JP2004100866A - Retainer for self-aligning roller bearing - Google Patents

Retainer for self-aligning roller bearing Download PDF

Info

Publication number
JP2004100866A
JP2004100866A JP2002265686A JP2002265686A JP2004100866A JP 2004100866 A JP2004100866 A JP 2004100866A JP 2002265686 A JP2002265686 A JP 2002265686A JP 2002265686 A JP2002265686 A JP 2002265686A JP 2004100866 A JP2004100866 A JP 2004100866A
Authority
JP
Japan
Prior art keywords
cage
roller
retainer
self
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002265686A
Other languages
Japanese (ja)
Inventor
Takeshi Maeda
前田 剛
Yukihisa Tsumori
津森 幸久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2002265686A priority Critical patent/JP2004100866A/en
Publication of JP2004100866A publication Critical patent/JP2004100866A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/48Cages for rollers or needles for multiple rows of rollers or needles
    • F16C33/485Cages for rollers or needles for multiple rows of rollers or needles with two or more juxtaposed cages joined together or interacting with each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/49Cages for rollers or needles comb-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/49Cages for rollers or needles comb-shaped
    • F16C33/494Massive or moulded comb cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/54Cages for rollers or needles made from wire, strips, or sheet metal
    • F16C33/542Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal
    • F16C33/543Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal from a single part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent or reduce abrasion in a retainer for a self-aligning roller bearing. <P>SOLUTION: This retainer 8a comprises a circular body 82a, and a plurality of poles 84a protruded from the circular body 82a toward the roller rotation axis, and has a convex surface 86a set in a side surface of the circular body 82a on the opposite side to the pole 84a protruded. Two of the retainers 8a are used as a combination, where their convex surfaces 86a are applied to each other to keep them in linear contact. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は自動調心ころ軸受に関するもので、とくにその保持器を改良したものである。ここで、自動調心ころ軸受とは、転動体として凸面ころを用いた自動調心軸受であって、通常、球面軌道の外輪をもち、2列の凸面ころを組み込んだ軸受をいう。自動調心軸受とは、一方の軌道が球状であることによって、両軌道の中心軸間の角ミスアライメント及び角運動に適応できる軸受をいう。
【0002】
【従来の技術】
自動調心ころ軸受は、転動体として凸面ころを用いた自動調心軸受である。凸面ころとは、ころの中心軸を含む平面において、外径面が凸の曲率をもっているころをいい、球面ころともいう。
【0003】
自動調心ころ軸受には、中つば付き内輪に非対称凸面ころ(ころの中央を通り、ころの中心軸に垂直な平面に関して、ころの外径面が非対称である凸面ころ)を組み込んだ形式と、中つばなし内輪に対称ころ(ころの中央を通り、ころの中心軸に垂直な平面に関して、外径面が対称である凸面ころ)を組み込んだ形式とがある。
【0004】
図4は中つば付き内輪2に非対称凸面ころ6を組み込んだ、打抜き保持器仕様の自動調心ころ軸受を示す。打抜き保持器とは、プレス加工で造った保持器であって、プレス保持器ともいう。この自動調心ころ軸受は、内輪2と、外輪4と、内・外輪間に組み込まれた複列の凸面ころ6と、各列の凸面ころ6を円周方向で等間隔に保持する保持器8とで構成されている。内輪は中つば22と、つば24と、軌道26を有し、外輪4は球面軌道42を有している。
【0005】
図示するように、一対の保持器8の背面同士が面接触している。ころ自転軸方向の位置決めはお互い相手列の保持器背面に接することで行われる。スラスト荷重が大きい場合は両列のころ公転速度に差が生じ、この背面接触部で相対すべりを生じる。大きなモーメント荷重が加わった場合も同様である。
【0006】
【特許文献1】
特開平8−128450号公報(段落番号0009、図1、図3)
【0007】
【発明が解決しようとする課題】
上述のとおり、自動調心ころ軸受用保持器は一対の保持器が背面同士で面接触しているため、保持器背面の摩耗が懸念される。また、保持器の背面は保持器の軸線に垂直な平面となっているため、一対の保持器の背面同士が面接触となり、特に潤滑条件が悪い場合には、金属接触による摩耗が懸念される。
【0008】
背面接触部が面接触で相対すべりを起こした場合、保持器背面が摩耗し、その摩耗粉が混入することにより潤滑剤の劣化が促進される。潤滑油の劣化は軸受の温度上昇につながる。また、摩耗粉の噛み込みにより、軌道輪の軌道面やころの転動面の面荒れ、ひいてはクラックの発生や剥離に至ることがある。
【0009】
本発明の目的は、自動調心ころ軸受用二体形保持器の摩耗の防止または軽減を図ることにある。
【0010】
【課題を解決するための手段】
本発明の自動調心ころ軸受用打抜き保持器は、凸面ころを収容するためのポケットを有する一対の保持器であって、各保持器が、環状体と、環状体からころ自転軸方向に突き出た複数の柱とからなり、前記柱が突き出た側とは反対側の環状体の側面を凸曲面としたことを特徴とするものである。本発明はくし形保持器およびかご形保持器のいずれにも適用可能である。
【0011】
保持器背面を凸曲面としたことによって、一対の保持器が線接触(保持器の軸線を含む平面で見ると点接触)することとなる。したがって、保持器同士の金属接触による摩耗を軽減することができる。また、背面接触部への潤滑剤、特にグリースの巻き込み性がよくなるため、油膜切れを起こしにくくなる。従来のように接触部がストレートな面接触である場合、グリースの巻き込みは期待できないが、本発明によれば、潤滑条件が悪い場合でも金属接触による摩耗を軽減することができる。
【0012】
柱が保持器の半径方向で見てころ自転軸よりも外側に位置し、環状体が内向きフランジ状であるもの(請求項2)、あるいは、柱が保持器の半径方向で見てころ自転軸よりも内側に位置し、環状体が外向きフランジ状であるもの(請求項3)のいずれも可能である。後者の場合、柱の先端に内向きフランジ状の案内部を設けることができる(請求項4)。
【0013】
【発明の実施の形態】
以下、図面に従って本発明の実施の形態を説明する。
【0014】
図1に示す実施の形態では、自動調心ころ軸受は、内輪2aと、外輪4aと、内・外輪間に組み込まれた複列の凸面ころ6aと、各列の凸面ころ6aを円周方向で等間隔に保持する保持器8aとで構成されている。
【0015】
内輪2aは外面に複列の軌道26aをもち、通常、軸にしまりばめで取り付けられ、軸とともに回転するほうの軌道輪である。内輪2aは両端部のつば24aと中つば22aとを有する。つば24aは、軌道の表面から突き出た、転がり方向に平行な狭い部分で、ころを軸受内に保持・案内し、アキシアル荷重を受けることを目的としている。中つば22aは複列の軌道の中央から突き出ているのでそのように呼ばれる。
【0016】
外輪4aは内面に軌道をもつ軌道輪であって、通常、ハウジング穴に中間ばめ・すきまばめで取り付けられ、回転しないほうの軌道輪である。外輪4aの軌道は球の表面の一部の形状をもつ軌道すなわち球面軌道であって、このため軸受内部で調心作用ができる。
【0017】
凸面ころ6aは非対称ころであって、円すいころ軸受における円すいころと同じく、ころ自転軸方向に誘起スラスト荷重を生じ、それを内輪2aに一体に形成された中つば22aで受けるようになっている。
【0018】
保持器8aは二個一組で用いる。各保持器8aはくし形保持器である。各保持器8aは、図1(B)に示すように、環状体82aと、環状体82aからころ自転軸方向に突き出た複数の柱84aとからなり、柱84aが突き出た側とは反対側の環状体82aの側面を凸曲面86aとしてある。凸曲面86aはここでは単一の円弧を母線とするものを例示してある。
【0019】
図1(A)に示すように一対の保持器8aを背中合わせにして軸受に組み込む。この意味で、本明細書において、一対の保持器の互いに接する面を背面と呼ぶことがある。
【0020】
保持器8aの柱84aは環状体82aの外径側から片持ち状に突き出て、保持器の半径方向で見てころ自転軸よりも外側に位置している。隣り合う柱84aの間に、凸面ころ6aを収めるための開口または空所すなわちポケット88aが形成される。言い換えれば、隣接するポケット88aを柱84aが分離している。
【0021】
図2に示す実施の形態は中つばなし内輪2bに対称凸面ころ6bを組み込んだ場合であって、自動調心ころ軸受は、内輪2bと、外輪4bと、内輪2bの軌道26bと外輪4bの球面軌道42bとの間に組み込まれた複列の凸面ころ6bと、各列の凸面ころ6bを円周方向で等間隔に保持する保持器8bとで構成されている。対称凸面ころは、ころの中央を通り、ころの中心軸に垂直な平面に関して、外径面が対称である凸面ころであるため、誘起スラストが生じない。保持器8bはかご形すなわち、ころを囲むポケットをもっている一体形保持器で、複数の保持器ポケット88bが円周方向に並んだ鋼板製の打抜き保持器である。ころ自転軸方向のポケットすきま相当分だけ保持器8bがころ自転軸方向に動くことができる。したがって、その動きを規制するために、一対の保持器8bが背面同士で接触するようになっている。
【0022】
保持器8bの環状体82bは内向きフランジ状すなわち半径方向内側に向いている。ここでも、図示するように各保持器8bの背面を丸くして凸曲面86bとしてある。隣接するポケット88bを分離する保持器8bの柱84bは環状体82bの外径側からころ自転軸方向に突き出ている。そして、柱84bはころ自転軸よりも保持器内径側に位置している。なお、このタイプでは、保持器8bから凸面ころ6bの脱落を防止するために保持器8bと凸面ころに凹凸の係合部を設けている。
【0023】
図3に示す実施の形態も中つばなし内輪2cに対称凸面ころ6cを組み込んだ場合であって、自動調心ころ軸受は、内輪2cと、外輪4cと、内輪2cの軌道26cと外輪4cの球面軌道42cとの間に組み込まれた複列の凸面ころ6cと、各列の凸面ころ6cを円周方向で等間隔に保持する保持器8cとで構成されている。保持器8cは図2の場合と同様にかご形であるが、環状体82cが外向きフランジ状すなわち径方向外側に向いている。このため、凸面ころ6cの長さ(軸方向寸法)を長くすることができ、軸受負荷容量が高まる。また、環状体と内輪外径面との間で、かつ、凸面ころ6c間のスペースが増えるため、このスペースをグリース溜めとして利用することができる。ここでも、図示するように各保持器8cの背面を丸くして凸曲面86cとしてある。
【0024】
隣接するポケット88cを分離する保持器8cの柱84cは環状体82cの内径側からころ自転軸方向に突き出ている。そして、柱84cは保持器の半径方向で見てころ自転軸よりも内側に位置している。柱84cの先端は第二の環状体で連結してあり、この第二の環状体が内向きフランジ状の案内部89cを形成する。そして、内輪2cの外径面が、保持器8cをラジアル方向に案内するための保持器案内面となる。保持器8cの回転を案内し、保持器8cの振れ回りを防ぐため、内輪2cに接する保持器8cの案内部89cの内径面と、内輪2cの接触面との間に適当なすきまが与えられている。
【0025】
上述の各実施の形態において、保持器の凸曲面86a,86b,86cの断面形状は単一の円弧に限らず、楕円形(の一部)その他のなだらかな曲線であってもよい。
【0026】
次に、自動調心ころ軸受におけるころと保持器のポケットとの関係について述べる。
【0027】
図5、図6に標準的な自動調心ころ軸受の仕様を示す。図5は中つば付き内輪に非対称凸面ころを組み込んだ二体形もみ抜き保持器仕様を示し、図6は対称凸面ころを使用した案内輪付き一体形もみ抜き保持器仕様を示す。もみ抜き保持器とは削り加工で造った保持器をいう。
【0028】
自動調心ころ軸受は外輪の軌道面が球面に加工されているため、図7に示すように、内輪・ころ・保持器が一体となって調心運動をすることができる。軸受を取り付けるとき、初期のグリースを封入するにあたり、図7に示される状態にすることによって確実に転がり面にグリースを行き渡らせることが可能な軸受である。
【0029】
図8にころと保持器の関係を示す。保持器のポケットはころ最大径に対してある程度のすきますなわちポケットすきま(pcr)を取って穴加工を行う。通常、ポケット穴径(Dwo)ところ最大径(Dw)とは次のような関係にある。
【0030】
pcr=(0.001〜0.050)×Dw
Dwo=Dw+pcr
なお、ころ中心線と保持器ポケット中心線とが同一に設定されているため、図8(b)から理解できるように、保持器のポケット内においてころが径方向に動き得る量(符号Srによって表される量に等しい。)はポケットすきまと保持器外径とによって決定され、保持器外径部と干渉するまでころの動きは自由である。
【0031】
図9に示される調心した状態から正規の姿勢に戻すには、外輪軌道面上に内輪・ころ・保持器のサブアセンブリを戻す必要があるが、保持器ポケット径ところ最大径との間にはポケットすきま(pcr)分だけのすきまが設定されているため、自由になったころは保持器外径部と干渉するまで自由落下する。自由落下する量は、図8(B)に符号Srで表されたころと保持器外径との間のすきま分となる。保持器のポケット内で落下したころは保持器外径部と接触し、ころ自身が起き上がるように姿勢を変えた状態で元の正規の姿勢に戻そうとすると、図9に示すように外輪軌道面角部にころが引っ掛かり、無理に戻そうとすると保持器の破損、外輪の割損を引き起こす場合がある。
【0032】
この問題点を解決するためには、ころと保持器外径部との間のすきま(Sr)を小さくしてころの動きを抑えることが対策となる。すきま(Sr)を小さくするには保持器のポケットすきま(pcr)を極力小さくすることが考えられるが、ポケットすきま(pcr)を小さくすることはころの組み込み性および回転性能を低下させることにつながり得策ではない。
【0033】
そこで、保持器のポケット中心をころ中心より小径側にオフセットさせることにより、ころの自由度を抑え、調心した状態から元の状態に戻す時の不具合が解消する。すなわち、保持器のポケットすきま(pcr)には従来の値を採用し、ころ中心線に対して保持器中心線を小径側にオフセットさせることによって、ころの動きを従来の保持器におけるよりも減少させることができる。図10に示すように、オフセット量(Sg)は、ころ中心線と保持器ポケット中心線を同一とした従来構造(図8)におけるポケット内でのころの動き量(Sr)を基準として次式により規定する。
0<Sg?0.9Sr
この結果、図10に示すように、オフセットした保持器ポケットところとの関係は、ころの動き量(Sr′)が従来構造(図8)におけるころの動き量(Sr)に比べて減少することになり、問題となっていた内輪・ころ・保持器の一体品を外輪に戻すときの引っ掛かりを防ぐことができる(図11参照)。
【0034】
【発明の効果】
本発明によれば、保持器背面を凸曲面としたことによって、一対の保持器が線接触(保持器の軸線を含む平面で見ると点接触)することとなるため、従来のように面接触する場合に比べて保持器同士の金属接触による摩耗が軽減する。また、背面接触部への潤滑剤、特にグリースの巻き込み性がよくなるため、油膜切れを起こしにくくなる。
【図面の簡単な説明】
【図1】(A)は本発明の実施の形態を示す自動調心ころ軸受の断面図、
(B)は図1(A)における保持器の拡大断面図である。
【図2】(A)は第二の実施の形態を示す自動調心ころ軸受の断面図、
(B)は図2(A)における保持器の拡大断面図である。
【図3】(A)は第三の実施の形態を示す自動調心ころ軸受の断面図、
(B)は図3(A)における保持器の拡大断面図である。
【図4】従来の技術を示す自動調心ころ軸受の断面図である。
【図5】非対称凸面ころを用いた自動調心ころ軸受の断面図である。
【図6】対称凸面ころを用いた自動調心ころ軸受の断面図である。
【図7】調心状態を示す自動調心ころ軸受の断面図である。
【図8】(A)はころと保持器の関係を示す断面図、
(B)は図8(A)におけるB−B線断面図である。
【図9】調心後の戻し状態を示す自動調心ころ軸受の断面図である。
【図10】(A)はころと保持器の関係を示す断面図、
(B)は図10(A)におけるB−B線断面図である。
【図11】調心後の戻し状態を示す自動調心ころ軸受の断面図である。
【符号の説明】
2a,2b,2c 内輪
22 中つば
24 つば
26a,26b,26c 軌道
4a,4b,4c 外輪
42a,42b,42c 球面軌道
6a,6b,6c 凸面ころ
8a,8b,8c 保持器
82a,82b,82c 環状体
84a,84b,84c 柱
86a,86b,86c 凸曲面
88a,88b,88c ポケット
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-aligning roller bearing, and more particularly to an improved cage. Here, the self-aligning roller bearing is a self-aligning bearing using a convex roller as a rolling element, and usually has a spherical orbital outer ring, and is a bearing incorporating two rows of convex rollers. The self-aligning bearing refers to a bearing that can adapt to angular misalignment and angular movement between the center axes of the two orbits because one of the orbits is spherical.
[0002]
[Prior art]
A self-aligning roller bearing is a self-aligning bearing using a convex roller as a rolling element. The term “convex roller” refers to a roller whose outer diameter surface has a convex curvature on a plane including the center axis of the roller, and is also referred to as a spherical roller.
[0003]
Spherical roller bearings have a type in which an asymmetrical convex roller (a convex roller whose outer diameter surface is asymmetric with respect to a plane that passes through the center of the roller and is perpendicular to the roller's central axis) is incorporated into the inner ring with a center flange. There is a type in which a symmetrical roller (a convex roller whose outer diameter surface is symmetrical with respect to a plane passing through the center of the roller and perpendicular to the center axis of the roller) is incorporated in the inner ring without a middle brim.
[0004]
FIG. 4 shows a self-aligning roller bearing of a punched-cage specification in which the asymmetric convex roller 6 is incorporated in the inner ring 2 having a middle brim. The punched cage is a cage made by press working, and is also called a press cage. The self-aligning roller bearing includes an inner ring 2, an outer ring 4, a plurality of rows of convex rollers 6 incorporated between the inner and outer rings, and a retainer for holding the rows of convex rollers 6 at equal intervals in a circumferential direction. 8. The inner ring has a middle collar 22, a collar 24, and a track 26, and the outer ring 4 has a spherical track 42.
[0005]
As shown, the back surfaces of the pair of cages 8 are in surface contact with each other. Positioning in the direction of the rotation axis of the rollers is performed by contacting the back surfaces of the cages in the mating rows. When the thrust load is large, there is a difference between the roller revolution speeds of the two rows, and a relative slip occurs at the back contact portion. The same applies when a large moment load is applied.
[0006]
[Patent Document 1]
JP-A-8-128450 (paragraph number 0009, FIGS. 1 and 3)
[0007]
[Problems to be solved by the invention]
As described above, in the cage for the self-aligning roller bearing, since a pair of cages are in surface contact with each other, there is a concern about wear of the cage rear surface. In addition, since the back surface of the cage is a plane perpendicular to the axis of the cage, the back surfaces of the pair of cages come into surface contact with each other, and in particular, when lubrication conditions are poor, wear due to metal contact is a concern. .
[0008]
When the rear contact portion causes relative slip due to surface contact, the rear surface of the retainer is worn and the wear powder is mixed therein, thereby promoting deterioration of the lubricant. Deterioration of the lubricating oil leads to an increase in the temperature of the bearing. In addition, the bite of the abrasion powder may cause the surface of the raceway surface of the bearing ring and the rolling surface of the roller to become rough, and eventually may cause cracking or peeling.
[0009]
An object of the present invention is to prevent or reduce wear of a two-piece cage for a spherical roller bearing.
[0010]
[Means for Solving the Problems]
The punched cage for a self-aligning roller bearing of the present invention is a pair of cages each having a pocket for accommodating a convex roller, wherein each cage protrudes from the annular body in the direction of the roller rotation axis. A plurality of pillars, and the side surface of the annular body opposite to the side from which the pillars protrude is a convex curved surface. The present invention is applicable to both the comb cage and the cage cage.
[0011]
By making the back surface of the cage a convex curved surface, the pair of cages makes line contact (point contact when viewed in a plane including the axis of the cage). Therefore, abrasion due to metal contact between the cages can be reduced. Further, the lubricity of the lubricant, particularly grease, into the back contact portion is improved, so that the oil film is less likely to break. When the contact portion has a straight surface contact as in the related art, it is not expected that grease will be involved. However, according to the present invention, wear due to metal contact can be reduced even when lubrication conditions are poor.
[0012]
The pillar is located outside the rotation axis when viewed in the radial direction of the cage, and the annular body has an inward flange shape (Claim 2), or the pillar is rotated when viewed in the radial direction of the cage. Any of those which are located inside the shaft and whose annular body has an outward flange shape (claim 3) is possible. In the latter case, an inward flange-shaped guide portion can be provided at the tip of the pillar (claim 4).
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
In the embodiment shown in FIG. 1, the self-aligning roller bearing includes an inner ring 2a, an outer ring 4a, a plurality of rows of convex rollers 6a incorporated between the inner and outer rings, and a plurality of rows of convex rollers 6a arranged in a circumferential direction. And a retainer 8a for holding at equal intervals.
[0015]
The inner ring 2a has a double row of orbits 26a on its outer surface, and is usually the one fitted to the shaft by an interference fit and rotating with the shaft. The inner ring 2a has a collar 24a at both ends and a middle collar 22a. The collar 24a is a narrow portion protruding from the surface of the raceway and parallel to the rolling direction, and is intended to hold and guide the rollers in the bearing and to receive an axial load. Middle collar 22a is so named because it protrudes from the center of the double row orbit.
[0016]
The outer race 4a is a race that has a raceway on the inner surface, and is usually mounted in the housing hole with an intermediate fit or a loose fit, and is the one that does not rotate. The trajectory of the outer ring 4a is a trajectory having a partial shape of the surface of a sphere, that is, a spherical trajectory, so that the centering action can be performed inside the bearing.
[0017]
The convex roller 6a is an asymmetrical roller, and generates an induced thrust load in the direction of the roller rotation axis similarly to the tapered roller in the tapered roller bearing, and receives the thrust load by the inner collar 22a formed integrally with the inner ring 2a. .
[0018]
The cages 8a are used in pairs. Each cage 8a is a comb-shaped cage. As shown in FIG. 1B, each of the retainers 8a includes an annular body 82a and a plurality of pillars 84a projecting from the annular body 82a in the direction of the rotation axis of the roller. The opposite side to the side from which the pillar 84a projects. Is formed as a convex curved surface 86a. Here, the convex curved surface 86a has a single arc as a generatrix.
[0019]
As shown in FIG. 1 (A), the pair of retainers 8a are back-to-back and assembled into a bearing. In this sense, the surfaces of the pair of cages that are in contact with each other may be referred to as back surfaces in this specification.
[0020]
The column 84a of the retainer 8a protrudes in a cantilever manner from the outer diameter side of the annular body 82a, and is located outside the rotation axis when viewed in the radial direction of the retainer. Openings or cavities or pockets 88a for receiving the convex rollers 6a are formed between the adjacent columns 84a. In other words, the column 84a separates the adjacent pocket 88a.
[0021]
The embodiment shown in FIG. 2 is a case where the symmetric convex roller 6b is incorporated in the inner ring 2b without the middle brim, and the self-aligning roller bearing includes the inner ring 2b, the outer ring 4b, the track 26b of the inner ring 2b, and the outer ring 4b. It is composed of a double row of convex rollers 6b assembled between the spherical rollers 42b, and a cage 8b for holding the convex rollers 6b of each row at equal intervals in the circumferential direction. Since the symmetric convex roller is a convex roller whose outer diameter surface is symmetrical with respect to a plane passing through the center of the roller and perpendicular to the center axis of the roller, induced thrust does not occur. The retainer 8b is a cage type, that is, an integrated retainer having pockets surrounding the rollers, and is a punched retainer made of a steel plate in which a plurality of retainer pockets 88b are arranged in a circumferential direction. The retainer 8b can move in the roller rotation axis direction by an amount corresponding to the pocket clearance in the roller rotation axis direction. Therefore, in order to restrict the movement, the pair of retainers 8b come into contact with each other on the back surfaces.
[0022]
The annular body 82b of the retainer 8b is shaped like an inward flange, that is, radially inward. Again, as shown, the back surface of each cage 8b is rounded to form a convex curved surface 86b. The column 84b of the retainer 8b that separates the adjacent pocket 88b protrudes from the outer diameter side of the annular body 82b in the direction of the rotation axis of the roller. The column 84b is located closer to the retainer inner diameter than the roller rotation shaft. In addition, in this type, in order to prevent the convex roller 6b from falling off from the retainer 8b, the retainer 8b and the convex roller are provided with concave and convex engaging portions.
[0023]
The embodiment shown in FIG. 3 is also a case where the symmetric convex roller 6c is incorporated in the inner ring 2c without the middle brim, and the self-aligning roller bearing includes the inner ring 2c, the outer ring 4c, the track 26c of the inner ring 2c, and the outer ring 4c. It is composed of a double row of convex rollers 6c incorporated between the spherical orbits 42c and a cage 8c for holding the convex rollers 6c of each row at equal intervals in the circumferential direction. The retainer 8c is cage-shaped as in FIG. 2, but the annular body 82c is outwardly flanged, that is, radially outward. Therefore, the length (axial dimension) of the convex roller 6c can be increased, and the bearing load capacity increases. In addition, since the space between the annular body and the inner ring outer diameter surface and between the convex rollers 6c increases, this space can be used as a grease reservoir. Again, as shown in the figure, the back surface of each cage 8c is rounded to form a convex curved surface 86c.
[0024]
The column 84c of the retainer 8c separating the adjacent pocket 88c protrudes from the inner diameter side of the annular body 82c in the direction of the rotation axis of the roller. The pillar 84c is located inside the rotation axis when viewed in the radial direction of the cage. The ends of the columns 84c are connected by a second annular body, and the second annular body forms an inward flange-like guide portion 89c. The outer diameter surface of the inner ring 2c serves as a cage guide surface for guiding the cage 8c in the radial direction. In order to guide the rotation of the retainer 8c and prevent the retainer 8c from whirling, an appropriate clearance is provided between the inner diameter surface of the guide portion 89c of the retainer 8c in contact with the inner ring 2c and the contact surface of the inner ring 2c. ing.
[0025]
In each of the above embodiments, the cross-sectional shape of the convex curved surfaces 86a, 86b, 86c of the retainer is not limited to a single circular arc, but may be (a part of) an elliptical shape or another gentle curve.
[0026]
Next, the relationship between the rollers and the pockets of the cage in the self-aligning roller bearing will be described.
[0027]
5 and 6 show the specifications of a standard spherical roller bearing. FIG. 5 shows the specification of a two-piece machined cage with an asymmetrical convex roller incorporated in the inner ring with a middle brim, and FIG. 6 shows the specification of an integrated machined cage with a guide ring using a symmetrical convex roller. An extruded cage is a cage made by shaving.
[0028]
In the self-aligning roller bearing, since the raceway surface of the outer ring is processed into a spherical surface, as shown in FIG. 7, the inner ring, the rollers, and the retainer can perform the aligning motion integrally. When mounting the bearing, it is a bearing that can reliably spread the grease over the rolling surface by filling the initial grease with the state shown in FIG. 7.
[0029]
FIG. 8 shows the relationship between the rollers and the cage. The pocket of the cage is formed with a certain clearance with respect to the maximum roller diameter, that is, a pocket clearance (pcr). Usually, the pocket hole diameter (Dwo) and the maximum diameter (Dw) have the following relationship.
[0030]
pcr = (0.001 to 0.050) × Dw
Dwo = Dw + pcr
Since the roller center line and the cage pocket center line are set to be the same, as can be understood from FIG. 8B, the amount by which the roller can move in the radial direction in the pocket of the cage (denoted by the symbol Sr). Is determined by the pocket clearance and the cage outer diameter, and the roller is free to move until it interferes with the cage outer diameter.
[0031]
In order to return to the normal posture from the aligned state shown in FIG. 9, it is necessary to return the sub-assembly of the inner ring, roller and cage on the outer ring raceway surface. Has a clearance corresponding to the pocket clearance (pcr), so that when it becomes free, it falls freely until it interferes with the outer diameter of the cage. The amount of free fall corresponds to a clearance between the roller and the outer diameter of the retainer, which is represented by reference symbol Sr in FIG. When the roller falls in the cage pocket and comes into contact with the outer diameter portion of the cage, and when the roller changes its posture so as to rise up and returns to the original normal posture, as shown in FIG. If the rollers get caught on the corners of the plane and try to forcibly return, the cage may be damaged and the outer ring may be broken.
[0032]
In order to solve this problem, a countermeasure is to reduce the clearance (Sr) between the rollers and the outer diameter portion of the cage to suppress the movement of the rollers. In order to reduce the clearance (Sr), it is conceivable to reduce the pocket clearance (pcr) of the cage as much as possible. However, reducing the pocket clearance (pcr) leads to a decrease in the incorporation of the rollers and the rotation performance. Not a good idea.
[0033]
Therefore, by offsetting the center of the pocket of the retainer to the smaller diameter side from the center of the roller, the degree of freedom of the roller is suppressed, and the problem of returning from the aligned state to the original state is eliminated. That is, the conventional value is adopted for the pocket clearance (pcr) of the cage, and the roller movement is reduced as compared with the conventional cage by offsetting the cage center line to the small diameter side with respect to the roller center line. Can be done. As shown in FIG. 10, the offset amount (Sg) is calculated based on the roller movement amount (Sr) in the pocket in the conventional structure (FIG. 8) in which the roller center line and the cage pocket center line are the same. Stipulated by
0 <Sg? 0.9Sr
As a result, as shown in FIG. 10, the relationship with the offset cage pocket is that the roller movement amount (Sr ') is smaller than the roller movement amount (Sr) in the conventional structure (FIG. 8). Thus, it is possible to prevent the problem that the integrated product of the inner ring, the roller, and the retainer is caught when returning the integrated product to the outer ring (see FIG. 11).
[0034]
【The invention's effect】
According to the present invention, since the back surface of the cage has a convex curved surface, the pair of cages makes line contact (point contact when viewed in a plane including the axis of the cage). The wear due to metal contact between the cages is reduced as compared with the case of performing the above. Further, the lubricity of the lubricant, particularly grease, into the back contact portion is improved, so that the oil film is less likely to break.
[Brief description of the drawings]
FIG. 1A is a sectional view of a spherical roller bearing showing an embodiment of the present invention,
(B) is an enlarged sectional view of the retainer in FIG. 1 (A).
FIG. 2A is a sectional view of a self-aligning roller bearing according to a second embodiment,
FIG. 2B is an enlarged cross-sectional view of the retainer in FIG.
FIG. 3A is a sectional view of a self-aligning roller bearing according to a third embodiment,
FIG. 3B is an enlarged cross-sectional view of the retainer in FIG.
FIG. 4 is a sectional view of a self-aligning roller bearing showing a conventional technique.
FIG. 5 is a cross-sectional view of a self-aligning roller bearing using asymmetric convex rollers.
FIG. 6 is a sectional view of a self-aligning roller bearing using symmetric convex rollers.
FIG. 7 is a cross-sectional view of the self-aligning roller bearing showing an aligned state.
FIG. 8A is a sectional view showing a relationship between a roller and a cage,
FIG. 9B is a sectional view taken along line BB in FIG.
FIG. 9 is a cross-sectional view of the self-aligning roller bearing showing a return state after the alignment.
FIG. 10A is a sectional view showing a relationship between a roller and a cage,
FIG. 11B is a sectional view taken along line BB in FIG.
FIG. 11 is a cross-sectional view of the self-aligning roller bearing showing a return state after the alignment.
[Explanation of symbols]
2a, 2b, 2c Inner ring 22 Middle collar 24 Collars 26a, 26b, 26c Tracks 4a, 4b, 4c Outer rings 42a, 42b, 42c Spherical tracks 6a, 6b, 6c Convex rollers 8a, 8b, 8c Retainers 82a, 82b, 82c Ring Body 84a, 84b, 84c Column 86a, 86b, 86c Convex curved surface 88a, 88b, 88c Pocket

Claims (4)

凸面ころを収容するためのポケットを有する一対の保持器であって、各保持器が、環状体と、環状体からころ自転軸方向に突き出た複数の柱とからなり、前記柱が突き出た側とは反対側の環状体の側面を凸曲面としたことを特徴とする自動調心ころ軸受用保持器。A pair of cages each having a pocket for accommodating a convex roller, wherein each cage includes an annular body, and a plurality of pillars protruding from the annular body in a direction of a roller rotation axis, and a side on which the pillar projects. A retainer for a self-aligning roller bearing, characterized in that a side surface of an annular body on the opposite side is a convex curved surface. 前記柱が、保持器の半径方向で見てころ自転軸よりも外側に位置し、前記環状体が内向きフランジ状であることを特徴とする請求項1に記載の自動調心ころ軸受用保持器。The retainer for a self-aligning roller bearing according to claim 1, wherein the column is located outside the rotation axis when viewed in a radial direction of the cage, and the annular body is in an inward flange shape. vessel. 前記柱が、保持器の半径方向で見てころ自転軸よりも内側に位置し、前記環状体が外向きフランジ状であることを特徴とする請求項1に記載の自動調心ころ軸受用保持器。The retainer for a self-aligning roller bearing according to claim 1, wherein the pillar is located inside the rotation axis when viewed in a radial direction of the cage, and the annular body has an outward flange shape. vessel. 前記柱の先端に内向きフランジ状の案内部を設けたことを特徴とする請求項3に記載の自動調心ころ軸受用保持器。The retainer for a self-aligning roller bearing according to claim 3, wherein an inward flange-shaped guide portion is provided at a tip of the column.
JP2002265686A 2002-09-11 2002-09-11 Retainer for self-aligning roller bearing Withdrawn JP2004100866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265686A JP2004100866A (en) 2002-09-11 2002-09-11 Retainer for self-aligning roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265686A JP2004100866A (en) 2002-09-11 2002-09-11 Retainer for self-aligning roller bearing

Publications (1)

Publication Number Publication Date
JP2004100866A true JP2004100866A (en) 2004-04-02

Family

ID=32264757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265686A Withdrawn JP2004100866A (en) 2002-09-11 2002-09-11 Retainer for self-aligning roller bearing

Country Status (1)

Country Link
JP (1) JP2004100866A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024115A (en) * 2005-07-13 2007-02-01 Ntn Corp Self-aligning roller bearing
JP2007100942A (en) * 2005-10-07 2007-04-19 Ntn Corp Super thin wall type rolling bearing and its cage
US20160298687A1 (en) * 2015-04-09 2016-10-13 Aktiebolaget Skf Bearing and bearing arrangement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024115A (en) * 2005-07-13 2007-02-01 Ntn Corp Self-aligning roller bearing
JP2007100942A (en) * 2005-10-07 2007-04-19 Ntn Corp Super thin wall type rolling bearing and its cage
JP4579123B2 (en) * 2005-10-07 2010-11-10 Ntn株式会社 Ultra thin rolling bearing and cage for the same
US20160298687A1 (en) * 2015-04-09 2016-10-13 Aktiebolaget Skf Bearing and bearing arrangement
US9863471B2 (en) * 2015-04-09 2018-01-09 Aktiebolaget Skf Bearing and bearing arrangement

Similar Documents

Publication Publication Date Title
JP3039087B2 (en) Spherical roller bearing with cage
JP2004162879A (en) Resin cage for rolling bearing
JP2007120687A (en) Self-aligning roller bearing with retainer
CN107435685A (en) Ball bearing
US11181149B2 (en) Rolling bearing
US7364365B2 (en) Conrad bearing cage
JP2010101369A (en) Rolling bearing
JP2008057762A (en) Ball bearing
KR20040083065A (en) Rolling bearing
JP2008267400A (en) Ball bearing
JP2004100866A (en) Retainer for self-aligning roller bearing
JP2009275722A (en) Rolling bearing
JP2000320558A (en) Synthetic resin made retainer for roller bearing
JP4147500B2 (en) Roller bearing cage
JP4025949B2 (en) Roller bearing
JP2008038978A (en) Antifriction bearing
JP2000055055A5 (en)
JP2007327518A (en) Cylindrical roller bearing and its cage
JP2007263316A (en) Highly efficient lubricating structure of rolling bearing
JP2010025191A (en) Self-aligning roller bearing
JP3928922B2 (en) Ball bearing
JP2020128757A (en) Solid lubrication rolling bearing
JP4311977B2 (en) Thrust ball bearing
JP2007085542A (en) Self-alignment roller bearing with holder and manufacturing method of holder for self-alignment roller bearing
JP2007303598A (en) Two piece roller bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110