JP2004101359A - Hole wall surface inspection device and inspection method for concrete structure - Google Patents

Hole wall surface inspection device and inspection method for concrete structure Download PDF

Info

Publication number
JP2004101359A
JP2004101359A JP2002263152A JP2002263152A JP2004101359A JP 2004101359 A JP2004101359 A JP 2004101359A JP 2002263152 A JP2002263152 A JP 2002263152A JP 2002263152 A JP2002263152 A JP 2002263152A JP 2004101359 A JP2004101359 A JP 2004101359A
Authority
JP
Japan
Prior art keywords
hole
hole wall
wall surface
image
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002263152A
Other languages
Japanese (ja)
Other versions
JP4393756B2 (en
Inventor
Yukihiro Ito
伊藤 幸広
Katsuhisa Inoguchi
猪口 勝久
Naotoshi Yamauchi
山内 直利
Masaaki Hayashida
林田 雅明
Kenta Tsutsui
筒井 健多
Yutaka Terasaki
寺崎 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002263152A priority Critical patent/JP4393756B2/en
Publication of JP2004101359A publication Critical patent/JP2004101359A/en
Application granted granted Critical
Publication of JP4393756B2 publication Critical patent/JP4393756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To inspect the deterioration and construction bad condition or the like of a concrete structure simply and with good accuracy by obtaining an expanded image of the condition of a concrete hole wall surface. <P>SOLUTION: The cylinder tip of a cylindrical body 10 inserted in an investigation hole 4 is provided with an imaging part 11 having a built-in linear image sensor along the longitudinal direction of the cylinder, and having an image obtaining surface 15 of the linear image sensor 16. The imaging part 11 is provided with a movable support roller 31 for pressing the cylindrical body 10 to the hole wall surface to make the image obtaining surface 15 and the hole wall 5 of the investigation hole 4 closely adhere to each other. The cylindrical body 10 is turned in a designated degree arc in the circumferential direction in the investigation hole 4 in the state of being supported by the movable support roller 31, and with the rotation, an image signal obtained by imaging the hole wall surface 5 irradiated through a photo conductive member by the linear image sensor 16 is output to a personal computer 2 through an interface part 20 to obtain an expanded image of the hole wall surface of an object. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は孔壁面検査装置及びコンクリート構造物の検査方法に係り、コンクリート構造物に小径孔を形成し、該孔壁面の状態を詳細に撮像可能な孔壁面検査装置及び同装置を用いて、コンクリート構造物の劣化および施工不良状態等を簡単かつ精度よく検査できるようにしたコンクリート構造物の検査方法に関する。
【0002】
【従来の技術】
高度経済成長期に各地で大量に建設されたコンクリート構造物は、設計上、施工上において種々の問題点を抱え、一般的に耐久性が低いことが指摘されてきた。そして今、それらが建設後約30年が経過しようとしており、構造物としての健全性やコンクリート部の劣化診断を必要とする物件が数多く発生している。特に既設トンネルの覆工コンクリートの一部が剥離し落下するという事故等を契機にコンクリート構造物の耐久性に関する意識が高まり、定期的に構造物の検査および劣化診断が行われるようになってきた。
【0003】
コンクリート構造物の劣化および施工不良の状態等を検査する場合、コンクリート内部の詳細なデータを得ることが最善である。そのため、一般にはコンクリート構造物の所定位置からコア形状のコンクリートを抜き取り検査する方法が行われる。抜き取ったコアからは、コンクリート構造物における実際の中性化深さや発生ひび割れ等の直接情報を得ることができ、コンクリート構造物の劣化診断として精度の高い情報が得られる。しかし、コア抜き作業は、コア寸法にもよるが、コンクリートを所定直径のコア状に切り取るための専用のカッタ装置を必要とする。そしてカッタ装置をコンクリート構造物の所定位置に固定するための治具やコンクリート切断面への水の供給等、大がかりな設備を必要とし、検査コストが高くなるとともに、作業時間が増すという問題がある。また、精度の高い情報を得るためには、コアもある程度大きな寸法のものを抜き取る必要がある。このため、所定かぶり位置にある鉄筋等を切断してしまうこともあり、構造物に大きな損傷を与えることから検査点数を多く取ることが難しい。
【0004】
そこで、調査対象物であるコンクリートに所定の小径のボーリング調査孔を削孔し、その調査孔に光ファイバー束からなるマイクロスコープ、CCDカメラを搭載したボアホールカメラ等の撮像装置を挿入して孔壁を撮像し、得られたデータを画像処理により所定の画像として構成する検査手法も開発されている(たとえば、特許文献1,非特許文献1参照)。また、観察の精度を高めるために調査孔内の観察装置として、医療検査分野で利用されている内視鏡と同等機能を有するファイバースコープ型の内視鏡を用い、内視鏡で得られた画像を所定の画像処理装置で処理し、調査孔内部の状況を把握するようになっている(特許文献2参照)。
【0005】
【特許文献1】
特開2001−41903公報(第2頁)
【特許文献2】
特開2001−227925公報(第3頁〜第6頁)
【非特許文献1】
福井次郎他4名,“橋梁基礎構造の調査に関する研究”「第2回構造物の診断に関するシンポジウム論文集」,土木学会,1999年8月,p.137−142
【0006】
【発明が解決しようとする課題】
ところで、上述した各手法において、光ファイバー束を用いるマイクロスコープや内視鏡を使用するものでは、比較的小口径の調査孔を削孔することで調査を行える。しかし、先端の撮像プローブの撮影視野角が限られるため、撮像プローブが向いている孔壁部分の状況は把握できるが、撮像プローブが位置する所定深度前後における孔壁面の展開図情報等を得るために、多数の撮像情報を編集しなければならない。このため、各調査孔における計測作業が煩雑になるという問題がある。
【0007】
一方、ボアホールカメラは撮像プローブ内に収容されたミラーに結像した調査孔の全周方向の輪切り画像をCCDカメラで撮像し、サンプリングされた輪切り情報を画像処理により集成して所定深度範囲の展開画像情報としている。ところがこの種のボアホールカメラは、CCDカメラとミラー光学系を収容した撮像プローブの直径が大きいため、従来のボーリング孔を利用している。このためボーリング孔の削孔設備を必要とするという問題を有する。また、比較的大口径の調査孔内で孔壁画像を撮像プローブ内に収容されたミラー光学系に結像させるために、孔壁を照らす高照度の光源が付加的に必要となる。
【0008】
そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、従来の削孔装置で削孔可能な口径の調査孔で対応することができ、さらに所定深度範囲の孔壁展開図を迅速かつ簡単に得ることができる孔壁面検査装置及びコンクリート構造物の検査方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は調査孔内に挿入される円筒状本体の筒先端に、筒長手方向に沿ってリニアイメージセンサを内蔵し、該リニアイメージセンサの画像取得面が臨む開口を前記筒状本体に形成して撮像部を形成するとともに、前記円筒状本体を前記調査孔の孔壁内において孔軸と同心円上に保持する筒姿勢保持手段を前記円筒状本体の一部に設け、該筒姿勢保持手段で前記円筒状本体を支持しながら、前記調査孔内で周方向に所定角度回転させ、該回転に伴って導光体を介して照らされた前記孔壁面を撮像し前記リニアイメージセンサによって取得した画像信号を、インタフェース部を介して出力し、対象孔壁面の展開画像を得るようにしたことを特徴とする。
【0010】
調査孔内に挿入される円筒状本体の筒先端に、筒長手方向に沿ってリニアイメージセンサを内蔵し、該リニアイメージセンサの画像取得面が臨む開口を前記筒状本体に形成して撮像部を形成するとともに、前記画像取得面と前記調査孔の孔壁とを密着させるように前記筒状本体を孔壁面に押しつける押圧支持手段を前記撮像部に設け、該押圧支持手段で支持させた状態で前記円筒状本体を前記調査孔内で周方向に所定角度回転させ、該回転に伴って導光体を介して照らされた前記孔壁面を撮像し前記リニアイメージセンサによって取得した画像信号を、インタフェース部を介して出力し、対象孔壁面の展開画像を得るようにしたことを特徴とする。
【0011】
前記展開画像は、前記画像信号を外部描画処理手段に出力し、処理することによって得られるようにすることが好ましい。
【0012】
前記押圧支持手段は、ローラ支持体を前記孔壁に押圧可能な付勢手段を備えるようにすることが好ましい。
【0013】
請求項1に記載の装置の円筒状本体がわずかな隙間を有して挿入可能な直径の調査孔を削孔し、該調査孔内の清掃後に、該調査孔内に前記装置の撮像部を挿入し、前記筒姿勢保持手段によって前記円筒状本体の前記撮像部と調査孔孔壁との離隔をほぼ保持しながら、前記筒状本体を周方向に所定角度回転させ、該回転に伴って導光体を介して照らされた前記孔壁面を、孔軸方向の走査と周方向との走査とを行うことで撮像し、取得された画像信号を、インタフェース部を介して外部描画処理手段に出力して画像処理することにより、前記孔壁面の展開画像を作成して描画し、対象コンクリート孔壁面の劣化および施工不良状態を検査することを特徴とする。
【0014】
請求項2に記載の装置の円筒状本体がわずかな隙間を有して挿入可能な直径の調査孔を削孔し、該調査孔内の清掃後に、該調査孔内に前記装置の撮像部を挿入し、前記押圧支持手段によって前記撮像部の画像取得面と調査孔孔壁との密着性を保持しながら、前記筒状本体を周方向に所定角度回転させ、該回転に伴って導光体を介して照らされた前記孔壁面を、孔軸方向の走査と周方向との走査とを行うことで撮像し、取得された画像信号を、インタフェース部を介して外部描画処理手段に出力して画像処理することにより、前記孔壁面の展開画像を作成して描画し、対象コンクリート孔壁面の劣化および施工不良状態を検査することを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明の孔壁面検査装置及びコンクリート構造物の検査方法の一実施の形態について、添付図面を参照して説明する。
図1は孔壁面検査装置1の一実施の形態を示した斜視図である。孔壁面検査装置は、円筒状の外殻13をなし、筒先端の所定範囲に撮像部11を備えた装置本体10と、装置本体10の後端から導出された信号線12からの画像信号を、画像描画用信号に変換して公知のパーソナルコンピュータ2に出力するためのインタフェース部20とから構成されている。
【0016】
装置本体10は、本実施の形態では外径21mm、全長550mmの鋼管パイプを外殻13とした円筒形状をなし、先端に撮像部11が備えられている。撮像部11は図2に拡大して示したように、先端に細長四角形状をなす開口14が形成され、この開口14から所定長さの画像取得面15が臨むように、内部にリニアイメージセンサ16が収容されている。本実施の形態では、リニアイメージセンサ16としてLED(図示せず)を光源とし、導光体1対1の等倍光学系を用いて結像を読み取る公知の密着型センサが用いられている。このリニアイメージセンサ16は、撮像部11の長手方向の主走査方向と、撮像部11の円筒軸線周りに回転させる副走査方向とに走査させることで2次元の展開画像を取得することができる。本実施の形態では、副走査方向への移動(回転)は、その移動距離をエンコーダで計測しながら走査情報を取得することで精度の高いサンプリングを行っている。
【0017】
ここで、リニアイメージセンサは、たとえば受光素子を線状(リニア)に配列し、受光素子の配列方向および所定の方向への走査を行うことで2次元画像を取得することのできるセンサをさし、上述した等倍光学系のいわゆる密着型センサのほか、合焦機能を有する縮小光学系CCDセンサ等をリニアに配列した受光部としてセンサを構成したもの等、リニアに受光部が構成されているイメージセンサを広くさしている。
【0018】
また、この撮像部11には、走査時(回転時)の装置本体10の安定性を確保するために、装置本体10の支持手段が備えられている。この種の密着型センサは焦点距離が約1mm以下であるため、孔壁面5とセンサの画像取得面15との距離が1mm以上になるとシャープな画像が得られないおそれがある。そこで、本発明の装置本体10には画像取得面15を孔壁5に押しつける押圧支持手段30が備えられている。本実施の形態では、装置本体10の回転方向に対して画像取得面15の背面位置の、画像取得面15の全長にわたり、ほぼ等間隔に3箇所に押圧支持手段としての可動支持ローラ31が取り付けられている。各可動支持ローラ31は図2,図3に示したように、装置本体10内に配置された1本の回転軸(図示せず)に関して回転可能に同軸支持された軸受部材32と、軸受部材32に軸支されたゴムローラ33と、ゴムローラ33を孔壁5に押圧ように付勢するトーションスプリング34とから構成されている。回転軸の端部は図1に示したように、装置本体10から突出し、操作ノブ35により所定の回転を外部から付与できるようになっている。したがって、装置本体10を調査孔に挿入する際に、外側に突出している可動支持ローラ31を、操作ノブ35を用いてトーションスプリング34の付勢力に抗するように、装置本体10内に一時的に収容させて調査孔4(図1)内への挿入を容易に行えるようになっている。
【0019】
さらに、装置本体10の滑らかな回転を保持するために、独立ローラ36とスペーサ37とが撮像部11の開口14の縁近傍に設けられている。独立ローラ36は図2に示したように、画像取得面15の後端側に、長手方向に所定間隔をあけて配設され、各ローラが独立して回転することができる。一方、画像取得面15の前端側には所定厚さのスペーサ37が貼着されている。装置本体10をこのスペーサ37位置で摺動させることにより、所定の焦点距離を確保するように、画像取得面15と孔壁5との離れを保持することができる。さらに装置本体10の回転移動量を検知するために、エンコーダ(図示せず)のローラ17の一部が外殻13から突出するように取り付けられている。
【0020】
リニアイメージセンサ16で取得される画像信号の取り扱いについて図1他を参照して説明する。装置本体10の手元にあるスイッチをONし、LED光源(図示せず)のRGB色を順に発光させ、導光体を介して孔壁5を照らして反射させ、光学系を介して画像取得面15位置のリニアイメージセンサ16の受光面に到達する各色の光量をアナログ信号としてサンプリングする。1次配列された受光素子(図示せず)で得られた画像信号は、増幅器を介してアナログ信号で所定クロックに同期させて信号線12を介して順次出力される。そしてこの出力画像データ信号は、画像信号変換手段としての規格化されたPCカード20に入力され、所定の画像信号処理がなされ、PCカード20を装着したパーソナルコンピュータ2において、所定の展開画像として描画させることができる。
【0021】
図1に概略機能構成が示されているように、インタフェース部20としてのPCカード20では、まず入力されたアナログ信号がA/D回路21においてディジタル信号に変換され、次いでスキャナ制御部22において、取得された画像信号が集成され、実際の孔壁データに対応した画像信号が生成される。さらにインターフェース制御部23において、パーソナルコンピュータ2での描画処理のための引き渡し情報として変換され、パーソナルコンピュータ2において、所定の描画処理がなされる。パーソナルコンピュータ2のインターフェースとしては上述のPCカード仕様の他、USB端子,IEEE1394端子等を介しての接続が可能なことはいうまでもない。
【0022】
パーソナルコンピュータ2には画像処理、描画処理部に加えて前処理部を設けることが好ましく、この前処理部では、撮像部を回転させる際の回転速度のムラ、孔軸方向へのブレ、回転軸の倒れ等のために取得画像信号に生じた歪み等を、補完演算して整形することができる。画像データベースは、圧縮データとして逐次蓄積させることができ、蓄積された多数のデータを統計処理してマッピング情報として編集し、対象構造物全体の劣化および施工不良状態の診断を行うようにしてもよい。その際、画像データを加工し、設計、施工データ等の付加情報を重ねることで診断作業の精度を高めることが好ましい。
【0023】
図4は、孔壁面検査装置により調査孔4の孔壁5を撮像している状態を説明するために示した断面図である。同図(a)に示したように、撮像時には、装置本体10の撮像部11を調査孔4内において、スペーサ37、独立ローラ36、エンコーダ用ローラ17および可動支持ローラ31が孔壁5に接触した状態で矢印方向に回転させればよい。各ローラが装置本体10の回転を安定して支持するため、内蔵されたリニアイメージセンサ(図示せず)の画像取得面15を孔壁5から一定距離を保持させながら、装置本体10を回転させることができる。特に可動支持ローラ31は、トーションスプリング34(図3)の付勢力によって常にゴムローラ33を孔壁5に押圧させることができるので、同図(b)のように画像取得面15が上方を向いているような回転位置でも確実に画像取得面15を孔壁5に押しつけるようにできる。
【0024】
本実施の形態では、図4各図に示したように、得られた展開画像上での縮尺の把握のために、孔壁5にシール状のマーカ6が貼着されている。このマーカ6は孔壁面5の対向位置に貼着されているので、展開画像を得たときに半周ごとに画像上に現れることになる。このマーカ6を孔壁に貼着するための治具およびその貼着方法について図5を参照して説明する。図5(a)に示したマーカ取付治具40は筒状本体41と、本体内に収容されたリンク機構(図示せず)の動作により孔壁方向に所定量だけ突出するマーカ貼着突起42とを備えている。このマーカ貼着突起42は、筒状本体41の手元側でのリンク機構の操作により、孔壁5側に向けて突出し、先端が孔壁5に当接することができる。このとき突起先端に、糊面を外側に向けたシール状のマーカ6を仮留めしておくことで、突起42を孔壁5に当接させた際にマーカ6を孔壁5の所定位置に貼着させることができる。また筒状本体41には長手方向に目盛44が設けられているので、図5(b)に示したように、所定深度にマーカ6を貼着させることができる。
【0025】
図6は、コンクリートに削孔された調査孔の状態を撮像し、得られた展開画像の一例を模式的に示した展開図である。同図に示したように、展開図上には周方向に180°の間隔で、深度方向に設定間隔Pでマーカ6が写し出されている。本実施の形態ではマーカ6として直径5mmの1mm方眼シールが用いられている。この方眼を利用して展開図上に現れたクラックCの幅、長さ、空隙Vの大きさ、中性化の範囲等を容易かつ高精度に定量把握できる。
【0026】
図7,図8は本実施の形態の押圧支持手段の変形例を示した断面図である。本変形例では、図7に示したように、可動支持ローラに代えて片持ち形状の板バネ部材45が外殻13の一部にネジ46によって固定されている。この板バネ部材45は所定厚の板バネ鋼47とテフロン(商品名:登録商標)板等からなる摩擦低減板48とを積層したもので、調査孔内に装置本体10が挿入された際に、図8に示したように、孔直径に応じて板バネ部材45のフリー端側45aが変形し、その変形量に応じた押圧力で孔壁5を押圧するようになっている。これにより筒の対向位置にある画像取得面15が孔壁5に確実に押しつけられ、内蔵されたリニアイメージセンサの焦点距離が確保される。
【0027】
次に、上述の押圧支持手段に代えて姿勢保持手段を用いて孔壁の画像の取得を行えるようにした孔壁面検査装置の構成について、図9,図10を参照して説明する。
図9,図10に示した孔壁面検査装置では、リニアイメージセンサとして合焦距離の比較的大きい縮小光学系CCDセンサを線状に配列したタイプを使用している。このリニアイメージセンサでは画像取得面と孔壁との間を密着させる必要がなく、また多少の距離のバラツキがあっても焦点が合うため鮮明な画像を得ることができる。このため、円筒状の装置本体が調査孔内で、回転軸をほぼ保持し、孔軸方向(孔深度方向)に関しても保持された状態で回転ができれば、その間の孔壁展開画像を得ることができる。
【0028】
図9は、孔軸方向のブレを、軸方向姿勢保持手段としての先端ピンで防止するようにした装置を示している。同図に示したように、調査孔4の先端(最深部)はあらかじめ錘状に尖った形状をなし、その中心頂点部分4aに先端ピン71の先端が保持されるようになっている。これにより装置本体10が回転する際に孔軸方向に前後したり、撮像部11の画像取得面15がブレたりするのを防止するようになっている。このとき、孔口元位置の装置本体10と孔壁5との隙間にはスペーサリング72が装着されており、回転軸(孔軸)xの倒れ等が防止されるようになっている。また、孔外にはエンコーダ74およびエンコーダを保持するリング73とが取り付けられており、高精度で装置本体10の回転状態を検出でき、装置の回転角と取得画像との整合を果たすデータが得られるようになっている。
【0029】
図10は、回転時における回転軸xに対する装置の倒れを孔4内の撮像部11において軸方向に所定箇所に取り付けた周方向姿勢保持手段としてのローラ支持部75で防止し、孔軸方向のブレをリング73によって規制するようにした装置を示している。本装置によっても孔軸方向、回転軸の倒れを確実に防止することができる。
【0030】
次に、調査孔の削孔から孔壁撮像までの一連の作業について図11,図12を参照して説明する。
本発明の検査方法において、鮮明な画像を取得するためには、削孔した調査孔4の真円度および直線性も重要な要件となる。そこで、本発明では孔の真円度、直線性の精度を上げるために、図11(a)に示したような削孔ガイド50にドリル53を搭載して削孔を行った。
【0031】
削孔ガイド50は、削孔装置としてのドリル53の直進性を保持するスライドバー51と、削孔ガイド50をコンクリート面の削孔位置に保持する押圧板52と、押圧板52でドリルビット53aを保持するガイドブッシュ54と、ドリル53の操作安定性及び押圧板の密着性を高めるための付勢スプリング55とから構成されている。同図(a)はドリル53による削孔開始直後を示している。このときドリル53の上面にはスライドバー51がスライダ56を介して支持されている。またスライダ56とスライドバー51との間には初期短縮状態の付勢スプリング55が装着されている。スライドバー51の先端には押圧板52が取り付けられており、押圧板52の中央位置に設けられたガイドブッシュ54を介してドリルビット53aが保持されている。この状態から同図(b)に示したように、矢印方向にドリル削孔を行うと、付勢スプリング55が伸張し、これによりスライドバー51、押圧板52をコンクリート表面に押しつける力が増加し、押圧板52の密着性を高め、ドリル操作時の安定性を増すことができる。
【0032】
所定深度までの削孔が完了したら、孔内の清掃を行う。同図(c)に示したように、送風機60のノズル61を孔内に挿入し、送風するとともにノズル61の筒先で孔内に溜まった大量のドリル粉を掻き出すようにすると効率よくドリル粉を除去することができる。さらに同図(d)に示したように、ブラシ62を用いて調査孔4内を水洗して孔壁5に付着しているドリル粉を除去する孔内清掃を行う。孔内を乾燥機等(図示せず)で乾燥させた後に、必要に応じて、図12(e)に示したように、マーカ取付治具40を用いて調査孔4内の所定位置にマーカ6を貼着する。そして同図(f)に示したように、パーソナルコンピュータ2に接続された孔壁面検査装置1により、調査孔内の孔壁5の所定範囲の撮像を行うことができる。取得された画像情報は、携帯したパーソナルコンピュータ2でリアルタイムで描画させてもよいし、データとして図示しない記憶媒体に蓄積しておいて、後に一括して描画、確認することもできる。
【0033】
【実施例】
本検査方法で取得した画像のひずみや色調の変化を調べるために、内径22.8mmの丸パイプの内面に1mm方眼紙を貼付して、対象面をスキャニングし、画像精度、品質等の検討を行った。その結果、1mm方眼紙の罫線も明瞭に確認でき、パイプの長手方向および周方向のいずれにおいても画像にひずみが生じていない。また、色調もほぼ実際の色調と同じであった。また、画像データの圧縮、欠陥(画像のトビ)も生じておらず、1mm以下の対象物も確認できるシャープな画像が得られた。
【0034】
【発明の効果】
以上に述べたように、本発明の孔壁面検査装置を用いて、コンクリート内部を検査する方法によっても、いままでコア抜きで検査してきた中性化、ひび割れおよび塩化物イオン浸透深さ試験等が同等の精度で可能なことが確認できた。また、コア抜きによる試験と比ベ、コスト、作業性が高いという効果を得ることができる。
【図面の簡単な説明】
【図1】本発明による孔壁面検査装置の一実施の形態を示した全体斜視図。
【図2】図1に示した孔壁面検査装置の撮像部を拡大して示した部分拡大斜視図。
【図3】図2に示したIII−III断面線に沿って示した横断面図。
【図4】孔壁面検査装置による孔壁撮像状態を示した状態説明図。
【図5】マーカ取付治具とマーカ取付状態を示した状態説明図。
【図6】本装置によって得られた孔壁の展開画像の一例を示した模式展開図。
【図7】押圧支持手段の変形例を示した装置断面図。
【図8】図7に示した押圧支持手段の動作状態を示した状態説明図。
【図9】姿勢保持手段によって回転時の装置ブレを防止するようにした孔壁面検査装置の一実施の形態を示した全体斜視図。
【図10】姿勢保持手段によって回転時の装置ブレを防止するようにした孔壁面検査装置の他の実施の形態を示した全体斜視図。
【図11】本発明のコンクリート検査方法における一連の作業手順を示した説明図(その1)。
【図12】本発明のコンクリート検査方法における一連の作業手順を示した説明図(その2)。
【符号の説明】
1 孔壁面検査装置
2 パーソナルコンピュータ
5 孔壁
10 装置本体
11 撮像部
12 信号線
15 画像取得面
16 リニアイメージセンサ
17 ローラ
20 インタフェース部
31 可動支持ローラ
36 独立ローラ
37 スペーサ
40 マーカ取付治具
50 削孔ガイド
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hole wall surface inspection apparatus and a method for inspecting a concrete structure, wherein a small diameter hole is formed in a concrete structure, and the state of the hole wall surface can be imaged in detail. The present invention relates to a concrete structure inspection method capable of easily and accurately inspecting a deterioration of a structure, a poor construction state, and the like.
[0002]
[Prior art]
It has been pointed out that concrete structures constructed in large numbers in various places during the period of high economic growth have various problems in design and construction and generally have low durability. Now, about 30 years have passed since they were constructed, and there are a number of properties that require a soundness as a structure and a deterioration diagnosis of the concrete part. In particular, due to an accident such as a part of the lining concrete in the existing tunnel peeling off and falling, awareness of the durability of concrete structures has increased, and inspection and deterioration diagnosis of structures have been performed regularly. .
[0003]
When inspecting the deterioration of a concrete structure and the state of poor construction, it is best to obtain detailed data inside the concrete. Therefore, a method of extracting and inspecting core-shaped concrete from a predetermined position of a concrete structure is generally used. From the extracted core, it is possible to obtain direct information such as the actual neutralization depth and the generated cracks in the concrete structure, and to obtain highly accurate information as a deterioration diagnosis of the concrete structure. However, the coring operation requires a dedicated cutter device for cutting concrete into a core having a predetermined diameter, depending on the core size. In addition, large-scale equipment such as a jig for fixing the cutter device to a predetermined position of the concrete structure and supply of water to the concrete cut surface is required, which increases the inspection cost and increases the work time. . Further, in order to obtain highly accurate information, it is necessary to extract a core having a somewhat large size. For this reason, the reinforcing bar or the like at the predetermined cover position may be cut, and the structure is seriously damaged, so that it is difficult to obtain a large number of inspection points.
[0004]
Therefore, a predetermined small-diameter boring survey hole is drilled in the concrete to be surveyed, and an imaging device such as a microscope consisting of an optical fiber bundle and a borehole camera equipped with a CCD camera is inserted into the survey hole to cut the hole wall. An inspection method has been developed in which an image is taken and the obtained data is configured as a predetermined image by image processing (for example, see Patent Literature 1 and Non-Patent Literature 1). In addition, as an observation device inside the inspection hole to improve the accuracy of observation, a fiberscope type endoscope having the same function as the endoscope used in the medical examination field was used and obtained with the endoscope. The image is processed by a predetermined image processing device to grasp the situation inside the inspection hole (see Patent Document 2).
[0005]
[Patent Document 1]
JP 2001-41903 A (page 2)
[Patent Document 2]
JP 2001-227925 A (pages 3 to 6)
[Non-patent document 1]
Jiro Fukui et al., "Study on Investigation of Bridge Foundation Structure", "2nd Symposium on Structural Diagnosis", Japan Society of Civil Engineers, August 1999, p. 137-142
[0006]
[Problems to be solved by the invention]
By the way, in each of the above-mentioned methods, when a microscope or an endoscope using an optical fiber bundle is used, the investigation can be performed by drilling a comparatively small inspection hole. However, since the imaging viewing angle of the imaging probe at the tip is limited, the situation of the hole wall portion facing the imaging probe can be grasped, but in order to obtain development information of the hole wall surface at a predetermined depth before and after the imaging probe is located. In addition, many pieces of imaging information must be edited. For this reason, there is a problem that the measurement work in each inspection hole becomes complicated.
[0007]
On the other hand, the borehole camera uses a CCD camera to capture a slice image of the survey hole formed in the mirror housed in the imaging probe in the entire circumferential direction with a CCD camera, and collects the sampled slice information by image processing to develop a predetermined depth range. It is image information. However, this type of borehole camera utilizes a conventional borehole because the diameter of an imaging probe containing a CCD camera and a mirror optical system is large. Therefore, there is a problem that a boring hole drilling equipment is required. In addition, in order to form a hole wall image in a relatively large diameter inspection hole on a mirror optical system housed in the imaging probe, a high-illuminance light source for illuminating the hole wall is additionally required.
[0008]
Therefore, an object of the present invention is to solve the above-mentioned problems of the conventional technology, to be able to cope with an investigation hole having a diameter that can be drilled by a conventional drilling device, and to further develop a hole wall in a predetermined depth range. And a method for inspecting a concrete structure, which can quickly and easily obtain a hole.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention incorporates a linear image sensor at the tip of a cylindrical body inserted into an investigation hole along the longitudinal direction of the cylinder, and an opening facing an image acquisition surface of the linear image sensor. Is formed on the cylindrical main body to form an imaging section, and a cylindrical attitude holding means for holding the cylindrical main body on a concentric circle with a hole axis in a hole wall of the inspection hole is provided on a part of the cylindrical main body. Provided, while supporting the cylindrical body by the cylinder attitude holding means, rotate a predetermined angle in the circumferential direction in the investigation hole, and image the hole wall surface illuminated via the light guide with the rotation. An image signal obtained by the linear image sensor is output via an interface unit to obtain a developed image of the wall surface of the target hole.
[0010]
At the tip of the cylindrical body inserted into the inspection hole, a linear image sensor is built in along the longitudinal direction of the tube, and an opening facing the image acquisition surface of the linear image sensor is formed in the cylindrical body to form an imaging unit. And pressing support means for pressing the cylindrical body against the wall surface of the hole so that the image acquisition surface and the hole wall of the inspection hole are in close contact with each other, and the imaging section is supported by the pressing support means. The cylindrical body is rotated at a predetermined angle in the circumferential direction in the inspection hole, the image signal obtained by the linear image sensor by imaging the hole wall surface illuminated through the light guide with the rotation, The image is output through the interface unit to obtain a developed image of the wall surface of the target hole.
[0011]
It is preferable that the developed image is obtained by outputting the image signal to an external drawing processing unit and processing the image signal.
[0012]
It is preferable that the pressing and supporting means includes an urging means capable of pressing the roller support against the hole wall.
[0013]
The cylindrical body of the device according to claim 1, wherein a hole having a diameter that allows insertion with a small gap is drilled, and after the inside of the hole is cleaned, an imaging unit of the device is placed in the hole. The cylindrical body is rotated by a predetermined angle in the circumferential direction while inserting the cylindrical posture holding means so as to substantially maintain the separation between the imaging section of the cylindrical body and the inspection hole wall, and the cylindrical body is guided by the rotation. The hole wall surface illuminated via the optical body is imaged by performing scanning in the hole axis direction and scanning in the circumferential direction, and outputs the obtained image signal to the external drawing processing means via the interface unit. Then, a developed image of the hole wall surface is created and drawn by inspecting the deterioration of the target concrete hole wall surface and the state of poor construction.
[0014]
The cylindrical body of the device according to claim 2, wherein a hole having a diameter capable of being inserted with a small gap is drilled, and after the inside of the hole is cleaned, an imaging unit of the device is placed in the hole. The cylindrical body is rotated by a predetermined angle in the circumferential direction while maintaining the close contact between the image acquisition surface of the imaging unit and the investigation hole wall by the pressing and supporting means by the pressing and supporting means. The hole wall surface illuminated via is captured by performing scanning in the hole axis direction and scanning in the circumferential direction, and the obtained image signal is output to the external drawing processing means via the interface unit. The method is characterized in that a developed image of the hole wall surface is created and drawn by image processing, and the deterioration and poor construction state of the target concrete hole wall surface are inspected.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a hole wall surface inspection device and a concrete structure inspection method of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a perspective view showing one embodiment of a hole wall surface inspection apparatus 1. The hole wall surface inspection apparatus includes an apparatus main body 10 having a cylindrical outer shell 13 and an imaging unit 11 in a predetermined range at the tip of the cylinder, and an image signal from a signal line 12 derived from the rear end of the apparatus main body 10. And an interface unit 20 for converting the signal into an image drawing signal and outputting the converted signal to a known personal computer 2.
[0016]
In the present embodiment, the apparatus main body 10 has a cylindrical shape in which a steel pipe having an outer diameter of 21 mm and a total length of 550 mm is used as an outer shell 13, and an imaging unit 11 is provided at a tip. As shown in an enlarged manner in FIG. 2, the imaging unit 11 has an elongated rectangular opening 14 formed at the end thereof, and a linear image sensor inside thereof such that an image acquisition surface 15 of a predetermined length faces the opening 14. 16 are accommodated. In the present embodiment, as the linear image sensor 16, a well-known contact type sensor that uses a LED (not shown) as a light source and reads an image using a 1: 1 optical system of a light guide is used. The linear image sensor 16 can acquire a two-dimensional developed image by scanning in the main scanning direction in the longitudinal direction of the imaging unit 11 and in the sub-scanning direction in which the imaging unit 11 is rotated around the cylindrical axis. In the present embodiment, the movement (rotation) in the sub-scanning direction is performed with high accuracy by acquiring scanning information while measuring the movement distance with an encoder.
[0017]
Here, the linear image sensor refers to a sensor capable of acquiring a two-dimensional image by, for example, arranging light receiving elements in a line (linear) and performing scanning in the arrangement direction of the light receiving elements and in a predetermined direction. In addition to the so-called close-contact type sensor of the same-magnification optical system described above, a light-receiving unit is configured linearly, such as a sensor configured as a light-receiving unit in which a reduced optical system CCD sensor or the like having a focusing function is linearly arranged. The image sensor is wide.
[0018]
The imaging unit 11 is provided with support means for the apparatus main body 10 in order to secure the stability of the apparatus main body 10 during scanning (at the time of rotation). This kind of close contact type sensor has a focal length of about 1 mm or less, so if the distance between the hole wall surface 5 and the image acquisition surface 15 of the sensor is 1 mm or more, a sharp image may not be obtained. Therefore, the apparatus main body 10 of the present invention is provided with pressing support means 30 for pressing the image acquisition surface 15 against the hole wall 5. In the present embodiment, movable support rollers 31 as pressing support means are attached at substantially equal intervals at three positions on the back surface of the image acquisition surface 15 with respect to the rotation direction of the apparatus main body 10 over the entire length of the image acquisition surface 15. Have been. As shown in FIGS. 2 and 3, each movable support roller 31 includes a bearing member 32 that is coaxially supported rotatably with respect to one rotation shaft (not shown) disposed in the apparatus main body 10, and a bearing member. The rubber roller 33 is supported by a shaft 32 and a torsion spring 34 for urging the rubber roller 33 against the hole wall 5. As shown in FIG. 1, the end of the rotation shaft projects from the apparatus main body 10, and a predetermined rotation can be given from the outside by an operation knob 35. Therefore, when the apparatus main body 10 is inserted into the inspection hole, the movable support roller 31 projecting outward is temporarily inserted into the apparatus main body 10 so as to resist the urging force of the torsion spring 34 using the operation knob 35. So that it can be easily inserted into the investigation hole 4 (FIG. 1).
[0019]
Further, an independent roller 36 and a spacer 37 are provided near the edge of the opening 14 of the imaging unit 11 in order to maintain smooth rotation of the apparatus main body 10. As shown in FIG. 2, the independent rollers 36 are arranged at a predetermined distance in the longitudinal direction at the rear end side of the image acquisition surface 15, and each roller can rotate independently. On the other hand, a spacer 37 having a predetermined thickness is attached to the front end side of the image acquisition surface 15. By sliding the apparatus main body 10 at the position of the spacer 37, the separation between the image acquisition surface 15 and the hole wall 5 can be maintained so as to secure a predetermined focal length. Further, a part of a roller 17 of an encoder (not shown) is attached so as to protrude from the outer shell 13 in order to detect a rotational movement amount of the apparatus main body 10.
[0020]
The handling of the image signal acquired by the linear image sensor 16 will be described with reference to FIG. A switch at hand of the apparatus main body 10 is turned on to emit RGB light of an LED light source (not shown) in order, illuminate and reflect the hole wall 5 via a light guide, and an image acquisition surface via an optical system. The amount of light of each color reaching the light receiving surface of the linear image sensor 16 at the 15 position is sampled as an analog signal. The image signals obtained by the primary-arranged light receiving elements (not shown) are sequentially output via a signal line 12 in synchronization with a predetermined clock with an analog signal via an amplifier. The output image data signal is input to a standardized PC card 20 as image signal conversion means, subjected to predetermined image signal processing, and rendered as a predetermined developed image on the personal computer 2 on which the PC card 20 is mounted. Can be done.
[0021]
As shown in FIG. 1, the PC card 20 as the interface unit 20 converts an input analog signal into a digital signal in an A / D circuit 21 and then a scanner control unit 22 in the PC card 20. The acquired image signals are collected, and an image signal corresponding to actual hole wall data is generated. Further, in the interface control unit 23, the information is converted as delivery information for drawing processing in the personal computer 2, and predetermined drawing processing is performed in the personal computer 2. It goes without saying that the interface of the personal computer 2 can be connected via a USB terminal, an IEEE1394 terminal or the like in addition to the PC card specifications described above.
[0022]
It is preferable that the personal computer 2 be provided with a pre-processing unit in addition to the image processing and drawing processing units. In the pre-processing unit, unevenness in rotation speed when rotating the imaging unit, blur in the hole axis direction, rotation axis The distortion or the like generated in the acquired image signal due to the fall of the image can be complemented and shaped. The image database can be sequentially stored as compressed data, and a large number of stored data can be statistically processed and edited as mapping information to diagnose deterioration of the entire target structure and poor construction. . At this time, it is preferable to improve the accuracy of the diagnosis work by processing the image data and adding additional information such as design and construction data.
[0023]
FIG. 4 is a cross-sectional view for explaining a state in which the hole wall surface inspection device is imaging the hole wall 5 of the inspection hole 4. As shown in FIG. 2A, at the time of imaging, the imaging unit 11 of the apparatus main body 10 is brought into contact with the hole wall 5 by the spacer 37, the independent roller 36, the encoder roller 17, and the movable support roller 31 in the inspection hole 4. It may be rotated in the direction of the arrow in the state of being pressed. In order for each roller to stably support the rotation of the apparatus main body 10, the apparatus main body 10 is rotated while the image acquisition surface 15 of the built-in linear image sensor (not shown) is kept at a fixed distance from the hole wall 5. be able to. In particular, since the movable support roller 31 can always press the rubber roller 33 against the hole wall 5 by the urging force of the torsion spring 34 (FIG. 3), the image acquisition surface 15 faces upward as shown in FIG. It can be ensured that the image acquisition surface 15 is pressed against the hole wall 5 even in such a rotational position.
[0024]
In the present embodiment, as shown in each of FIGS. 4A and 4B, a seal-like marker 6 is attached to the hole wall 5 in order to grasp the scale on the obtained developed image. Since the marker 6 is stuck at a position facing the hole wall surface 5, when the developed image is obtained, it appears on the image every half circumference. A jig for attaching the marker 6 to the hole wall and a method for attaching the jig will be described with reference to FIG. The marker attachment jig 40 shown in FIG. 5A has a cylindrical main body 41 and a marker sticking projection 42 projecting a predetermined amount in the hole wall direction by the operation of a link mechanism (not shown) housed in the main body. And The marker sticking projection 42 protrudes toward the hole wall 5 by operating the link mechanism on the hand side of the tubular main body 41, and the tip can abut the hole wall 5. At this time, the marker 6 is temporarily fixed to the predetermined position of the hole wall 5 when the protrusion 42 is brought into contact with the hole wall 5 by temporarily holding the seal-like marker 6 with the glue surface facing outward at the tip of the protrusion. Can be stuck. Moreover, since the scale 44 is provided on the cylindrical main body 41 in the longitudinal direction, the marker 6 can be attached at a predetermined depth as shown in FIG.
[0025]
FIG. 6 is a developed view schematically showing an example of a developed image obtained by imaging a state of an investigation hole drilled in concrete. As shown in the figure, the markers 6 are projected at intervals of 180 ° in the circumferential direction and at set intervals P in the depth direction on the developed view. In the present embodiment, a 1 mm square seal having a diameter of 5 mm is used as the marker 6. Using this grid, the width and length of the crack C appearing on the developed view, the size of the void V, the range of neutralization, and the like can be quantitatively grasped easily and with high precision.
[0026]
7 and 8 are cross-sectional views showing a modification of the pressing support means of the present embodiment. In this modified example, as shown in FIG. 7, a cantilevered leaf spring member 45 is fixed to a part of the outer shell 13 by a screw 46 instead of the movable support roller. The leaf spring member 45 is formed by laminating a leaf spring steel 47 having a predetermined thickness and a friction reducing plate 48 made of a Teflon (trade name: registered trademark) plate or the like, and when the apparatus main body 10 is inserted into the inspection hole. As shown in FIG. 8, the free end side 45a of the leaf spring member 45 is deformed according to the diameter of the hole, and the hole wall 5 is pressed with a pressing force corresponding to the amount of deformation. As a result, the image acquisition surface 15 at the position facing the cylinder is reliably pressed against the hole wall 5, and the focal length of the built-in linear image sensor is secured.
[0027]
Next, a configuration of a hole wall surface inspection apparatus that can acquire an image of a hole wall using a posture holding unit instead of the above-described pressing support unit will be described with reference to FIGS. 9 and 10.
The hole wall surface inspection apparatus shown in FIGS. 9 and 10 uses a linear image sensor in which reduction optical CCD sensors having a relatively long focusing distance are linearly arranged. In this linear image sensor, there is no need to make close contact between the image acquisition surface and the hole wall, and even if there is some variation in distance, a clear image can be obtained because the image is focused. For this reason, if the cylindrical device main body can hold the rotation axis substantially in the inspection hole and can rotate in the state of being held also in the hole axis direction (hole depth direction), it is possible to obtain a developed image of the hole wall therebetween. it can.
[0028]
FIG. 9 shows an apparatus in which blurring in the axial direction of the hole is prevented by a tip pin as an axial attitude holding means. As shown in the figure, the tip (deepest part) of the inspection hole 4 has a shape that is previously sharpened like a cone, and the tip of the tip pin 71 is held at the central apex 4a. This prevents the apparatus main body 10 from rotating back and forth in the direction of the hole axis and preventing the image acquisition surface 15 of the imaging unit 11 from blurring. At this time, a spacer ring 72 is mounted in a gap between the apparatus main body 10 at the hole opening position and the hole wall 5, so that the rotation axis (hole axis) x is prevented from falling down. Further, an encoder 74 and a ring 73 holding the encoder are attached outside the hole, so that the rotation state of the apparatus main body 10 can be detected with high accuracy, and data that matches the rotation angle of the apparatus with the acquired image can be obtained. It is supposed to be.
[0029]
FIG. 10 shows that the device is prevented from falling down with respect to the rotation axis x at the time of rotation by a roller support portion 75 as a circumferential orientation holding means attached to a predetermined position in the imaging section 11 in the hole 4 in the axial direction. A device in which blur is regulated by a ring 73 is shown. This device can also reliably prevent the hole axis direction and the rotation shaft from falling.
[0030]
Next, a series of operations from drilling of the inspection hole to imaging of the hole wall will be described with reference to FIGS.
In the inspection method of the present invention, in order to obtain a clear image, the roundness and linearity of the drilled inspection hole 4 are also important requirements. Therefore, in the present invention, in order to improve the accuracy of the roundness and the linearity of the hole, the drill 53 is mounted on the drilling guide 50 as shown in FIG.
[0031]
The drilling guide 50 includes a slide bar 51 for maintaining the straightness of a drill 53 as a drilling device, a pressing plate 52 for holding the drilling guide 50 at a drilling position on a concrete surface, and a drill bit 53a using the pressing plate 52. And a biasing spring 55 for improving the operational stability of the drill 53 and the closeness of the pressing plate. FIG. 5A shows a state immediately after the start of drilling by the drill 53. At this time, the slide bar 51 is supported on the upper surface of the drill 53 via the slider 56. An urging spring 55 in an initial shortened state is mounted between the slider 56 and the slide bar 51. A pressing plate 52 is attached to the tip of the slide bar 51, and a drill bit 53a is held via a guide bush 54 provided at a center position of the pressing plate 52. When drilling is performed in the direction of the arrow as shown in FIG. 5B from this state, the biasing spring 55 expands, thereby increasing the force pressing the slide bar 51 and the pressing plate 52 against the concrete surface. Thus, the adhesion of the pressing plate 52 can be increased, and the stability during drilling can be increased.
[0032]
When the drilling to the predetermined depth is completed, the inside of the hole is cleaned. As shown in FIG. 3C, the nozzle 61 of the blower 60 is inserted into the hole, and when the air is blown, a large amount of drill powder accumulated in the hole is scraped off at the tip of the nozzle 61 to efficiently remove the drill powder. Can be removed. Further, as shown in FIG. 5D, the inside of the inspection hole 4 is washed with water using a brush 62 to remove the drill powder adhering to the hole wall 5, and the inside of the hole is cleaned. After the inside of the hole is dried with a drier or the like (not shown), if necessary, as shown in FIG. 6 is attached. Then, as shown in FIG. 2F, the hole wall surface inspection apparatus 1 connected to the personal computer 2 can image a predetermined range of the hole wall 5 in the inspection hole. The acquired image information may be drawn by the portable personal computer 2 in real time, or may be stored as data in a storage medium (not shown), and drawn and checked later collectively.
[0033]
【Example】
In order to examine the distortion and change in color tone of the image obtained by this inspection method, 1 mm grid paper is attached to the inner surface of a round pipe with an inner diameter of 22.8 mm, the target surface is scanned, and the image accuracy, quality, etc. are examined. went. As a result, the ruled line of the 1 mm grid paper can be clearly confirmed, and no distortion occurs in the image in both the longitudinal direction and the circumferential direction of the pipe. The color tone was almost the same as the actual color tone. In addition, no compression of image data and no defects (blindness of the image) occurred, and a sharp image that could confirm an object of 1 mm or less was obtained.
[0034]
【The invention's effect】
As described above, even with the method of inspecting the inside of concrete using the hole wall inspection device of the present invention, the neutralization, cracking, chloride ion penetration depth test, and the like, which have been inspected without a core, have been performed. It was confirmed that it was possible with the same accuracy. In addition, it is possible to obtain an effect that the cost, the workability, and the efficiency are higher than those of the test using a core.
[Brief description of the drawings]
FIG. 1 is an overall perspective view showing an embodiment of a hole wall surface inspection apparatus according to the present invention.
FIG. 2 is a partially enlarged perspective view showing an image pickup unit of the hole wall surface inspection device shown in FIG. 1 in an enlarged manner.
FIG. 3 is a cross-sectional view taken along the line III-III shown in FIG. 2;
FIG. 4 is a state explanatory view showing a hole wall imaging state by the hole wall surface inspection device.
FIG. 5 is a state explanatory view showing a marker mounting jig and a marker mounting state.
FIG. 6 is a schematic developed view showing an example of a developed image of a hole wall obtained by the present apparatus.
FIG. 7 is an apparatus sectional view showing a modification of the pressing support means.
FIG. 8 is a state explanatory view showing an operation state of the pressing support means shown in FIG. 7;
FIG. 9 is an overall perspective view showing an embodiment of a hole wall surface inspection apparatus in which the apparatus is prevented from being shaken during rotation by a posture holding means.
FIG. 10 is an overall perspective view showing another embodiment of a hole wall surface inspection apparatus in which the apparatus is prevented from being shaken during rotation by a posture holding means.
FIG. 11 is an explanatory view showing a series of work procedures in the concrete inspection method of the present invention (part 1).
FIG. 12 is an explanatory view showing a series of work procedures in the concrete inspection method of the present invention (part 2).
[Explanation of symbols]
REFERENCE SIGNS LIST 1 hole wall inspection device 2 personal computer 5 hole wall 10 apparatus main body 11 imaging unit 12 signal line 15 image acquisition surface 16 linear image sensor 17 roller 20 interface unit 31 movable support roller 36 independent roller 37 spacer 40 marker mounting jig 50 drilling guide

Claims (6)

調査孔内に挿入される円筒状本体の筒先端に、筒長手方向に沿ってリニアイメージセンサを内蔵し、該リニアイメージセンサの画像取得面が臨む開口を前記筒状本体に形成して撮像部を形成するとともに、前記円筒状本体を前記調査孔の孔壁内において孔軸と同心円上に保持する筒姿勢保持手段を前記円筒状本体の一部に設け、該筒姿勢保持手段で前記円筒状本体を支持しながら、前記調査孔内で周方向に所定角度回転させ、該回転に伴って導光体を介して照らされた前記孔壁面を撮像し前記リニアイメージセンサによって取得した画像信号を、インタフェース部を介して出力し、対象孔壁面の展開画像を得るようにしたことを特徴とする孔壁面検査装置。At the tip of the cylindrical body inserted into the inspection hole, a linear image sensor is built in along the longitudinal direction of the tube, and an opening facing the image acquisition surface of the linear image sensor is formed in the cylindrical body to form an imaging unit. And a cylinder attitude holding means for holding the cylindrical body in a hole wall of the inspection hole concentrically with a hole axis is provided in a part of the cylindrical body, and the cylindrical attitude holding means is used to form the cylindrical body. While supporting the main body, rotated by a predetermined angle in the circumferential direction in the investigation hole, the image signal obtained by the linear image sensor to capture the hole wall surface illuminated via the light guide with the rotation, A hole wall surface inspection apparatus, which outputs the image through an interface unit and obtains a developed image of the target hole wall surface. 調査孔内に挿入される円筒状本体の筒先端に、筒長手方向に沿ってリニアイメージセンサを内蔵し、該リニアイメージセンサの画像取得面が臨む開口を前記筒状本体に形成して撮像部を形成するとともに、前記画像取得面と前記調査孔の孔壁とを密着させるように前記筒状本体を孔壁面に押しつける押圧支持手段を前記撮像部に設け、該押圧支持手段で支持させた状態で前記円筒状本体を前記調査孔内で周方向に所定角度回転させ、該回転に伴って導光体を介して照らされた前記孔壁面を撮像し前記リニアイメージセンサによって取得した画像信号を、インタフェース部を介して出力し、対象孔壁面の展開画像を得るようにしたことを特徴とする孔壁面検査装置。At the tip of the cylindrical body inserted into the inspection hole, a linear image sensor is built in along the longitudinal direction of the tube, and an opening facing the image acquisition surface of the linear image sensor is formed in the cylindrical body to form an imaging unit. And pressing support means for pressing the cylindrical body against the wall surface of the hole so that the image acquisition surface and the hole wall of the inspection hole are in close contact with each other, and the imaging section is supported by the pressing support means. The cylindrical body is rotated at a predetermined angle in the circumferential direction in the inspection hole, the image signal obtained by the linear image sensor by imaging the hole wall surface illuminated through the light guide with the rotation, A hole wall surface inspection apparatus, which outputs the image through an interface unit and obtains a developed image of the target hole wall surface. 前記展開画像は、前記画像信号を外部描画処理手段に出力し、処理することによって得られるようにしたことを特徴とする請求項1または請求項2に記載の孔壁面検査装置。3. The hole wall surface inspection apparatus according to claim 1, wherein the developed image is obtained by outputting the image signal to an external drawing processing unit and processing the image signal. 前記押圧支持手段は、ローラ支持体を前記孔壁に押圧可能な付勢手段を備えたことを特徴とする請求項2に記載の孔壁面検査装置。3. The hole wall surface inspection apparatus according to claim 2, wherein the pressing and supporting means includes an urging means capable of pressing a roller support against the hole wall. 請求項1に記載の装置の円筒状本体がわずかな隙間を有して挿入可能な直径の調査孔を削孔し、該調査孔内の清掃後に、該調査孔内に前記装置の撮像部を挿入し、前記筒姿勢保持手段によって前記円筒状本体の前記撮像部と調査孔孔壁との離隔をほぼ保持しながら、前記筒状本体を周方向に所定角度回転させ、該回転に伴って導光体を介して照らされた前記孔壁面を、孔軸方向の走査と周方向との走査とを行うことで撮像し、取得された画像信号を、インタフェース部を介して外部描画処理手段に出力して画像処理することにより、前記孔壁面の展開画像を作成して描画し、対象コンクリート孔壁面の劣化および施工不良状態を検査することを特徴とするコンクリート構造物の検査方法。The cylindrical body of the device according to claim 1, wherein a hole having a diameter that allows insertion with a small gap is drilled, and after the inside of the hole is cleaned, an imaging unit of the device is placed in the hole. The cylindrical body is rotated by a predetermined angle in the circumferential direction while inserting the cylindrical posture holding means so as to substantially maintain the separation between the imaging section of the cylindrical body and the inspection hole wall, and the cylindrical body is guided by the rotation. The hole wall surface illuminated via the optical body is imaged by performing scanning in the hole axis direction and scanning in the circumferential direction, and outputs the obtained image signal to the external drawing processing means via the interface unit. A method for inspecting a concrete structure, characterized in that a developed image of the hole wall surface is created and drawn by performing image processing, and deterioration and improper construction of the target concrete hole wall surface are inspected. 請求項2に記載の装置の円筒状本体がわずかな隙間を有して挿入可能な直径の調査孔を削孔し、該調査孔内の清掃後に、該調査孔内に前記装置の撮像部を挿入し、前記押圧支持手段によって前記撮像部の画像取得面と調査孔孔壁との密着性を保持しながら、前記筒状本体を周方向に所定角度回転させ、該回転に伴って導光体を介して照らされた前記孔壁面を、孔軸方向の走査と周方向との走査とを行うことで撮像し、取得された画像信号を、インタフェース部を介して外部描画処理手段に出力して画像処理することにより、前記孔壁面の展開画像を作成して描画し、対象コンクリート孔壁面の劣化および施工不良状態を検査することを特徴とするコンクリート構造物の検査方法。The cylindrical body of the device according to claim 2, wherein a hole having a diameter capable of being inserted with a small gap is drilled, and after the inside of the hole is cleaned, an imaging unit of the device is placed in the hole. The cylindrical body is rotated by a predetermined angle in the circumferential direction while maintaining the close contact between the image acquisition surface of the imaging unit and the investigation hole wall by the pressing and supporting means by the pressing and supporting means. The hole wall surface illuminated via is captured by performing scanning in the hole axis direction and scanning in the circumferential direction, and the obtained image signal is output to the external drawing processing means via the interface unit. A method for inspecting a concrete structure, characterized in that a developed image of the hole wall surface is created and drawn by image processing, and deterioration and poor construction of the target concrete hole wall surface are inspected.
JP2002263152A 2002-09-09 2002-09-09 Hole wall inspection apparatus and concrete structure inspection method Expired - Fee Related JP4393756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263152A JP4393756B2 (en) 2002-09-09 2002-09-09 Hole wall inspection apparatus and concrete structure inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263152A JP4393756B2 (en) 2002-09-09 2002-09-09 Hole wall inspection apparatus and concrete structure inspection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009150503A Division JP4887405B2 (en) 2009-06-25 2009-06-25 Hole wall inspection apparatus and concrete structure inspection method

Publications (2)

Publication Number Publication Date
JP2004101359A true JP2004101359A (en) 2004-04-02
JP4393756B2 JP4393756B2 (en) 2010-01-06

Family

ID=32262994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263152A Expired - Fee Related JP4393756B2 (en) 2002-09-09 2002-09-09 Hole wall inspection apparatus and concrete structure inspection method

Country Status (1)

Country Link
JP (1) JP4393756B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153505A (en) * 2004-11-25 2006-06-15 Fujita Corp Detection method of internal cracking of structure
JP2006162439A (en) * 2004-12-07 2006-06-22 Saga Univ Apparatus for inspecting inside of concrete structure
JP2015075469A (en) * 2013-10-11 2015-04-20 東日本旅客鉄道株式会社 Concrete member soundness estimation method and concrete member repair method
CN111077142A (en) * 2019-12-04 2020-04-28 镇江科易工程检测技术有限公司 Method and device for testing carbonization depth of engineering structure concrete
CN113670820A (en) * 2021-08-16 2021-11-19 哈尔滨学院 Civil engineering building monitoring system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153505A (en) * 2004-11-25 2006-06-15 Fujita Corp Detection method of internal cracking of structure
JP4610310B2 (en) * 2004-11-25 2011-01-12 株式会社フジタ Method for detecting cracks inside structures
JP2006162439A (en) * 2004-12-07 2006-06-22 Saga Univ Apparatus for inspecting inside of concrete structure
JP2015075469A (en) * 2013-10-11 2015-04-20 東日本旅客鉄道株式会社 Concrete member soundness estimation method and concrete member repair method
CN111077142A (en) * 2019-12-04 2020-04-28 镇江科易工程检测技术有限公司 Method and device for testing carbonization depth of engineering structure concrete
CN113670820A (en) * 2021-08-16 2021-11-19 哈尔滨学院 Civil engineering building monitoring system
CN113670820B (en) * 2021-08-16 2023-10-20 哈尔滨学院 Civil engineering building monitoring system

Also Published As

Publication number Publication date
JP4393756B2 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
JP4887405B2 (en) Hole wall inspection apparatus and concrete structure inspection method
JP6441268B2 (en) Drilling inspection device
US4139822A (en) Eddy current probe for inspecting interiors of gas turbines, said probe having pivotal adjustments and a borescope
JP4869699B2 (en) Endoscope device
US6810139B2 (en) Pixel based machine for patterned wafers
JP4881423B2 (en) Inspection device with detachable probe
EP0074877B1 (en) System for the non-destructive testing of the internal structure of objects
JP5294773B2 (en) Inspection device for concave surface of rotor disk
EP1775567A3 (en) Cantilever array, method of manufacturing the array, and scanning probe microscope, sliding device of guide and rotating mechanism, sensor, homodyne laser interferometer, and laser Doppler interferometer with specimen light excitation function, using the array and cantilever
JP4317743B2 (en) Mechanical property measurement method based on in-situ determination of optical indenter contact surface and its test equipment
JP4393756B2 (en) Hole wall inspection apparatus and concrete structure inspection method
JP2724300B2 (en) Non-destructive inspection method of surface especially in bad environment
JP2005207745A (en) Inspection device for concrete structure
JP2006078251A (en) Method and apparatus for measuring annual ring width and density of wood or wooden cultural assets
JP2003014651A (en) Method for inspecting concrete structure and inspection device therefor
JPS61202109A (en) Inner surface inspector for pipe
JP4785130B2 (en) Inspection device for biological light measurement device
JP5375239B2 (en) Image processing apparatus, inspection apparatus for long objects, and computer program
JP2002525593A (en) Scanning system
JP2003130624A (en) Device for testing edge of optical connector
Iwashita et al. Updates on R&D of Nondestructive Inspection Systems for SRF Cavities
US20030067540A1 (en) Bond test site image capture inspection system
JP2015078895A (en) Corrosion pit inspection method
JP2006162439A (en) Apparatus for inspecting inside of concrete structure
Aldridge-Cox Automatic evaluation of defect severity by shape and size

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20021007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091014

R150 Certificate of patent or registration of utility model

Ref document number: 4393756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees