JP2004101252A - Electronic measuring apparatus - Google Patents

Electronic measuring apparatus Download PDF

Info

Publication number
JP2004101252A
JP2004101252A JP2002260756A JP2002260756A JP2004101252A JP 2004101252 A JP2004101252 A JP 2004101252A JP 2002260756 A JP2002260756 A JP 2002260756A JP 2002260756 A JP2002260756 A JP 2002260756A JP 2004101252 A JP2004101252 A JP 2004101252A
Authority
JP
Japan
Prior art keywords
piezoelectric element
stage
electronic
faraday cup
electronic measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002260756A
Other languages
Japanese (ja)
Inventor
Toshitsugu Morimoto
森本 敏嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002260756A priority Critical patent/JP2004101252A/en
Publication of JP2004101252A publication Critical patent/JP2004101252A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic measuring apparatus that improves precision in electronic measurement in a vacuum chamber and is capable of efficient measurement. <P>SOLUTION: The electronic measuring apparatus measures the amount of emitted electrons from an electron emitting member 10 in the vacuum chamber. Then, the apparatus has a a unit for overlapping a stiffness supporting member 4, a piezoelectric element fixing member 6, and a Faraday cup 7 in a Z direction on an XY stage 3 that can travel in XY directions. A first piezoelectric element 5 for detecting vibration in the Faraday cup 7 is arranged near the Faraday cup 7. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高真空が保たれている真空チャンバ内で、電子放出部材から放出する電子を測定するために、XYステージで電子計測器を移動させ、電子分布を観測するための技術分野に関する。
【0002】
【従来技術】
従来の技術を図4により説明する。
図4は、X方向に駆動するX送り機構1と、X方向とほぼ直交するY方向に駆動するY送り機構2を有するXY方向に移動可能なXYステージ3の上に、剛性支持部材4と電子計測器の一例としてのファラデーカップ7を設置した装置を真上から見た図である。
【0003】
ファラデーカップ7による電子計測では、ファラデーカップ7が振動していると正しい電子量を捕えることができないため、振動がある一定値以下のもとで測定する必要がある。
【0004】
しかしながら、ファラデーカップ7は全面が電極であり、ファラデーカップ内に閉じ込められた電子を測定する以外にも、ファラデーカップの側面にぶつかった電子量も電流値として測定することが可能であるため、ファラデーカップに直接振動を検知するセンサをつけることができず、ファラデーカップ7の振動を直接捕えることができない。このため、XYステージ3の振動を各XY静電容量センサ15からの連続値で捕え、このXYステージ3の振動をファラデーカップ7の振動と見なし、XYステージ3を移動させてファラデーカップ7を電子放出部材の真下に移動させた後、各静電容量センサ15の出力が一定値以下(あるいはほぼ0:無振動)となってから、電子計測を実行する。
【0005】
【発明が解決しようとする課題】
上記のような従来技術では、以下のような問題がある。
(1)XYステージ3の周囲に静電容量センサ15があるため、XYステージ3の移動量が物理的に制限される。このため、XYステージ3を移動させファラデーカップ7で電子を計測する装置において、電子放出部材の測定範囲が狭まり、作業効率が悪い。
(2)静電容量センサ15は、被測定物との相対距離を近づけないと、そのもっている高分解能を発揮できない。このため、測定精度を高めるためには、静電容量センサ15と被測定物との相対距離を大きくできないので、XYステージの可動範囲が制限され、上記と同様に電子放出部材の測定範囲が狭まり、作業効率が悪い。
(3)特に、真空チャンバ内において電子量を計測する装置では、静電容量センサを取り付けるのが困難な場合が多い。
【0006】
本発明は、上述の従来技術における問題に鑑みてなされたもので、真空チャンバ内での電子計測の精度を高め且つ効率良く計測し得る電子計測装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上述の課題を解決するために成された本発明は、真空チャンバ内で電子放出部材からの放出電子量を計測する電子計測装置であって、XY方向に移動可能なXYステージの上に、剛性支持部材と、圧電素子を間に固定する圧電素子固定部材と、電子計測器をZ方向に重ねるユニットを有し、前記電子計測器の近傍に、該電子計測器の振動を検知するための圧電素子を配置したことを特徴としているものである。
【0008】
従来装置のように、ファラデーカップのような電子計測器を載置したXYステージの振動を検知しても、ファラデーカップの振動を検知しているとは限らない(支点であるXYステージの振動を圧電素子で検知しても、作用点であるファラデーカップの振動を検知しているとは限らない。)が、本発明の電子計測装置ではファラデーカップの底面近くに圧電素子を設置したことにより、より精確なファラデーカップの振動を捕えるが可能である。また、XYステージの周囲に静電容量センサが無いため、XYステージの移動範囲を広くすることができる。このため、ファラデーカップのような電子計測器による電子計測の精確性が向上すると共に、高真空内での電子計測の作業効率が向上する。
【0009】
本発明の電子計測装置においては、前記XYステージの前記電子計測器を有する側の反対側に半球状部材を固定し、前記電子放出部材が配列された面から均一な距離に保たれるZ方向平行部材の上面全体に第2の圧電素子を固定し、該第2の圧電素子上に前記半球状部材が載置された状態で前記XYステージを移動させた時のZ方向のズレを、前記第2の圧電素子の変位量より検知するように構成することが好ましい。また、前記第2の圧電素子の変位量を連続で捕えることにより、前記XYステージの振動を検知することも好ましい。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を具体的な実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。
【0011】
【実施例】
(実施例1)
図1は本実施例の電子計測装置の全体構成を示す斜視図であり、図2は図1の要部を真横から見た図である。
【0012】
本装置は、X方向に駆動するX送り機構1と、X方向とほぼ直交するY方向に駆動するY送り機構2を有するXY方向に移動可能なXYステージ3の上に、剛性支持部材4と、圧電素子5を間に固定する圧電素子固定部材6と、ファラデーカップ7をZ方向に重ねるユニットを有しており、圧電素子5の変位量はケーブル8を介して電圧計9で計測される。
【0013】
本装置は不図示の真空チャンバ内に配置され、所定の真空雰囲気下において、電子放出部材10から放出される電子11を、XYステージ3を任意の位置に移動させファラデーカップ7で捕えることにより、電子放出部材10からの放出電子量を計測することができる。
【0014】
この計測時に、ファラデーカップ7が振動していると、正しい電子量を捕えることができない。このため、ファラデーカップ7の振動を精確に捕えるために、圧電素子5をファラデーカップ7に近接して配置している。即ち、図2に示されるように、ファラデーカップ7を直接支持している圧電素子固定部材6の間に圧電素子5を挟んでいる。
【0015】
上記のような構成によれば、圧電素子5の変位量を測定することにより、より精確にファラデーカップ7の振動を捕えることが可能である。そして、振動がある一定値以下(あるいはほぼ0:無振動)となってから電子計測を実行することにより、測定精度を高めることができる。
【0016】
また、従来装置のようにXYステージ3の周囲に静電容量センサが無いため、XYステージの移動範囲を広くすることが可能となり、高真空内での電子計測を効率良く行うことができる。即ち、図4に示した装置では、XYステージ3または剛性支持部材4からの距離を各XY静電容量センサ15で連続で計測することにより振動検知を行うが、各XY静電容量センサ15がXYステージ3の周囲にあるため、ファラデーカップ7の可動範囲は符号16の範囲に限定されるが、本実施例の装置ではファラデーカップ7の可動範囲は符号17の範囲まで広げることができる。
【0017】
(実施例2)
図3は本実施例の電子計測装置の要部を真横から見た図である。
【0018】
本装置では、XYステージ3のファラデーカップ7を有する側の反対側に半球状部材12を固定している。また、電子放出部材の面から均一な距離に保たれるZ方向平行部材13を有し、このZ方向平行部材13の上面全体には圧電素子14が接着固定されている。
【0019】
XYステージ3の移動は、圧電素子14上に半球状部材12が載置された状態で行われる。理想状態では、XYステージ3のZ方向への変位はゼロであり、XYどのポイントにおいても圧電素子14の変位量は一定値である。
【0020】
ここで、多少でもZ方向へのズレが発生した場合、圧電素子14の変位量は変化する。この場合は、XYステージ3を停止させる、若しくは、圧電素子14の変位量を連続で捕え、XYステージ3のZ方向の振動を捕える。このようなXYステージ3のZ方向のズレ若しくは振動を検知することにより、電子計測の精度をより一層高めることができる。
【0021】
【発明の効果】
以上説明したように、本発明によれば、XYステージ上にある電子計測器に、圧電素子を近接して配置したことにより、電子計測器の振動をより精確に捕えるが可能である。また、XYステージの周囲に静電容量センサが無いため、XYステージの移動範囲を広くすることができる。よって、電子計測の精確性が向上すると共に、高真空内での電子計測の作業効率が向上する。
【0022】
また、特に、XYステージの電子計測器を有する側の反対側に半球状部材を固定し、電子放出部材が配列された面から均一な距離に保たれるZ方向平行部材の上面全体に第2の圧電素子を固定し、該第2の圧電素子上に半球状部材が載置された状態でXYステージを移動させた時のZ方向のズレを、第2の圧電素子の変位量より検知するように構成したり、第2の圧電素子の変位量を連続で捕えることにより、XYステージの振動を検知するように構成した場合には、高真空内での電子計測の精度をより一層高めることができる。
【図面の簡単な説明】
【図1】実施例1の振動検知装置の全体構成を示す斜視図である。
【図2】図1の振動検知装置の要部を真横から見た図である。
【図3】実施例2の振動検知装置の要部を真横から見た図である。
【図4】従来の振動検知装置を真上から見た図である。
【符号の説明】
1 X送り機構
2 Y送り機構
3 XYステージ
4 剛性支持部材
5 圧電素子(第1の圧電素子)
6 圧電素子固定部材
7 ファラデーカップ(電子計測器)
8 ケーブル
9 電圧計
10 電子放出部材
11 電子
12 半球状部材
13 Z方向平行部材
14 圧電素子(第2の圧電素子)
15 XY静電容量センサ
16 従来装置におけるファラデーカップの可動範囲
17 本発明の装置におけるファラデーカップの可動範囲
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technical field for observing an electron distribution by moving an electronic measuring instrument on an XY stage to measure electrons emitted from an electron emitting member in a vacuum chamber in which a high vacuum is maintained.
[0002]
[Prior art]
The conventional technique will be described with reference to FIG.
FIG. 4 shows a rigid support member 4 on an XY stage 3 movable in the XY direction having an X feed mechanism 1 driven in the X direction and a Y feed mechanism 2 driven in the Y direction substantially orthogonal to the X direction. It is the figure which looked at the apparatus which installed the Faraday cup 7 as an example of an electronic measuring instrument from right above.
[0003]
In the electronic measurement using the Faraday cup 7, the correct amount of electrons cannot be captured if the Faraday cup 7 is vibrating. Therefore, it is necessary to measure the vibration under a certain value or less.
[0004]
However, the entire surface of the Faraday cup 7 is an electrode, and in addition to measuring the electrons trapped in the Faraday cup, the amount of electrons hitting the side surface of the Faraday cup can be measured as a current value. A sensor for directly detecting vibration cannot be attached to the cup, and the vibration of the Faraday cup 7 cannot be directly captured. For this reason, the vibration of the XY stage 3 is captured as a continuous value from each of the XY capacitance sensors 15, and the vibration of the XY stage 3 is regarded as the vibration of the Faraday cup 7. After being moved to just below the discharge member, the electronic measurement is performed after the output of each capacitance sensor 15 becomes equal to or less than a certain value (or almost 0: no vibration).
[0005]
[Problems to be solved by the invention]
The conventional techniques as described above have the following problems.
(1) Since the capacitance sensor 15 is provided around the XY stage 3, the movement amount of the XY stage 3 is physically limited. For this reason, in a device that moves the XY stage 3 and measures electrons with the Faraday cup 7, the measurement range of the electron emission member is narrowed, and work efficiency is poor.
(2) The capacitance sensor 15 cannot exhibit its high resolution unless the relative distance to the measured object is reduced. Therefore, in order to increase the measurement accuracy, the relative distance between the capacitance sensor 15 and the object to be measured cannot be increased, so that the movable range of the XY stage is limited, and the measurement range of the electron-emitting member is narrowed as described above. , Work efficiency is poor.
(3) Particularly, in a device for measuring the amount of electrons in a vacuum chamber, it is often difficult to attach a capacitance sensor.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems in the related art, and has as its object to provide an electronic measurement device capable of improving the accuracy of electronic measurement in a vacuum chamber and efficiently performing measurement.
[0007]
[Means for Solving the Problems]
The present invention made in order to solve the above-mentioned problem is an electronic measuring device for measuring an amount of electrons emitted from an electron-emitting member in a vacuum chamber, and has a rigidity on an XY stage movable in XY directions. A support member, a piezoelectric element fixing member for fixing the piezoelectric element therebetween, and a unit for stacking an electronic measuring instrument in the Z direction, and a piezoelectric element for detecting vibration of the electronic measuring instrument near the electronic measuring instrument. It is characterized in that elements are arranged.
[0008]
Even if the vibration of the XY stage on which the electronic measuring device such as the Faraday cup is mounted is detected as in the conventional apparatus, the vibration of the Faraday cup is not necessarily detected. The detection by the piezoelectric element does not necessarily mean that the vibration of the Faraday cup, which is the point of action, is detected.) However, in the electronic measuring device of the present invention, by installing the piezoelectric element near the bottom of the Faraday cup, It is possible to more accurately capture the vibration of the Faraday cup. Further, since there is no capacitance sensor around the XY stage, the moving range of the XY stage can be widened. Therefore, the accuracy of electronic measurement by an electronic measuring instrument such as a Faraday cup is improved, and the work efficiency of electronic measurement in a high vacuum is improved.
[0009]
In the electronic measuring device of the present invention, a hemispherical member is fixed to the XY stage on the side opposite to the side having the electronic measuring device, and the Z direction is maintained at a uniform distance from the surface on which the electron emitting members are arranged. The second piezoelectric element is fixed on the entire upper surface of the parallel member, and the displacement in the Z direction when the XY stage is moved while the hemispherical member is placed on the second piezoelectric element, It is preferable to detect from the displacement amount of the second piezoelectric element. It is also preferable that the vibration of the XY stage is detected by continuously capturing the displacement of the second piezoelectric element.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described based on specific examples, but the present invention is not limited to these examples.
[0011]
【Example】
(Example 1)
FIG. 1 is a perspective view showing the overall configuration of the electronic measuring apparatus of the present embodiment, and FIG. 2 is a view of the main part of FIG. 1 as viewed from the side.
[0012]
The apparatus comprises a rigid support member 4 on a movable XY stage 3 having an X feed mechanism 1 driven in the X direction and a Y feed mechanism 2 driven in the Y direction substantially orthogonal to the X direction. , A piezoelectric element fixing member 6 for fixing the piezoelectric element 5 therebetween, and a unit for stacking the Faraday cup 7 in the Z direction. The displacement of the piezoelectric element 5 is measured by a voltmeter 9 via a cable 8. .
[0013]
The present apparatus is disposed in a vacuum chamber (not shown), and by moving the XY stage 3 to an arbitrary position and capturing the electrons 11 emitted from the electron emitting member 10 in a predetermined vacuum atmosphere by the Faraday cup 7, The amount of electrons emitted from the electron emission member 10 can be measured.
[0014]
If the Faraday cup 7 is vibrating during this measurement, the correct amount of electrons cannot be captured. Therefore, in order to accurately capture the vibration of the Faraday cup 7, the piezoelectric element 5 is arranged close to the Faraday cup 7. That is, as shown in FIG. 2, the piezoelectric element 5 is sandwiched between the piezoelectric element fixing members 6 which directly support the Faraday cup 7.
[0015]
According to the above configuration, it is possible to more accurately capture the vibration of the Faraday cup 7 by measuring the amount of displacement of the piezoelectric element 5. Then, by performing the electronic measurement after the vibration becomes equal to or less than a certain value (or almost 0: no vibration), the measurement accuracy can be improved.
[0016]
Further, since there is no capacitance sensor around the XY stage 3 as in the conventional apparatus, it is possible to widen the moving range of the XY stage, and it is possible to efficiently perform electronic measurement in a high vacuum. That is, in the device shown in FIG. 4, vibration is detected by continuously measuring the distance from the XY stage 3 or the rigid support member 4 with each XY capacitance sensor 15. Since the Faraday cup 7 is located around the XY stage 3, the movable range of the Faraday cup 7 is limited to the range of reference numeral 16, but the movable range of the Faraday cup 7 can be expanded to the range of reference numeral 17 in the apparatus of the present embodiment.
[0017]
(Example 2)
FIG. 3 is a view of a main part of the electronic measuring device according to the present embodiment as viewed from the side.
[0018]
In this apparatus, a hemispherical member 12 is fixed to the XY stage 3 on the side opposite to the side having the Faraday cup 7. In addition, a Z-direction parallel member 13 that is kept at a uniform distance from the surface of the electron-emitting member is provided, and a piezoelectric element 14 is bonded and fixed to the entire upper surface of the Z-direction parallel member 13.
[0019]
The movement of the XY stage 3 is performed with the hemispherical member 12 placed on the piezoelectric element 14. In the ideal state, the displacement of the XY stage 3 in the Z direction is zero, and the displacement of the piezoelectric element 14 is a constant value at any point of XY.
[0020]
Here, if the displacement in the Z direction occurs to some extent, the displacement of the piezoelectric element 14 changes. In this case, the XY stage 3 is stopped, or the displacement of the piezoelectric element 14 is continuously captured, and the vibration of the XY stage 3 in the Z direction is captured. By detecting such displacement or vibration of the XY stage 3 in the Z direction, the accuracy of electronic measurement can be further improved.
[0021]
【The invention's effect】
As described above, according to the present invention, the vibration of the electronic measuring instrument can be more accurately captured by disposing the piezoelectric element in close proximity to the electronic measuring instrument on the XY stage. Further, since there is no capacitance sensor around the XY stage, the moving range of the XY stage can be widened. Therefore, the accuracy of the electronic measurement is improved, and the work efficiency of the electronic measurement in a high vacuum is improved.
[0022]
Also, in particular, a hemispherical member is fixed on the opposite side of the XY stage having the electronic measuring device, and the second surface is arranged on the entire upper surface of the Z-direction parallel member which is kept at a uniform distance from the surface on which the electron-emitting members are arranged. Is fixed, and the displacement in the Z direction when the XY stage is moved with the hemispherical member placed on the second piezoelectric element is detected from the displacement amount of the second piezoelectric element. In this case, when the vibration of the XY stage is detected by continuously capturing the displacement of the second piezoelectric element, the accuracy of electronic measurement in a high vacuum can be further improved. Can be.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating an overall configuration of a vibration detection device according to a first embodiment.
FIG. 2 is a diagram of a main part of the vibration detection device of FIG. 1 as viewed from the side.
FIG. 3 is a diagram of a main part of a vibration detection device according to a second embodiment, viewed from the side.
FIG. 4 is a diagram of a conventional vibration detection device viewed from directly above.
[Explanation of symbols]
Reference Signs List 1 X feed mechanism 2 Y feed mechanism 3 XY stage 4 Rigid support member 5 Piezoelectric element (first piezoelectric element)
6 Piezoelectric element fixing member 7 Faraday cup (electronic measuring instrument)
Reference Signs List 8 Cable 9 Voltmeter 10 Electron emission member 11 Electron 12 Hemispherical member 13 Z direction parallel member 14 Piezoelectric element (second piezoelectric element)
15 XY capacitance sensor 16 Movable range of Faraday cup in conventional device 17 Movable range of Faraday cup in device of the present invention

Claims (3)

真空チャンバ内で電子放出部材からの放出電子量を計測する電子計測装置であって、
XY方向に移動可能なXYステージの上に、剛性支持部材と、圧電素子を間に固定する圧電素子固定部材と、電子計測器をZ方向に重ねるユニットを有し、前記電子計測器の近傍に、該電子計測器の振動を検知するための第1の圧電素子を配置したことを特徴とする電子計測装置。
An electronic measurement device for measuring the amount of electrons emitted from the electron emission member in a vacuum chamber,
On an XY stage movable in the XY directions, a rigid support member, a piezoelectric element fixing member for fixing a piezoelectric element therebetween, and a unit for stacking an electronic measuring instrument in the Z direction are provided near the electronic measuring instrument. An electronic measuring device, wherein a first piezoelectric element for detecting vibration of the electronic measuring device is arranged.
前記XYステージの前記電子計測器を有する側の反対側に半球状部材を固定し、前記電子放出部材が配列された面から均一な距離に保たれるZ方向平行部材の上面全体に第2の圧電素子を固定し、該第2の圧電素子上に前記半球状部材が載置された状態で前記XYステージを移動させた時のZ方向のズレを、前記第2の圧電素子の変位量より検知することを特徴とする請求項1に記載の電子計測装置。A hemispherical member is fixed to the XY stage on the side opposite to the side having the electronic measurement device, and a second surface is provided on the entire upper surface of the Z-direction parallel member which is kept at a uniform distance from the surface on which the electron emission members are arranged. The displacement in the Z direction when the XY stage is moved in a state where the piezoelectric element is fixed and the hemispherical member is placed on the second piezoelectric element is calculated based on the displacement of the second piezoelectric element. The electronic measurement device according to claim 1, wherein the electronic measurement is performed. 前記第2の圧電素子の変位量を連続で捕えることにより、前記XYステージの振動を検知することを特徴とする請求項2に記載の電子計測装置。3. The electronic measuring apparatus according to claim 2, wherein the vibration of the XY stage is detected by continuously capturing a displacement amount of the second piezoelectric element.
JP2002260756A 2002-09-06 2002-09-06 Electronic measuring apparatus Withdrawn JP2004101252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260756A JP2004101252A (en) 2002-09-06 2002-09-06 Electronic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260756A JP2004101252A (en) 2002-09-06 2002-09-06 Electronic measuring apparatus

Publications (1)

Publication Number Publication Date
JP2004101252A true JP2004101252A (en) 2004-04-02

Family

ID=32261312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260756A Withdrawn JP2004101252A (en) 2002-09-06 2002-09-06 Electronic measuring apparatus

Country Status (1)

Country Link
JP (1) JP2004101252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106547012A (en) * 2016-10-18 2017-03-29 中国原子能科学研究院 A kind of isotope spectral line scanning means and method
CN106547011A (en) * 2016-10-18 2017-03-29 中国原子能科学研究院 A kind of isotope spectral line scanning means control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106547012A (en) * 2016-10-18 2017-03-29 中国原子能科学研究院 A kind of isotope spectral line scanning means and method
CN106547011A (en) * 2016-10-18 2017-03-29 中国原子能科学研究院 A kind of isotope spectral line scanning means control system
CN106547011B (en) * 2016-10-18 2017-11-21 中国原子能科学研究院 A kind of isotope spectral line scanning means control system
CN106547012B (en) * 2016-10-18 2017-11-21 中国原子能科学研究院 A kind of isotope spectral line scanning means and method

Similar Documents

Publication Publication Date Title
US6422069B1 (en) Self-exciting and self-detecting probe and scanning probe apparatus
JPH07318568A (en) Scanning probe microscope
JP5024803B2 (en) Detection sensor
US8615811B2 (en) Method of measuring vibration characteristics of cantilever
JP3481720B2 (en) Surface potential measuring device
US20090039908A1 (en) Microstructure inspecting apparatus and microstructure inspecting method
US8719959B2 (en) Cantilever, cantilever system, and probe microscope and adsorption mass sensor including the cantilever system
CN107664530B (en) Vibration exciter
JP2004101252A (en) Electronic measuring apparatus
US8111079B2 (en) Conductivity measuring apparatus and conductivity measuring method
JP4873689B2 (en) Surface potential meter and surface potential measurement method
JP4758405B2 (en) Sensor element and physical sensor device
JP2005164544A (en) Probe apparatus, scanning probe microscope, and sample display method
KR101107511B1 (en) Apparatus for inspecting sample and control method using the same
JP3771766B2 (en) Electrostatic chuck evaluation apparatus and electrostatic chuck evaluation method
JP2008076213A (en) Charging potential measuring probe, and charging potential distribution measuring system and charging potential distribution measuring device using probe
JP5339851B2 (en) Piezoelectric actuator with displacement meter, piezoelectric element, and positioning device using the same
JP4150296B2 (en) Board inspection equipment
US6710512B2 (en) Microelement piezoelectric feedback type picking and releasing device
JP4571333B2 (en) Method of measuring the overturning moment in a vibration generator
JP3514555B2 (en) Foreign matter evaluation device and foreign matter evaluation method
JP2001330621A (en) Method for manufacturing semiconductor dynamic quantity sensor
WO2008053512A1 (en) Semiconductor inspecting apparatus
JPH09281167A (en) Apparatus for measuring surface potential
JP2002188973A (en) Pressure sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110