JP2004100366A - Shock damping device in starting/stopping rolling vehicle - Google Patents

Shock damping device in starting/stopping rolling vehicle Download PDF

Info

Publication number
JP2004100366A
JP2004100366A JP2002266604A JP2002266604A JP2004100366A JP 2004100366 A JP2004100366 A JP 2004100366A JP 2002266604 A JP2002266604 A JP 2002266604A JP 2002266604 A JP2002266604 A JP 2002266604A JP 2004100366 A JP2004100366 A JP 2004100366A
Authority
JP
Japan
Prior art keywords
vehicle
hydraulic
stopping
circuit
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002266604A
Other languages
Japanese (ja)
Inventor
Katsuomi Matsunami
松波 克臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howa Machinery Ltd
Original Assignee
Howa Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howa Machinery Ltd filed Critical Howa Machinery Ltd
Priority to JP2002266604A priority Critical patent/JP2004100366A/en
Publication of JP2004100366A publication Critical patent/JP2004100366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Machines (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shock damping device which damps a shock imposed at the time of starting/stopping a rolling vehicle. <P>SOLUTION: When the rolling vehicle is started, pressure oil is supplied from a hydraulic pump 3 via a supply-side main circuit 5 to hydraulic motors 7, 12, 13 in a stopping state. In this state, however, a little of the pressure oil is led from the main circuit 5 to a restriction 27 by which flow of the pressure oil is squeezed, and directly returned to a low-pressure main circuit 10. Therefore the hydraulic motors 7, 12, 13 are smoothly rotated from their stopping state, so that a roller 6 and rolling wheels 18, 19 driven by the respective hydraulic motors 7, 12, 13 smoothly start rolling from their stopping state. Therefore the rolling vehicle 2 starts in a shockless manner, and smoothly starts laying and leveling of a soft asphalt surface. At the time of stopping, a little of the pressure oil flows between the restriction 27 and each of the hydraulic motors 7, 12, 13, so that the hydraulic motors 7, 12, 13 are not suddenly stopped, which leads to ease of a shock at the time of stopping the vehicle. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、路面を転圧する転圧車両に関し、特に、HST式変速装置により駆動される油圧モータで転圧輪を駆動するものに係るものである。
【0002】
【従来の技術】
特許文献1記載には、可変容量型油圧ポンプと油圧モータとを供給側と戻し側となる2つの主回路(油路)により直列に接続してHST式変速装置を構成し、前記油圧モータによって転圧輪を駆動して路面を転圧する転圧車両が記載されている。また、特許文献1では、供給側油路と戻し側油路とをバイパス回路でつなぎ、そのバイパス回路には、開閉弁を介在している点も開示されている。
転圧車両に限定したものではないが、HST式の変速装置を有する走行車両において、停止時の衝撃を緩和するようにしたものが特許文献2に記載されている。これによれば、車両を停止させようとするとき、HSTペダルから足を離すとHST式変速装置内の、供給側油路と戻り側油路とがバイパス回路を介して一定時間連通され、圧油がそのバイパス回路を通って流れることにより油圧モーターを急速停止させないようにして停止時のショックを緩和するようにしている。
さらに本願と類似する構造を開示しているものとしては、特許文献3のものがある。特許文献3では、油圧ポンプと油圧モータとを供給側回路と戻り側回路とを介して直列に接続してあるHST変速装置において、供給側回路と戻り側回路とをバイパス回路でつなぎ、そのバイパス回路の中間をチャージポンプからの圧油供給が行なわれるようにチャージポンプに配管接続し、その接続位置の両側に、夫々絞りを配置している。
なお、バイパス回路を持つものは特許文献4にも記載されている。
【0003】
【特許文献1】特開平10−131908号公報
【特許文献2】特公平7−117154号公報
【特許文献3】特開2000−025472号公報
【特許文献4】特開昭63−38030号公報
【0004】
【発明が解決しようとする課題】
アスファルト舗装を行なう時、路面に敷かれた柔らかなアスファルト面を転圧車両で転圧して敷き均す作業が行なわれる。この場合、転圧車両はごく遅い速度で転圧作業を行なうが、例えば一般的な転圧車両のHST式変速装置を有する特許文献1記載の転圧車両では、その発進時にHST変速装置においては、停止している油圧モータに急に圧油が供給されるため、ごく低速域ではあるが発進が滑らかでなく僅かにショックが発生していた。また、停止時にも、HST式変速装置内の圧油の流れが急速に停止して急激に油圧モータへの供給流体が停止されるので、やはり車両の停止が滑らかでなく、僅かなショックが発生していた。発進、停止時に発生するこのようなショックにより転圧輪がアスファルト面に”皺”を発生させるので、従来より改善の声が大きかった。
特許文献2記載の技術では、停止時の急停止を防止しているのみであり、仮にこの技術を転圧車両に適用しても、発進時のショックを緩和するには至らない。特許文献3記載のものでは、供給側油路と戻し側油路とが連通するバイパス回路に絞りが介在されているが、この絞りの作用、効果が特許文献3では説明されておらず、この絞りがどの程度の流量の通過を許容しているのかは明確でない上に、本願のような、発進、停止時におけるショックを緩和するような機能を果たしているかどうかもはっきりしない。
本願は、HST式変速装置を有する路面の転圧車両において、発進、停止を極めて円滑としてショックを少なくし得て、アスファルトに対する皺の発生を極力押えるようにすることを目的とする。
【0005】
【課題を解決するための手段】
上記課題解決のため、本願出願人が見出した最良の構成としては、可変容量型油圧ポンプと油圧モータとを供給側と戻し側となる2つの主回路により直列に接続して油圧閉回路としたHST式変速装置を構成し、前記油圧モータによって転圧輪を駆動して路面を転圧する転圧車両において、前記2つの主回路をバイパス回路で接続し、そのバイパス回路には、車両発進時、停止時に油圧モータが急激に回転変動することを防止する圧油通過断面積としたオリフィスを介在して成ることを特徴とする。上記圧油通過断面積は、本願出願人が種々実験したところによれば、主回路の断面積の1/100以下であると極めて良好な結果が得られた。
【0006】
【発明の実施の形態】
本願発明の実施の形態について図1に基づいて説明する。HST式変速装置1は以下のように構成されている。転圧車両(ロードローラ)2の走行用の油圧ポンプは、エンジンの駆動力により両方向流れが可能な可変容量型油圧ポンプ(例えばアキシャル型斜板式の油圧ポンプ)3である。油圧ポンプ3の一方の圧油給排口4には主回路5の一端が接続され、主回路5は前側の鋼製の転圧輪であるローラ6を駆動する前輪側の油圧モータ7の一方の給排ポート8に接続されている。油圧ポンプ3の他方の圧油給排口9は、別の主回路10を介して油圧モータ7の他方の給排ポート11に接続されて、油圧ポンプ3と前輪側の油圧モータ7とが直列接続されている。
【0007】
一方、後輪用の油圧モータ12,13の夫々一方の給排ポート14,15には前記主回路5から分岐した分岐主回路5aが接続され、他方の給排ポート16,17には前記他の主回路10に接続される別の分岐主回路10aが接続され、油圧モータ12,13は油圧回路内で互いに並列関係にあるが、各油圧モータ12,13は、前記油圧ポンプ3とは直列接続されている。後側の左右転圧輪18,19は、対応する油圧モータ12,13により回転駆動される。
【0008】
主回路5,10用のチャージ回路20は、チャージリリーフ弁21とメインリリーフ弁22とチェック弁23に接続されている。チャージ回路20にはチャージ油を供給するチャージポンプ24の出力ポート25が接続されており、主回路5,10が低圧となると、主回路5,10にチャージ油を補充可能となっている。
【0009】
主回路5,10は、バイパス回路26で連通されている。バイパス回路26は、単に左右の主回路5,10を連通するのみであり、その回路内には主回路5,10以外から圧油が導入されることはない。バイパス回路26にはオリフィス27が介在してあり、主回路5と主回路10との間でバイパスされる圧油の通過量を制限している。このオリフィス27の流体通過断面積は、車両発進時、停止時に油圧モータ7,12,13が急激に回転変動することを防止する圧油通過断面積に設定されるが、出願人が種々実験したところによれば、主回路5,10、バイパス回路26の配管内径を12.7mmとした場合、オリフィス27の内径を1mm以下から徐々に大きくしていった結果、主回路5,10の断面積(この場合、127mm2 )に対してオリフィス27の内径が1mm以下では、ショック緩和があまり見られず、また、オリフィス27に圧油内に含まれる細かなゴミが詰まる不具合があり、適当でなかった。オリフィス27の内径を1mmとした時点(主回路に対する断面積比は約0.6/100)でショックの減少が顕著となり、また、オリフィス27のゴミ詰まりも殆ど無くなった。それ以後、オリフィスを通過する圧油通過断面積の、主回路5,10の圧油通過断面積に対する断面積比が1/100程度(オリフィス内径=1.27mm)となるまでは、ほぼ同様のショック緩和現象が観察され、それ以上にオリフィス27の圧油通過断面積を大きくしていくと、ショックはなくなるが、圧油が主回路5,10の間でバイパスされすぎ、油圧モータ7,12,13へ流れ込む圧油量が減少して走行に支障をきたす(発進しないなど)不具合が発生してきた。このことから、バイパス回路26のオリフィス27の流体通過断面積を、主回路5,10のそれに対する断面積比で約0.6/100〜1/100に設定すると、発進、停止時のショックを軽減でき、しかも、転圧車両の走行にも殆ど支障をきたすことがないことが判明した。
【0010】
上記構成では、前進時には、図示しない前後進レバーを中立位置から前進方向へ倒して油圧ポンプ3の斜板角度を変更し、油圧ポンプ3から供給側となる主回路5を経て停止状態にある前後の油圧モータ7,12,13に圧油を供給する。このとき、従来であれば、ポンプ3から吐出される圧油は全て油圧モータ7,12,13に流れ込むので、モータ7,12,13が停止状態から急激に回転し始め、発進時のショックが発生するが、本願では、圧油のごく一部が供給側油路としての主回路5から、矢印Aのように流れて前記オリフィス27で絞られて低圧の戻し側の主回路10に直接戻されるため、油圧モータ7,12,13が停止状態から円滑に回転でき、その結果、その油圧モータ7,12,13で駆動されるローラ6、転圧輪18,19も停止状態から円滑に転動開始する。従って、ショックレスで転圧車両2が発進でき、柔らかなアスファルト面を滑らかに敷き均しはじめることができる。
【0011】
また停止時には、油圧ポンプ3からの圧油吐出は停止されるのでバイパス回路26がないと油圧モータ7,12,13は急激に停止してショックを発生するが、本願構成では、油圧ポンプ3からの圧油の流れが断たれた状態でも、圧油のごく一部が油圧モータ7,12,13の排出側となっているポート11,16,17から出た油が、矢印Bのように前記オリフィス27を介在したバイパス回路26を経て、流入側のポート8,14,15へ戻るというように循環するため、油圧モータ7,12、13を急速に停止することがなく、車両停止時のショックが緩和される。車両2の後進時では、圧油の流れが前記前進時と逆となるだけである。なお、本願ではオリフィス27を介してバイパス回路26が主回路5,10を連通しているので、坂道に停車している状態では停止状態でも油が流れて油圧モータ7,12,13が回転して車両が動くが、オリフィス27の断面積を本願のように設定した場合にはその車両の移動速度は極めて小さく、危険はない。
【0012】
【発明の効果】
以上のように本願では、発進時においては、油圧ポンプから供給される圧油のごく一部がオリフィスを介してバイパス回路を経て直接戻し回路に戻されるため、発進時に急激に油圧モータに圧油が供給されることが緩和されて円滑に発進できる。また、停止時においてもHST式変速装置の油圧回路内においてはバイパス回路を経て圧油が僅かに流れるので、油圧モータを急激に停止させることなく円滑に停止に導くことができる。この結果、従来、転圧車両の発進、停止時に発生していたショックによる転圧面の”皺”の発生を効果的に抑制でき、アスファルト面を均一に敷き均すことができる。
【図面の簡単な説明】
【図1】本願発明を示す油圧回路図である。
【符号の説明】
1 HST式変速装置
2 転圧車両
3 可変容量型油圧ポンプ
6 ローラ(転圧輪)
5.10 主回路
7・12・13 油圧モータ
18・19 転圧輪
26 バイパス回路
27 オリフィス
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compacted vehicle that compacts a road surface, and more particularly to a compacted vehicle that drives a compacted wheel by a hydraulic motor driven by an HST transmission.
[0002]
[Prior art]
Patent Document 1 describes that an HST-type transmission is configured by connecting a variable displacement hydraulic pump and a hydraulic motor in series by two main circuits (oil passages) on a supply side and a return side. There is described a rolling vehicle in which a rolling wheel is driven to compact a road surface. Patent Document 1 also discloses that a supply-side oil passage and a return-side oil passage are connected by a bypass circuit, and an on-off valve is interposed in the bypass circuit.
Although it is not limited to a compacted vehicle, Japanese Patent Application Laid-Open No. H11-163873 discloses a traveling vehicle having an HST-type transmission, in which an impact at the time of stopping is reduced. According to this, when the vehicle is stopped, when the foot is released from the HST pedal, the supply-side oil passage and the return-side oil passage in the HST-type transmission are communicated through the bypass circuit for a certain period of time. The oil is prevented from stopping rapidly by flowing the oil through the bypass circuit to reduce the shock at the time of stopping.
Patent Document 3 discloses a structure similar to that of the present application. In Patent Document 3, in an HST transmission in which a hydraulic pump and a hydraulic motor are connected in series via a supply side circuit and a return side circuit, the supply side circuit and the return side circuit are connected by a bypass circuit, and the bypass is provided. The middle of the circuit is connected to the charge pump by piping so that pressure oil is supplied from the charge pump, and throttles are arranged on both sides of the connection position.
The one having a bypass circuit is also described in Patent Document 4.
[0003]
[Patent Document 1] JP-A-10-131908 [Patent Document 2] JP-B-7-117154 [Patent Document 3] JP-A-2000-025472 [Patent Document 4] JP-A-63-38030 [ 0004
[Problems to be solved by the invention]
When asphalt pavement is performed, a work is performed in which a soft asphalt surface spread on a road surface is rolled and leveled by a rolling vehicle. In this case, the compacted vehicle performs a compacting operation at a very low speed. For example, in a compacted vehicle described in Patent Document 1 having an HST type transmission of a general compacted vehicle, the HST transmission at the time of starting takes place. However, since the hydraulic oil is suddenly supplied to the stopped hydraulic motor, the start is not smooth but a slight shock is generated although the speed is very low. Also, at the time of stopping, the flow of the pressure oil in the HST type transmission is rapidly stopped and the supply of fluid to the hydraulic motor is rapidly stopped, so that the vehicle is not smoothly stopped and a slight shock occurs. Was. The rolling wheel generates "wrinkles" on the asphalt surface due to such a shock generated when the vehicle starts and stops.
The technique described in Patent Literature 2 only prevents a sudden stop at the time of a stop, and even if this technique is applied to a compacted vehicle, the shock at the time of starting cannot be reduced. In the device described in Patent Document 3, a throttle is interposed in a bypass circuit that connects the supply-side oil passage and the return-side oil passage. However, the operation and effect of this throttle are not described in Patent Document 3, and It is not clear how much the restrictor allows the passage of the flow rate, and it is not clear whether the throttle functions as in the present application to reduce the shock at the time of starting and stopping.
It is an object of the present application to provide a road compacted vehicle having an HST type transmission, in which start and stop can be made extremely smooth to reduce shocks and to minimize wrinkles on asphalt.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the best configuration found by the present applicant is to form a hydraulic closed circuit by connecting a variable displacement hydraulic pump and a hydraulic motor in series by two main circuits on the supply side and the return side. In a rolling compact vehicle that constitutes an HST type transmission and drives a rolling wheel by the hydraulic motor to compact a road surface, the two main circuits are connected by a bypass circuit, and the bypass circuit includes: It is characterized in that an orifice having a pressure oil passage sectional area for preventing the hydraulic motor from suddenly fluctuating in rotation when stopped is interposed. According to various experiments conducted by the applicant of the present invention, extremely good results were obtained when the pressure oil passage cross section was 1/100 or less of the cross section of the main circuit.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIG. The HST transmission 1 is configured as follows. The hydraulic pump for traveling of the rolling compact vehicle (road roller) 2 is a variable displacement hydraulic pump (for example, an axial type swash plate type hydraulic pump) 3 that can flow in both directions by the driving force of the engine. One end of a main circuit 5 is connected to one pressure oil supply / discharge port 4 of the hydraulic pump 3, and the main circuit 5 is one of a front-wheel-side hydraulic motor 7 that drives a roller 6, which is a front steel rolling wheel. Are connected to the supply / discharge port 8. The other pressure oil supply / discharge port 9 of the hydraulic pump 3 is connected to the other supply / discharge port 11 of the hydraulic motor 7 via another main circuit 10 so that the hydraulic pump 3 and the front-wheel-side hydraulic motor 7 are connected in series. It is connected.
[0007]
On the other hand, a branch main circuit 5a branched from the main circuit 5 is connected to one of the supply / discharge ports 14, 15 of the rear wheel hydraulic motors 12, 13, and the other supply / discharge port 16, 17 is connected to the other. Another main circuit 10a is connected to the main circuit 10 and the hydraulic motors 12 and 13 are in a parallel relationship with each other in the hydraulic circuit. It is connected. The rear left and right rolling wheels 18 and 19 are driven to rotate by the corresponding hydraulic motors 12 and 13.
[0008]
The charge circuits 20 for the main circuits 5 and 10 are connected to a charge relief valve 21, a main relief valve 22, and a check valve 23. An output port 25 of a charge pump 24 that supplies charge oil is connected to the charge circuit 20. When the pressure of the main circuits 5, 10 becomes low, the charge oil can be supplied to the main circuits 5, 10.
[0009]
The main circuits 5 and 10 are connected by a bypass circuit 26. The bypass circuit 26 merely communicates the left and right main circuits 5 and 10, and no pressure oil is introduced into the circuit other than the main circuits 5 and 10. An orifice 27 is interposed in the bypass circuit 26 to limit the amount of pressure oil that is bypassed between the main circuit 5 and the main circuit 10. The fluid passage cross-sectional area of the orifice 27 is set to a pressure oil passage cross-section which prevents the hydraulic motors 7, 12, and 13 from suddenly fluctuating when the vehicle starts and stops. According to this, when the inner diameter of the piping of the main circuits 5, 10 and the bypass circuit 26 is 12.7 mm, the inner diameter of the orifice 27 is gradually increased from 1 mm or less. When the inner diameter of the orifice 27 is 1 mm or less with respect to (in this case, 127 mm 2 ), the shock is not so much relieved, and the orifice 27 is inadequate because the fine dust contained in the pressurized oil is clogged. Was. When the inner diameter of the orifice 27 was set to 1 mm (the cross-sectional area ratio to the main circuit was about 0.6 / 100), the shock was remarkably reduced, and the orifice 27 was almost completely free of clogging. Thereafter, the same applies until the ratio of the cross-sectional area of the hydraulic oil passing through the orifice to the cross-sectional area of the hydraulic oil of the main circuits 5 and 10 becomes about 1/100 (orifice inner diameter = 1.27 mm). If a shock mitigation phenomenon is observed, and if the pressure oil passage cross-sectional area of the orifice 27 is further increased, the shock disappears, but the pressure oil is excessively bypassed between the main circuits 5 and 10, and the hydraulic motors 7, 12 , 13 has a problem that the amount of pressurized oil flowing into the vehicle decreases and hinders traveling (for example, does not start). From this, if the cross-sectional area of the fluid passing through the orifice 27 of the bypass circuit 26 is set to about 0.6 / 100 to 1/100 in terms of the cross-sectional area ratio to that of the main circuits 5 and 10, the shock at the time of starting and stopping will be reduced. It has been found that the reduction can be achieved, and that the running of the compacted vehicle is hardly hindered.
[0010]
In the above configuration, at the time of forward movement, the forward / backward lever (not shown) is tilted in the forward direction from the neutral position to change the swash plate angle of the hydraulic pump 3, and is stopped before and after the hydraulic pump 3 is stopped via the main circuit 5 on the supply side. The hydraulic oil is supplied to the hydraulic motors 7, 12, and 13 of FIG. At this time, conventionally, all the hydraulic oil discharged from the pump 3 flows into the hydraulic motors 7, 12, and 13, so that the motors 7, 12, and 13 suddenly start to rotate from a stopped state, and a shock at the time of starting starts. However, in the present application, a small part of the pressure oil flows from the main circuit 5 as the supply-side oil passage as shown by the arrow A, is throttled by the orifice 27, and is returned directly to the low-pressure return-side main circuit 10. As a result, the hydraulic motors 7, 12, 13 can smoothly rotate from the stopped state, and as a result, the rollers 6 and the rolling wheels 18, 19 driven by the hydraulic motors 7, 12, 13 also smoothly rotate from the stopped state. Start working. Therefore, the compacted vehicle 2 can be started without shock, and the soft asphalt surface can be smoothly laid.
[0011]
When the hydraulic pump 3 is stopped, the hydraulic oil discharge from the hydraulic pump 3 is stopped, so that the hydraulic motors 7, 12, and 13 suddenly stop and generate a shock without the bypass circuit 26. Even when the flow of the pressurized oil is interrupted, the oil flowing out of the ports 11, 16 and 17, which are the discharge side of the hydraulic motors 7, 12, and 13 with a small part of the pressurized oil, as shown by the arrow B, Since the fluid circulates through the bypass circuit 26 via the orifice 27 and returns to the inflow-side ports 8, 14, 15, the hydraulic motors 7, 12, 13 are not rapidly stopped, and the hydraulic motors 7, 12, 13 are not stopped rapidly. Shock is reduced. When the vehicle 2 is moving backward, the flow of the pressure oil is simply opposite to that when the vehicle 2 is moving forward. In the present application, since the bypass circuit 26 communicates with the main circuits 5 and 10 via the orifice 27, when the vehicle is stopped on a slope, oil flows even in a stopped state, and the hydraulic motors 7, 12, and 13 rotate. When the cross-sectional area of the orifice 27 is set as described in the present application, the moving speed of the vehicle is extremely small and there is no danger.
[0012]
【The invention's effect】
As described above, in the present application, at the time of starting, a very small part of the pressure oil supplied from the hydraulic pump is directly returned to the return circuit through the bypass circuit via the orifice. Supply can be eased and the vehicle can start smoothly. Further, even at the time of stop, the pressure oil slightly flows through the bypass circuit in the hydraulic circuit of the HST type transmission, so that the hydraulic motor can be smoothly stopped without suddenly stopping. As a result, it is possible to effectively suppress the generation of "wrinkles" on the compacted surface due to a shock that has conventionally occurred when the compacted vehicle starts and stops, and it is possible to evenly spread the asphalt surface.
[Brief description of the drawings]
FIG. 1 is a hydraulic circuit diagram showing the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 HST type transmission 2 Rolling vehicle 3 Variable displacement hydraulic pump 6 Roller (rolling wheel)
5.10 Main circuit 7, 12, 13 Hydraulic motor 18, 19 Rolling wheel 26 Bypass circuit 27 Orifice

Claims (2)

可変容量型油圧ポンプと油圧モータとを供給側と戻し側となる2つの主回路により直列に接続して油圧閉回路としたHST式変速装置を構成し、前記油圧モータによって転圧輪を駆動して路面を転圧する転圧車両において、前記2つの主回路をバイパス回路で接続し、そのバイパス回路には、車両発進時、停止時に油圧モータが急激に回転変動することを防止する圧油通過断面積としたオリフィスを介在して成ることを特徴とする転圧車両の発進、停止時のショック防止装置。A variable displacement hydraulic pump and a hydraulic motor are connected in series by two main circuits on the supply side and the return side to constitute an HST type transmission device having a hydraulic closed circuit, and the rolling motor is driven by the hydraulic motor. In a compacted vehicle that compacts a road surface by pressure, the two main circuits are connected by a bypass circuit, and the bypass circuit has a hydraulic oil passage cutoff that prevents the hydraulic motor from suddenly fluctuating when the vehicle starts or stops. A shock prevention device at the time of starting and stopping of a rolling compact vehicle, characterized by comprising an orifice having an area. 前記圧油通過断面積は、主回路の断面積の1/100以下であることを特徴とする請求項1記載の転圧車両の発進、停止時のショック防止装置。2. The shock prevention device according to claim 1, wherein the pressure oil passage cross-sectional area is 1/100 or less of a cross-sectional area of the main circuit.
JP2002266604A 2002-09-12 2002-09-12 Shock damping device in starting/stopping rolling vehicle Pending JP2004100366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266604A JP2004100366A (en) 2002-09-12 2002-09-12 Shock damping device in starting/stopping rolling vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266604A JP2004100366A (en) 2002-09-12 2002-09-12 Shock damping device in starting/stopping rolling vehicle

Publications (1)

Publication Number Publication Date
JP2004100366A true JP2004100366A (en) 2004-04-02

Family

ID=32265374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266604A Pending JP2004100366A (en) 2002-09-12 2002-09-12 Shock damping device in starting/stopping rolling vehicle

Country Status (1)

Country Link
JP (1) JP2004100366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140324A (en) * 2003-11-10 2005-06-02 Sauer Danfoss Inc Dual check-relief valve
JP2006316468A (en) * 2005-05-11 2006-11-24 Sakai Heavy Ind Ltd Compaction vehicle
WO2013058951A1 (en) * 2011-10-21 2013-04-25 Caterpillar Inc. Hydraulic system having flow combining capabilities

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140324A (en) * 2003-11-10 2005-06-02 Sauer Danfoss Inc Dual check-relief valve
JP2006316468A (en) * 2005-05-11 2006-11-24 Sakai Heavy Ind Ltd Compaction vehicle
WO2013058951A1 (en) * 2011-10-21 2013-04-25 Caterpillar Inc. Hydraulic system having flow combining capabilities
US9068578B2 (en) 2011-10-21 2015-06-30 Caterpillar Inc. Hydraulic system having flow combining capabilities

Similar Documents

Publication Publication Date Title
CN106151131B (en) Hydraulic system with regeneration and both-initiated strategy
JP4677455B2 (en) Hydrostatic drive to limit rotational speed
JP5143311B2 (en) Construction machinery
US8468818B2 (en) HST cooling circuit
JP5389461B2 (en) Hydraulic motor
JP2004100366A (en) Shock damping device in starting/stopping rolling vehicle
JPS58131462A (en) Control device for steplessly adjustable transmission device
JP3236940B2 (en) Hydrostatic transmission with brake valve
JP4325851B2 (en) HST travel drive device
JP4333137B2 (en) Wheeled construction machine travel device
JP2002130473A (en) Hydraulic closed circuit
JP2002130474A (en) Hydraulic closed circuit
JP3266348B2 (en) Hydraulic motor drive circuit for work vehicle traveling
JP3571743B2 (en) HST hydraulic motor anti-spin device
JP3736657B2 (en) Hydraulic motor drive system
JPH03224830A (en) Power transmission device for four-wheel drive vehicle
JP3243411B2 (en) Control circuit for traveling hydraulic motor
JP2004332753A (en) Hydraulic traveling driving device
JP2001173025A (en) Work vehicle
JP2004517256A (en) Hydraulic motor device having a displacement selector and a brake system
JP3559985B2 (en) Parking brake release mechanism for traveling hydraulic motor
JP4975980B2 (en) Hydraulic traveling device for work vehicle
JP4870476B2 (en) Hydraulic traveling device for work vehicle
JP4076436B2 (en) Flow rate support circuit to HST circuit
JP2820788B2 (en) Hydraulic drive