JP2004101478A - Simultaneous and optical measurement method using multiple light, and apparatus for the same - Google Patents

Simultaneous and optical measurement method using multiple light, and apparatus for the same Download PDF

Info

Publication number
JP2004101478A
JP2004101478A JP2002266935A JP2002266935A JP2004101478A JP 2004101478 A JP2004101478 A JP 2004101478A JP 2002266935 A JP2002266935 A JP 2002266935A JP 2002266935 A JP2002266935 A JP 2002266935A JP 2004101478 A JP2004101478 A JP 2004101478A
Authority
JP
Japan
Prior art keywords
light
lights
modulation
subject
modulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002266935A
Other languages
Japanese (ja)
Inventor
Kazuo Moriya
守矢 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002266935A priority Critical patent/JP2004101478A/en
Publication of JP2004101478A publication Critical patent/JP2004101478A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical measurement method and an apparatus for it, which have a simple apparatus constitution, implement spectral-optical measurement in one step and are hardly influenced by external light. <P>SOLUTION: The measurement apparatus radiates lights having different wavelengths λ1, λ2, λ3 from lasers 2-1, 2-2, 2-3, modulates the amplitudes of the emitted lights by frequencies ω1, λω, ω3 different from modulation signal generators 4-1, 4-2, 4-3, provided in a laser drive circuit and simultaneously radiates amplitude modulation lights to a subject T through optical fibers 6-1, 6-2, 6-3. The amplitude modulation lights, pass through the subject T and a plurality of component signals corresponding to the frequencies ω1, λω, ω3 in an electrical signal, obtained by photoelectric conversion of a photodiode 20 so as to be extracted, based on frequency signals obtained from the modulation signal generators 4-1, 4-2, 4-3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光学的測定の技術分野に属するものであり、特に被検体に互いに異なる波長の複数の光を照射し、該被検体を経た光を検出することで、該被検体の分光光学的特性を測定する測定方法及びそれに用いる装置に関するものである。本発明の測定は、例えば被検体の動的な状態変化の測定や、原子吸光分析に適用することができる。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、連続スペクトル光または互いに波長の異なる複数の光を同時に被検体に照射して分光光学的測定を行なう際には、光検出器として複雑な機構を持ち調整が面倒な分光器が必要であり、また、分光器は熱膨張の影響を受けて精度が低下しやすいので精度維持のための条件維持が面倒であるという難点があった。また、互いに波長の異なる複数の光を順次被検体に照射することで、分光器を使用せずに分光光学的測定を行なうことも可能である。しかし、この場合には、同時測定ができないので、動的状態変化を行なう被検体の場合には正確な同時測定ができない。
【0003】
更に、以上の様な従来の光学的測定方法では、測定に係る波長を含む外光が入射すると測定結果が影響を受け正確な測定ができなくなるという難点があり、これを避けるためには、外光の入らない暗所で測定を行なうことが必要であるという不利があった。
【0004】
そこで、本発明は、簡単な装置構成で、一時に分光光学的測定が可能で、外光の影響を受けにくい光学的測定方法及びその装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明によれば、以上の如き目的を達成するものとして、
互いに波長の異なる複数の光の振幅を互いに異なる複数の周波数で変調して得られる複数の振幅変調光を同時に被検体に照射し、該被検体を経た前記振幅変調光を光電変換して得られる電気信号における前記複数の周波数のそれぞれに対応する複数の成分信号を抽出することを特徴とする、複数の光を用いた同時光学的測定方法、
が提供される。
【0006】
本発明の一態様においては、前記複数の光を複数のレーザから出射させ、該複数のレーザの駆動回路に設けられた複数の変調用信号発生器により前記複数の光の振幅を互いに異なる複数の周波数で変調し、前記複数の変調用信号発生器から得られるそれらの周波数の信号に基づき前記複数の成分信号を抽出する。本発明の一態様においては、前記複数の光を複数のレーザから出射させ、該複数のレーザから発せられる前記複数の光の振幅を複数の変調素子により互いに異なる複数の周波数で変調し、前記複数の変調素子の周波数の信号に基づき前記複数の成分信号を抽出する。
本発明の一態様においては、前記複数の振幅変調光を合成した後に前記被検体に照射する。
【0007】
また、本発明によれば、以上の如き目的を達成するものとして、
互いに異なる波長の光を発する複数の光源と、該複数の光源から発せられる複数の光の振幅を互いに異なる複数の周波数で変調する複数の変調手段と、該複数の変調手段での変調により得られた複数の振幅変調光を被検体へと導く光照射光学系と、前記被検体を経た前記振幅変調光を検出して光電変換する光検出器と、該光検出器により得られる電気信号を前記複数の変調手段から得られる複数の周波数の信号に基づきそれらに対応する複数の成分信号を抽出する成分信号抽出手段とを備えていることを特徴とする、複数の光を用いた同時光学的測定装置、
が提供される。
【0008】
本発明の一態様においては、前記光源はレーザであり、前記変調手段は前記レーザの駆動回路に設けられた変調用信号発生器である。本発明の一態様においては、前記光源はレーザであり、前記変調手段は前記レーザから発せられる光の通過経路に設けられた変調素子である。本発明の一態様においては、前記光照射光学系は前記複数の光源にそれぞれ一端を結合せしめられた複数の光ファイバを備えており、該光ファイバの他端はまとめられて1つの光出射部を形成しており、前記光照射光学系は更に前記光出射部から発せられた光を前記被検体へと導くコリメータを備えている。本発明の一態様においては、前記被検体を経た前記振幅変調光を前記光検出器へと導く導光光学系を備えている。本発明の一態様においては、前記導光光学系は、前記被検体からの光を集光させる集光レンズと、該集光レンズにより集光せしめられた光を一端から入射させ且つ他端が前記光検出器と結合せしめられた光ファイバとを備えている。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照しながら説明する。
【0010】
図1は本発明による光学的測定方法およびその装置の一実施形態を説明するための模式図である。
【0011】
本実施形態において、第1のレーザ2−1、第2のレーザ2−2及び第3のレーザ2−3は、それぞれ互いに異なる第1の波長λ1、第2の波長λ2及び第3の波長λ3の光を発する。これらのレーザ2−1,2−2,2−3の駆動回路は、当該レーザから発せられる光の振幅を互いに異なる第1の周波数ω1、第2の周波数ω2及び第3の周波数ω3で変調する複数の変調手段としての第1の変調用信号発生器4−1、第2の変調用信号発生器4−2及び第3の変調用信号発生器4−3を含んでいる。
【0012】
レーザ2−1,2−2,2−3から発せられる光は、それぞれ変調用信号発生器4−1,4−2,4−3による振幅変調を受けた振幅変調光とされ、これらの大部分が光照射光学系を構成する第1の光ファイバ6−1、第2の光ファイバ6−2及び第3の光ファイバ6−3の一端に入射せしめられる。また、レーザ2−1,2−2,2−3から発せられる光の一部は、レーザ駆動回路を構成する出力安定化フィードバック回路を構成する光ファイバ8−1,8−2,8−3の一端に入射せしめられ、該光ファイバ中を導光され、その他端から出力安定化フィードバック回路を構成する光検出器たるフォトダイオード10−1,10−2,10−3へと入射せしめられる。レーザ駆動回路は、フォトダイオード10−1,10−2,10−3により検知される光量が時間平均で安定化する様に、フィードバック制御を行なう。
【0013】
第1〜第3の光ファイバ6−1〜6−3の他端は、まとめられて1つの光出射部7を形成しており、光照射光学系は更に光出射部7から発せられた光を被検体載置部12に載置された被検体Tへと導くコリメータレンズ14を備えている。光出射部7から発せられた光は、コリメータレンズ14によりほぼ平行な光にされ、被検体Tを照射する。
【0014】
被検体Tを経た光(反射光、透過光または散乱光等)は、集光レンズ16により集光され、光ファイバ18の一端へと入射せしめられ、該光ファイバ中を導光され、その他端から光検出器たるフォトダイオード20へと入射せしめられる。集光レンズ16及び光ファイバ18は、導光光学系を構成する。尚、被検体載置部12と集光レンズ16との間に、波長λ1,λ2,λ3及びその近傍以外の波長の光の透過を阻止するフィルタ15あるいはファイバーグレーティングを配置してもよい。また、光ファイバ18を使用することなく、集光レンズ16により集光される光を直接フォトダイオード20へと入射させてもよい。
【0015】
フォトダイオード20での光電変換により得られる電気信号は増幅器22により増幅され、成分信号抽出手段を構成する信号抽出回路24へ増幅信号V(t)として入力される。信号抽出回路24では、変調用信号発生器4−1,4−2,4−3から得られる3つの周波数(ω1,ω2,ω3)の信号に基づきそれらに対応する複数の成分信号を抽出する。
【0016】
以下、本実施形態における光学的測定の動作を説明する。
【0017】
図2は変調用信号発生器4−1,4−2,4−3の3つの周波数(ω1,ω2,ω3)により振幅変調を受けたレーザ2−1,2−2,2−3からの出射光(振幅変調光)の強度P1,P2,P3の時間変化を示す図である。ここで、P1は一定値P0にsinω1・tに比例する成分が重畳されたものであり、P2は一定値P0にsinω2・tに比例する成分が重畳されたものであり、P3は一定値P0にsinω3・tに比例する成分が重畳されたものである。被検体Tへと照射される光は、これらの3つの振幅変調光が光出射部7にて合成されたものである。被検体Tへと照射された光は、被検体Tとの相互作用による変化を受ける。該被検体Tを経て集光レンズ16に到来する光、たとえば反射光、透過光または散乱光は、3つの波長λ1,λ2,λ3のそれぞれの成分について上記相互作用による変化を受ける。光ファイバ18を経てフォトダイオード20へと入射した光を該フォトダイオード20により光電変換して得られる電気信号及びそれを増幅器22で増幅して得られる増幅信号V(t)も同様である。
【0018】
そこで、信号抽出回路24では、変調用信号発生器4−1,4−2,4−3から得られる3つの周波数ω1,ω2,ω3の信号に基づき、次の様な演算を行なって、3つの成分信号S1,S2,S3
S1=(1/T)∫ V(t)・sin [ω1・t]dt
S2=(1/T)∫ V(t)・sin [ω2・t]dt
S3=(1/T)∫ V(t)・sin [ω3・t]dt
を抽出する。ここで、Tは測定時間である。これらの信号成分S1,S2,S3は、それぞれ、波長λ1,λ2,λ3の振幅変調光が被検体Tとの相互作用(その大きさは波長λ1,λ2,λ3により異なる)による変化を受けた結果を示すものであり、更には、それぞれ、振幅変調なしの波長λ1,λ2,λ3の光が被検体Tとの相互作用による変化を受けた場合の結果にも対応するものである。
【0019】
本実施形態では、複数の波長の光について互いに異なる周波数で振幅変調してなる光を被検体Tに照射し、フォトダイオード20で光電変換して得られる電気信号から各波長光について当該変調周波数に対応する成分を選別するので、外光が存在していても実質上測定に悪影響を与えることがない。
【0020】
また、本実施形態では、分光器を要せず、しかも光検出器であるフォトダイオード20を1つ用いればよいので、装置構成が簡単になり、しかも一時に分光光学的測定が可能である。
【0021】
以上の実施形態では、変調手段として半導体レーザ等のレーザの駆動回路に設けられた変調用信号発生器が用いられているが、本発明においては、変調手段としてレーザから発せられる光の通過経路に設けられた変調素子を用いることができる。図3は、そのような変調素子を用いた外部変調方式の実施形態を部分的に示す模式図である。第1のレーザ2−1から発せられる波長λ1の連続光の通過経路に第1の変調素子3−1を配置し、これにより例えば変調素子3−1に印加する電圧を交流電圧として光に対する電界変調を行うことで、該変調素子3−1を通過した光の強度P1を上記図2に関し説明したと同様なものにすることができる。第2及び第3のレーザから発せられる波長λ2及びλ3の光についても同様にして第2及び第3の変調素子による変調を行う。これにより、複数の光を複数のレーザから出射させ、該複数のレーザから発せられる前記複数の光の振幅を複数の変調素子により互いに異なる複数の周波数で変調し、前記複数の変調素子の周波数の信号に基づき前記複数の成分信号を抽出する。本実施形態においても、上記実施形態と同様な作用効果を得ることができる。
【0022】
【発明の効果】
以上説明したように、本発明によれば、互いに波長の異なる複数の光の振幅を互いに異なる複数の周波数で変調して得られる複数の振幅変調光を同時に被検体に照射し、該被検体を経た前記振幅変調光を光電変換して得られる電気信号における前記複数の周波数のそれぞれに対応する複数の成分信号を抽出するので、簡単な装置構成で、一時に分光光学的測定ができ、外光の影響を受けにくい光学的測定が可能になる。
【図面の簡単な説明】
【図1】本発明による光学的測定方法およびその装置の一実施形態を説明するための模式図である。
【図2】変調用信号発生器の3つの周波数ω1,ω2,ω3により振幅変調を受けたレーザからの出射光(振幅変調光)の強度の時間変化を示す図である。
【図3】外部変調方式の実施形態を部分的に示す模式図である。
【符号の説明】
2−1、2−2,2−3  レーザ
3−1  変調素子
4−1,4−2,4−3  変調用信号発生器
6−1,6−2,6−3  光ファイバ
7  光出射部
8−1,8−2,8−3  光ファイバ
10−1,10−2,10−3  フォトダイオード
12  被検体載置部
14  コリメータレンズ
15  フィルタ
16  集光レンズ
18  光ファイバ
20  フォトダイオード
22  増幅器
24  信号抽出回路
T  被検体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention belongs to the technical field of optical measurement, in particular, by irradiating the subject with a plurality of lights of different wavelengths, and detecting light passing through the subject, the spectroscopic The present invention relates to a method for measuring characteristics and an apparatus used for the method. The measurement of the present invention can be applied to, for example, measurement of a dynamic state change of a subject or atomic absorption analysis.
[0002]
Problems to be solved by the prior art and the invention
Conventionally, when simultaneously irradiating a subject with continuous spectrum light or a plurality of lights having different wavelengths to perform spectroscopic measurement, a spectroscope having a complicated mechanism as a photodetector and complicated adjustment is required. In addition, the spectroscope has a disadvantage that the accuracy is easily deteriorated due to the influence of the thermal expansion, so that maintaining the conditions for maintaining the accuracy is troublesome. In addition, by sequentially irradiating the subject with a plurality of lights having different wavelengths, spectroscopic measurement can be performed without using a spectroscope. However, in this case, since simultaneous measurement cannot be performed, accurate simultaneous measurement cannot be performed in the case of a subject performing a dynamic state change.
[0003]
Further, the conventional optical measurement method as described above has a drawback that when external light including the wavelength involved in the measurement is incident, the measurement result is affected and accurate measurement cannot be performed. There is a disadvantage that it is necessary to perform the measurement in a dark place where light does not enter.
[0004]
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical measurement method and an optical measurement method which can perform spectroscopic measurement at a time with a simple device configuration and are not easily affected by external light.
[0005]
[Means for Solving the Problems]
According to the present invention, as achieving the above objects,
A plurality of amplitude-modulated lights obtained by modulating the amplitudes of a plurality of lights having different wavelengths at a plurality of different frequencies are simultaneously irradiated on the subject, and the amplitude-modulated light passing through the subject is photoelectrically converted. Extracting a plurality of component signals corresponding to each of the plurality of frequencies in the electrical signal, a simultaneous optical measurement method using a plurality of lights,
Is provided.
[0006]
In one embodiment of the present invention, the plurality of lights are emitted from a plurality of lasers, and a plurality of modulation signal generators provided in a driving circuit of the plurality of lasers cause a plurality of modulation signal generators to change the amplitudes of the plurality of lights from each other. The signal is modulated by a frequency, and the plurality of component signals are extracted based on signals of those frequencies obtained from the plurality of signal generators for modulation. In one embodiment of the present invention, the plurality of lights are emitted from a plurality of lasers, and the amplitudes of the plurality of lights emitted from the plurality of lasers are modulated at a plurality of different frequencies by a plurality of modulation elements. The plurality of component signals are extracted based on the signal of the frequency of the modulation element.
In one embodiment of the present invention, the object is irradiated after the plurality of amplitude-modulated lights are combined.
[0007]
Further, according to the present invention, as achieving the above objects,
A plurality of light sources that emit light of different wavelengths, a plurality of modulation units that modulate the amplitudes of a plurality of light beams emitted from the plurality of light sources at a plurality of different frequencies, and modulation by the plurality of modulation units. A light irradiation optical system that guides the plurality of amplitude-modulated lights to the subject, a photodetector that performs photoelectric conversion by detecting the amplitude-modulated light that has passed through the subject, and outputs an electric signal obtained by the photodetector. Simultaneous optical measurement using a plurality of lights, characterized by comprising: component signal extracting means for extracting a plurality of component signals corresponding to the signals based on a plurality of frequencies obtained from a plurality of modulating means. apparatus,
Is provided.
[0008]
In one embodiment of the present invention, the light source is a laser, and the modulating means is a modulation signal generator provided in a driving circuit of the laser. In one embodiment of the present invention, the light source is a laser, and the modulation unit is a modulation element provided on a passage of light emitted from the laser. In one embodiment of the present invention, the light irradiation optical system includes a plurality of optical fibers each having one end coupled to each of the plurality of light sources, and the other ends of the optical fibers are collectively combined into one light emitting unit. The light irradiation optical system further includes a collimator that guides light emitted from the light emitting unit to the subject. In one embodiment of the present invention, a light guide optical system that guides the amplitude-modulated light that has passed through the subject to the photodetector is provided. In one embodiment of the present invention, the light guiding optical system includes a condensing lens that condenses light from the subject, light that is condensed by the condensing lens is incident from one end, and the other end is An optical fiber coupled to the photodetector.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0010]
FIG. 1 is a schematic diagram for explaining an embodiment of the optical measuring method and the apparatus according to the present invention.
[0011]
In the present embodiment, the first laser 2-1, the second laser 2-2, and the third laser 2-3 are respectively different first wavelength λ1, second wavelength λ2, and third wavelength λ3. Emits light. The drive circuits of the lasers 2-1, 2-2, and 2-3 modulate the amplitude of light emitted from the lasers at a first frequency ω1, a second frequency ω2, and a third frequency ω3 different from each other. It includes a first modulation signal generator 4-1 as a plurality of modulation means, a second modulation signal generator 4-2, and a third modulation signal generator 4-3.
[0012]
Light emitted from the lasers 2-1, 2-2, and 2-3 is amplitude-modulated light that has been subjected to amplitude modulation by the modulation signal generators 4-1, 4-2, and 4-3, respectively. The part is made to enter one end of the first optical fiber 6-1, the second optical fiber 6-2, and the third optical fiber 6-3 which constitute the light irradiation optical system. A part of the light emitted from the lasers 2-1, 2-2, 2-3 is converted into optical fibers 8-1, 8-2, 8-3 which form an output stabilizing feedback circuit which forms a laser driving circuit. At one end of the optical fiber, the light is guided through the optical fiber, and the other end is incident on photodiodes 10-1, 10-2, and 10-3 as photodetectors constituting an output stabilizing feedback circuit. The laser drive circuit performs feedback control such that the amount of light detected by the photodiodes 10-1, 10-2, and 10-3 is stabilized on a time average.
[0013]
The other ends of the first to third optical fibers 6-1 to 6-3 are collectively formed to form one light emitting unit 7, and the light irradiation optical system further includes a light emitting unit 7 for emitting light emitted from the light emitting unit 7. Is provided to the subject T placed on the subject placing part 12. The light emitted from the light emitting unit 7 is converted into substantially parallel light by the collimator lens 14 and irradiates the subject T.
[0014]
Light (reflected light, transmitted light, scattered light, or the like) that has passed through the subject T is condensed by the condenser lens 16, is made incident on one end of the optical fiber 18, is guided in the optical fiber, and is transmitted through the other end. Incident on the photodiode 20 as a photodetector. The condenser lens 16 and the optical fiber 18 constitute a light guiding optical system. It should be noted that a filter 15 or a fiber grating that blocks transmission of light of wavelengths other than λ1, λ2, λ3 and wavelengths near the wavelengths may be arranged between the subject mounting part 12 and the condenser lens 16. Further, the light condensed by the condenser lens 16 may directly enter the photodiode 20 without using the optical fiber 18.
[0015]
The electric signal obtained by the photoelectric conversion in the photodiode 20 is amplified by the amplifier 22, and is input as an amplified signal V (t) to the signal extraction circuit 24 constituting the component signal extraction means. The signal extraction circuit 24 extracts a plurality of component signals corresponding to the three frequency (ω1, ω2, ω3) signals obtained from the modulation signal generators 4-1, 4-2, and 4-3. .
[0016]
Hereinafter, the operation of the optical measurement according to the present embodiment will be described.
[0017]
FIG. 2 shows signals from lasers 2-1, 2-2, and 2-3 that have been amplitude-modulated by three frequencies (ω1, ω2, ω3) of modulation signal generators 4-1, 4-2, and 4-3. It is a figure which shows the time change of intensity | strength P1, P2, P3 of the emitted light (amplitude modulation light). Here, P1 is a constant value P0 with a component proportional to sin ω1 · t superimposed thereon, P2 is a constant value P0 with a component proportional to sin ω2 · t superimposed thereon, and P3 is a constant value P0 Is superimposed with a component proportional to sinω3 · t. The light emitted to the subject T is obtained by combining these three amplitude-modulated lights in the light emitting unit 7. The light applied to the subject T undergoes a change due to the interaction with the subject T. Light that arrives at the condenser lens 16 via the subject T, for example, reflected light, transmitted light, or scattered light undergoes a change due to the above-described interaction for each of the three wavelengths λ1, λ2, and λ3. The same applies to an electric signal obtained by photoelectrically converting light incident on the photodiode 20 via the optical fiber 18 by the photodiode 20 and an amplified signal V (t) obtained by amplifying the electric signal by the amplifier 22.
[0018]
Therefore, the signal extraction circuit 24 performs the following calculation based on the signals of the three frequencies ω1, ω2, ω3 obtained from the modulation signal generators 4-1, 4-2, and 4-3 to obtain 3 Component signals S1, S2, S3
S1 = (1 / T) ∫ 0 T V (t) · sin [ω1 · t] dt
S2 = (1 / T) ∫ 0 T V (t) · sin [ω2 · t] dt
S3 = (1 / T) ∫ 0 T V (t) · sin [ω3 · t] dt
Is extracted. Here, T is a measurement time. These signal components S1, S2, and S3 have undergone changes due to the interaction of the amplitude-modulated light having the wavelengths λ1, λ2, and λ3 with the subject T (the magnitude thereof differs depending on the wavelengths λ1, λ2, and λ3). It also shows the results, and further corresponds to the results when the light of the wavelengths λ1, λ2, λ3 without amplitude modulation undergoes a change due to the interaction with the subject T, respectively.
[0019]
In the present embodiment, the subject T is irradiated with light obtained by performing amplitude modulation on light of a plurality of wavelengths at different frequencies from each other, and from an electric signal obtained by photoelectric conversion by the photodiode 20, the light of each wavelength is converted to the modulation frequency. Since the corresponding components are selected, the presence of external light does not substantially affect the measurement.
[0020]
Further, in the present embodiment, a spectroscope is not required, and only one photodiode 20 serving as a photodetector may be used. Therefore, the device configuration is simplified, and spectroscopic measurement can be performed at a time.
[0021]
In the above embodiment, the modulation signal generator provided in the laser driving circuit such as a semiconductor laser is used as the modulation means. However, in the present invention, the modulation means is provided in the passage of the light emitted from the laser. The provided modulation element can be used. FIG. 3 is a schematic diagram partially showing an embodiment of an external modulation method using such a modulation element. The first modulating element 3-1 is arranged in a passage of continuous light having a wavelength λ1 emitted from the first laser 2-1. By performing the modulation, the intensity P1 of the light passing through the modulation element 3-1 can be made similar to that described with reference to FIG. The light of the wavelengths λ2 and λ3 emitted from the second and third lasers is similarly modulated by the second and third modulation elements. Thereby, a plurality of lights are emitted from a plurality of lasers, and the amplitudes of the plurality of lights emitted from the plurality of lasers are modulated at a plurality of frequencies different from each other by a plurality of modulation elements. The plurality of component signals are extracted based on the signal. In this embodiment, the same operation and effect as those of the above embodiment can be obtained.
[0022]
【The invention's effect】
As described above, according to the present invention, a plurality of amplitude-modulated lights obtained by modulating the amplitudes of a plurality of lights having different wavelengths at a plurality of different frequencies are simultaneously irradiated on a subject, and the subject is irradiated with the plurality of amplitude-modulated lights. Since a plurality of component signals corresponding to each of the plurality of frequencies in the electric signal obtained by photoelectrically converting the passed amplitude modulated light are extracted, spectroscopic measurement can be performed at a time with a simple device configuration, and Optical measurement that is less susceptible to the effects of
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining an embodiment of an optical measurement method and an apparatus therefor according to the present invention.
FIG. 2 is a diagram showing a temporal change in intensity of light emitted from a laser (amplitude modulated light) that has been amplitude-modulated by three frequencies ω1, ω2, and ω3 of a modulation signal generator.
FIG. 3 is a schematic diagram partially showing an embodiment of an external modulation scheme.
[Explanation of symbols]
2-1, 2-2, 2-3 Laser 3-1 Modulation element 4-1 4-2, 4-3 Modulation signal generator 6-1, 6-2, 6-3 Optical fiber 7 Light emitting section 8-1, 8-2, 8-3 Optical Fiber 10-1, 10-2, 10-3 Photodiode 12 Subject Placement Section 14 Collimator Lens 15 Filter 16 Condenser Lens 18 Optical Fiber 20 Photodiode 22 Amplifier 24 Signal extraction circuit T Subject

Claims (10)

互いに波長の異なる複数の光の振幅を互いに異なる複数の周波数で変調して得られる複数の振幅変調光を同時に被検体に照射し、該被検体を経た前記振幅変調光を光電変換して得られる電気信号における前記複数の周波数のそれぞれに対応する複数の成分信号を抽出することを特徴とする、複数の光を用いた同時光学的測定方法。A plurality of amplitude-modulated lights obtained by modulating the amplitudes of a plurality of lights having different wavelengths at a plurality of different frequencies are simultaneously irradiated on the subject, and the amplitude-modulated light passing through the subject is photoelectrically converted. A simultaneous optical measurement method using a plurality of lights, wherein a plurality of component signals corresponding to each of the plurality of frequencies in the electric signal are extracted. 前記複数の光を複数のレーザから出射させ、該複数のレーザの駆動回路に設けられた複数の変調用信号発生器により前記複数の光の振幅を互いに異なる複数の周波数で変調し、前記複数の変調用信号発生器から得られるそれらの周波数の信号に基づき前記複数の成分信号を抽出することを特徴とする、請求項1に記載の複数の光を用いた同時光学的測定方法。The plurality of lights are emitted from a plurality of lasers, and the amplitudes of the plurality of lights are modulated at a plurality of different frequencies by a plurality of modulation signal generators provided in a driving circuit of the plurality of lasers. 2. The simultaneous optical measurement method using a plurality of lights according to claim 1, wherein the plurality of component signals are extracted based on signals of those frequencies obtained from a modulation signal generator. 前記複数の光を複数のレーザから出射させ、該複数のレーザから発せられる前記複数の光の振幅を複数の変調素子により互いに異なる複数の周波数で変調し、前記複数の変調素子の周波数の信号に基づき前記複数の成分信号を抽出することを特徴とする、請求項1に記載の複数の光を用いた同時光学的測定方法。The plurality of lights are emitted from a plurality of lasers, the amplitudes of the plurality of lights emitted from the plurality of lasers are modulated at a plurality of different frequencies by a plurality of modulation elements, and a signal having a frequency of the plurality of modulation elements is obtained. The simultaneous optical measurement method using a plurality of lights according to claim 1, wherein the plurality of component signals are extracted based on the plurality of component signals. 前記複数の振幅変調光を合成した後に前記被検体に照射することを特徴とする、請求項1〜3のいずれかに記載の複数の光を用いた同時光学的測定方法。The simultaneous optical measurement method using a plurality of lights according to any one of claims 1 to 3, wherein the object is irradiated after the plurality of the amplitude modulated lights are combined. 互いに異なる波長の光を発する複数の光源と、該複数の光源から発せられる複数の光の振幅を互いに異なる複数の周波数で変調する複数の変調手段と、該複数の変調手段での変調により得られた複数の振幅変調光を被検体へと導く光照射光学系と、前記被検体を経た前記振幅変調光を検出して光電変換する光検出器と、該光検出器により得られる電気信号を前記複数の変調手段から得られる複数の周波数の信号に基づきそれらに対応する複数の成分信号を抽出する成分信号抽出手段とを備えていることを特徴とする、複数の光を用いた同時光学的測定装置。A plurality of light sources that emit light of different wavelengths, a plurality of modulation units that modulate the amplitudes of a plurality of light beams emitted from the plurality of light sources at a plurality of different frequencies, and modulation by the plurality of modulation units. A light irradiation optical system that guides the plurality of amplitude-modulated lights to the subject, a photodetector that performs photoelectric conversion by detecting the amplitude-modulated light that has passed through the subject, and outputs an electric signal obtained by the photodetector. Simultaneous optical measurement using a plurality of lights, characterized by comprising: component signal extracting means for extracting a plurality of component signals corresponding to the signals based on a plurality of frequencies obtained from a plurality of modulating means. apparatus. 前記光源はレーザであり、前記変調手段は前記レーザの駆動回路に設けられた変調用信号発生器であることを特徴とする、請求項5に記載の複数の光を用いた同時光学的測定装置。The simultaneous optical measurement apparatus using a plurality of lights according to claim 5, wherein the light source is a laser, and the modulation unit is a modulation signal generator provided in a driving circuit of the laser. . 前記光源はレーザであり、前記変調手段は前記レーザから発せられる光の通過経路に設けられた変調素子であることを特徴とする、請求項5に記載の複数の光を用いた同時光学的測定装置。The simultaneous optical measurement using a plurality of lights according to claim 5, wherein the light source is a laser, and the modulation means is a modulation element provided in a passage of light emitted from the laser. apparatus. 前記光照射光学系は前記複数の光源にそれぞれ一端を結合せしめられた複数の光ファイバを備えており、該光ファイバの他端はまとめられて1つの光出射部を形成しており、前記光照射光学系は更に前記光出射部から発せられた光を前記被検体へと導くコリメータを備えていることを特徴とする、請求項5〜7のいずれかに記載の複数波長光による同時光学的測定装置。The light irradiation optical system includes a plurality of optical fibers each having one end coupled to each of the plurality of light sources, and the other ends of the optical fibers are collectively formed as one light emitting portion, and the light 8. The simultaneous optical system according to claim 5, wherein the irradiation optical system further includes a collimator that guides light emitted from the light emitting unit to the subject. 9. measuring device. 前記被検体を経た前記振幅変調光を前記光検出器へと導く導光光学系を備えていることを特徴とする、請求項5〜8のいずれかに記載の複数波長光による同時光学的測定装置。9. A simultaneous optical measurement using a plurality of wavelengths of light according to claim 5, further comprising a light guiding optical system for guiding the amplitude-modulated light passing through the subject to the photodetector. apparatus. 前記導光光学系は、前記被検体からの光を集光させる集光レンズと、該集光レンズにより集光せしめられた光を一端から入射させ且つ他端が前記光検出器と結合せしめられた光ファイバとを備えていることを特徴とする、請求項9に記載の複数波長光による同時光学的測定装置。The light guide optical system has a condenser lens for condensing light from the subject, and light condensed by the condenser lens which is incident from one end and the other end of which is coupled to the photodetector. The simultaneous optical measurement device using a plurality of wavelengths of light according to claim 9, further comprising an optical fiber.
JP2002266935A 2002-09-12 2002-09-12 Simultaneous and optical measurement method using multiple light, and apparatus for the same Pending JP2004101478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266935A JP2004101478A (en) 2002-09-12 2002-09-12 Simultaneous and optical measurement method using multiple light, and apparatus for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266935A JP2004101478A (en) 2002-09-12 2002-09-12 Simultaneous and optical measurement method using multiple light, and apparatus for the same

Publications (1)

Publication Number Publication Date
JP2004101478A true JP2004101478A (en) 2004-04-02

Family

ID=32265610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266935A Pending JP2004101478A (en) 2002-09-12 2002-09-12 Simultaneous and optical measurement method using multiple light, and apparatus for the same

Country Status (1)

Country Link
JP (1) JP2004101478A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799122B2 (en) 2015-03-09 2017-10-24 Canon Kabushiki Kaisha Motion information acquiring apparatus and motion information acquiring method
WO2019102879A1 (en) * 2017-11-24 2019-05-31 浜松ホトニクス株式会社 Optical inspection device and optical inspection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799122B2 (en) 2015-03-09 2017-10-24 Canon Kabushiki Kaisha Motion information acquiring apparatus and motion information acquiring method
WO2019102879A1 (en) * 2017-11-24 2019-05-31 浜松ホトニクス株式会社 Optical inspection device and optical inspection method
JP2019095667A (en) * 2017-11-24 2019-06-20 浜松ホトニクス株式会社 Optical inspection device and method for inspecting image
CN111406206A (en) * 2017-11-24 2020-07-10 浜松光子学株式会社 Optical inspection device and optical inspection method
KR20200087180A (en) * 2017-11-24 2020-07-20 하마마츠 포토닉스 가부시키가이샤 Optical inspection device and optical inspection method
US11422059B2 (en) 2017-11-24 2022-08-23 Hamamatsu Photonics K.K. Optical inspection device and optical inspection method
JP7313115B2 (en) 2017-11-24 2023-07-24 浜松ホトニクス株式会社 Optical inspection device and optical inspection method
KR102642774B1 (en) * 2017-11-24 2024-03-05 하마마츠 포토닉스 가부시키가이샤 Optical inspection device and optical inspection method

Similar Documents

Publication Publication Date Title
US20120019815A1 (en) Multichannel photometric measurement apparatus
US7180595B2 (en) Gas detection method and gas detector device
KR100747768B1 (en) Apparatus for measuring exhaust gas using wavelength modulation spectroscopy
US20120188550A1 (en) Gas Concentration Measurement Device
JP2002248104A (en) Biological information measurement device and measurement method in use
US20140252246A1 (en) System for in vitro detection and/or quantification by fluorometry
JP2008020380A (en) Absorbance measuring instrument
JP2006506614A (en) Optical spectrum analyzer using Brillouin scattering and measurement method related thereto
DE60311182D1 (en) Laser spectroscopy by means of a master-slave control architecture
ITPI20090147A1 (en) METHOD OF SPETTRAL IMAGING IN DEPTH AND EQUIPMENT THAT ACTIVATE THIS METHOD
JP5371268B2 (en) Gas concentration measuring method and apparatus
WO2014208349A1 (en) Optical measurement device and optical measurement method
JP2004101478A (en) Simultaneous and optical measurement method using multiple light, and apparatus for the same
US4669872A (en) Temperature measuring device
WO2016000001A1 (en) Device and method for measuring circular dichroism
JP2004020539A (en) Infrared circular dichroism measuring instrument and infrared circular dichroism measuring method
JP4934691B2 (en) Spectroscopic system
KR20150097586A (en) Photoreflectance device
JP4202683B2 (en) Light emitting diode light quantity measuring method and light quantity measuring apparatus
JPH1144638A (en) Method for measuring fruit sugar level and fruit sugar level meter
KR101934158B1 (en) Diffuse Optical Spectroscopy Probe built in auxiliary light source and its system
JP2004325099A (en) Laser light source and laser spectroscopic analyzer using the same
JP7454771B1 (en) Laser device and laser output management method
JP7327487B2 (en) Optical measurement device
JP6928938B2 (en) Optical measurement method and its equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A02 Decision of refusal

Effective date: 20061206

Free format text: JAPANESE INTERMEDIATE CODE: A02