JP2004101284A - Rotation angle detecting device - Google Patents

Rotation angle detecting device Download PDF

Info

Publication number
JP2004101284A
JP2004101284A JP2002261558A JP2002261558A JP2004101284A JP 2004101284 A JP2004101284 A JP 2004101284A JP 2002261558 A JP2002261558 A JP 2002261558A JP 2002261558 A JP2002261558 A JP 2002261558A JP 2004101284 A JP2004101284 A JP 2004101284A
Authority
JP
Japan
Prior art keywords
rotation angle
gear
shaft
measured
angle detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002261558A
Other languages
Japanese (ja)
Inventor
Yasuaki Tsuji
辻 泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2002261558A priority Critical patent/JP2004101284A/en
Publication of JP2004101284A publication Critical patent/JP2004101284A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Power Steering Mechanism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple-rotation type rotation angle detecting device having high detecting accuracy. <P>SOLUTION: In this rotation angle detecting device 1, a second gear 4 meshes with a first gear 3 rotated integrally with a measured shaft 2. A projection 18 rotated integrally with the measured shaft 2 and a counting gear 19 turned in 45-degree arc in engagement with the projection 18 at intervals of designated period of the first gear 3, for example, at intervals of 180°are provided on the same axis as the measured shaft 2. The counting gear 19 obtains the count value of designated period of the first gear 3. According to the detected angle of a first rotation angle detecting sensor 13 for detecting the rotation angle of the second gear 4 and the count value of the counting gear 19, an absolute rotation angle of the measured shaft 2 is detected. In the multiple rotation of the measured shaft, the rotation angle output of the second gear 4 detected by the first rotation angle detecting sensor 13 becomes repetitive waveform with a fixed period to the rotation angle of the second gear 4. The count value of the counting gear 19 is used to discriminate which period the output value of the first rotation angle detecting sensor 13 exists in. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、多回転軸の絶対回転角を検出する回転角検出装置に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
通例、回転角検出センサの測定範囲は1回転(360°)以内である。このような回転角検出センサを用いて、多回転型の回転軸の絶対回転角を検出する回転角検出装置が提供されている。
例えば、従来の回転角検出装置には、多回転体を取り囲む大径歯車に、相異なる歯数を持つ一対の小径歯車を噛み合わせ、各小径歯車の回転角を対応する回転角検出センサにより検出することで、小径歯車間の位相差に基づいて、絶対回転角を検出するものがある(例えば、特許文献1,2参照。)。
【0003】
しかしながら、この回転角検出装置では、絶対回転角の検出が多回転体の回転角に対して何れも加速される一対の小径歯車の回転角の偏差に基づくので、検出精度を高くするには、2個の回転角検出センサがともに高精度を要求される。
また、回転角検出装置には、多回転体の回転角を第1および第2の速比で加速する第1および第2のセンサによる検出角を組み合わせて、絶対回転角を得るものもある(例えば、特許文献3参照。)。この場合にも、絶対回転角の検出が、多回転体の回転角を何れも加速する一対のセンサの検出角に基づくので、検出精度を高くするには、2個の回転角検出センサがともに高精度を要求される。
【0004】
そこで、本発明の目的は、上述の技術的課題を解決し、検出精度の高い多回転型の回転角検出装置を提供することである。
【0005】
【特許文献1】
特表平11−500828号公報
【特許文献2】
特表2001−505667号公報
【特許文献3】
特開2000−9415号公報
【0006】
【課題を解決するための手段および発明の効果】
請求項1に記載の発明は、回転可能な被測定軸の同軸上に軸方向に離隔して配置され、被測定軸に一体回転する突起および第1の歯車と、上記第1の歯車に噛み合う第2の歯車と、この第2の歯車の回転角を検出する回転角検出センサと、第1の歯車の所定周期で上記突起と係合する計数歯車と、回転角検出センサによる検出角と計数歯車による計数値に基づいて被測定軸の絶対回転角を検出する演算手段とを備えることを特徴とする。
【0007】
この発明によれば、被測定軸が多回転すると、これに伴って第1および第2の歯車が回転し、第2の歯車の回転を検出する回転角検出センサが高精度ではあるが被測定軸の回転角に応じて周期的に反復する検出信号を出力する。この回転角検出センサの検出信号がどの周期内での検出信号であるかを、計数歯車による計数値に基づいて検出し、被測定軸の絶対回転角を精度良く検出することができる。また、複雑な減速機構等が不要であり、構造を簡素化して製造コストを安くすることができる。
【0008】
【発明の実施の形態】
以下、本発明の一実施形態の回転角検出装置を図面を参照しつつ説明する。図1は、本発明の一実施形態の回転角検出装置の模式的平面図である。図2は、図1に示す回転角検出装置を実際にパッケージングする場合の一例を示す、回転角検出装置の概略断面図である。図1および図2を参照する。
本回転角検出装置1は、回転可能な被測定軸2の周囲に同軸上に配置され被測定軸2と一体回転する第1の歯車3と、この第1の歯車3に噛み合う第2の歯車4とを備える。
【0009】
本実施形態では、本回転角検出装置1を自動車の電動パワーステアリング装置に適用してステアリングホイール等の操舵部材5(図2に一部を図示。)の回転角を検出する場合に則して説明する。ただし、本発明は一般的な多回転軸の絶対角検出に適用することができる。
被測定軸2は、例えば、操舵部材5に一体回転する軸により構成され、合成樹脂により形成された中空軸からなる。被測定軸2の内周6には、操舵部材5と一体回転可能に連結するための連結部材としてのキー7が設けられている。このキー7は、径方向内方へ向けて突出し、操舵部材5の外周8に形成されるキー溝9に嵌合される。これにより、操舵部材5と被測定軸2とが一体回転可能に連結される。キー7は、周方向に均等に複数箇所、例えば、2箇所に配置され、被測定軸2と一体に形成されている。なお、キー7を、被測定軸2と別体に形成して、被測定軸2の内周6に固定してもよい。被測定軸2は、例えば、操舵部材5を介してこれを支持する部材10、例えば、ステアリングコラムにより軸線11の回りに回転自在に支持される。
【0010】
第1および第2の歯車3,4は、平歯車からなる。第1の歯車3は、被測定軸2と一体に形成されている。第1の歯車3は、第2の歯車4よりも大径であり、例えば、第2の歯車4の径の2倍に設定される。第2の歯車4は、第1の歯車3の軸線11と平行な軸線12の回りに回動自在に支持される。
また、回転角検出装置1は、第2の歯車4の回転角を検出するための第1の回転角検出センサ13を有している。
【0011】
第1の回転角検出センサ13は、互いに相対変位する固定部14と可動部15とを有する。第1の回転角検出センサ13は、例えば、磁気式の変位センサであり、固定部14は、例えば、磁気抵抗素子を含むセンサ本体からなり、可動部15は、例えば、磁石からなる。固定部14と可動部15との相対位置に応じて、センサ本体からの出力信号が異なるようになっている。
第1の回転角検出センサ13の可動部15は、第2の歯車4の端面に一体回転可能に固定される。固定部14は可動部15の近傍に対向して配置され、例えば支持部材としての回路基板16に固定される。第1の回転角検出センサ13の出力信号は、第2の歯車4の所定周期(例えば、360°)ごとに周期的に変化する。
【0012】
被測定軸2の周囲には、被測定軸2に一体回転する突起18が例えば、180°間隔で2個外向きに設けられている。突起18は、被測定軸2の軸方向(矢印S参照)に第1の歯車3と離隔して配置される。突起18は、被測定軸2に一体に形成することもできるし、第1の歯車3と一体に形成することもできる。突起18は、例えば、被測定軸2の外周に設けられたキーからなる。
また、回転角検出装置1は、第1の歯車3の所定周期(例えば、180°)で、上述の突起18と係合する計数歯車19を有している。ここで、突起18のための上述の第1の歯車3の所定周期は、第1の回転角検出センサ13の出力信号の変化する周期と等しくされている。
【0013】
計数歯車19は、第1の歯車3の軸線11と平行な軸線20の回りに回動自在に支持される。計数歯車19は、その外周に均等に配置される複数、例えば、8つの歯21を有する。歯21と突起18とが当接する。
被測定軸2の回転角において、計数歯車19の歯21と突起18とは、上述の第1の歯車3の所定周期に比べてごく短い回転角範囲でのみ当接する。計数歯車19と突起18とが係合する回転角範囲の間には、この回転角範囲よりも大きく計数歯車19と突起18とが係合しない回転角範囲が設けられている。
【0014】
計数歯車19と突起18とが係合する間だけ、計数歯車19は回動する。例えば、被測定軸2が180°回転するごとに、その近傍となる角度範囲で、2つのうちのいずれか一方の突起18が計数歯車19のどれか一つの歯21と当接して係合し、そのたびごとに、計数歯車19が所定角度例えば45°回転するようになっている。このように、リニアに変化する被測定軸2の回転角の変化から段階的に変化する計数歯車19の回転角の変化を得られ、この段階的な変化から、計数歯車19と突起18との係合回数や、第1の歯車3の所定周期への到達回数に相当する計数値を得ることができる。
【0015】
また、本回転角検出装置1では、計数歯車19および第2の歯車4を、これらに形成される支軸22,23を介して回動自在に支持する支持部材24を有している。支持部材24は、例えば、上述の部材10を介して、被測定軸2に対して位置決めされる。
また、回転角検出装置1は、計数歯車19による計数値を得る計数手段としての計数歯車19の回転角を検出するための第2の回転角検出センサ25と、第1の回転角検出センサ13による検出角と計数歯車19による計数値に基づいて被測定軸2の絶対回転角を演算により検出する演算手段としての絶対角演算部26とを有している。
【0016】
第2の回転角検出センサ25は、例えば、第1の回転角検出センサ13とほぼ同様の構造を有し、これと同様の固定部27と可動部28とを有する。第2の回転角検出センサ25の可動部28は、計数歯車19の端面に固定され、計数歯車19と一体回転する。固定部27は、可動部28の近傍に対向して配置され、例えば支持部材としての回路基板16に固定される。第2の回転角検出センサ25により出力される回転角は、計数歯車19の計数値に対応し、すなわち、出力される回転角が、予め定める所定範囲内にあれば、この所定範囲に対応する計数値であると判断できる。このような判断は、絶対角演算部26により一体的に処理される。
【0017】
絶対角演算部26は、例えば、マイクロコンピュータ等を含む信号処理用の電気回路により構成され、例えば、回路基板16に実装される。絶対角演算部26には、第1および第2の回転角検出センサ13,25からの検出信号が入力される。絶対角演算部26では、第1および第2の回転角検出センサ13,25によって検出された第2の歯車4の回転角および計数歯車19の回転角に基づいて被測定軸2の絶対回転角を演算する。
【0018】
被測定軸2が回動、例えば、図1で時計回り方向に回動すると(矢印M1参照)、第1の歯車3と噛み合う第2の歯車4は逆向き、例えば、図1で反時計回りに回動する(矢印M2参照)。このときの第2の歯車4の回動角は第1の歯車3の回動角よりも大きくなる。また、例えば、図1に示す状態から被測定軸2が90°回転すると、計数歯車19が45°回動する(矢印M3参照)。そして、被測定軸2が180°回転するごとに、計数歯車19が45°回動する。
【0019】
図3は、被測定軸2の回転角と第1および第2の回転角検出センサ13,25の出力波形との関係を示すグラフ図である。被測定軸2としての、例えばステアリングシャフトを4回転させると、図3に示すように、第2の歯車4の回転角を検出する第1の回転角検出センサ13の出力S1(図3において実線で示す。)は、例えば、180deg周期の鋸歯状の波形となる。第1の回転角検出センサ13の出力S1は検出精度は高いものの180deg周期で8回反復されるため、どの周期のものかが判らない。
【0020】
一方、第2の回転角検出センサ25の出力S2(図3において破線で示す。)は、突起18と計数歯車19の歯とが係合するごとに段階的に階段状に変化する波形となる。それぞれの段階が計数歯車19の計数値に対応する。第2の回転角検出センサ25の出力S2のレベルに基づいて、計数値を求め、この計数値に基づいて、第1の回転角検出センサ13の出力値がどの周期の値であるかを判別できる。従って、被測定軸2の絶対回転角を精度良く検出することができる。
【0021】
また、複雑な減速機構等が不要であり、構造を簡素化して製造コストを安くすることができる。例えば、突起18は、歯車に比べて構造が簡素で済む。
また、例えば、被測定軸2の内径が25mmとしたときに、外径寸法が約70mm、高さ10mm程度の環状の外形に、回転角検出装置1を小型化できる。
また、上述のキー7は、公知の構造を利用できるが、以下のように構成するのが、より好ましい。図4および図5を参照する。
【0022】
キー7の幅(寸法L1)は、キー溝9の幅(寸法L2)よりも所定長さで大きく(L1>L2)設定される。これにより、キー7をキー溝9に嵌合したときに、がたつきを防止でき、がたつきに伴う異音の発生を防止でき、また、例えば、操舵部材5の回転角を高精度に検知するのに好ましい。
また、キー7は、軸方向に直線状に延びる溝状のスリット31を有している。このスリット31は、軸方向の両端部および径方向の内方に開放されている。キー7は、所定の隙間量をスリット31により開けて被測定軸2の内周6の周方向に並ぶ片持ち状の一対の弾性凸部32により構成される。一対の弾性凸部32により、キー7はキー溝9に弾性嵌合される。キー7をこれよりも狭いキー溝9に嵌合する際に、弾性凸部32同士が撓み、スリット31により嵌め合いの寸法誤差や組立誤差が吸収される。また、キー7やキー溝9の周縁部に過大な負荷がかかることを防止できる。
【0023】
キー7の側部は、テーパー形状の傾斜部33を有している。この傾斜部33は、被測定軸2の内周6の周方向の両側の側部にともに形成され、軸方向の端部寄り部分が互いに近づいて、キー7の端部が周方向の幅狭になるようになっている。キー7をキー溝9に嵌合させるときに、傾斜部33がキー溝9の端縁35に沿うことにより、キー7をそれよりも狭いキー溝9に心合わせした位置に案内する。傾斜部33は、軸方向の両側に形成され、キー7とキー溝9との嵌合方向がどらら向きの場合にもキー7をキー溝9に容易に嵌合できるようになっている。
【0024】
なお、本発明は、上述の実施形態に限定されず、以下のようにすることも考えられる。以下の説明では、上述の実施形態と異なる点を中心に説明し、同様の構成については説明を省略し同じ符号を付すこととする。
上述の実施形態では、計数歯車19の計数値を得るための構成としては、一回転当たりに計数値程度の分解能を得られるセンサであればよく、例えば、第1の回転角検出センサ13よりも構造の簡素なものを利用することもできる。
【0025】
また、第1の回転角検出センサ13としては、例えば、磁気式の変位センサ、ポテンショメータ、光電式の変位センサ等の公知の構成を利用できる。また、このような変位センサとしては、可動部と固定部との相対変位量を検出するインクリメンタルタイプでもよいし、可動部と固定部との絶対位置変化を検出するアブソリュートタイプでもよいが、後者が好ましい。その他、本発明の特許請求の範囲で種々の変更を施すことが可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態の回転角検出装置の模式的平面図。
【図2】図1の回転角検出装置を実際にパッケージングする場合の一例を示す、回転角検出装置の概略断面図である。
【図3】図1の実施形態において、被測定軸の回転角と各回転角検出センサの出力との関係を示すグラフ図である。
【図4】図1に示すキーおよびキー溝の変形例を示す断面図であり、図4Aおよび図4Bに、嵌合前のキーおよびキー溝の近傍となる被測定軸をそれぞれ図示し、図4Cに嵌合された状態のキーおよびキー溝の近傍となる被測定軸を図示した。
【図5】図4に示すキーおよびキー溝を回転中心から見た図であり、図5Aに嵌合前の状態を、図5Bに嵌合途中の状態を、図5Cに嵌合が完了した状態を示す。
【符号の説明】
1 回転角検出装置
2 被測定軸
3 第1の歯車
4 第2の歯車
13 第1の回転角検出センサ(回転角検出センサ)
18 突起
19 計数歯車
26 絶対角演算部(演算手段)
S 軸方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotation angle detection device that detects an absolute rotation angle of a multi-rotation shaft.
[0002]
2. Description of the Related Art
Usually, the measurement range of the rotation angle detection sensor is within one rotation (360 °). A rotation angle detection device that detects the absolute rotation angle of a multi-rotation type rotation shaft using such a rotation angle detection sensor has been provided.
For example, in a conventional rotation angle detecting device, a pair of small diameter gears having different numbers of teeth are meshed with a large diameter gear surrounding a multi-rotation body, and the rotation angle of each small diameter gear is detected by a corresponding rotation angle detection sensor. In some cases, the absolute rotation angle is detected based on the phase difference between the small-diameter gears (for example, see Patent Documents 1 and 2).
[0003]
However, in this rotation angle detection device, since the detection of the absolute rotation angle is based on the deviation of the rotation angles of the pair of small-diameter gears, each of which is accelerated with respect to the rotation angle of the multi-rotor, to increase the detection accuracy, Both the rotation angle detection sensors are required to have high accuracy.
Further, some rotation angle detecting devices obtain an absolute rotation angle by combining the detection angles of the first and second sensors for accelerating the rotation angle of the multi-rotation body at the first and second speed ratios ( For example, see Patent Document 3.) In this case as well, the detection of the absolute rotation angle is based on the detection angles of a pair of sensors that both accelerate the rotation angles of the multi-rotational body. High precision is required.
[0004]
Therefore, an object of the present invention is to solve the above-mentioned technical problem and to provide a multi-rotation type rotation angle detection device with high detection accuracy.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 11-500828 [Patent Document 2]
Japanese Patent Application Publication No. 2001-505667 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2000-9415
Means for Solving the Problems and Effects of the Invention
According to the first aspect of the present invention, the first gear and the protrusion and the first gear which are arranged coaxially with the rotatable shaft to be measured and are axially separated from each other and rotate integrally with the shaft to be measured are meshed with each other. A second gear, a rotation angle detection sensor that detects a rotation angle of the second gear, a counting gear that engages with the protrusion at a predetermined period of the first gear, and a detection angle and counting by the rotation angle detection sensor. Calculating means for detecting the absolute rotation angle of the shaft to be measured based on the count value of the gear.
[0007]
According to the present invention, when the shaft to be measured makes multiple rotations, the first and second gears rotate accordingly, and the rotation angle detection sensor that detects the rotation of the second gear has high accuracy but is not measured. It outputs a detection signal that repeats periodically according to the rotation angle of the shaft. In which cycle the detection signal of the rotation angle detection sensor is a detection signal is detected based on the count value of the counting gear, and the absolute rotation angle of the measured shaft can be accurately detected. In addition, a complicated speed reduction mechanism or the like is not required, so that the structure can be simplified and the manufacturing cost can be reduced.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a rotation angle detection device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic plan view of a rotation angle detection device according to one embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the rotation angle detection device, showing an example of a case where the rotation angle detection device shown in FIG. 1 is actually packaged. Please refer to FIG. 1 and FIG.
The rotation angle detecting device 1 includes a first gear 3 that is coaxially arranged around a rotatable shaft 2 to be measured and rotates integrally with the shaft 2 to be measured, and a second gear that meshes with the first gear 3. 4 is provided.
[0009]
In the present embodiment, the rotation angle detection device 1 is applied to an electric power steering device of an automobile to detect the rotation angle of a steering member 5 (partially shown in FIG. 2) such as a steering wheel. explain. However, the present invention can be applied to detection of an absolute angle of a general multi-rotation axis.
The shaft 2 to be measured is constituted by, for example, a shaft which rotates integrally with the steering member 5, and is formed by a hollow shaft formed of a synthetic resin. A key 7 is provided on the inner periphery 6 of the measured shaft 2 as a connecting member for connecting the steering shaft 5 and the steering member 5 so as to be integrally rotatable. The key 7 protrudes radially inward, and is fitted into a key groove 9 formed on the outer periphery 8 of the steering member 5. Thereby, the steering member 5 and the measured shaft 2 are connected so as to be integrally rotatable. The keys 7 are evenly arranged at a plurality of locations in the circumferential direction, for example, at two locations, and are formed integrally with the shaft 2 to be measured. The key 7 may be formed separately from the shaft 2 to be measured and fixed to the inner periphery 6 of the shaft 2 to be measured. The shaft 2 to be measured is rotatably supported around an axis 11 by, for example, a member 10 that supports the shaft 2 via a steering member 5, for example, a steering column.
[0010]
The first and second gears 3 and 4 are spur gears. The first gear 3 is formed integrally with the shaft 2 to be measured. The first gear 3 has a larger diameter than the second gear 4 and is set, for example, to twice the diameter of the second gear 4. The second gear 4 is rotatably supported around an axis 12 parallel to the axis 11 of the first gear 3.
Further, the rotation angle detection device 1 has a first rotation angle detection sensor 13 for detecting a rotation angle of the second gear 4.
[0011]
The first rotation angle detection sensor 13 has a fixed part 14 and a movable part 15 which are relatively displaced from each other. The first rotation angle detection sensor 13 is, for example, a magnetic displacement sensor, the fixed unit 14 is formed of, for example, a sensor body including a magnetoresistive element, and the movable unit 15 is formed of, for example, a magnet. The output signal from the sensor main body is different depending on the relative position between the fixed part 14 and the movable part 15.
The movable part 15 of the first rotation angle detection sensor 13 is fixed to the end face of the second gear 4 so as to be integrally rotatable. The fixed portion 14 is disposed to face the vicinity of the movable portion 15 and is fixed to, for example, a circuit board 16 as a support member. The output signal of the first rotation angle detection sensor 13 periodically changes every predetermined period (for example, 360 °) of the second gear 4.
[0012]
Around the measured shaft 2, two projections 18 that rotate integrally with the measured shaft 2 are provided outward, for example, at 180 ° intervals. The protrusion 18 is arranged apart from the first gear 3 in the axial direction of the measured shaft 2 (see the arrow S). The protrusion 18 can be formed integrally with the shaft to be measured 2 or can be formed integrally with the first gear 3. The protrusion 18 is, for example, a key provided on the outer periphery of the measured shaft 2.
In addition, the rotation angle detection device 1 has a counting gear 19 that engages with the above-described protrusion 18 at a predetermined cycle (for example, 180 °) of the first gear 3. Here, the predetermined period of the first gear 3 for the projection 18 is made equal to the period in which the output signal of the first rotation angle detection sensor 13 changes.
[0013]
The counting gear 19 is rotatably supported around an axis 20 parallel to the axis 11 of the first gear 3. The counting gear 19 has a plurality of, for example, eight teeth 21 evenly arranged on its outer periphery. The teeth 21 and the projections 18 abut.
At the rotation angle of the shaft 2 to be measured, the teeth 21 of the counting gear 19 and the projection 18 come into contact only in a rotation angle range that is very short as compared with the above-described predetermined period of the first gear 3. Between the rotation angle range in which the counting gear 19 and the projection 18 are engaged, a rotation angle range that is larger than this rotation angle range and in which the counting gear 19 and the projection 18 are not engaged is provided.
[0014]
The counting gear 19 rotates only while the counting gear 19 and the projection 18 are engaged. For example, each time the shaft 2 to be measured rotates by 180 °, one of the two projections 18 comes into contact with and engages with any one of the teeth 21 of the counting gear 19 in an angular range near the rotation. Each time, the counting gear 19 rotates by a predetermined angle, for example, 45 °. In this manner, a change in the rotation angle of the counting gear 19 that changes stepwise can be obtained from a change in the rotation angle of the shaft 2 to be measured that changes linearly. It is possible to obtain a count value corresponding to the number of engagements or the number of times the first gear 3 reaches the predetermined cycle.
[0015]
Further, the present rotation angle detecting device 1 has a support member 24 that rotatably supports the counting gear 19 and the second gear 4 via support shafts 22 and 23 formed thereon. The support member 24 is positioned with respect to the measured shaft 2 via, for example, the member 10 described above.
In addition, the rotation angle detection device 1 includes a second rotation angle detection sensor 25 for detecting a rotation angle of the counting gear 19 as counting means for obtaining a count value of the counting gear 19, and a first rotation angle detection sensor 13 And an absolute angle calculation unit 26 as calculation means for calculating the absolute rotation angle of the shaft 2 to be measured based on the detection angle of the shaft 2 and the count value of the counting gear 19.
[0016]
The second rotation angle detection sensor 25 has, for example, substantially the same structure as the first rotation angle detection sensor 13, and has the same fixed portion 27 and movable portion 28. The movable part 28 of the second rotation angle detection sensor 25 is fixed to the end face of the counting gear 19 and rotates integrally with the counting gear 19. The fixed portion 27 is disposed to face the vicinity of the movable portion 28 and is fixed to, for example, the circuit board 16 as a support member. The rotation angle output by the second rotation angle detection sensor 25 corresponds to the count value of the counting gear 19, that is, if the output rotation angle is within a predetermined range, the rotation angle corresponds to this predetermined range. It can be determined that it is a count value. Such a determination is integrally processed by the absolute angle calculation unit 26.
[0017]
The absolute angle calculation unit 26 is configured by a signal processing electric circuit including a microcomputer, for example, and is mounted on the circuit board 16, for example. Detection signals from the first and second rotation angle detection sensors 13 and 25 are input to the absolute angle calculation unit 26. The absolute angle calculator 26 calculates the absolute rotation angle of the shaft 2 to be measured based on the rotation angle of the second gear 4 and the rotation angle of the counting gear 19 detected by the first and second rotation angle detection sensors 13 and 25. Is calculated.
[0018]
When the measured shaft 2 is rotated, for example, clockwise in FIG. 1 (see arrow M1), the second gear 4 meshing with the first gear 3 is turned in the opposite direction, for example, counterclockwise in FIG. (See arrow M2). At this time, the rotation angle of the second gear 4 is larger than the rotation angle of the first gear 3. Further, for example, when the measured shaft 2 rotates 90 ° from the state shown in FIG. 1, the counting gear 19 rotates 45 ° (see the arrow M3). Each time the shaft 2 to be measured rotates by 180 °, the counting gear 19 rotates by 45 °.
[0019]
FIG. 3 is a graph showing the relationship between the rotation angle of the measured shaft 2 and the output waveforms of the first and second rotation angle detection sensors 13 and 25. When, for example, the steering shaft as the measured shaft 2 is rotated four times, as shown in FIG. 3, the output S1 of the first rotation angle detection sensor 13 for detecting the rotation angle of the second gear 4 (solid line in FIG. 3) Is a saw-tooth waveform having a cycle of 180 deg, for example. Although the output S1 of the first rotation angle detection sensor 13 has high detection accuracy, the output S1 is repeated eight times in a 180 deg cycle, so it is not known which cycle it is.
[0020]
On the other hand, the output S2 of the second rotation angle detection sensor 25 (indicated by a broken line in FIG. 3) has a waveform that changes stepwise in a stepwise manner each time the projection 18 and the teeth of the counting gear 19 engage. . Each stage corresponds to the count value of the counting gear 19. A count value is obtained based on the level of the output S2 of the second rotation angle detection sensor 25, and it is determined in which cycle the output value of the first rotation angle detection sensor 13 is based on the count value. it can. Therefore, the absolute rotation angle of the measured shaft 2 can be accurately detected.
[0021]
In addition, a complicated speed reduction mechanism or the like is not required, so that the structure can be simplified and the manufacturing cost can be reduced. For example, the projection 18 has a simpler structure than a gear.
Further, for example, when the inner diameter of the measured shaft 2 is 25 mm, the rotation angle detecting device 1 can be downsized to an annular outer shape having an outer diameter of about 70 mm and a height of about 10 mm.
The above-mentioned key 7 can use a known structure, but is more preferably configured as follows. Please refer to FIG. 4 and FIG.
[0022]
The width (dimension L1) of the key 7 is set to be longer than the width (dimension L2) of the key groove 9 by a predetermined length (L1> L2). Thereby, when the key 7 is fitted into the key groove 9, rattling can be prevented, and generation of abnormal noise due to rattling can be prevented. Further, for example, the rotation angle of the steering member 5 can be precisely controlled. Preferred for detection.
The key 7 has a groove-like slit 31 extending linearly in the axial direction. The slits 31 are opened at both ends in the axial direction and inward in the radial direction. The key 7 is constituted by a pair of cantilevered elastic protrusions 32 arranged in the circumferential direction of the inner circumference 6 of the measured shaft 2 with a predetermined gap amount opened by the slit 31. The key 7 is elastically fitted into the key groove 9 by the pair of elastic projections 32. When the key 7 is fitted into the key groove 9 which is narrower than the key groove 9, the elastic projections 32 bend, and the slit 31 absorbs a dimensional error or an assembly error of the fitting. Further, it is possible to prevent an excessive load from being applied to the periphery of the key 7 and the key groove 9.
[0023]
The side of the key 7 has a tapered inclined portion 33. The inclined portions 33 are formed on both sides in the circumferential direction of the inner circumference 6 of the shaft 2 to be measured, and the portions near the axial ends are close to each other, and the ends of the keys 7 are narrow in the circumferential direction. It is supposed to be. When the key 7 is fitted into the key groove 9, the inclined portion 33 is guided along the edge 35 of the key groove 9, thereby guiding the key 7 to a position centered on the key groove 9 which is narrower. The inclined portions 33 are formed on both sides in the axial direction, so that the key 7 can be easily fitted into the key groove 9 even when the fitting direction between the key 7 and the key groove 9 is any direction.
[0024]
It should be noted that the present invention is not limited to the above-described embodiment, and the following may be considered. In the following description, points different from the above-described embodiment will be mainly described, and the description of the same components will be omitted, and the same reference numerals will be given.
In the above-described embodiment, the configuration for obtaining the count value of the counting gear 19 may be any sensor that can obtain a resolution of about the count value per rotation, and is, for example, more than the first rotation angle detection sensor 13. A simple structure can also be used.
[0025]
Further, as the first rotation angle detection sensor 13, for example, a known configuration such as a magnetic displacement sensor, a potentiometer, a photoelectric displacement sensor, or the like can be used. In addition, such a displacement sensor may be an incremental type that detects a relative displacement amount between the movable part and the fixed part, or an absolute type that detects an absolute position change between the movable part and the fixed part. preferable. In addition, various changes can be made within the scope of the claims of the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a rotation angle detection device according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view of the rotation angle detection device, showing an example of actually packaging the rotation angle detection device of FIG. 1;
FIG. 3 is a graph showing a relationship between a rotation angle of a measured shaft and an output of each rotation angle detection sensor in the embodiment of FIG. 1;
FIG. 4 is a cross-sectional view showing a modification of the key and the key groove shown in FIG. 1, and FIGS. 4A and 4B show a key and a measured shaft near the key groove before fitting, respectively. The key fitted in 4C and the shaft to be measured near the key groove are illustrated.
5 is a view of the key and the key groove shown in FIG. 4 as viewed from the center of rotation. FIG. 5A shows a state before fitting, FIG. 5B shows a state during fitting, and FIG. Indicates the status.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotation angle detection device 2 Measured shaft 3 First gear 4 Second gear 13 First rotation angle detection sensor (rotation angle detection sensor)
18 Projection 19 Counting gear 26 Absolute angle calculation unit (Calculation means)
S axis direction

Claims (1)

回転可能な被測定軸の同軸上に軸方向に離隔して配置され、被測定軸に一体回転する突起および第1の歯車と、
上記第1の歯車に噛み合う第2の歯車と、
この第2の歯車の回転角を検出する回転角検出センサと、
第1の歯車の所定周期で上記突起と係合する計数歯車と、
回転角検出センサによる検出角と計数歯車による計数値に基づいて被測定軸の絶対回転角を検出する演算手段とを備えることを特徴とする回転角検出装置。
A projection and a first gear which are arranged coaxially with the rotatable shaft to be measured and are axially separated from each other and rotate integrally with the shaft to be measured;
A second gear meshing with the first gear;
A rotation angle detection sensor for detecting a rotation angle of the second gear;
A counting gear engaged with the projection at a predetermined period of the first gear;
A rotation angle detection device comprising: a calculation unit configured to detect an absolute rotation angle of the shaft to be measured based on a detection angle of the rotation angle detection sensor and a count value of the counting gear.
JP2002261558A 2002-09-06 2002-09-06 Rotation angle detecting device Pending JP2004101284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261558A JP2004101284A (en) 2002-09-06 2002-09-06 Rotation angle detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261558A JP2004101284A (en) 2002-09-06 2002-09-06 Rotation angle detecting device

Publications (1)

Publication Number Publication Date
JP2004101284A true JP2004101284A (en) 2004-04-02

Family

ID=32261898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261558A Pending JP2004101284A (en) 2002-09-06 2002-09-06 Rotation angle detecting device

Country Status (1)

Country Link
JP (1) JP2004101284A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297795A (en) * 2008-06-10 2009-12-24 Alps Tool Co Ltd Clutch device of rotary tool
JP2016007984A (en) * 2014-06-25 2016-01-18 Kyb株式会社 Electric power steering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297795A (en) * 2008-06-10 2009-12-24 Alps Tool Co Ltd Clutch device of rotary tool
JP2016007984A (en) * 2014-06-25 2016-01-18 Kyb株式会社 Electric power steering device

Similar Documents

Publication Publication Date Title
US6720762B2 (en) Rotation-angle detecting device capable of detecting absolute angle with simple configuration
JPH02284004A (en) Angle sensor for measuring rotation of shaft
JP2006220529A (en) Detection device for absolute angle of rotation and torque
WO2004081490A1 (en) Rotation angle-detecting device
JP2004020370A (en) Torque detection system
JP3920113B2 (en) Rotation angle detector
JP4607211B2 (en) Rotation angle detector
JP2006170788A (en) Optical encoder
JP2004101284A (en) Rotation angle detecting device
JP4622641B2 (en) Rotation angle detector
JP5147531B2 (en) Rotation angle detection device and manufacturing method thereof
JP2006090982A (en) Rotation angle detector
JP2008275517A (en) Multi-rotation absolute angle detector
JP2004279065A (en) Rotation angle detecting apparatus
JP2004150950A (en) Rotation angle detector
JP2010175056A (en) Reduction gear
JP4003598B2 (en) Steering angle detector
JP2006275558A (en) Torque detector with function detecting absolute rotation angle
JP4218290B2 (en) Rotation angle detector
JP4727284B2 (en) Multi-rotation absolute angle detection mechanism and detection method
WO2008050843A1 (en) Rotation angle detecting device
JP2011022074A (en) Multi-rotation angle detection device
JP2011080765A (en) Device for measuring torque and steering system carrying the same
JP4189721B2 (en) Rotation angle detector
JP2005156163A (en) Rotational angle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050823

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Effective date: 20080219

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081204