JP2004101740A - Photonic crystal waveguide - Google Patents

Photonic crystal waveguide Download PDF

Info

Publication number
JP2004101740A
JP2004101740A JP2002261783A JP2002261783A JP2004101740A JP 2004101740 A JP2004101740 A JP 2004101740A JP 2002261783 A JP2002261783 A JP 2002261783A JP 2002261783 A JP2002261783 A JP 2002261783A JP 2004101740 A JP2004101740 A JP 2004101740A
Authority
JP
Japan
Prior art keywords
photonic crystal
waveguide
lattice
crystal waveguide
line defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002261783A
Other languages
Japanese (ja)
Other versions
JP3903886B2 (en
Inventor
Akihiko Araya
新家 昭彦
Masaya Notomi
納富 雅也
Eiichi Kuramochi
倉持 栄一
Tetsushi Shoji
荘司 哲史
Toshibumi Watanabe
渡辺 俊文
Yasushi Tsuchizawa
土澤 泰
Koji Yamada
山田 浩治
Hirobumi Morita
森田 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002261783A priority Critical patent/JP3903886B2/en
Publication of JP2004101740A publication Critical patent/JP2004101740A/en
Application granted granted Critical
Publication of JP3903886B2 publication Critical patent/JP3903886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photonic crystal waveguide having structure capable of realizing highly efficient connection with a conventional optical waveguide. <P>SOLUTION: In the photonic crystal waveguide having linear defects obtained by linearly removing a part of lattices of slab type two-dimensional photonic crystal in a waveguide direction, the shape or arrangement of a structure on the lattice points arranged on both sides between which linear defects in a prescribed range from the end of the photonic crystal waveguide in the waveguide direction is held is made different from the shape or arrangement of a structure formed on other lattice points so that influence exerted by crystal lattices on propagation light made incident from the end of the photonic crystal waveguide is gradually changed in accordance with the approach of the propagation light. For instance, width between sidewalls on the linear defect center side of the structure on lattice points between both the sides holding the linear defects between them is gradually narrowed in accordance with the increase of distances from the end of the structure. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光情報処理、光伝送等に用いられるレーザ、光集積回路等の様々な光デバイス等を構成する基本構造及び光学部品に用いられ得るフォトニック結晶導波路に関する。
【0002】
【従来の技術】
現在の光デバイスは光の閉じ込めを屈折率差で行っているため、光の閉じ込め領域を小さくできないことから、素子を小さく構成する事ができない。更に、素子の集積度を上げるために急峻な曲げ導波路を構成すると散乱損失が生じるため、光回路の小型・集積化が行えずその大きさは電子デバイスに比べ非常に大きい。そのため、従来とは全く異なる概念で光の閉じ込めを行うことができるフォトニック結晶は、上述の問題を解決することができる光の新素材として期待されている。
【0003】
フォトニック結晶とは、屈折率の異なる2種類以上の媒質によって光の波長と同程度の周期性を形成した人工的な多次元周期構造体であり、電子のバンド構造に似た光のバンド構造を有する。そのため、特定の構造には光の禁制帯(フォトニックバンドギャップ)が表れる。
【0004】
フォトニックバンドギャップを有するフォトニック結晶に周期性を乱す線欠陥を導入すると、バンドギャップの周波数領域内に導波モードが形成され完全に光を閉じ込める光導波路を実現できることが理論的に指摘されている(例えば、非特許文献1参照)。J. D. Joannopoulosらは、光の波長程度の格子定数aの四角格子上に半導体程度の大きな屈折率をもつ半径a/5の円柱を配置した2次元フォトニック結晶中に、円柱を1列配置しない線欠陥を導入し、急角度に曲げた場合でも原理的に散乱損失が生じない光導波路を構成可能なことを理論的に示した。このような導波路は超小型光集積回路を構成する上で非常に重要な導波路となり得る。
【0005】
また、特願2001−394499号明細書には低損失で群速度の大きな単一モードをもつスラブ型2次元フォトニック結晶導波路が記載されている。
【0006】
【非特許文献1】
J. D. Joannopoulos, P.R.Villeneuve, and S.Fan, “Photonic Crystal: putting a new twist on light”, Nature 386,143(1997)。
【0007】
【発明が解決しようとする課題】
しかし、線欠陥を導入したフォトニック結晶導波路を伝播する光のモードの特徴は従来の光導波路のそれとは大きく異なるため、従来型の光導波路との接続が非常に困難である。これは、フォトニック結晶を用いた光回路を外部ネットワークに接続する時や、他の光回路にフォトニック結晶機能デバイスを組み込む時に大きな光損失が生じることを意味し、非常に大きな問題である。
【0008】
本発明は上記の点に鑑みてなされたものであり、スラブ型2次元フォトニック結晶を用いた光導波路における上記の問題点を解決し、従来型の光導波路との高効率接続を実現する構造をもつフォトニック結晶導波路を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本発明のフォトニック結晶導波路は以下のような構造を有している。
【0010】
すなわち、本発明は、スラブ型2次元フォトニック結晶の格子の一部を導波方向に直線状に除き又は格子の一部を変形し若しくは移動させた線欠陥を有するフォトニック結晶導波路であり、前記フォトニック結晶導波路の端から入射した伝播光への結晶格子が与える影響を伝播光が進入するに従い徐々に変化させるように、前記端から導波方向への所定範囲における線欠陥を挟む両側の格子点上の構造体の形状又は配置を、他の格子点上の構造体の形状又は配置と異なるものとしたことを特徴とする。
【0011】
上記フォトニック結晶導波路において、前記線欠陥を挟む両側の格子点上の構造体の線欠陥中央側の側壁間の幅を、当該構造体の前記端からの距離が大きいほど狭くする構造とすることができる。
また、前記フォトニック結晶導波路と従来型の光導波路とを接続する場合には、該従来型の光導波路の幅は、前記所定範囲における前記線欠陥を挟む両側の格子点上の構造体の線欠陥中央側の側壁間の幅より広くする。
本発明によれば、伝播光に対して結晶格子が与える影響を伝播光が進入するに従い徐々に大きくすることができるので、モードの性質が大きく異なる従来型の光導波路とフォトニック結晶導波路との接続部分における光損失を減少させることができ、フォトニック結晶を用いた光回路の外部ネットワークへの接続や、他の光回路へのフォトニック結晶機能デバイスの組み込みが可能となる。
【0012】
更に、前記フォトニック結晶導波路の線欠陥における両側の格子間隔を、スラブ型2次元フォトニック結晶の格子の1列を除いただけの通常の欠陥構造における欠陥部分の両側の格子間隔の0.5倍から1.6倍のいずれかの値とすることにより、単一モード条件を満足させることができる。
【0013】
なお、前記所定範囲における線欠陥を挟む両側の格子点上の各構造体の形状を、円柱の一部をその中心軸に平行な平面で切り取った形状とすることができる。
【発明の実施の形態】
図1に、本発明の一実施形態における単純一列線欠陥型フォトニック結晶導波路と従来型の直線導波路(Si細線型導波路)との結合系の構造図を示す。図1に示す例では、幅が0.74μmの単一モードSi細線型の導波路と、一列線欠陥で構成された格子定数0.39μmのフォトニック結晶導波路とを接合させている。
【0014】
なお、本発明の実施形態におけるフォトニック結晶導波路は、スラブ型2次元フォトニック結晶導波路である。スラブ型2次元フォトニック結晶とは、誘電体薄膜スラブに誘電体薄膜スラブよりも低い屈折率の円柱状又は多角柱状の低屈折率柱(例えば、空気穴。この低屈折率柱を本明細書では構造体と称する場合がある)を適当な2次元周期間隔で設け、さらに誘電体薄膜スラブの上下を誘電体薄膜スラブよりも低い屈折率を持つ上部クラッド層と下部クラッド層とで挟んだフォトニック結晶のことである。
【0015】
本発明の一実施形態におけるフォトニック結晶導波路は、従来型の直線導波路からフォトニック結晶導波路へのモード変換をスムーズに行うために、接続部分付近の線欠陥の両脇の穴の形状を円を直線で切り取った形状(円柱をその中心軸に平行な平面で切り取った形状)とし、フォトニック結晶導波路の奥に入るに従い切り取る面積を小さくしている。
【0016】
次に、図1に示すような本発明の構造により、従来型の光導波路と本発明のフォトニック結晶光導波路の接続における光損失を減少させることができる理由について、図2を用いて説明する。
【0017】
図2は、従来の典型的な一列線欠陥型のフォトニック結晶導波路の分散曲線を示す図である。図2に示される伝搬定数・周波数領域であればSi細線導波路の分散曲線はほぼ直線であるのに対し、フォトニック結晶導波路に対する分散曲線は複雑な曲線で示されている。フォトニック結晶導波路の最も特異な点は、分散曲線が図2のように規格化周波数(規格化伝搬定数)k=0〜0.5に収まってしまうことである。これは、フォトニック結晶導波路では光が伝播する方向に結晶の格子点が周期的に配置されており、光がk=0.5でブラグ反射されることに起因する。またフォトニック結晶の2次元面内の周期性により、その分散曲線はさらに特殊な形状となっている。
【0018】
この様な典型的な1列線欠陥型のフォトニック結晶導波路と従来型のSi細線導波路の結合を考えたとき、以下のような問題が生じる。
【0019】
図2の実線で示された導波モードに着目すると、図中に示された一点鎖線に漸近する直線的な領域と、大きく曲がり一点鎖線から離れていく領域(図2中の○の部分)に分類することができる。直線的な領域ではモードのフィールドパターンや光学的な特徴がSi細線導波路のそれと比較的似通っており、この領域を利用したとすれば両導波路間のカップリング効率は高い。
【0020】
しかしながら、フォトニック結晶導波路はクラッドのライトラインより高周波数側でリーキーな特性を示すため、この領域を利用することはできない。一方、フォトニック結晶導波路として使用可能なライトラインよりも低周波数側の領域(図2中の○の部分)においても、フォトニック結晶導波路の導波モードの分散曲線は大きく折れ曲がり、モードのフィールドパターンや光学的特性はSi細線導波路のそれと大きく異なるため、直接両導波路を結合しても高い結合効率を得ることができない。また、点線で示された導波モードは、それが存在する周波数領域に2本のモードが存在し、つまり単一モード条件が満足されていないため、光集積回路への応用には適さない。
【0021】
一つの解決手段として、フォトニック結晶導波路におけるクラッド層を空気とすることでクラッドのライトラインを高周波数側にシフトさせ、フォトニック結晶導波路の分散曲線が直線に近い領域をライトラインより低周波数側で利用する方法がある。しかしながら、この方法では、厚さがコンマ数ミクロンのSi細線やフォトニック結晶を中空に浮かせる必要があり、強度を確保できないという問題がある。
【0022】
一方、図1に示したような本発明の構造によれば、従来の直線導波路からフォトニック結晶導波路に光を入射する際、モードの性質が大きく異なる要因である結晶の周期性の伝播光への影響を徐々に大きくする領域を置くことで、光の入射の際に生じる急激なモード変換を緩和し、導波路の結合部における反射や散乱・漏れを抑制し、光損失を減少させることができるため、フォトニック結晶が機能する図2中の○の領域において、両導波路のカップリング効率の大幅な改善が可能になる。
【0023】
次に、従来型のSi細線導波路と、本発明の単純一列線欠陥型のフォトニック結晶導波路を結合したときの光透過特性を図3に示す。
【0024】
図3中の実線は本発明のフォトニック結晶導波路を用いたときの光透過特性を示し、点線は、従来の単純一列線欠陥型のフォトニック結晶導波路を用いたときの光透過特性を示す。図3における例では、本発明のフォトニック結晶導波路として、Si細線導波路との接合部分付近に導波方向に穴10個分の変換領域を設置したものを用いている。
【0025】
前述したように、従来のフォトニック結晶導波路とSi細線導波路との直接接合ではフォトニック結晶導波路が機能する低周波数領域(図3の斜線部)において高い結合効率を得ることが難しいため、透過率が低い。一方、変換領域を設置した本発明の実施形態に係る結合系の透過率特性はこの領域(図3の斜線部分)において大幅に改善されている。この結果は、本発明のモード変換機構の導入により、モードの性質が大きく異なる従来型の光導波路とフォトニック結晶導波路とを高効率に接続することが可能であることを示している。
【0026】
次に、この機構を用いた他の実施形態を図4を用いて説明する。図4は、Si細線型導波路と本実施形態における幅変化型フォトニック結晶導波路の結合系の構造図を示す図である。
【0027】
この実施形態では、幅が0.4μmの単一モードSi細線型の導波路と、一列線欠陥を挟む結晶(格子定数a=0.39μm)全体をずらすことで欠陥の幅を、単純一列線欠陥構造における幅の0.7倍に狭めたフォトニック結晶導波路(幅変化型フォトニック結晶導波路という)とを接合させている。単一モードSi細線型の導波路からフォトニック結晶導波路へのモード変換をスムーズに行うため、Si細線の領域で導波路幅を0.4μmから0.35μmまで長さ25μmで絞り、さらにフォトニック結晶導波路の領域で線欠陥の両脇の穴の形状を、円を直線で切り取った形(円柱を縦に平面で切った形)に設定し、フォトニック結晶導波路の奥に入るに従い切り取る面積を小さくしている。
【0028】
図5に、図4に示す幅変化型フォトニック結晶導波路の分散曲線を示す。図5の○で示すように、このフォトニック結晶導波路はクラッド層のライトラインより低周波数側の領域における透過帯域が広い(分散曲線の傾きが大きい)ことと、その領域において分散曲線が直線に近いことに特徴がある。
【0029】
クラッド層のライトラインより低周波数側の領域における直線に近い部分の透過帯域が広いことから、Si細線と当該幅変化型フォトニック結晶導波路とを直接接続すると、高透過特性が従来より広帯域で得られる。ただし、さらに低周波数領域になると分散曲線は直線からはずれる傾向がある。この領域ではフォトニック結晶導波路特有の物理現象が現れるため、将来のフォトニック結晶デバイスのキーポイントとなる周波数帯と期待されているが(M. Notomi, k.Yamada, A.Shinya, J.Takahashi, C.Takahashi, and I.Yokohama, “Extremely Large Group−Velocity Dispersion of Line−Defect Waveguides in Photonic Crystal Slabs”, Physical Review Letters 87, 253902 (2001).)、従来の光導波路とあまりにも特徴が異なるため、Si細線と当該幅変化型フォトニック結晶導波路を直接接続しても高い接続効率を得られない。
【0030】
図6に、Si細線導波路と本発明の幅変化型フォトニック結晶導波路とを結合したときの光透過特性を示す。図6(a)は、本発明の構造を用いたとき、すなわち、導波方向に穴50個分の変換領域を入出力部(接続部分付近)に設置したとき、図6(b)は設置しなかったときの光の透過特性の実験結果を示す図である。
【0031】
前述したように、従来のフォトニック結晶導波路とSi細線導波路との直接接合ではフォトニック結晶導波路特有の現象が現れる長波長領域(図6(b)におけるX部分)において高い結合効率を得ることが難しいため、透過光強度が低い。一方、図6(a)に示すように、モード変換領域を設置した本発明のフォトニック結晶導波路とSi細線導波路との結合系の透過率特性がこの領域(X部分)において大幅に改善されていることがわかる。
【0032】
この結果は、本発明のモード変換機構の導入により、モードの性質が大きく異なる従来型の光導波路とフォトニック結晶導波路とを高効率に接続することが可能であり、この構造がフォトニック結晶特有の物理現象を結晶の外部に高効率に取り出す機構となりえることを示している。
【0033】
次に、これらの高効率接続が実現されるためのフォトニック結晶導波路の構造条件について説明する。
【0034】
本発明のフォトニック結晶導波路では、従来型の光導波路(Si細線導波路)を伝播した光がフォトニック結晶導波路内に進入するに従い、徐々にフォトニック結晶導波路の線欠陥を挟む両側の格子点の影響を受けるようにする必要がある。そのためには、図1、図4に示すように、従来型の導波路(Si細線導波路)の幅(AA´)が、フォトニック結晶導波路内の両サイドの格子点上に配置された構造体の導波路中央側の側壁幅(BB´)よりも広いことが必要である。そして、A−B、A´−B´の直線上に構造体の導波路中央側の側壁が沿うように、構造体の形状を決める、もしくは構造体の位置を決めることにより、上述の条件を満足することができる。なお、側壁は平面に限られない。
【0035】
更に、光集積回路として利用されるフォトニック結晶導波路は単一モード条件を満足することが望ましい。そのため、フォトニック結晶導波路の線欠陥を挟む両側の格子点の距離Wは、2次元フォトニック結晶の格子一列を除いただけの線欠陥を挟む両側の格子点の距離Woの0.5倍から1.6倍のいずれかの値である必要がある。なお、単一モード条件を満足させるためのフォトニック結晶導波路の構造については、例えば特願2001−394499号明細書に記載されている。
【0036】
また、直線導波路との接続部分からフォトニック結晶導波路の奥に向けて線欠陥の両側の構造体の側壁間の間隔を次第に狭めていく本発明の構造は、特願2001−394499号明細書に記載されているような、光導波部における格子点上の構造体(誘電体柱)をずらしたり、構造体の径を変化させたフォトニック結晶導波路にも適用できる。なお、本明細書ではこのような構造における光導波部も線欠陥と称している。
【0037】
本発明は、上記の実施例に限定されることなく、特許請求の範囲内で種々変更・応用が可能である。
【0038】
【発明の効果】
以上説明したように、図1、図4に示すようなモード変換領域を有するフォトニック結晶導波路の構造を用いることにより、モードの性質の大きく異なる従来型の光導波路とフォトニック結晶光導波路とを高効率に接続することが可能になり、フォトニック結晶を用いた光回路の外部ネットワークヘの接続や、他の光回路へのフォトニック結晶機能デバイスの組み込みが可能となる。
【図面の簡単な説明】
【図1】従来型の単一モード直線導波路(Si細線導波路)と本発明の単純一列線欠陥型のフォトニック結晶導波路の結合系の構造図である。
【図2】従来の典型的な単純一列線欠陥フォトニック結晶導波路の導波モード分散を説明する図である。
【図3】Si細線導波路と単純一列線欠陥型のフォトニック結晶導波路とを結合したときの光透過特性を示す図である。
【図4】Si細線型導波路と幅変化型フォトニック結晶導波路の結合系の構造図である。
【図5】幅変化型線欠陥フォトニック結晶導波路の導波モード分散を説明するための図である。
【図6】Si細線導波路と幅変化型線欠陥型のフォトニック結晶導波路を結合したときの光透過特性を示す図である。
【符号の説明】
a 格子常数
W フォトニック結晶導波路の線欠陥を挟む両側の格子点の距離
Wo フォトニック結晶の格子一列を除いただけの線欠陥を挟む両側の格子点の距離
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photonic crystal waveguide that can be used for a basic structure and an optical component of various optical devices such as a laser and an optical integrated circuit used for optical information processing and optical transmission.
[0002]
[Prior art]
Since current optical devices confine light using a difference in refractive index, the confined region of light cannot be reduced, so that the element cannot be configured small. Furthermore, if a steeply bent waveguide is formed to increase the degree of integration of the element, scattering loss occurs. Therefore, the optical circuit cannot be miniaturized and integrated, and its size is much larger than that of an electronic device. Therefore, a photonic crystal that can confine light with a concept completely different from the conventional one is expected as a new light material that can solve the above-described problems.
[0003]
A photonic crystal is an artificial multidimensional periodic structure in which two or more media having different refractive indices form a periodicity comparable to the wavelength of light, and a light band structure similar to an electron band structure. Having. Therefore, a light forbidden band (photonic band gap) appears in the specific structure.
[0004]
It has been theoretically pointed out that introducing a line defect that disturbs periodicity into a photonic crystal having a photonic band gap can form an optical waveguide in which a waveguide mode is formed within the frequency range of the band gap and completely confine light. (For example, see Non-Patent Document 1). J. D. Joannopoulos et al. Disclose a line defect in which a single column is not arranged in a two-dimensional photonic crystal in which a cylinder having a radius a / 5 having a large refractive index similar to that of a semiconductor is arranged on a square lattice having a lattice constant a of about the wavelength of light. It was theoretically shown that it is possible to construct an optical waveguide in which scattering loss does not occur in principle even when bent at a sharp angle. Such a waveguide can be a very important waveguide in forming a micro optical integrated circuit.
[0005]
Further, Japanese Patent Application No. 2001-394499 describes a slab type two-dimensional photonic crystal waveguide having a single mode with low loss and large group velocity.
[0006]
[Non-patent document 1]
J. D. Joannopoulos, P .; R. Villeneuve, and S.M. Fan, "Photonic Crystal: Putting a New Twist on Light", Nature 386, 143 (1997).
[0007]
[Problems to be solved by the invention]
However, the characteristics of the mode of light propagating through a photonic crystal waveguide having a line defect introduced therein are significantly different from those of a conventional optical waveguide, and therefore, it is very difficult to connect to a conventional optical waveguide. This means that a large light loss occurs when an optical circuit using a photonic crystal is connected to an external network or when a photonic crystal functional device is incorporated into another optical circuit, which is a very serious problem.
[0008]
The present invention has been made in view of the above points, and solves the above-described problems in an optical waveguide using a slab type two-dimensional photonic crystal, and realizes a highly efficient connection with a conventional optical waveguide. It is an object of the present invention to provide a photonic crystal waveguide having:
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a photonic crystal waveguide of the present invention has the following structure.
[0010]
That is, the present invention is a photonic crystal waveguide having a line defect in which a part of a lattice of a slab type two-dimensional photonic crystal is linearly removed in a waveguide direction or a part of the lattice is deformed or moved. In order to gradually change the influence of the crystal lattice on the propagation light incident from the end of the photonic crystal waveguide as the propagation light enters, a line defect in a predetermined range in the waveguide direction from the end is sandwiched. The shape or arrangement of the structures on the grid points on both sides is different from the shape or arrangement of the structures on the other grid points.
[0011]
In the above photonic crystal waveguide, the width between the side walls on the center side of the line defect of the structure on the lattice points on both sides sandwiching the line defect becomes narrower as the distance from the end of the structure increases. be able to.
Further, when connecting the photonic crystal waveguide and a conventional optical waveguide, the width of the conventional optical waveguide is the width of the structure on the lattice points on both sides sandwiching the line defect in the predetermined range. The width is made wider than the width between the side walls on the center side of the line defect.
According to the present invention, the influence of the crystal lattice on the propagating light can be gradually increased as the propagating light enters, so that the conventional optical waveguide and the photonic crystal waveguide having greatly different modes have different properties. It is possible to reduce the optical loss at the connection portion of the optical circuit, to connect an optical circuit using a photonic crystal to an external network, and to incorporate a photonic crystal functional device into another optical circuit.
[0012]
Further, the lattice spacing on both sides of the line defect of the photonic crystal waveguide is set to 0.5 of the lattice spacing on both sides of the defect portion in the ordinary defect structure, except for one row of the lattice of the slab type two-dimensional photonic crystal. The single mode condition can be satisfied by setting any of the values from the double to 1.6 times.
[0013]
The shape of each structure on the grid points on both sides of the line defect in the predetermined range may be a shape obtained by cutting a part of a cylinder by a plane parallel to the center axis thereof.
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a structural diagram of a coupling system of a simple single-line defect type photonic crystal waveguide and a conventional linear waveguide (Si fine-wire waveguide) according to an embodiment of the present invention. In the example shown in FIG. 1, a single-mode Si fine-wire waveguide having a width of 0.74 μm is joined to a photonic crystal waveguide having a lattice constant of 0.39 μm constituted by single-row line defects.
[0014]
Note that the photonic crystal waveguide in the embodiment of the present invention is a slab type two-dimensional photonic crystal waveguide. A slab-type two-dimensional photonic crystal is defined as a cylindrical or polygonal low refractive index column (for example, an air hole having a lower refractive index than a dielectric thin film slab) in a dielectric thin film slab. Are sometimes referred to as a structure) at an appropriate two-dimensional periodic interval, and the upper and lower portions of the dielectric thin film slab are sandwiched between an upper cladding layer and a lower cladding layer having a lower refractive index than the dielectric thin film slab. Nick crystal.
[0015]
The photonic crystal waveguide according to an embodiment of the present invention has a shape of a hole on both sides of a line defect near a connection portion in order to smoothly perform mode conversion from a conventional linear waveguide to a photonic crystal waveguide. Is a shape obtained by cutting a circle by a straight line (a shape obtained by cutting a cylinder by a plane parallel to its central axis), and the area to be cut becomes smaller as it goes deeper into the photonic crystal waveguide.
[0016]
Next, the reason why the structure of the present invention as shown in FIG. 1 can reduce the optical loss in the connection between the conventional optical waveguide and the photonic crystal optical waveguide of the present invention will be described with reference to FIG. .
[0017]
FIG. 2 is a diagram illustrating a dispersion curve of a conventional typical single-line defect type photonic crystal waveguide. In the case of the propagation constant / frequency region shown in FIG. 2, the dispersion curve of the Si wire waveguide is almost straight, whereas the dispersion curve for the photonic crystal waveguide is shown by a complicated curve. The most unique point of the photonic crystal waveguide is that the dispersion curve falls within a normalized frequency (normalized propagation constant) k = 0 to 0.5 as shown in FIG. This is because in the photonic crystal waveguide, the lattice points of the crystal are periodically arranged in the direction in which the light propagates, and the light is subjected to Bragg reflection at k = 0.5. The dispersion curve has a more special shape due to the periodicity of the photonic crystal in a two-dimensional plane.
[0018]
Considering the coupling between such a typical single-row line defect type photonic crystal waveguide and a conventional Si fine line waveguide, the following problems occur.
[0019]
Paying attention to the waveguide mode shown by the solid line in FIG. 2, a linear region asymptotic to the dashed line shown in the figure and a region that bends greatly and moves away from the dashed line (circled portion in FIG. 2) Can be classified. In the linear region, the mode field pattern and the optical characteristics are relatively similar to those of the Si wire waveguide, and if this region is used, the coupling efficiency between the two waveguides is high.
[0020]
However, since the photonic crystal waveguide exhibits leaky characteristics on the higher frequency side than the light line of the cladding, this region cannot be used. On the other hand, in a region on the lower frequency side than the light line that can be used as a photonic crystal waveguide (the portion indicated by a circle in FIG. 2), the dispersion curve of the waveguide mode of the photonic crystal waveguide is largely bent, and Since the field pattern and the optical characteristics are significantly different from those of the Si wire waveguide, a high coupling efficiency cannot be obtained even if the two waveguides are directly coupled. Further, the waveguide mode indicated by the dotted line is not suitable for application to an optical integrated circuit because two modes exist in a frequency region where the waveguide mode exists, that is, a single mode condition is not satisfied.
[0021]
One solution is to shift the light line of the clad to a higher frequency side by making the clad layer in the photonic crystal waveguide air, so that the region where the dispersion curve of the photonic crystal waveguide is close to a straight line is lower than the light line. There is a method used on the frequency side. However, in this method, it is necessary to float a Si thin wire or a photonic crystal having a thickness of a few microns in a comma, and there is a problem that strength cannot be secured.
[0022]
On the other hand, according to the structure of the present invention as shown in FIG. 1, when light is incident on the photonic crystal waveguide from the conventional linear waveguide, the periodicity of the crystal, which is a factor that greatly changes the mode properties, is propagated. By placing a region that gradually increases the effect on light, the sudden mode conversion that occurs when light is incident is reduced, reflection, scattering, and leakage at the coupling part of the waveguide are suppressed, and light loss is reduced. Therefore, the coupling efficiency of the two waveguides can be significantly improved in the region of ○ in FIG. 2 where the photonic crystal functions.
[0023]
Next, FIG. 3 shows light transmission characteristics when a conventional Si fine-wire waveguide and the simple single-row defect photonic crystal waveguide of the present invention are coupled.
[0024]
The solid line in FIG. 3 shows the light transmission characteristics when using the photonic crystal waveguide of the present invention, and the dotted line shows the light transmission characteristics when using the conventional simple single line defect type photonic crystal waveguide. Show. In the example shown in FIG. 3, the photonic crystal waveguide of the present invention has a conversion region for 10 holes in the waveguide direction near the junction with the Si wire waveguide.
[0025]
As described above, it is difficult to obtain a high coupling efficiency in a low frequency region (shaded portion in FIG. 3) where the photonic crystal waveguide functions by the conventional direct junction between the photonic crystal waveguide and the Si wire waveguide. , Low transmittance. On the other hand, the transmittance characteristic of the coupling system according to the embodiment of the present invention in which the conversion region is provided is significantly improved in this region (the hatched portion in FIG. 3). This result indicates that the introduction of the mode conversion mechanism of the present invention makes it possible to efficiently connect a conventional optical waveguide and a photonic crystal waveguide having greatly different mode properties to each other.
[0026]
Next, another embodiment using this mechanism will be described with reference to FIG. FIG. 4 is a diagram showing a structure diagram of a coupling system of the Si fine wire waveguide and the width-variable photonic crystal waveguide in the present embodiment.
[0027]
In this embodiment, the width of a single-mode Si thin-wire waveguide having a width of 0.4 μm and the entire crystal (lattice constant a = 0.39 μm) sandwiching the single-line defect are shifted to reduce the width of the simple single-line waveguide. A photonic crystal waveguide narrowed to 0.7 times the width of the defect structure (referred to as a variable-width photonic crystal waveguide) is joined. In order to smoothly perform mode conversion from a single-mode Si fine-wire type waveguide to a photonic crystal waveguide, the waveguide width is narrowed down from 0.4 μm to 0.35 μm in a 25 μm length in the region of the Si fine wire. In the area of the nick crystal waveguide, the shape of the holes on both sides of the line defect is set to a shape obtained by cutting a circle by a straight line (a shape obtained by cutting a cylinder vertically by a plane). The cutting area is reduced.
[0028]
FIG. 5 shows a dispersion curve of the width-variable photonic crystal waveguide shown in FIG. As shown by the circles in FIG. 5, this photonic crystal waveguide has a wide transmission band (a large slope of the dispersion curve) in a region on the lower frequency side than the light line of the cladding layer, and the dispersion curve has a straight line in that region. It is characterized by being close to.
[0029]
Since the transmission band near the straight line in the region on the lower frequency side than the light line of the cladding layer is wide, if the Si thin wire is directly connected to the width-variable photonic crystal waveguide, the high transmission characteristics will be wider than before. can get. However, the dispersion curve tends to deviate from a straight line in a lower frequency region. Since physical phenomena peculiar to the photonic crystal waveguide appear in this region, it is expected to be a frequency band that will be a key point of a future photonic crystal device (M. Notomi, k. Yamada, A. Shinya, J. M. Takahashi, C.Takahashi, and I.Yokohama, "Extremely Large Group-Velocity Dispersion of Line-Defect waveguides in Photonic Crystal Slabs", Physical Review Letters 87, 253902 (2001).), too features the conventional optical waveguide Due to the difference, high connection efficiency cannot be obtained even if the Si thin wire is directly connected to the width-variable photonic crystal waveguide.
[0030]
FIG. 6 shows light transmission characteristics when the Si fine-wire waveguide and the width-variable photonic crystal waveguide of the present invention are coupled. FIG. 6A shows the case where the structure of the present invention is used, that is, when a conversion region for 50 holes is installed in the input / output section (near the connection portion) in the waveguide direction, and FIG. FIG. 9 is a diagram illustrating an experimental result of a light transmission characteristic when not performed.
[0031]
As described above, in a conventional direct junction between a photonic crystal waveguide and a Si wire waveguide, high coupling efficiency is obtained in a long wavelength region (X portion in FIG. 6B) where a phenomenon peculiar to the photonic crystal waveguide appears. Since it is difficult to obtain, the transmitted light intensity is low. On the other hand, as shown in FIG. 6A, the transmittance characteristic of the coupling system between the photonic crystal waveguide of the present invention and the Si fine wire waveguide in which the mode conversion region is provided is significantly improved in this region (X portion). You can see that it is done.
[0032]
This result indicates that the introduction of the mode conversion mechanism of the present invention makes it possible to efficiently connect a conventional optical waveguide and a photonic crystal waveguide having greatly different mode properties to each other. This indicates that the mechanism can be a mechanism for extracting a specific physical phenomenon to the outside of the crystal with high efficiency.
[0033]
Next, the structural conditions of the photonic crystal waveguide for achieving these highly efficient connections will be described.
[0034]
In the photonic crystal waveguide of the present invention, as light propagated through the conventional optical waveguide (Si fine-wire waveguide) enters the photonic crystal waveguide, both sides sandwiching the line defect of the photonic crystal waveguide gradually. Need to be affected by the lattice points of To this end, as shown in FIGS. 1 and 4, the width (AA ′) of the conventional waveguide (Si fine-wire waveguide) is arranged on lattice points on both sides in the photonic crystal waveguide. It is necessary that the width of the side wall (BB ') on the center side of the waveguide of the structure be wider. The above condition is determined by determining the shape of the structure or the position of the structure such that the side wall of the structure on the center side of the waveguide is along the straight line AB, A′-B ′. Can be satisfied. The side wall is not limited to a plane.
[0035]
Further, it is desirable that a photonic crystal waveguide used as an optical integrated circuit satisfies a single mode condition. Therefore, the distance W between the lattice points on both sides of the line defect of the photonic crystal waveguide is 0.5 times the distance Wo of the lattice points on both sides of the line defect except for one line of the lattice of the two-dimensional photonic crystal. It must be one of 1.6 times. The structure of the photonic crystal waveguide for satisfying the single mode condition is described in, for example, Japanese Patent Application No. 2001-394499.
[0036]
Further, the structure of the present invention in which the distance between the side walls of the structures on both sides of the line defect is gradually narrowed from the connection portion with the straight waveguide toward the back of the photonic crystal waveguide is described in Japanese Patent Application No. 2001-394499. As described in this document, the present invention can be applied to a photonic crystal waveguide in which a structure (dielectric column) on a lattice point in an optical waveguide is shifted or a diameter of the structure is changed. In this specification, the optical waveguide having such a structure is also referred to as a line defect.
[0037]
The present invention is not limited to the above embodiments, but can be variously modified and applied within the scope of the claims.
[0038]
【The invention's effect】
As described above, by using the structure of the photonic crystal waveguide having the mode conversion region as shown in FIGS. 1 and 4, the conventional optical waveguide and the photonic crystal optical waveguide having greatly different modes can be used. Can be connected with high efficiency, an optical circuit using a photonic crystal can be connected to an external network, and a photonic crystal functional device can be incorporated into another optical circuit.
[Brief description of the drawings]
FIG. 1 is a structural diagram of a coupling system of a conventional single-mode linear waveguide (Si fine-wire waveguide) and a simple single-line defect photonic crystal waveguide of the present invention.
FIG. 2 is a view for explaining the waveguide mode dispersion of a conventional typical simple single line defect photonic crystal waveguide.
FIG. 3 is a diagram showing light transmission characteristics when a Si fine wire waveguide and a simple single line defect type photonic crystal waveguide are coupled.
FIG. 4 is a structural diagram of a coupling system of a Si fine-wire waveguide and a width-variable photonic crystal waveguide.
FIG. 5 is a diagram for explaining the waveguide mode dispersion of the width-variable line-defect photonic crystal waveguide.
FIG. 6 is a diagram showing light transmission characteristics when a Si fine wire waveguide and a width-variable line defect type photonic crystal waveguide are coupled.
[Explanation of symbols]
a Lattice constant W Distance between lattice points on both sides of a line defect of photonic crystal waveguide Wo Distance between lattice points on both sides of a line defect except one line of lattice of photonic crystal

Claims (5)

スラブ型2次元フォトニック結晶の格子の一部を導波方向に直線状に除き又は格子の一部を変形し若しくは移動させた線欠陥を有するフォトニック結晶導波路において、
前記フォトニック結晶導波路の端から入射した伝播光への結晶格子が与える影響を伝播光が進入するに従い徐々に変化させるように、前記端から導波方向への所定範囲における線欠陥を挟む両側の格子点上の構造体の形状又は配置を、他の格子点上の構造体の形状又は配置と異なるものとしたことを特徴とするフォトニック結晶導波路。
In a photonic crystal waveguide having a line defect in which a part of the lattice of the slab type two-dimensional photonic crystal is linearly removed in the waveguide direction or a part of the lattice is deformed or moved,
Both sides sandwiching a line defect in a predetermined range from the end in the waveguide direction so that the influence of the crystal lattice on the propagation light incident from the end of the photonic crystal waveguide is gradually changed as the propagation light enters. A photonic crystal waveguide characterized in that the shape or arrangement of a structure on a lattice point is different from the shape or arrangement of a structure on another lattice point.
前記所定範囲において、前記線欠陥を挟む両側の格子点上の構造体の線欠陥中央側の側壁間の幅を、当該構造体の前記端からの距離が大きいほど狭くしたことを特徴とする請求項1に記載のフォトニック結晶導波路。In the predetermined range, the width between the sidewalls on the center side of the line defect of the structure on the lattice points on both sides sandwiching the line defect is reduced as the distance from the end of the structure is increased. Item 2. A photonic crystal waveguide according to item 1. 前記フォトニック結晶導波路と従来型の光導波路とを接続する場合において、該従来型の光導波路の幅は、前記所定範囲における前記線欠陥を挟む両側の格子点上の構造体の線欠陥中央側の側壁間の幅より広いことを特徴とする請求項2に記載のフォトニック結晶導波路。In the case where the photonic crystal waveguide is connected to a conventional optical waveguide, the width of the conventional optical waveguide is set at the center of the line defect center of the structure on the lattice points on both sides sandwiching the line defect in the predetermined range. 3. The photonic crystal waveguide according to claim 2, wherein the width is wider than the width between the side walls. 前記フォトニック結晶導波路の線欠陥における両側の格子間隔を、スラブ型2次元フォトニック結晶の格子の1列を除いただけの通常の欠陥構造における欠陥部分の両側の格子間隔の0.5倍から1.6倍のいずれかの値としたことを特徴とする請求項3に記載のフォトニック結晶導波路。The lattice spacing on both sides of the line defect of the photonic crystal waveguide is 0.5 times the lattice spacing on both sides of the defect portion in the normal defect structure except for one row of the lattice of the slab type two-dimensional photonic crystal. 4. The photonic crystal waveguide according to claim 3, wherein the value is any one of 1.6 times. 前記所定範囲における線欠陥を挟む両側の格子点上の各構造体の形状を、円柱の一部をその中心軸に平行な平面で切り取った形状としたことを特徴とする請求項1ないし4のうちいずれか1項に記載のフォトニック結晶導波路。5. The structure according to claim 1, wherein each of the structures on the lattice points on both sides of the line defect in the predetermined range has a shape obtained by cutting a part of a cylinder by a plane parallel to a central axis thereof. The photonic crystal waveguide according to any one of the above.
JP2002261783A 2002-09-06 2002-09-06 Photonic crystal waveguide Expired - Fee Related JP3903886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261783A JP3903886B2 (en) 2002-09-06 2002-09-06 Photonic crystal waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261783A JP3903886B2 (en) 2002-09-06 2002-09-06 Photonic crystal waveguide

Publications (2)

Publication Number Publication Date
JP2004101740A true JP2004101740A (en) 2004-04-02
JP3903886B2 JP3903886B2 (en) 2007-04-11

Family

ID=32262061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261783A Expired - Fee Related JP3903886B2 (en) 2002-09-06 2002-09-06 Photonic crystal waveguide

Country Status (1)

Country Link
JP (1) JP3903886B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081627A1 (en) * 2003-03-14 2004-09-23 Nec Corporation Method of beaming light into photonic crystal optical waveguide and structure thereof
KR101012505B1 (en) 2008-12-04 2011-02-08 인하대학교 산학협력단 Photonic crystal waveduide inlet structure
JP2014197837A (en) * 2013-03-04 2014-10-16 国立大学法人大阪大学 Terahertz wave connector, terahertz wave integrated circuit, waveguide, and antenna structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081627A1 (en) * 2003-03-14 2004-09-23 Nec Corporation Method of beaming light into photonic crystal optical waveguide and structure thereof
US7778509B2 (en) 2003-03-14 2010-08-17 Nec Corporation Method for incidence of light into a photonic crystal optical waveguide and structure thereof
KR101012505B1 (en) 2008-12-04 2011-02-08 인하대학교 산학협력단 Photonic crystal waveduide inlet structure
JP2014197837A (en) * 2013-03-04 2014-10-16 国立大学法人大阪大学 Terahertz wave connector, terahertz wave integrated circuit, waveguide, and antenna structure

Also Published As

Publication number Publication date
JP3903886B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
JP3809167B2 (en) Photonic crystal structure for mode conversion
KR100578683B1 (en) Optical devices and methods of fabrication thereof
US6788865B2 (en) Polarization maintaining optical fiber with improved polarization maintaining property
US6873777B2 (en) Two-dimensional photonic crystal device
US6728457B2 (en) Waveguides in two dimensional slab photonic crystals with noncircular holes
JP3349950B2 (en) Wavelength demultiplexing circuit
US7116878B2 (en) Optical waveguide structure
JP4028751B2 (en) Optical waveguide and optical element using the same
JP4463742B2 (en) Optical resonator
CN106068470A (en) Fiber waveguide and and use its optics and variable wavelength laser
JP5304209B2 (en) Spot size converter
JPWO2009044715A1 (en) Photonic crystal
Yamashita et al. Evaluation of self-collimated beams in photonic crystals for optical interconnect
JP2000066002A (en) Photonic crystal material
JP2002350657A (en) Photonic crystal waveguide
US8768124B2 (en) Direct coupling of optical slot waveguide to another optical waveguide
JP2005275064A (en) White light pulse generating method, optical pulse wavelength converting method, nonlinear optical element, white pulse light source, and variable wavelength pulse light source
JP2004101740A (en) Photonic crystal waveguide
JP3867848B2 (en) Optical waveguide
JP3999152B2 (en) Two-dimensional photonic crystal slab and optical device using the same
JP2007017494A (en) Photonic crystal waveguide
JP3876863B2 (en) Add-drop filter
Shinya et al. Functional components in SOI photonic crystal slabs
Shinya et al. Single-mode transmission in commensurate width-varied line-defect SOI photonic crystal waveguides
EP1508824B1 (en) Photonic bandgap optical fibre

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3903886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees