JP2004100991A - Multi-tube type spiral heat exchanger - Google Patents

Multi-tube type spiral heat exchanger Download PDF

Info

Publication number
JP2004100991A
JP2004100991A JP2002260309A JP2002260309A JP2004100991A JP 2004100991 A JP2004100991 A JP 2004100991A JP 2002260309 A JP2002260309 A JP 2002260309A JP 2002260309 A JP2002260309 A JP 2002260309A JP 2004100991 A JP2004100991 A JP 2004100991A
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
heat exchange
heat
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002260309A
Other languages
Japanese (ja)
Inventor
Kazuyuki Takemura
武村 和幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002260309A priority Critical patent/JP2004100991A/en
Publication of JP2004100991A publication Critical patent/JP2004100991A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger capable of reducing installation area and preventing limiting of pressure of fluid which is heat-exchanged, namely, having a structure allowing use of high pressure fluid without any inconvenience. <P>SOLUTION: In this multi-tube type spiral heat exchanger, a plurality of thin and long circular tubes are arranged without causing a clearance therebetween to form a beltlike tube row. The tube row in which both ends of the tube row are connected with manifolds is used using the manifold on one side as a start point in the vicinity of center of swirl, and the tube row is spirally wound by providing a fixed clearance and is stored in a cylindrical vessel. Nozzles which become an inlet and an outlet of fluid which is heat-exchanged, respectively, are provided on outer sides of the manifolds positioned at the start point and an end point. Moreover, nozzles which become an inlet and an outlet of heat exchange medium are provided in the cylindrical vessel. Up and down parts of the spirally wound tube row are nipped by a circular plate having the same diameter as inside diameter of the cylindrical vessel storing it. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、流体間の熱交換をする熱交換器に関し、多管式でかつスパイラル状の構造とすることで、伝熱効率を高めてコンパクト化し、かつ、高圧力の流体の熱交換も可能とした熱交換器に関する。
【0002】
【従来の技術】
熱交換器は、熱交換を効率よく行うためには、高温側と低温側を隔てる隔壁が薄い方が伝熱効率的には有利である。一方、流体の圧力を考えると、高圧力の流体用途に用いる場合、その圧力に強度的に耐えられるように隔壁の厚さが規定されてくる。一般的に、その両面で効率よくバランスのとれた熱交換器として、多管式熱交換器が多用されている。
多管式熱交換器において、ある管径の伝熱管を使用する際に必要な伝熱面積を得るためには、その長さや本数などをいろいろな組合せとすることができるが、一般的に設計した場合、熱交換器全体として細長い形状になり、所要伝熱面積に対して比較的大きな設置場所を要する。
【0003】
工場等で熱交換器の設置面積に制約を受ける場合などには、伝熱の効率を高め、コンパクトな設備とするために、複数枚の板を重ね、交互に高温流体、低温流体が流れるように流路を形成したプレート式熱交換器、2枚の板を重ね、渦巻状に巻いた流路の内、外に熱交換流体を流すスパイラル式熱交換器など、他の形式の熱交換器を選ぶことができる。しかしながら、これらの熱交換器は、内圧力に対する強度の点で、多管円筒形熱交換器に対して不利であるため、高圧の流体の熱交換に対しては、使用に適さない場合が多い。
【0004】
【発明が解決しようとする課題】
かかる事情に鑑みて、本発明は、設置面積が小さくて済み、かつ、被熱交換流体の圧力を制限しない、すなわち高圧流体も不都合なく使用できる構造の熱交換器を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意検討した結果、複数の細くて長い円管を隙間なく並べて帯状管列を形成し、これを渦巻状に巻いた形にして円筒状の容器に納めることで、伝熱効率がよいために設置面積が小さくて済み、かつ高圧力の被熱交換流体にも使用可能な熱交換器とできることを見出し、本発明を完成するに至った。
また、かかる渦巻状に巻いた帯状管列の上下を容器の内径とほぼ同じ径の円形板で挟むことにより、管外側の熱交換媒体の流れも強い渦流とでき、帯状管列のすべての部分を熱交換に利用できて、伝熱効率を一層高めることができることも知見した。
【0006】
すなわち、本発明は、複数の細くて長い円管を隙間なく並べて帯状管列を形成し、該管列の両端はそれぞれマニホールドに接続したものを、一方のマニホールドを渦の中心近傍の始点とし、一定間隙を設けながら該管列を渦巻状に巻いて、円筒状の容器に納め、始点および終点に位置するマニホールドの外側にそれぞれ被熱交換流体の入口、出口となるノズルを設けてなり、かつ、前記円筒状の容器は熱交換媒体の入口、出口となるノズルを設けてなる多管式スパイラル熱交換器を提供するものである。
また、渦巻状に巻いた管列の上下を、それが収められている円筒容器の内径とほぼ同じ径の円形板で挟んだ多管式スパイラル熱交換器を提供するものである。
【0007】
【発明の実施の形態】
本発明の熱交換器の構造を、以下に、その一例の概略図を示す図1〜図3を参照しながら説明する。
【0008】
図1は、渦巻状に形成される帯状管列の展開図である。多数の細くて長い円管1が縦方向に隙間がないように積み重ねられて帯状の管列をなしており、各円管の両端は厚肉のパイプからなるマニホールド2、2´(被熱交換流体(以下、「プロセス流体」ともいう。)の集合管)にあけられた孔に溶接により接続されている。溶接施工用および検査用の間隔が必要であるために、各円管1のマニホールド接続部は間隔があり、したがって、管列全体は両端部近傍において各円管1の間に隙間があり、その幅はマニホールド接続部に向かって広がっている。
【0009】
図2は、図1のマニホールド2、2´を含む帯状管列を渦巻状に巻き上げた状態の断面を示すものである。プロセス流体出口ノズル4につながるマニホールド2´を始点にして帯状管列を巻き上げ加工してゆき、巻き上げ加工はプロセス流体入口ノズル3につながるマニホールド2を終点とする。巻き上げ帯状管列の間は一定間隔のスペース5が設けられ、帯状管列の両端近傍以外は各円管1の間はほとんど隙間なく形成されているので壁状となる。その結果、壁状の巻き上げ帯状管列の間の一定間隔のスペース5は、熱交換用媒体入口ノズル6から入ってくる熱交換用媒体の渦巻状流路を形成する。
マニホールド2、2´を含む帯状管列を渦巻状に巻き上げたもの(以下、「帯状管列巻き上げ体」と呼ぶことがある。)は、最外側の該管列との間に熱交換用媒体の渦巻状流路の最外側部分を形成するようなスペースを設けた内径を有する円筒状の容器7に納められている。
【0010】
図3は、円筒状の容器7に帯状管列巻き上げ体を収容し、かつ、帯状管列巻き上げ体の上下を容器7の内径とほぼ同じ径の円形板10で挟んだ、本発明の一実施態様の全体構造を示す断面図である。
円筒状の容器7は、帯状管列巻き上げ体を収容して、上下に閉じられた構造であり、プロセス流体の入口ノズル3、出口ノズル4;熱交換媒体の入口ノズル6、出口ノズル8;およびエアー抜きノズル9;によって外部と通じている。ここで、熱交換媒体の出口ノズル8は、帯状管列巻き上げ体の上部に相当する部分の壁に孔があけられて設けられ、エアー抜きノズル9は容器7の上蓋部に設けられている。
【0011】
プロセス流体は、プロセス流体入口ノズル3からマニホールド2を経て、渦巻状に巻き上げた帯状管列の多数の細くて長い各円管1を通り、マニホールド2´を経てプロセス流体出口ノズル4から熱交換器外へ出る。
熱交換用媒体は、熱交換用媒体入口ノズル6から熱交換器内に入り、帯状管列巻き上げ体間のスペース5からなる熱交換用媒体用の渦巻状流路を通って、熱交換用媒体出口ノズル8から熱交換器外へ出る。なお、エアー抜きノズル9は、熱交換用媒体を熱交換器内へ当初導入できるようにするためのものである。
上下円形板10は、熱交換用媒体の流路を帯状管列の渦巻状巻き上げ体間のスペース5のみにするための上下の区切り板であり、これによって熱交換用媒体の流れが、帯状管列を構成する各円管1のほぼすべての部分と接触し、かつ強い渦巻流をつくることができるため、プロセス流体と熱交換用媒体との間の効果的な熱交換が実現できることとなり、好ましい。
しかしながら、容器7の帯状管列の渦巻状巻き上げ体を収容する部分以外の上下の空間を小さくすれば、上下円形板10がなくても熱交換効率はそれほど低下しないため、本発明の熱交換器の作用効果は発揮される。
【0012】
本発明の熱交換器において、帯状管列の渦巻状巻き上げ体を構成する各管は、円管としたので、薄くしても10〜20MPaG程度の高圧力のプロセス流体に耐えることができる。一方、同様に渦巻状巻き上げ構造を有する公知の熱交換器として、前記のスパイラル式熱交換器があるが、このものは二枚の平板を渦巻き状に巻いた構造のもので、面で圧力を受けるために、耐圧が、せいぜい1MPaGであり、高圧用途でも2.5MPaGにすぎない。
円管1の肉厚は、薄いほど伝熱、加工性の面で有利であるが、プロセス流体の種類に基づく耐圧面での要求性能とのバランスで決められる。通常、1〜3mm程度の肉厚とすることが多い。
また、円管1の管径は、細いほど伝熱面で有利(同一流量を処理する場合、伝熱面積が大きくなる;同一の耐圧に対して管肉厚が薄くできる;ことによる)であるが、細すぎるものは現実に製作困難であり、太くなると曲げ加工が難しくなる。通常、数mmから数十mmの範囲のものが本発明の熱交換器に使用可能である。
さらに、伝熱面からはプロセス流体の流速を上げる方が有利であり、同じ流量で限られた容積中で流速を上げるには、流路の距離を長くすることが好ましいが、本発明の熱交換器のスパイラル構造はそのことに貢献している。
円管1の本数は、管径と関連しながら、プロセス流体の流量に依存する。同じ流量の流体に対して、細い管径のものを多数本積み重ねることが、伝熱面からは有利である。
なお、多数本の円管1からなる管列の各管の積み重ねは、熱交換用媒体の隣の流路への短絡流が生じないようにするために、マニホールド2、2´の近傍以外はできるだけ隙間がないように形成されることが好ましい。
円管1の材質は、特に制限されるものではないが、薄くできて、かつ高圧力のプロセス流体にも対応できる強度を有する材料として、低温用炭素鋼、銅合金、ステンレス鋼、炭素鋼などが好ましい。
【0013】
本発明の熱交換器は、上記のように構成されているので、設置面積が小さくて済み、また、ガス、液体等、広い範囲のプロセス流体に使用でき、高圧力のものであっても不都合なく対応できるという利点を有する。
なお、図2、図3に示した態様の熱交換器は、プロセス流体と熱交換用媒体の流れが向流になっている。伝熱係数からは向流が好ましいが、並流に流してもよい。
また、図2、図3に示した態様の熱交換器は、帯状管列巻き上げ体が寝た、全体として竪型の構造となっているが、これを横型の構造のものとすることもできる。
【0014】
【実施例】
本発明に含まれる一つの熱交換器を製作し、熱交換試験を行った結果を以下に示すが、本発明が実施例の態様に限定されるものでないことはもとよりのことである。
【0015】
実施例1
以下の材料、寸法にて多管式スパイラル熱交換器を製作した。
円管外径:15.9mm、 肉厚:1.6mm、
管長:約3375mm、 管本数:13本、
円管材質:低温用炭素鋼(STBL380S)
容器外径:406.4mm、 肉厚:6mm
管内側に液化プロピレン、管外側に冷水(メタノール水溶液)を通液し、熱交換を行った。その結果、それぞれの流体の入口温度、出口温度は次のようであった。
液化プロピレン流量: 500kg/hr
入口温度 36℃→出口温度 2℃、 圧力:4MPaG
冷水(メタノール水溶液)流量: 約5m/hr
入口温度 −9℃→出口温度 −7℃、 圧力:0.5MPaG
以上のように、高圧の被熱交換流体に対して使用して、良好な熱交換状態(冷却)が得られた。
【0016】
【発明の効果】
複数の細くて長い円管を隙間なく並べて帯状管列を形成し、これを、一定間隙を設けながら該管列を渦巻状に巻いて、円筒状の容器に納めて、円管内を被熱交換流体、円管外を熱交換媒体が流れる構造にすることにより、伝熱効率が高いために設置面積が小さくて済み、かつ、被熱交換流体の圧力を制限しない、すなわち高圧流体も不都合なく使用できる構造の熱交換器が得られる。
【図面の簡単な説明】
【図1】本発明の一実施態様の熱交換器において、渦巻状に形成される管列の展開図を示す概念図である。
【図2】図1の帯状管列を渦巻状に巻き上げた状態の上から見た断面を示すものである。
【図3】図1、図2の熱交換器の全体構造を示すため、中央部近辺の断面を横から見た概念図である。
【符号の説明】
1 円管
2、2´ マニホールド
3 プロセス流体入口ノズル
4 プロセス流体出口ノズル
5 スペース(熱交換用媒体流路)
6 熱交換用媒体入口ノズル
7 容器
8 熱交換用媒体出口ノズル
9 エアー抜きノズル
10 上下円形板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger for exchanging heat between fluids, and has a multi-tubular and spiral structure, thereby increasing heat transfer efficiency and making it compact, and enabling heat exchange of high-pressure fluid. Heat exchanger.
[0002]
[Prior art]
In the heat exchanger, in order to efficiently perform heat exchange, it is advantageous in terms of heat transfer efficiency that the partition wall separating the high temperature side and the low temperature side is thin. On the other hand, considering the pressure of the fluid, when used for high-pressure fluid applications, the thickness of the partition wall is regulated so as to withstand the pressure in strength. Generally, a multitubular heat exchanger is often used as a heat exchanger that is efficiently balanced on both sides.
In a multi-tube heat exchanger, in order to obtain the necessary heat transfer area when using a heat transfer tube with a certain pipe diameter, the length and number of tubes can be variously combined. In this case, the heat exchanger as a whole has an elongated shape, requiring a relatively large installation space for the required heat transfer area.
[0003]
If the installation area of the heat exchanger is limited in factories, etc., in order to increase the heat transfer efficiency and make the equipment compact, stack multiple plates and make sure that high-temperature fluid and low-temperature fluid flow alternately. Other types of heat exchangers, such as a plate type heat exchanger with a flow path formed in the inside and a spiral heat exchanger in which a heat exchange fluid flows outside the flow path inside and outside of the flow path in which two plates are stacked and spirally wound You can choose. However, these heat exchangers are disadvantageous to the multi-tube cylindrical heat exchanger in terms of strength against internal pressure, and are therefore often unsuitable for heat exchange of high-pressure fluids. .
[0004]
[Problems to be solved by the invention]
In view of such circumstances, an object of the present invention is to provide a heat exchanger having a structure that requires a small installation area and does not limit the pressure of the fluid to be heat-exchanged, that is, can use a high-pressure fluid without any inconvenience. .
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, formed a row of strips by arranging a plurality of thin and long circular pipes without gaps, spirally winding this into a cylindrical container. By putting it in, it was found that the heat exchanger had good heat transfer efficiency, the installation area was small, and the heat exchanger could be used for a high-pressure heat exchange fluid, and the present invention was completed.
Also, by sandwiching the upper and lower portions of the spirally wound band-shaped tube array with a circular plate having a diameter substantially the same as the inner diameter of the container, the flow of the heat exchange medium outside the tube can also be made to be a strong vortex, and all parts of the band-shaped tube array Was also found to be able to be used for heat exchange to further enhance the heat transfer efficiency.
[0006]
That is, the present invention forms a strip-shaped tube row by arranging a plurality of thin and long circular pipes without gaps, and both ends of the pipe row are respectively connected to the manifold, and one of the manifolds is a starting point near the center of the vortex, The pipe row is spirally wound while providing a constant gap, housed in a cylindrical container, and provided with nozzles as inlets and outlets of the heat exchange fluid outside the manifolds located at the start point and the end point, respectively, and The cylindrical container provides a multi-tube spiral heat exchanger provided with nozzles serving as an inlet and an outlet of a heat exchange medium.
It is another object of the present invention to provide a multi-tube spiral heat exchanger in which the upper and lower sides of a spirally wound tube array are sandwiched between circular plates having substantially the same diameter as the inner diameter of a cylindrical container in which the tube array is housed.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The structure of the heat exchanger of the present invention will be described below with reference to FIGS.
[0008]
FIG. 1 is an exploded view of a spiral tube array formed in a spiral shape. A large number of thin and long circular pipes 1 are stacked so as to have no gap in the vertical direction to form a band-shaped pipe row, and both ends of each circular pipe are manifolds 2 and 2 ′ made of thick pipes (exchanged heat). It is connected by welding to a hole formed in a fluid (hereinafter, also referred to as a “process fluid”). Since the intervals for welding and inspection are required, the manifold connection portions of the respective circular pipes 1 are spaced apart, so that the entire pipe row has a gap between the respective circular pipes 1 near both ends. The width increases towards the manifold connection.
[0009]
FIG. 2 is a cross-sectional view showing a state in which a strip-shaped tube row including the manifolds 2 and 2 ′ of FIG. 1 is spirally wound. Starting from the manifold 2 ′ connected to the process fluid outlet nozzle 4, the band-shaped tube row is wound up, and the winding up process is performed with the manifold 2 connected to the process fluid inlet nozzle 3 as the end point. Spaces 5 are provided at regular intervals between the rolled-up tube rows, and except for the vicinity of both ends of the band-shaped tube row, there is almost no gap between the circular pipes 1 so that the pipes 5 have a wall shape. As a result, the regularly spaced spaces 5 between the row of wall-shaped winding strips form a spiral flow path for the heat exchange medium entering from the heat exchange medium inlet nozzle 6.
A spirally wound tube array including the manifolds 2 and 2 '(hereinafter, sometimes referred to as a "banded tube array roll-up body") is a heat exchange medium between the tube array and the outermost tube array. Are housed in a cylindrical container 7 having an inner diameter provided with a space for forming the outermost portion of the spiral flow path.
[0010]
FIG. 3 shows an embodiment of the present invention in which a rolled-up body of tube-shaped tube rows is accommodated in a cylindrical container 7, and the upper and lower sides of the banded tube-rolled body are sandwiched between circular plates 10 having substantially the same inner diameter as the container 7. It is sectional drawing which shows the whole structure of an aspect.
The cylindrical container 7 has a vertically closed structure that accommodates a rolled-up body of strip-shaped tubes, and has an inlet nozzle 3 and an outlet nozzle 4 for a process fluid; an inlet nozzle 6 and an outlet nozzle 8 for a heat exchange medium; The air vent nozzle 9 communicates with the outside. Here, the outlet nozzle 8 of the heat exchange medium is provided with a hole in the wall corresponding to the upper part of the rolled-up body of tube-shaped tubes, and the air vent nozzle 9 is provided in the upper lid of the container 7.
[0011]
The process fluid passes from the process fluid inlet nozzle 3 through the manifold 2, passes through a large number of thin and long circular tubes 1 of a spirally wound strip-shaped tube row, passes through the manifold 2 ′, and passes through the process fluid outlet nozzle 4 through the heat exchanger. Go outside.
The heat exchange medium enters the heat exchanger through the heat exchange medium inlet nozzle 6, passes through the spiral passage for the heat exchange medium formed by the spaces 5 between the rolled-up tubes, and passes through the heat exchange medium. The outlet nozzle 8 exits the heat exchanger. The air vent nozzle 9 is for enabling the heat exchange medium to be initially introduced into the heat exchanger.
The upper and lower circular plates 10 are upper and lower partitioning plates for providing a flow path of the heat exchange medium only to the space 5 between the spirally wound bodies in the band-shaped tube row, whereby the flow of the heat exchange medium is controlled by the band-shaped tube. Since it is possible to make contact with almost all parts of each of the pipes 1 constituting the row and to create a strong swirl flow, effective heat exchange between the process fluid and the heat exchange medium can be realized, which is preferable. .
However, if the upper and lower spaces other than the portion for accommodating the spirally wound body of the band-shaped tube row of the container 7 are reduced, the heat exchange efficiency does not decrease so much even without the upper and lower circular plates 10. The function and effect of are exhibited.
[0012]
In the heat exchanger of the present invention, since each tube constituting the spiral wound body of the band-shaped tube row is a circular tube, it can withstand a high-pressure process fluid of about 10 to 20 MPaG even if it is thin. On the other hand, as a known heat exchanger similarly having a spiral winding structure, there is the above-mentioned spiral heat exchanger. This is a structure in which two flat plates are spirally wound, and a pressure is applied on the surface. Therefore, the pressure resistance is 1 MPaG at most, and it is only 2.5 MPaG even in high pressure applications.
Although the wall thickness of the circular tube 1 is more advantageous in terms of heat transfer and workability as it is thinner, it is determined in balance with the required performance in terms of pressure resistance based on the type of process fluid. Usually, the thickness is often about 1 to 3 mm.
Also, the thinner the pipe diameter of the circular pipe 1 is, the more advantageous in terms of heat transfer surface (when processing the same flow rate, the larger the heat transfer area; the thinner the pipe wall thickness for the same pressure resistance). However, too thin ones are actually difficult to manufacture, and thicker ones make bending difficult. Usually, those having a range of several mm to several tens mm can be used for the heat exchanger of the present invention.
Further, it is advantageous to increase the flow rate of the process fluid from the heat transfer surface. To increase the flow rate in a limited volume at the same flow rate, it is preferable to increase the distance of the flow path. The spiral structure of the exchanger contributes to that.
The number of the circular pipes 1 depends on the flow rate of the process fluid, while being related to the pipe diameter. It is advantageous from the heat transfer surface to stack a large number of thin pipes for the same flow rate of fluid.
It should be noted that the stacking of the pipes of the pipe row composed of a large number of circular pipes 1 except for the vicinity of the manifolds 2 and 2 ′ in order to prevent a short circuit flow from occurring to the adjacent flow path of the heat exchange medium. It is preferable that the gap is formed so that there is as little gap as possible.
The material of the circular pipe 1 is not particularly limited, but as a material that can be made thin and has a strength that can cope with a high-pressure process fluid, there are carbon steel for low temperature, copper alloy, stainless steel, carbon steel, and the like. Is preferred.
[0013]
Since the heat exchanger of the present invention is configured as described above, it requires only a small installation area, and can be used for a wide range of process fluids such as gas and liquid. It has the advantage of being able to cope.
In the heat exchangers of the embodiments shown in FIGS. 2 and 3, the flows of the process fluid and the heat exchange medium are countercurrent. Countercurrent is preferable from the viewpoint of heat transfer coefficient, but it may flow in parallel.
Further, the heat exchanger of the embodiment shown in FIGS. 2 and 3 has a vertical structure as a whole, in which a rolled-up body of tube-shaped tubes is laid down, but this can also be a horizontal structure. .
[0014]
【Example】
The results of manufacturing one heat exchanger included in the present invention and conducting a heat exchange test are shown below, but it is needless to say that the present invention is not limited to the embodiments.
[0015]
Example 1
A multi-tube spiral heat exchanger was manufactured with the following materials and dimensions.
Outer diameter of circular pipe: 15.9 mm, wall thickness: 1.6 mm,
Pipe length: about 3375mm, Number of pipes: 13,
Circular tube material: low temperature carbon steel (STBL380S)
Container outer diameter: 406.4 mm, wall thickness: 6 mm
Liquid propylene was passed through the inside of the tube, and cold water (aqueous methanol solution) was passed through the outside of the tube, and heat exchange was performed. As a result, the inlet temperature and outlet temperature of each fluid were as follows.
Liquefied propylene flow rate: 500 kg / hr
Inlet temperature 36 ° C → Outlet temperature 2 ° C, pressure: 4MPaG
Cold water (methanol aqueous solution) flow rate: about 5 m 3 / hr
Inlet temperature -9 ° C → Outlet temperature -7 ° C, Pressure: 0.5MPaG
As described above, a good heat exchange state (cooling) was obtained when used for a high-pressure heat exchange fluid.
[0016]
【The invention's effect】
A plurality of thin and long circular tubes are arranged without gaps to form a band-shaped tube array, which is spirally wound while providing a certain gap, placed in a cylindrical container, and subjected to heat exchange in the circular tube. By adopting a structure in which the heat exchange medium flows outside the fluid and the pipe, the heat transfer efficiency is high, so the installation area can be small, and the pressure of the heat exchange fluid is not limited, that is, the high pressure fluid can be used without any inconvenience. A heat exchanger with a structure is obtained.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a development view of a tube row formed in a spiral shape in a heat exchanger according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a state in which the strip-shaped tube array of FIG. 1 is spirally wound up as viewed from above.
FIG. 3 is a conceptual view of a cross section near a central portion viewed from the side to show the entire structure of the heat exchanger of FIGS. 1 and 2;
[Explanation of symbols]
1 circular pipe 2, 2 'manifold 3 process fluid inlet nozzle 4 process fluid outlet nozzle 5 space (medium flow path for heat exchange)
6 Heat exchange medium inlet nozzle 7 Container 8 Heat exchange medium outlet nozzle 9 Air vent nozzle 10 Upper and lower circular plate

Claims (2)

複数の細くて長い円管を隙間なく並べて帯状管列を形成し、該管列の両端はそれぞれマニホールドに接続したものを、一方のマニホールドを渦の中心近傍の始点とし、一定間隙を設けながら該管列を渦巻状に巻いて、円筒状の容器に納め、始点および終点に位置するマニホールドの外側にそれぞれ被熱交換流体の入口、出口となるノズルを設けてなり、かつ、前記円筒状の容器は熱交換媒体の入口、出口となるノズルを設けてなる多管式スパイラル熱交換器。A plurality of thin and long circular pipes are arranged without gaps to form a strip-shaped pipe row, and both ends of the pipe row are connected to a manifold, respectively, and one of the manifolds is used as a starting point near the center of the vortex, while providing a fixed gap. The tube array is spirally wound and housed in a cylindrical container, and nozzles serving as inlets and outlets for the heat exchange fluid are provided outside the manifolds located at the start point and the end point, respectively, and the cylindrical container Is a multi-tube spiral heat exchanger provided with nozzles serving as inlet and outlet of the heat exchange medium. 渦巻状に巻いた管列の上下を、それが収められている円筒状の容器の内径とほぼ同じ径の円形板で挟んだ、請求項1の多管式スパイラル熱交換器。2. The multi-tube spiral heat exchanger according to claim 1, wherein the upper and lower sides of the spirally wound tube row are sandwiched between circular plates having substantially the same diameter as the inner diameter of the cylindrical container in which the spirally wound tube row is housed.
JP2002260309A 2002-09-05 2002-09-05 Multi-tube type spiral heat exchanger Withdrawn JP2004100991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260309A JP2004100991A (en) 2002-09-05 2002-09-05 Multi-tube type spiral heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260309A JP2004100991A (en) 2002-09-05 2002-09-05 Multi-tube type spiral heat exchanger

Publications (1)

Publication Number Publication Date
JP2004100991A true JP2004100991A (en) 2004-04-02

Family

ID=32261065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260309A Withdrawn JP2004100991A (en) 2002-09-05 2002-09-05 Multi-tube type spiral heat exchanger

Country Status (1)

Country Link
JP (1) JP2004100991A (en)

Similar Documents

Publication Publication Date Title
US9885523B2 (en) Liquid to liquid multi-pass countercurrent heat exchanger
WO2013150818A1 (en) Heat transfer tube, and heat exchanger using same
WO2010150877A1 (en) Heat exchanger using multiple-conduit pipes
EP2944911B1 (en) Heat exchanger
EP2594884B1 (en) Plate heat exchanger and method for manufacturing of a plate heat exchanger
EP2929268B1 (en) Helical counterflow heat exchanger
FI130318B (en) A shell and tube heat exchanger
US4989670A (en) Heat exchanger
JP5680669B2 (en) Bending tube and heat exchanger having the bending tube
US6059024A (en) Polymer film heat exchanger
JP2010078233A (en) Shell-and-tube exchanger
JP2004100991A (en) Multi-tube type spiral heat exchanger
JP4414197B2 (en) Double tube heat exchanger
WO2015020047A1 (en) Heat exchanger
CN212205796U (en) Combined baffle plate structure for graphite tube array type heat exchanger
JPH04292789A (en) Heat exchanger
JP3182597U (en) Multi-tube heat exchanger
JP4414198B2 (en) Double tube heat exchanger
JP2005274044A (en) Heat source device
CN213455097U (en) Two-dimensional tube for heat exchanger and heat exchanger
WO2012043380A1 (en) Heat exchanger
CN215177125U (en) Film heat exchange plate bundle and heat exchanger
JP4549228B2 (en) Plate heat exchanger
JP2005147566A (en) Double pipe type heat exchanger
JP2012067997A (en) Heat exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110