
更にまた、固体撮像素子に含まれる全ての画素の可視受光手段に対応して赤外受光層(赤外受光手段)を設ける必要はなく、要求される画像の質等に応じて、一部の画素のみに赤外受光層を設けてもよい。また。赤外受光層を備えた画素と、赤外受光層を備えない画素(可視受光手段のみの画素)とが存在する(特に近接して配置されている)場合、例えば両者の信号の差を求めることにより、赤外光に対する信号のみを抽出することができる。このような機能を利用することによって赤外画像を作成することができるとともに、従来のSi固体撮像素子では実現できないような各種の撮像が可能となる。
【0060】
なお、上記各実施例は一例であって、本発明の趣旨の範囲で適宜変形や修正を行っても、本願の請求の範囲に包含されることは明らかである。
【図面の簡単な説明】
【図1】第1実施例の固体撮像素子における1画素の光電変換部の縦断面構造を示す概略図。
【図2】第2実施例の固体撮像素子における1画素の光電変換部の縦断面構造を示す概略図。
【図3】第1実施例による固体撮像素子の動作説明図。
【図4】第2実施例による固体撮像素子の動作説明図。
【図5】他の実施例による固体撮像素子の要部の縦断面構造を示す概略図。
【図6】他の実施例による固体撮像素子の要部の縦断面構造を示す概略図。
【図7】他の実施例による固体撮像素子の要部の縦断面構造を示す概略図。
【図8】第1実施例の固体撮像素子を用いた撮像装置の構成図。
【図9】従来のSi固体撮像素子の素子構造を示す概略縦断面図。
【符号の説明】
10、20…基板
11…N型領域
12…空乏層
13、23…赤外受光層
14、24…第1電極
15、25…第2電極
16、26…スイッチ
17、27…直流電源
21…フォトゲート電極
22…MOSキャパシタ領域
28…酸化膜
30…第1拡散領域
31…第2拡散領域
100…固体撮像素子
101…画像処理部
103…制御部
104…光学フィルタ
105…フィルタ駆動部
106…集光レンズ系
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid-state imaging device (generally referred to as an image sensor) and an imaging device using the same, and more particularly, to a visible / infrared light compatible having sensitivity not only in a visible light region but also in an infrared light region. And an imaging device using the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, solid-state imaging devices have been used in various electronic devices such as digital cameras, camera-integrated VTRs, facsimile machines, and mobile phones with camera functions, and there has been remarkable progress in their performance. The most common silicon (Si) solid-state imaging device has a configuration in which a large number of pixels are two-dimensionally arranged, and each pixel mainly includes a light receiving element (photoelectric conversion unit) and a charge reading circuit. It is configured. At present, the mainstream structure of the light receiving element is a PN junction photodiode or a photogate structure, both of which detect a carrier (photocarrier) which is an electron-hole pair generated by incident light to perform an imaging function. Has been realized.
[0003]
FIG. 9 shows an example of a conventionally known element structure, in which (A) is a schematic longitudinal sectional view of a PN junction photodiode structure, and (B) is a schematic sectional view of a MOS photogate structure (for example, see Non-Patent Document). 1 etc.).
[0004]
In the example of FIG. 9A, when light enters the photoelectric conversion portion, carriers are generated mainly in the depletion layer 52 formed near the junction boundary of the source region 51 which is an N-type region. Of the generated carriers, holes are discharged through the substrate 50, while electrons are accumulated inside the depletion layer 52. Thereafter, when a predetermined voltage is applied to the gate electrode 53, a channel 54 is formed immediately below the gate electrode 53, electrons flow through the channel 54 to the drain region 55, which is an N-type region, and the signal line 56 connected to the drain region 55 Is extracted as a signal.
[0005]
In the example of FIG. 9B, when light enters the photoelectric conversion unit, carriers are generated mainly in the MOS capacitor region 62 formed immediately below the photogate electrode 61 to which a DC voltage is applied. Of the generated carriers, holes are ejected through the substrate 60, while electrons are accumulated inside the MOS capacitor region 62. Thereafter, when a predetermined voltage is applied to the gate electrode 63, the potential barrier drops in the transfer region 64 immediately below the gate electrode 63, the electrons flow over the potential barrier to the N-type region 65, and the signal connected to the N-type region 65 The signal is extracted from the line 66 as a signal.
[0006]
In an imaging device using such a solid-state imaging device, as described above, a signal corresponding to the amount of electrons stored in the photoelectric conversion unit is detected for each pixel, and the pixel signal is processed by an image processing circuit. A two-dimensional image can be constructed.
[0007]
[Non-patent document 1]
Takao Ando, Hirohito Komobuchi, "Basics of solid-state image sensors-The mechanism of electronics", The Institute of Image Information and Television Engineers, 1999
[0008]
[Problems to be solved by the invention]
In a surveillance camera, a night vision camera, a surveillance management system, and the like, which are one of the application fields of such a solid-state imaging device, there is a strong demand for imaging with infrared light or near-infrared light. In the Si solid-state imaging device, since the forbidden band of Si is about 1.11 [eV], regardless of the above-described structure, infrared light having a wavelength of about 1.1 [μm] or more is generally used regardless of the structure described above. It has almost no sensitivity. Therefore, for imaging using light having a wavelength of 1.1 [μm] or more, an InGaAs solid-state imaging device, an infrared vidicon tube, or the like is generally used.
[0009]
However, since the InGaAs solid-state imaging device is much more expensive than the Si solid-state imaging device, it is a major factor preventing cost reduction of the imaging device. In addition, the infrared vidicon tube has a larger device and consumes more power than a solid-state imaging device, and is often expensive in terms of cost.
[0010]
The present invention has been made in view of such a problem, and a main object of the present invention is to provide a solid-state imaging device capable of performing imaging using infrared light at a lower cost than before and to reduce the size thereof. That is. Another object of the present invention is to add an infrared light imaging function while having an imaging function using visible light, and if necessary, image both visible light and infrared light or only one of them. It is an object of the present invention to provide a solid-state image pickup device and an image pickup apparatus capable of performing selective image pickup.
[0011]
[Means for Solving the Problems and Effects]
The solid-state imaging device according to the present invention made in order to solve the above problems,
a) a visible light receiving means formed on a light irradiation surface on a silicon substrate and having a carrier collection region for generating carriers by receiving light in at least a visible band or for accumulating after generating carriers;
b) an infrared light receiving means which is provided on the surface on the back side of the visible light receiving means or on the same surface as the visible light receiving means with the substrate interposed therebetween, and which generates carriers by receiving light in an infrared band;
c) a carrier inside the substrate so as to promote the movement of the carrier generated by the infrared receiving means to the carrier collection area, or to suppress the carrier from reaching the carrier collection area. Carrier movement control means for controlling the movement of
It is characterized by having.
[0012]
Here, the “infrared band” is a wavelength band including near-infrared light and is longer than 0.76 to 0.83 [μm], which is the long wavelength end of visible light. Indicates a wavelength of 1.1 [μm] or more. As the infrared light receiving means having sensitivity to light in such a wavelength band, for example, a thin film layer of a semiconductor material whose forbidden band width is smaller than Si, such as Ge, InAs or InGaAs, which is a III-V compound semiconductor, is a P-type, Although it can be provided with any of N-type, P-type / N-type, or N-type / P-type structure, other materials such as an organic material can also be considered.
[0013]
In the solid-state imaging device according to the present invention, when it is desired to obtain a detection signal for visible light, the carrier movement control unit moves the carrier such that the carrier generated by the infrared light receiving unit does not reach the carrier collection area as much as possible. Control. Therefore, even if the incident light contains light in the infrared band and the infrared light generates carriers in the infrared light receiving means, the carriers hardly or almost do not enter the carrier collection area, and serve as detection signals. Is not used. On the other hand, since carriers are generated in the carrier collection region by light in the visible band included in the incident light, by extracting a signal current or a signal voltage corresponding to the carrier generated in the carrier collection region or accumulated after the generation. Thus, an image signal based on visible light, which is not affected by infrared light, can be obtained.
[0014]
When it is desired to obtain a detection signal for infrared light, the carrier movement control means controls the movement of the carrier such that the carrier generated by the infrared light receiving means moves to the carrier collection area. As a result, the carriers generated by the infrared receiving means due to the infrared light move to the carrier collection area and are handled as if they were generated inside the area. If the incident light contains light in the visible band, the carriers generated in the carrier collection region by the visible light and the carriers that have moved from the infrared receiving means are mixed, so that the carrier collection region By extracting a signal current or a signal voltage corresponding to the existing carrier, an image signal using both infrared light and visible light can be obtained. Further, when the incident light does not include light in the visible band, since only carriers that have moved from the infrared light receiving means are present in the carrier collection area, it is possible to obtain an image signal using infrared light. it can.
[0015]
Furthermore, if the carrier movement control means can control the amount of the carrier generated by the infrared light receiving means which moves to the carrier collection area (or the ratio of the movement to the carrier collection area), the light reception for visible light can be achieved. The sensitivity and the light receiving sensitivity to infrared light can be appropriately adjusted, and the signal intensity due to infrared light can be relatively increased or reduced.
[0016]
The visible light receiving means can be in various forms known in the art, and specifically, for example, can be a PN junction photodiode or a MOS photogate. In the case of a PN junction photodiode, the carrier collection region is a depletion layer (sometimes called a depletion region) formed near the junction boundary. In the case of a MOS photogate, the carrier collection region is a MOS capacitor region. is there. Carriers for visible light are not necessarily generated only in the carrier collection area, but most of them are generated in the carrier collection area. Can be.
[0017]
As described above, according to the solid-state imaging device according to the present invention, the structure of a conventional solid-state Si solid-state imaging device using a silicon substrate is basically provided, and an infrared light receiving unit and a carrier movement control unit are provided. Thereby, imaging up to an infrared band of 1.1 [μm] or more can be performed. A standard silicon substrate can be used as the substrate, and the manufacturing process may be slightly added to the conventional Si solid-state imaging device manufacturing process. Significant cost reduction can be achieved as compared with the imaging device. Also, not only can the size be significantly reduced compared to the vidicon tube, but also the MOS type enables extremely miniaturization other than the photoelectric conversion section, and the peripheral circuits can be mounted on the same substrate. Easy. Thereby, not only the element itself can be miniaturized, but also the imaging device using the element can be miniaturized.
[0018]
In particular, light in the infrared band of 1.4 [μm] or more is called eye-safe light and is known to have a large permissible exposure to human eyes. The solid-state imaging device according to the present invention can easily use such light in the infrared band, so that an active night-vision system using strong light can be constructed. In addition, sunlight contains a lot of components of 1.1 [μm] or more. However, by using a bright light source of 1.4 [μm] or more that is safe for eyes, active imaging that is less affected by sunlight can be performed. It is also possible to construct a dynamic imaging system. Such an imaging technique cannot be realized by a conventional Si solid-state imaging device.
[0019]
Furthermore, according to the solid-state imaging device according to the present invention, not only infrared imaging can be performed, but also imaging using only visible light without using infrared light or infrared light and visible light can be performed as necessary. And imaging using only infrared light without using visible light can be selectively performed by one element. Therefore, it is possible to realize an imaging apparatus that switches between various kinds of imaging at low cost and to reduce the size of the imaging apparatus.
[0020]
In a preferred embodiment of the solid-state imaging device according to the present invention, the infrared light receiving means may be provided on a back surface of the substrate and receive infrared light passing through the inside of the substrate to generate carriers. .
[0021]
As described above, as a method of providing the infrared light receiving layer as the infrared light receiving means on the back surface of the substrate, bonding or vapor deposition is generally performed, but when a liquid such as an organic material can be used, a thin film is formed by coating or the like. A layer may be formed.
[0022]
According to the configuration of this preferred embodiment, since the infrared light receiving means is provided on the back surface of the substrate, it is possible to secure a large area for forming the visible light receiving means on the surface of the substrate, and to improve performance such as definition. Is advantageous. Further, since the infrared light receiving means can be formed without affecting the visible light receiving means and other circuits (for example, a signal readout circuit), a simple process can be added to the conventional Si solid-state imaging device manufacturing process. It suffices to be advantageous in terms of cost. Furthermore, since the visible light receiving means and the infrared light receiving means are paired on the front and back of the substrate, any of the light receiving means can use the light irradiated to the substantially same area. When switching between the two, the correspondence between the two images is improved, and when both infrared light and visible light are used, blurring and blurring of the image can be reduced.
[0023]
When the infrared light receiving means is provided on the back surface of the substrate, the infrared light receiving means may be formed after the substrate is thinned by polishing or the like. This reduces the distance from the infrared light receiving means to the carrier collection area, and suppresses the spread of light when the light incident from the front light irradiation surface reaches the infrared light receiving means. As a result, carriers generated by the infrared receiving means can be more efficiently collected in the carrier collection area. Accordingly, it is possible to improve the light receiving sensitivity of infrared light and reduce leakage of adjacent pixels into the carrier collection region, which is also effective in reducing image bleeding and blurring.
[0024]
In the solid-state imaging device according to the present invention, as one mode of the carrier movement control means, the carrier collection from the infrared light receiving means is performed by giving a potential difference between the infrared light receiving means and the carrier collection area or increasing the potential difference. A configuration that promotes the movement of carriers to the region can be adopted.
[0025]
Specifically, for example, when the visible light receiving means is a PN junction photodiode, by giving a predetermined potential difference between the infrared light receiving means and the carrier collection area or by increasing the potential difference even when there is already a potential difference, The depletion layer, which is a carrier collection region, can be enlarged, and an appropriate electric field can be formed in the depletion layer. As the depletion layer spreads to the vicinity of the infrared light receiving means, the carriers generated by the infrared light receiving means are easily captured by the depletion layer, and the mobility of the carriers in the depletion layer is extremely high. Generated carriers can be efficiently collected.
[0026]
In the configuration in which the infrared light receiving means is provided on the back surface of the substrate, the carrier collection area is relatively located on the front surface side of the substrate. As a method for "increase the potential difference", a potential difference may be provided between the substrate surface and the infrared receiving means or the potential difference may be increased. Note that the polarity of the potential difference at that time depends on whether electrons or holes are used as carriers.
[0027]
Further, in the solid-state imaging device according to the present invention, as one mode of the carrier movement control means, the carrier reaches the carrier collection area by forming a virtual carrier passage path that is easy to pass through the carrier outside the carrier collection area. It can be configured.
[0028]
Specifically, an electrode that comes into contact with the substrate may be provided outside the carrier collection area so that the carriers generated by the infrared receiving means move toward the electrode instead of the carrier collection area. In the configuration in which the infrared light receiving means is provided on the back surface of the substrate, for example, if the electrode provided on the surface of the substrate and the infrared light receiving means are short-circuited or substantially in the same state as substantially short-circuited, a virtual A carrier passage path is formed inside the substrate.
[0029]
Further, in the solid-state imaging device according to the present invention, the carrier movement control unit includes a P-type and / or N-type diffusion region formed around the visible light receiving unit, and a voltage application unit that applies a predetermined voltage to the diffusion region. And a configuration including:
[0030]
In this configuration, by adjusting the voltage applied to the diffusion region, the potential distribution of the electric field formed inside the substrate or on the surface of the substrate is appropriately determined, whereby the carriers generated by the infrared light receiving means are effectively reduced. It is possible to move the carrier to the collection area or to extract a carrier having a high possibility of obstructing or interfering with an adjacent pixel from carriers generated by the infrared receiving unit. Therefore, blurring or blurring of an image can be improved, and image quality can be improved.
[0031]
In addition, an imaging device using the solid-state imaging device according to the present invention includes the solid-state imaging device according to the present invention, an optical filter that blocks light in a visible band, and an optical filter that covers the light irradiation surface of the solid-state imaging device. Filter driving means to be inserted in front or to be removed from the front of the light irradiation surface, and in a state where the optical filter is inserted in front of the light irradiation surface of the solid-state imaging device, the carrier movement control means, infrared receiving means By promoting the movement of the carrier generated in step (1) to the carrier collection region, an image signal is obtained by removing light in the visible band and using light in the infrared band.
[0032]
That is, according to this imaging apparatus, by combining the solid-state imaging device and the optical filter as described above, it is possible to realize infrared imaging that is not affected by visible light with relatively simple control, This is advantageous for construction of various systems using infrared imaging as described above.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the solid-state imaging device according to the present invention will be described with reference to the drawings with specific examples.
[0034]
FIG. 1 is a schematic diagram showing a vertical cross-sectional structure of a photoelectric conversion unit of one pixel in a solid-state imaging device according to a first embodiment which is an embodiment of the present invention. In the first embodiment, a PN junction photodiode similar to that shown in FIG. 9A is used as the visible light receiving means. In FIG. 1 (and FIGS. 2 to 7 used in the following description), only the photoelectric conversion unit is described because the photoelectric conversion unit has a characteristic feature of the present invention.
[0035]
That is, in general, a solid-state imaging device includes a voltage / current conversion unit, a signal readout unit, and the like at a stage subsequent to the photoelectric conversion unit, depending on the structure, but these components may be of any type. For example, signal reading may be of a CMOS type or a CCD type. In many cases, carriers are accumulated in the carrier collection region of the photoelectric conversion unit. However, such accumulation of carriers is not essential, and the present invention can be applied to a case where generated carriers are immediately read.
[0036]
Referring to FIG. 1, a PN junction photodiode is formed on the surface of a P-type silicon substrate (hereinafter, simply referred to as “substrate”) 10 by providing an N-type region 11 as in the related art. The carriers mainly generate visible light in the depletion layer 12 formed near the junction boundary. On the back surface of the substrate 10, an infrared light receiving layer 13 made of a thin film layer of a group III-V compound semiconductor such as InGaAs or InAs is formed as infrared light receiving means. The infrared light receiving layer 13 has a function of receiving light that has passed through the inside of the substrate 10 among the light irradiated on the surface of the substrate 10 and generating carriers.
[0037]
However, the material of the infrared light-receiving layer 13 is not limited to this, and any other material having sufficient sensitivity to infrared light (here, a wavelength band of 1.1 [μm] or more) may be used. Good. Further, the method of forming the infrared light receiving layer 13 is not particularly limited. For example, a method of attaching a previously formed infrared light receiving layer to the back surface of the substrate 10, a method of vapor deposition such as sputtering, and the like can be used. When the material is a liquid, a coating method or a spraying method can be used.
[0038]
Usually, the thickness of the substrate 10 is often several hundred [μm]. However, in order to enhance the carrier collection efficiency by enlarging the depletion layer 12 as described later, the substrate 10 is polished to 30 to 100 [μm]. [μm]. At this time, the thickness of the infrared light receiving layer 13 can be set to several hundred [nm] to several [μm].
[0039]
A first electrode 14 for ensuring contact with the substrate 10 is provided at a position appropriately separated from the N-type region 11, while a contact with the infrared light receiving layer 13 is ensured on the lower surface of the infrared light receiving layer 13. A second electrode 15 is provided. A switch 16 that is switched by a control signal (not shown) is provided between the first electrode 14 and the second electrode 15, and a DC power supply 17 is connected to the other terminal of the switch 16. The switch 16 has a function of switching the imaging mode of the solid-state imaging device, as described later. Although the switch 16 is illustrated separately from the substrate 10 in FIG. 1, it is obvious that the function can be formed on the substrate 10.
[0040]
FIG. 3 is a conceptual diagram for explaining the light receiving operation of the solid-state imaging device according to the first embodiment. Here, the light receiving mode inherent in the conventional Si solid-state imaging device is called a visible light (normal) imaging mode, and the infrared light imaging state unique to the present device is called an infrared light imaging mode.
[0041]
1. Visible light imaging mode (see FIG. 3A)
By tilting the switch 16 to the left, the first electrode 14 on the surface of the substrate 10 and the second electrode 15 on the lower surface of the infrared light receiving layer 13 are short-circuited (or may be connected via a very small load). Carriers are generated and accumulated in the depletion layer 12 by the visible light of the light emitted to the photoelectric conversion unit from above. On the other hand, since a PN junction photodiode has little sensitivity to infrared light, the infrared light penetrates deeply into the substrate 10 without losing energy on the way, penetrates the substrate 10 and receives infrared light on the back surface. It reaches the layer 13. Since the infrared receiving layer 13 has high sensitivity to infrared light, carriers are generated in the infrared receiving layer 13. However, since the first electrode 14 and the second electrode 15 are short-circuited as described above, carriers (here, electrons) easily pass between the first electrode 14 and the second electrode inside the substrate 10. ing. Therefore, the carriers generated in the infrared light receiving layer 13 are quickly dissipated through the above-mentioned path, and hardly enter the depletion layer 12. Therefore, since the carriers generated in the infrared light receiving layer 13 are not used, it can be considered that the carrier operates in the same manner as the conventional Si solid-state imaging device.
[0042]
2. Infrared light imaging mode (see FIG. 3B)
By tilting the switch 16 to the right, a negative voltage is applied to the second electrode 15 that contacts the infrared light receiving layer 13. As a result, as shown in the figure, the depletion layer 12 at the PN junction boundary expands to the vicinity of the infrared light receiving layer 13, and the mobility of carriers is greatly improved by the electric field formed inside the depletion layer 12. In such a state, when carriers are generated in the infrared light receiving layer 13, electrons of the carriers easily enter the depletion layer 12, and the inside of the depletion layer 12 is brought close to the N-type region 11 by the action of the electric field. Accumulate while moving quickly. When visible light is included in the incident light, carriers are generated in the depletion layer 12 by the visible light. Therefore, the carrier due to visible light and the carrier due to infrared light are mixed in the depletion layer 12, and a detection output for both visible light and infrared light is obtained.
[0043]
When it is desired to switch between imaging using only infrared light and imaging using only visible light using the solid-state imaging device, an imaging device configuration as shown in FIG. 8 can be employed, for example.
[0044]
That is, an optical filter 104 having a wavelength characteristic that allows only desired infrared light to pass therethrough is installed between the solid-state imaging device 100 and the condenser lens system 106 so as to be freely inserted and removed. When performing infrared imaging, the control unit 103 causes the filter driving unit 105 to insert the optical filter 104 between the condenser lens system 106 and the solid-state imaging device 100. When the projection light from the imaging target 107 passes through the optical filter 104, light in the visible band is removed, and only infrared light enters the solid-state imaging device 100. The solid-state imaging device 100 is controlled by the control unit 103 to operate in the infrared light imaging mode. As a result, a detection signal based on only the carrier generated in the infrared light receiving layer 13 is extracted from the solid-state imaging device 100 as described above, and an infrared image is displayed on the image monitor 102 via the image processing unit 101. It is.
[0045]
Further, as described above, by applying a negative voltage to the second electrode 15, the depletion layer 12 can be enlarged in the back direction, and the degree of expansion of the depletion layer 12 causes carriers generated in the infrared light receiving layer 13. The degree of entering the depletion layer 12 changes. Therefore, by appropriately controlling the voltage applied to the second electrode 15 (strictly, the voltage difference between the voltage on the surface of the substrate 10 and the voltage of the infrared light receiving layer 13), and controlling the spread of the depletion layer 12, The light receiving sensitivity to light can be adjusted. Thereby, in an image finally reproduced, various images can be obtained by adjusting the relative dependence on infrared light.
[0046]
Next, as a second embodiment of the present invention, an example in which a MOS photogate is used as a visible light receiving unit will be described. FIG. 2 is a schematic diagram illustrating a vertical cross-sectional structure of a photoelectric conversion unit of one pixel of the solid-state imaging device according to the second embodiment.
[0047]
A photogate electrode 21 is provided on the surface of the substrate 20 with an oxide film 28 interposed therebetween, and mainly generates carriers for visible light in a MOS capacitor region 22 formed immediately below the photogate electrode 21. Further, similarly to the first embodiment, an infrared receiving layer 23 is formed on the back surface of the substrate 10. A first electrode 24 for ensuring contact with the substrate 20 is provided near the photogate electrode 21, while a first electrode 24 for securing contact with the infrared light-receiving layer 23 is provided on the lower surface of the infrared light-receiving layer 23. Two electrodes 25 are provided. A switch 26 that is switched by a control signal is provided between the first electrode 24 and the second electrode 25, and a DC power supply 27 is connected to the other terminal of the switch 26.
[0048]
FIG. 4 is a conceptual diagram for explaining the light receiving operation of the solid-state imaging device according to the second embodiment. The basic operations in the visible light imaging mode (see FIG. 4A) and the infrared light imaging mode (see FIG. 4B) differ only in the carrier accumulation operation using visible light. Since this is the same as the first embodiment, a brief description will be given.
[0049]
1. Visible light imaging mode (see FIG. 4A)
By tilting the switch 26 to the left, the first electrode 24 and the second electrode 25 on the lower surface of the infrared light receiving layer 23 are short-circuited. Carriers are generated and accumulated in the MOS capacitor region 22 by the visible light of the light emitted to the photoelectric conversion unit from above. On the other hand, the infrared light penetrates deeply into the substrate 20 without losing energy on the way, passes through the substrate 20, and reaches the infrared light receiving layer 23 on the back surface. Since the infrared light receiving layer 23 has high sensitivity to infrared light, carriers are generated in the infrared light receiving layer 23 but are quickly dissipated and hardly enter the MOS capacitor region 22. The infrared light receiving layer 23 does not substantially contribute to imaging, and operates similarly to a conventional photogate type solid-state imaging device.
[0050]
2. Infrared light imaging mode (see FIG. 4B)
By tilting the switch 26 to the right, a negative voltage is applied to the second electrode 25 that contacts the infrared light receiving layer 23. As a result, as shown in the figure, the MOS capacitor region 22 expands to the vicinity of the infrared light receiving layer 23, and the mobility of carriers is greatly improved by the electric field formed in the MOS capacitor region 22 with the expansion. When carriers are generated in the infrared light receiving layer 23 in such a state, the electrons easily enter the MOS capacitor region 22 and quickly move to the upper part of the region 22 by the action of the electric field to be accumulated. . Since carriers generated by visible light also exist in the MOS capacitor region 22, for example, when a transfer gate (not shown) is opened, carriers by infrared light and carriers by visible light are simultaneously sent in the horizontal direction.
[0051]
In this manner, the solid-state imaging device of the second embodiment can switch between the visible light imaging mode and the infrared light imaging mode and execute the same as in the first embodiment. If it is desired to do so, the same method as in the first embodiment may be used.
[0052]
In the above description of the first and second embodiments, the configuration and operation of one pixel have been described. However, in an actual solid-state imaging device, many pixels are arranged close to each other. Therefore, in order to ensure operation stability and improve performance, for example, in the visible light imaging mode, the carrier generated in the infrared light receiving layer of a certain pixel leaks into the depletion layer of an adjacent pixel. It is preferable to adopt a configuration in which prevention of interference or interference between them is considered.
[0053]
Next, the structure and operation of the solid-state imaging device in consideration of such points will be described. FIG. 5 shows an example of a longitudinal sectional structure in which the visible light receiving means is a PN junction photodiode, and FIG. 6 shows an example of a longitudinal sectional structure in which the visible light receiving means is a photogate. The same components as those in FIGS. The same reference numerals are given. Except for the visible light receiving means, the basic structures are the same, so only FIG. 5 will be described.
[0054]
A first diffusion region 30 having conductivity opposite to that of the substrate 10 (N-type in this example) is formed between the N-type regions 11 of adjacent pixels, and the first diffusion region 30 and the N-type region 11 of each pixel are formed. A second diffusion region 31 having the same conductivity as that of the substrate 10 (P type in this example) is formed between them. Appropriate voltages DC1 and DC2 are applied to the first diffusion region 30 and the second diffusion region 31, respectively.
[0055]
By applying an appropriate voltage to the first diffusion region 30, the uniformity of the potential distribution inside the substrate 10 can be improved, so that the carriers generated in the infrared light receiving layer 13 immediately below the depletion layer 12 can be reduced. It can be led to the depletion layer 12 stably. In addition, by extracting carriers generated in the infrared light receiving layer 13 in the middle of the adjacent pixel, leakage of the other pixel to the depletion layer 12 is prevented, thereby improving image quality deterioration such as image blurring and blurring. You can also.
[0056]
On the other hand, by applying an appropriate voltage to the second diffusion region 31, the uniformity of the potential distribution in the vicinity of the surface of the substrate 10 can be improved, thereby further stabilizing the behavior of carriers in the substrate 10. it can. Further, it is possible to assist the extraction of the carrier by the first diffusion region 30 as described above, and it is possible to further improve image quality deterioration such as blurring or blurring of an image.
[0057]
In addition, since the influence of the adjacent pixels can be reduced by adopting the above-described configuration, the infrared light receiving layers 13 and 23 formed on the back surfaces of the substrates 10 and 20 are common to a large number of pixels (that is, separated for each pixel). The infrared light receiving layers 13 and 23 may be separated for each pixel or for each pixel group in which a plurality of pixels are grouped. With such a configuration, although the manufacturing process of the element is slightly complicated, the influence of the adjacent pixels is further reduced, and the image quality can be further improved.
[0058]
In each of the above embodiments, the infrared light receiving layers 13 and 23 are formed on the back surfaces of the substrates 10 and 20, however, for example, as shown in FIG. May be formed. In this case, when a negative voltage is applied to the infrared light receiving layer 13, the depletion layer 12 expands in the lateral direction, and carriers generated in the infrared light receiving layer 13 easily reach the depletion layer 12.
[0059]
Furthermore, it is not necessary to provide an infrared light receiving layer (infrared light receiving means) corresponding to the visible light receiving means of all the pixels included in the solid-state imaging device. An infrared light receiving layer may be provided only in the pixel. Also. When there are pixels provided with an infrared light receiving layer and pixels not provided with an infrared light receiving layer (pixels provided only with visible light receiving means) (particularly arranged close to each other), for example, a difference between the two signals is obtained. Thereby, only the signal for the infrared light can be extracted. By utilizing such a function, an infrared image can be created, and various types of imaging that cannot be realized by a conventional Si solid-state imaging device can be performed.
[0060]
It is to be noted that each of the above embodiments is merely an example, and it is apparent that any changes or modifications within the spirit of the present invention are included in the scope of the claims of the present application.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a vertical cross-sectional structure of a photoelectric conversion unit of one pixel in a solid-state imaging device according to a first embodiment.
FIG. 2 is a schematic diagram illustrating a vertical cross-sectional structure of a photoelectric conversion unit of one pixel in a solid-state imaging device according to a second embodiment.
FIG. 3 is an operation explanatory diagram of the solid-state imaging device according to the first embodiment.
FIG. 4 is an operation explanatory diagram of a solid-state imaging device according to a second embodiment.
FIG. 5 is a schematic diagram showing a longitudinal sectional structure of a main part of a solid-state imaging device according to another embodiment.
FIG. 6 is a schematic diagram showing a longitudinal sectional structure of a main part of a solid-state imaging device according to another embodiment.
FIG. 7 is a schematic diagram showing a longitudinal sectional structure of a main part of a solid-state imaging device according to another embodiment.
FIG. 8 is a configuration diagram of an imaging device using the solid-state imaging device of the first embodiment.
FIG. 9 is a schematic longitudinal sectional view showing an element structure of a conventional Si solid-state imaging element.
[Explanation of symbols]
10, 20 ... substrate
11 ... N-type region
12 ... depletion layer
13, 23 ... infrared receiving layer
14, 24 ... first electrode
15, 25 ... second electrode
16, 26 ... Switch
17, 27… DC power supply
21 ... Photogate electrode
22 ... MOS capacitor area
28 ... Oxide film
30... First diffusion region
31 second diffusion region
100 ... Solid-state image sensor
101 ... Image processing unit
103 ... Control unit
104 ... Optical filter
105 ... Filter drive unit
106: Condensing lens system

Claims (6)

a)シリコン基板上の光照射面に形成され、少なくとも可視帯域の光を受けてキャリアを生成する又はキャリアを生成した後に蓄積するキャリア収集領域を有する可視受光手段と、
b)前記基板を挟んで前記可視受光手段の裏側の面又は該可視受光手段と同一面であってその近傍に設けられ、赤外帯域の光を受けてキャリアを生成する赤外受光手段と、
c)前記赤外受光手段で生成されたキャリアが前記キャリア収集領域まで移動することを促進する、又は逆に該キャリアがキャリア収集領域に到達することを抑制するように、前記基板内部でのキャリアの移動を制御するキャリア移動制御手段と、
を備えることを特徴とする固体撮像素子。
a) a visible light receiving means formed on a light irradiation surface on a silicon substrate and having a carrier collection region for generating carriers by receiving light in at least a visible band or for accumulating after generating carriers;
b) an infrared light receiving means which is provided on the surface on the back side of the visible light receiving means or on the same surface as the visible light receiving means with the substrate interposed therebetween, and which generates carriers by receiving light in an infrared band;
c) a carrier inside the substrate so as to promote the movement of the carrier generated by the infrared receiving means to the carrier collection area, or to suppress the carrier from reaching the carrier collection area. Carrier movement control means for controlling the movement of
A solid-state imaging device comprising:
前記赤外受光手段は前記基板の裏側の面に設けられ、該基板内部を通過してきた赤外光を受けてキャリアを生成することを特徴とする請求項1に記載の固体撮像素子。2. The solid-state imaging device according to claim 1, wherein the infrared light receiving unit is provided on a back surface of the substrate, and generates a carrier by receiving infrared light passing through the inside of the substrate. 3. 前記キャリア移動制御手段は、前記赤外受光手段と前記キャリア収集領域との間に電位差を与える又は該電位差を増大させることにより、赤外受光手段からキャリア収集領域までのキャリアの移動を促進することを特徴とする請求項1又は2に記載の固体撮像素子。The carrier movement control means promotes the movement of carriers from the infrared light receiving means to the carrier collection area by giving a potential difference between the infrared light receiving means and the carrier collection area or increasing the potential difference. The solid-state imaging device according to claim 1, wherein: 前記キャリア移動制御手段は、前記キャリア収集領域の外側にキャリアの通り易い仮想的なキャリア通過経路を形成することにより、該キャリアがキャリア収集領域に到達することを抑制することを特徴とする請求項1〜3のいずれかに記載の固体撮像素子。The carrier movement control means suppresses the carrier from reaching the carrier collection area by forming a virtual carrier passage path outside the carrier collection area where the carrier easily passes. The solid-state imaging device according to any one of claims 1 to 3. 前記キャリア移動制御手段は、前記可視受光手段の周囲に形成されたP型及び/又はN型の拡散領域と、該拡散領域に所定電圧を印加する電圧印加手段と、を含むことを特徴とする請求項1〜4のいずれかに記載の固体撮像素子。The carrier movement control unit includes a P-type and / or N-type diffusion region formed around the visible light receiving unit, and a voltage application unit that applies a predetermined voltage to the diffusion region. The solid-state imaging device according to claim 1. 請求項1〜5のいずれかに記載の固体撮像素子と、可視帯域の光を遮断する光学フィルタと、該光学フィルタを前記固体撮像素子の光照射面の手前に挿入する又は該光照射面の手前から取り除くフィルタ駆動手段と、を備え、前記光学フィルタを固体撮像素子の光照射面の手前に挿入した状態で、前記キャリア移動制御手段により、赤外受光手段で生成されたキャリアがキャリア収集領域まで移動することを促進することによって、可視帯域の光を除去した、赤外帯域の光による画像信号を取得するようにしたことを特徴とする撮像装置。The solid-state imaging device according to claim 1, an optical filter that blocks light in a visible band, and the optical filter is inserted in front of a light irradiation surface of the solid-state imaging device or the light irradiation surface. Filter driving means for removing from the near side, and in a state where the optical filter is inserted just before the light irradiation surface of the solid-state imaging device, the carrier generated by the infrared receiving means by the carrier movement control means, the carrier collection area An imaging apparatus characterized by acquiring an image signal by light in an infrared band by removing light in a visible band by facilitating the movement of the image signal.
JP2002266171A 2002-09-12 2002-09-12 Solid-state imaging device and imaging device using the device Expired - Fee Related JP4271917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266171A JP4271917B2 (en) 2002-09-12 2002-09-12 Solid-state imaging device and imaging device using the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266171A JP4271917B2 (en) 2002-09-12 2002-09-12 Solid-state imaging device and imaging device using the device

Publications (2)

Publication Number Publication Date
JP2004103964A true JP2004103964A (en) 2004-04-02
JP4271917B2 JP4271917B2 (en) 2009-06-03

Family

ID=32265052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266171A Expired - Fee Related JP4271917B2 (en) 2002-09-12 2002-09-12 Solid-state imaging device and imaging device using the device

Country Status (1)

Country Link
JP (1) JP4271917B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238093A (en) * 2005-02-25 2006-09-07 Sony Corp Imaging device
US7755016B2 (en) 2005-07-21 2010-07-13 Sony Corporation Physical information acquisition method, physical information acquisition device, and semiconductor device
US7986018B2 (en) 2006-10-23 2011-07-26 Sony Corporation Solid-state imaging device
US8119965B2 (en) 2006-01-25 2012-02-21 Kyocera Corporation Image sensor having two light receiving elements and camera module having the image sensor
JP2013516078A (en) * 2010-06-01 2013-05-09 博立▲碼▼杰通▲訊▼(深▲せん▼)有限公司 Multispectral photosensitive member
US9219094B2 (en) 2011-07-11 2015-12-22 Samsung Electronics Co., Ltd. Backside illuminated image sensor
US9312300B2 (en) 2013-11-01 2016-04-12 Sony Corporation Solid-state imaging device, method of manufacturing the same, and electronic apparatus
WO2017024121A1 (en) * 2015-08-04 2017-02-09 Artilux Corporation Germanium-silicon light sensing apparatus
WO2017035447A1 (en) * 2015-08-27 2017-03-02 Artilux Corporation Wide spectrum optical sensor
US9786715B2 (en) 2015-07-23 2017-10-10 Artilux Corporation High efficiency wide spectrum sensor
US10254389B2 (en) 2015-11-06 2019-04-09 Artilux Corporation High-speed light sensing apparatus
US10418407B2 (en) 2015-11-06 2019-09-17 Artilux, Inc. High-speed light sensing apparatus III
WO2019224936A1 (en) * 2018-05-23 2019-11-28 オリンパス株式会社 Solid-state image capture device and image capture device
US10564718B2 (en) 2015-08-04 2020-02-18 Artilux, Inc. Eye gesture tracking
WO2020095513A1 (en) 2018-11-06 2020-05-14 富士フイルム株式会社 Imaging lens and imaging device
US10707260B2 (en) 2015-08-04 2020-07-07 Artilux, Inc. Circuit for operating a multi-gate VIS/IR photodiode
US10741598B2 (en) 2015-11-06 2020-08-11 Atrilux, Inc. High-speed light sensing apparatus II
US10739443B2 (en) 2015-11-06 2020-08-11 Artilux, Inc. High-speed light sensing apparatus II
US10777692B2 (en) 2018-02-23 2020-09-15 Artilux, Inc. Photo-detecting apparatus and photo-detecting method thereof
US10854770B2 (en) 2018-05-07 2020-12-01 Artilux, Inc. Avalanche photo-transistor
US10861888B2 (en) 2015-08-04 2020-12-08 Artilux, Inc. Silicon germanium imager with photodiode in trench
US10886309B2 (en) 2015-11-06 2021-01-05 Artilux, Inc. High-speed light sensing apparatus II
US10886311B2 (en) 2018-04-08 2021-01-05 Artilux, Inc. Photo-detecting apparatus
US10969877B2 (en) 2018-05-08 2021-04-06 Artilux, Inc. Display apparatus
US11630212B2 (en) 2018-02-23 2023-04-18 Artilux, Inc. Light-sensing apparatus and light-sensing method thereof

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531781B2 (en) 2005-02-25 2009-05-12 Sony Corporation Imager with image-taking portions optimized to detect separated wavelength components
JP2006238093A (en) * 2005-02-25 2006-09-07 Sony Corp Imaging device
US7755016B2 (en) 2005-07-21 2010-07-13 Sony Corporation Physical information acquisition method, physical information acquisition device, and semiconductor device
US8035069B2 (en) 2005-07-21 2011-10-11 Sony Corporation Physical information acquisition method, physical information acquisition device, and semiconductor device
US8519319B2 (en) 2005-07-21 2013-08-27 Sony Corporation Physical information acquisition method, physical information acquisition device, and semiconductor device
US8119965B2 (en) 2006-01-25 2012-02-21 Kyocera Corporation Image sensor having two light receiving elements and camera module having the image sensor
US8969987B2 (en) 2006-10-23 2015-03-03 Sony Corporation Solid-state imaging device
US7986018B2 (en) 2006-10-23 2011-07-26 Sony Corporation Solid-state imaging device
KR101432016B1 (en) 2010-06-01 2014-08-20 볼리 미디어 커뮤니케이션스 (센젠) 캄파니 리미티드 Multispectral photosensitive device
US9184204B2 (en) 2010-06-01 2015-11-10 Boly Media Communications (Shenzhen) Co., Ltd. Multi-spectrum photosensitive device
JP2013516078A (en) * 2010-06-01 2013-05-09 博立▲碼▼杰通▲訊▼(深▲せん▼)有限公司 Multispectral photosensitive member
US9219094B2 (en) 2011-07-11 2015-12-22 Samsung Electronics Co., Ltd. Backside illuminated image sensor
US9312300B2 (en) 2013-11-01 2016-04-12 Sony Corporation Solid-state imaging device, method of manufacturing the same, and electronic apparatus
US10269862B2 (en) 2015-07-23 2019-04-23 Artilux Corporation High efficiency wide spectrum sensor
US11335725B2 (en) 2015-07-23 2022-05-17 Artilux, Inc. High efficiency wide spectrum sensor
US9786715B2 (en) 2015-07-23 2017-10-10 Artilux Corporation High efficiency wide spectrum sensor
US10615219B2 (en) 2015-07-23 2020-04-07 Artilux, Inc. High efficiency wide spectrum sensor
US10707260B2 (en) 2015-08-04 2020-07-07 Artilux, Inc. Circuit for operating a multi-gate VIS/IR photodiode
WO2017024121A1 (en) * 2015-08-04 2017-02-09 Artilux Corporation Germanium-silicon light sensing apparatus
US10056415B2 (en) 2015-08-04 2018-08-21 Artilux Corporation Germanium-silicon light sensing apparatus
US11756969B2 (en) 2015-08-04 2023-09-12 Artilux, Inc. Germanium-silicon light sensing apparatus
US11755104B2 (en) 2015-08-04 2023-09-12 Artilux, Inc. Eye gesture tracking
US10256264B2 (en) 2015-08-04 2019-04-09 Artilux Corporation Germanium-silicon light sensing apparatus
US9954016B2 (en) 2015-08-04 2018-04-24 Artilux Corporation Germanium-silicon light sensing apparatus
US10269838B2 (en) 2015-08-04 2019-04-23 Artilux Corporation Germanium-silicon light sensing apparatus
US10964742B2 (en) 2015-08-04 2021-03-30 Artilux, Inc. Germanium-silicon light sensing apparatus II
US10861888B2 (en) 2015-08-04 2020-12-08 Artilux, Inc. Silicon germanium imager with photodiode in trench
US10761599B2 (en) 2015-08-04 2020-09-01 Artilux, Inc. Eye gesture tracking
US10756127B2 (en) 2015-08-04 2020-08-25 Artilux, Inc. Germanium-silicon light sensing apparatus
US10564718B2 (en) 2015-08-04 2020-02-18 Artilux, Inc. Eye gesture tracking
US10685994B2 (en) 2015-08-04 2020-06-16 Artilux, Inc. Germanium-silicon light sensing apparatus
TWI720821B (en) * 2015-08-27 2021-03-01 光澄科技股份有限公司 Optical sensor
US9893112B2 (en) 2015-08-27 2018-02-13 Artilux Corporation Wide spectrum optical sensor
WO2017035447A1 (en) * 2015-08-27 2017-03-02 Artilux Corporation Wide spectrum optical sensor
US10157954B2 (en) 2015-08-27 2018-12-18 Artilux Corporation Wide spectrum optical sensor
CN115824395B (en) * 2015-08-27 2023-08-15 光程研创股份有限公司 Wide-spectrum optical sensor
CN114754864B (en) * 2015-08-27 2023-03-24 光程研创股份有限公司 Wide-frequency spectrum optical sensor
CN115824395A (en) * 2015-08-27 2023-03-21 光程研创股份有限公司 Wide-frequency spectrum optical sensor
US10770504B2 (en) 2015-08-27 2020-09-08 Artilux, Inc. Wide spectrum optical sensor
CN108140656B (en) * 2015-08-27 2022-07-26 光程研创股份有限公司 Wide-frequency spectrum optical sensor
CN114754864A (en) * 2015-08-27 2022-07-15 光程研创股份有限公司 Wide-frequency spectrum optical sensor
CN108140656A (en) * 2015-08-27 2018-06-08 奥特逻科集团 Wide spectrum optical sensor
US10310060B2 (en) 2015-11-06 2019-06-04 Artilux Corporation High-speed light sensing apparatus
US11131757B2 (en) 2015-11-06 2021-09-28 Artilux, Inc. High-speed light sensing apparatus
US10741598B2 (en) 2015-11-06 2020-08-11 Atrilux, Inc. High-speed light sensing apparatus II
US10886312B2 (en) 2015-11-06 2021-01-05 Artilux, Inc. High-speed light sensing apparatus II
US10353056B2 (en) 2015-11-06 2019-07-16 Artilux Corporation High-speed light sensing apparatus
US10254389B2 (en) 2015-11-06 2019-04-09 Artilux Corporation High-speed light sensing apparatus
US11747450B2 (en) 2015-11-06 2023-09-05 Artilux, Inc. High-speed light sensing apparatus
US11637142B2 (en) 2015-11-06 2023-04-25 Artilux, Inc. High-speed light sensing apparatus III
US11749696B2 (en) 2015-11-06 2023-09-05 Artilux, Inc. High-speed light sensing apparatus II
US10739443B2 (en) 2015-11-06 2020-08-11 Artilux, Inc. High-speed light sensing apparatus II
US10795003B2 (en) 2015-11-06 2020-10-06 Artilux, Inc. High-speed light sensing apparatus
US10886309B2 (en) 2015-11-06 2021-01-05 Artilux, Inc. High-speed light sensing apparatus II
US11579267B2 (en) 2015-11-06 2023-02-14 Artilux, Inc. High-speed light sensing apparatus
US10418407B2 (en) 2015-11-06 2019-09-17 Artilux, Inc. High-speed light sensing apparatus III
US10777692B2 (en) 2018-02-23 2020-09-15 Artilux, Inc. Photo-detecting apparatus and photo-detecting method thereof
US11630212B2 (en) 2018-02-23 2023-04-18 Artilux, Inc. Light-sensing apparatus and light-sensing method thereof
US11329081B2 (en) 2018-04-08 2022-05-10 Artilux, Inc. Photo-detecting apparatus
US10886311B2 (en) 2018-04-08 2021-01-05 Artilux, Inc. Photo-detecting apparatus
US10854770B2 (en) 2018-05-07 2020-12-01 Artilux, Inc. Avalanche photo-transistor
US10969877B2 (en) 2018-05-08 2021-04-06 Artilux, Inc. Display apparatus
WO2019224936A1 (en) * 2018-05-23 2019-11-28 オリンパス株式会社 Solid-state image capture device and image capture device
WO2020095513A1 (en) 2018-11-06 2020-05-14 富士フイルム株式会社 Imaging lens and imaging device

Also Published As

Publication number Publication date
JP4271917B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP4271917B2 (en) Solid-state imaging device and imaging device using the device
US11830766B2 (en) Imaging device, method of manufacturing imaging device, and electronic device
US11575847B2 (en) Solid-state imaging device, method of driving the same, and electronic apparatus
JP4752926B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, driving method of solid-state imaging device, electronic apparatus
US7423302B2 (en) Pinned photodiode (PPD) pixel with high shutter rejection ratio for snapshot operating CMOS sensor
CN104639848B (en) The driving method and electronic device of solid-state imaging device, solid-state imaging device
US7550793B2 (en) Image pickup device and camera with expanded dynamic range
US8692303B2 (en) Solid-state imaging device, electronic device, and manufacturing method for solid-state imaging device
CN101840926B (en) Solid-state imaging device, method of manufacturing the same, method of driving the same, and electronic apparatus
KR102577353B1 (en) Solid-state imaging element and electronic device
Janesick et al. Developments and applications of high-performance CCD and CMOS imaging arrays
US9391103B2 (en) Image pickup element and image pickup device
CN103703759A (en) Solid-state image pickup device and method for driving solid-state image pickup device
TWI790584B (en) Solid-state imaging device, method for manufacturing solid-state image device, and electronic apparatus
JP2014527307A (en) Image sensor unit pixel and light receiving element thereof
JP2009181986A (en) Solid-state image pickup element and solid-state image pickup device
US20150108598A1 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
TW201403803A (en) Large CMOS image sensor pixel with improved performance
US20170003165A1 (en) Image sensor pixels with conductive bias grids
JP6260139B2 (en) Imaging device and imaging apparatus
US20210377481A1 (en) Multi-function transfer gate electrode for a photodetector and methods of operating the same
Etoh et al. R57 progress of ultra-high-speed image sensors with in-situ CCD storage
Arai et al. Simulation based design for back-side illuminated ultrahigh-speed CCDs
JP2021082785A (en) Solid state imaging device and imaging apparatus
Süss et al. A novel JFET readout structure applicable for pinned and lateral drift-field photodiodes

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040701

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees