JP2004099576A - Combinatorial synthesis for chain connected benzene ring compound - Google Patents

Combinatorial synthesis for chain connected benzene ring compound Download PDF

Info

Publication number
JP2004099576A
JP2004099576A JP2002298019A JP2002298019A JP2004099576A JP 2004099576 A JP2004099576 A JP 2004099576A JP 2002298019 A JP2002298019 A JP 2002298019A JP 2002298019 A JP2002298019 A JP 2002298019A JP 2004099576 A JP2004099576 A JP 2004099576A
Authority
JP
Japan
Prior art keywords
group
solid support
benzamide
reaction
benzene ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002298019A
Other languages
Japanese (ja)
Inventor
Takashi Takahashi
高橋 孝志
Takayuki Doi
土井 隆行
Hitoshi Inoue
井上 仁史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemgenesis Inc
Tokyo Chemical Industries Co Ltd
Original Assignee
Tokyo Kasei Kogyo Co Ltd
Chemgenesis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Kasei Kogyo Co Ltd, Chemgenesis Inc filed Critical Tokyo Kasei Kogyo Co Ltd
Priority to JP2002298019A priority Critical patent/JP2004099576A/en
Publication of JP2004099576A publication Critical patent/JP2004099576A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a chain connected benzene ring compound, particularly to provide a method for synthesizing the core section of a rod-like liquid crystalline molecule required in the fields including liquid crystal display elements. <P>SOLUTION: In order to solve the above-mentioned subject, the technique of the combinatorial synthesis is utilized. Benzene derivatives bearing reactive sites are supported on a solid carrier and a plurality of benzene derivatives are allowed to react simultaneously and mutually to obtain many kinds of chain-connected benzene ring compounds are obtained that can be used as a core site of rod-like liquid crystalline molecule through one time reaction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はベンゼン環連結鎖状化合物の製法に関するものであり,液晶表示素子等の属する分野およびその他の分野において要求されている棒状液晶化合物コア部位の合成に供するものである。
【0002】
【従来の技術】
液晶は電卓やパソコン用ディスプレイ,テレビモニターなどの表示素子の材料として年々需要が伸びている。多くの液晶は液晶性を発現する種々の化合物の混合物であり,その分子形状としては棒状分子,円板状分子,両親媒性分子などがある。その中でも下図の様な棒状化合物が比較的良く用いられている。
【0003】
【化6】

Figure 2004099576
【0004】
上図において,Xはエチレン結合,アセチレン結合,フェニレン結合,アゾ結合などの対称性結合子や,メチレンアミノ結合,カルボキシ結合,アゾキシ結合といった非対称性結合子である。Yはアセチル基,アセトキシ基,ハロゲン,シアノ基,ニトロ基,アミノ基などであり,Y’はアルキル基,アルコキシ基である。六員環ZおよびZ’はそれぞれ独立にベンゼン,シクロヘキサン,ピリミジン,ジオキサンまたは,ビフェニル,ターフェニルなどである。これらを組み合わせることによりさまざまな特徴を持つ液晶性化合物を得ることができる。得られた液晶性化合物はその用途に合わせ,さまざまな割合で混合される。例えば,モバイル機器の省電力化で要求される駆動電圧の低減には,p−エステル系やp−ビフェニル系を混合することが有効とされている。また,車載用のディスプレイに要求される耐熱性の改善には,三環系,四環系の混合が有効とされる。
【0005】
【発明が解決しようとする課題】
このように液晶は要求される性能を改善するため,さまざまな液晶性化合物が混合されている。また,性能の改善を意図し,新たなる液晶性化合物の合成が盛んに行われている。しかしながら,合成された液晶性化合物の中でも有用なものはごく一部であり,迅速な液晶表示素子の開発には数多くの液晶性化合物を短期間で入手し,性能を評価することが不可欠である。一般的に一人の化学者が一年間に合成できる化合物の数は10〜100と言われており,数多くの液晶性化合物を得るには複数の化学者が比較的長い時間をかけて合成しなければならない。迅速に液晶表示素子を開発するため,数多くの液晶性化合物を短期間で入手する方法が強く望まれている。
【0006】
【課題を解決するための手段】
そこで,発明者らは鋭意研究を重ねた結果,本発明を完成するに至った。即ち,本発明はベンゼン環連結鎖状化合物の製法に関するものであり,液晶表示素子等の属する分野およびその他の分野において要求されている棒状液晶化合物コア部位の合成法を提供するものである。
【0007】
本発明におけるベンゼン環連結鎖状化合物の合成法は,下記のように固相に担持させた官能基Rを有するベンズアミドとフェニルハライドを反応させ,Aを介してベンゼン環を連結する工程,前工程で得られた反応生成物にさらにベンゼン誘導体を連結する工程,そして固相担体からベンゼン環連結鎖状化合物を切り出す工程から成る。本発明に係る合成は,コンビナトリアル合成の手法を利用することにより,多種類のベンゼン環連結鎖状化合物を同時に合成することを特徴とするものである。
【0008】
【化7】
Figure 2004099576
【0009】
【化8】
Figure 2004099576
【0010】
【化9】
Figure 2004099576
【0011】
本発明の有用性を示すため,本発明の一例として100種類のベンゼン環連結鎖状化合物の合成法を示す。これは例示であり,本発明を制限するものではない。
【0012】
最初の工程は10種類の官能基を有するベンズアミド担持固相担体と,10種類の官能基を有するフェニルハライドを反応させ,連結させる工程である。ここで使用する固相担体は,ポリスチレン樹脂を始めとするコンビナトリアル合成に用いられる樹脂である。また,樹脂に替え,ランタンやクラウンを用いても良い。使用する固相担体はあらかじめ標識しておき(例えば,1から100まで番号を付す),番号1〜10,11〜20,21〜30,31〜40,41〜50,51〜60,61〜70,71〜80,81〜90,91〜100の10グループに分け,グループごとに10個の反応容器に入れる。10種類の官能基を有するフェニルハライドを用意し,それぞれの反応容器に1種類ずつ加え,反応させる。この反応における溶媒はDMFのごとき有機溶媒が挙げられる。パラジウム触媒はテトラキス(トリフェニルホスフィン)パラジウムやビス(トリフェニルホスフィン)パラジウムジクロリド,ビス(ジベンジリデンアセトン)パラジウムなどが適宜選択される。反応温度は使用する溶媒,固相担体,官能基などによって異なるが,室温から溶媒の還流温度の間で選ばれる。反応時間は溶媒,固相担体,反応温度などにより異なるが,通常1時間から100時間の間で適宜選択される。
【0013】
次の工程は前工程の反応生成物と10種類のベンゼン誘導体を連結させる反応である。前工程で得られた10種類の反応生成物を混合し,固相担体に付された番号に従い再度10のグループに分ける[(X+1),(X+2),(X+3),(X+4),(X+5),(X+6),(X+7),(X+8),(X+9),(X+10),(ただしXは0,10,20,30,40,50,60,70,80,90)]。この固相担体をグループごとに10個の反応容器に入れる。10種類の官能基を有するハロベンゼン誘導体あるいはフェノール誘導体を用意し,それぞれの反応容器に1種類ずつ加え,反応させる。これにより計100種類の組み合わせを持つベンゼン環連結鎖状化合物担持固相担体を得ることができる。この反応における溶媒,反応温度,反応時間は前工程と同様である。最後に固相担体からベンゼン環連結鎖状化合物を切り出すことにより,100種類のベンゼン環連結鎖状化合物が得られる。これは例示であり,フェニルハライドやベンゼン誘導体の種類を増やすことで,さらに多種類のベンゼン環連結鎖状化合物を同時に合成することができる。
【0014】
【実施例】
以下に本発明の代表的な実施例を記載するが,これは例示の目的であり,本発明を制限するものではない。本発明の範囲内では変形が可能なことは当業者には明らかであろう。
【0015】
実施例1ベンズアミド担持固相担体の合成
アミノ基を有するランタンを取り付けたTranStemを72個用意し,あらかじめTranSortを用いて記録した。アルゴン置換した反応容器内に,3−ヒドロキシベンゾイルクロリド(0.2M),1−ヒドロキシベンゾトリアゾール(0.24M),およびジイソプロピルカルボジイミド(0.2M)のDMF溶液(4ml)を準備した。10分後,この溶液に上記のランタン4個を浸し,室温下にて24時間放置した。DMF,メタノール,ジクロロメタンで洗浄し,減圧下乾燥させることにより,3−ヒドロキシベンズアミド担持固相担体を4個得た。同様の操作で基質をさまざまに変えることにより,4−ヒドロキシベンズアミド担持固相担体を4個,3−ビニルベンズアミド担持固相担体を8個,4−ビニルベンズアミド担持固相担体を8個,3−トリブチルスタンニルベンズアミド担持固相担体を16個,4−ドリブチルスタンニルベンズアミド担持固相担体を16個,3−エチニルベンズアミド担持固相担体を8個,そして4−エチニルベンズアミド担持固相担体を8個それぞれ得た。
【0016】
実施例2テトラヒドロピラニルオキシベンゾイルオキシベンズアミド担持固相担体の合成
アルゴン置換したオートクレーブ用の内管に,3−テトラヒドロピラニルオキシフェニルヨージド(0.5M),トリエチルアミン(0.5M),ジメチルアミノピリジン(0.1M)のDMF溶液(4ml)を準備し,その中にテトラキス(トリフェニルホスフィン)パラジウム(0.01M)を加え,最後に実施例1の3−ヒドロキシベンズアミド担持固相担体と4−ヒドロキシベンズアミド担持固相担体を各2個浸した。この内管を素早くオートクレーブ中に封入し,一酸化炭素を15気圧導入した。これを80℃のオイルバス中で48時間加熱放置した。反応後,固相担体を取り出しDMF,THF,ジクロロメタンで洗浄し,減圧下で乾燥させることにより,3−(3−テトラヒドロピラニルオキシ)ベンゾイルオキシベンズアミド担持固相担体,および4−(3−テトラヒドロピラニルオキシ)ベンゾイルオキシベンズアミド担持固相担体を得た。同様の操作で3−テトラヒドロピラニルオキシフェニルヨージドの代わりに4−テトラヒドロピラニルオキシフェニルヨージドを用いることで,3−(4−テトラヒドロピラニルオキシ)ベンゾイルオキシベンズアミド担持固相担体,および4−(4−テトラヒドロピラニルオキシ)ベンゾイルオキシベンズアミド担持固相担体を得た。担持固相担体はTranSortに記録された情報により仕分けされ,次の反応に用いた。
【0017】
実施例3[2−(テトラヒドロピラニルオキシフェニル)ビニル]ベンズアミド担持固相担体の合成
アルゴン置換した反応容器に,3−テトラヒドロピラニルオキシフェニルヨージド(0.2M)とトリエチルアミン(0.2M)のDMF溶液(4ml)を準備し,その中にトリス(o−トリル)ホスフィン(0.02M)とビス(ジベンジリデンアセトン)パラジウム(0.01M)を加え,最後に実施例1の3−ビニルベンズアミド担持固相担体と4−ビニルベンズアミド担持固相担体を各2個浸した。これを80℃のオイルバス中で24時間加熱放置した。反応後,固相担体を取り出しDMF,THF,ジクロロメタンで洗浄し,減圧下で乾燥させることにより,3−[2−(3−テトラヒドロピラニルオキシフェニル)ビニル]ベンズアミド担持固相担体,および4−[2−(3−テトラヒドロピラニルオキシフェニル)ビニル]ベンズアミド担持固相担体を得た。同様の操作で3−テトラヒドロピラニルオキシフェニルヨージドの代わりに4−テトラヒドロピラニルオキシフェニルヨージドを用いることで,3−[2−(4−テトラヒドロピラニルオキシフェニル)ビニル]ベンズアミド担持固相担体,および4−[2−(4−テトラヒドロピラニルオキシフェニル)ビニル]ベンズアミド担持固相担体を得た。固相担体はTranSortに記録された情報により仕分けされ,次の反応に用いた。
【0018】
実施例4[2−(トリフルオロメタンスルホニルオキシフェニル)ビニル]ベンズアミド担持固相担体の合成
アルゴン置換をした反応容器に,3−トリフルオロメタンスルホニルオキシフェニルヨージド(0.2M)とトリエチルアミン(0.2M)のDMF溶液(4ml)を準備し,その中にビス(ジベンジリデンアセトン)パラジウム(0.01M)を加え,最後に実施例1の3−ビニルベンズアミド担持固相担体と4−ビニルベンズアミド担持固相担体を各2個浸した。これを,80℃のオイルバス中で24時間加熱放置した。反応後,固相担体を取り出しDMF,THF,ジクロロメタンで洗浄し,減圧下で乾燥させることにより,3−[2−(3−トリフルオロメタンスルホニルオキシフェニル)ビニル]ベンズアミド担持固相担体,および4−[2−(3−トリフルオロメタンスルホニルオキシフェニル)ビニル]ベンズアミド担持固相担体を得た。同様の操作で3−トリフルオロメタンスルホニルオキシフェニルヨージドの代わりに4−トリフルオロメタンスルホニルオキシフェニルヨージドを用いることで,3−[2−(4−トリフルオロメタンスルホニルオキシフェニル)ビニル]ベンズアミド担持固相担体,および4−[2−(4−トリフルオロメタンスルホニルオキシフェニル)ビニル]ベンズアミド担持固相担体を得た。固相担体はTranSortに記録された情報により仕分けされ,次の反応に用いた。
【0019】
実施例5(テトラヒドロピラニルオキシフェニル)ベンズアミド担持固相担体の合成
アルゴン置換した反応容器に,3−テトラヒドロピラニルオキシフェニルヨージド(0.2M)のDMF溶液(4ml)を準備し,その中にトリフェニルアルシン(0.02M)とビス(ジベンジリデンアセトン)パラジウム(0.01M)を加え,最後に実施例1の3−トリブチルスタンニルベンズアミド担持固相担体と4−トリブチルスタンニルベンズアミド担持固相担体を各2個浸した。これを80℃のオイルバス中で24時間加熱放置した。反応後,固相担体を取り出しDMF,THF,ジクロロメタンで洗浄し,減圧下で乾燥させることにより,3−(3−テトラヒドロピラニルオキシフェニル)ベンズアミド担持固相担体,および4−(3−テトラヒドロピラニルオキシフェニル)ベンズアミド担持固相担体を得た。同様の操作で3−テトラヒドロピラニルオキシフェニルヨージドの代わりに4−テトラヒドロピラニルオキシフェニルヨージドを用いることで,3−(4−テトラヒドロピラニルオキシフェニル)ベンズアミド担持固相担体,および4−(4−テトラヒドロピラニルオキシフェニル)ベンズアミド担持固相担体を得た。固相担体はTranSortに記録された情報により仕分けされ,次の反応に用いた。
【0020】
実施例6(トリフルオロメタンスルホニルオキシフェニル)ベンズアミド担持固相担体の合成
アルゴン置換をした反応容器に,3−トリフルオロメタンスルホニルオキシフェニルヨージド(0.2M)のDMF溶液(4ml)を準備し,その中にトリフェニルアルシン(0.02M)とビス(ジベンジリデンアセトン)パラジウム(0.01M)を加え,最後に実施例1の3−トリブチルスタンニルベンズアミド担持固相担体と4−トリブチルスタンニルベンズアミド担持固相担体を各2個浸した。これを80℃のオイルバス中で24時間加熱放置した。反応後,固相担体を取り出しDMF,THF,ジクロロメタンで洗浄し,減圧下で乾燥させることにより,3−(3−トリフルオロメタンスルホニルオキシフェニル)ベンズアミド担持固相担体,および4−(3−トリフルオロメタンスルホニルオキシフェニル)ベンズアミド担持固相担体を得た。同様の操作で3−トリフルオロメタンスルホニルオキシフェニルヨージドの代わりに4−トリフルオロメタンスルホニルオキシフェニルヨージドを用いることで,3−(4−トリフルオロメタンスルホニルオキシフェニル)ベンズアミド担持固相担体,および4−(4−トリフルオロメタンスルホニルオキシフェニル)ベンズアミド担持固相担体を得た。固相担体はTranSortに記録された情報により仕分けされ,次の反応に用いた。
【0021】
実施例7(テトラヒドロピラニルオキシベンゾイル)ベンズアミド担持固相担体の合成
アルゴン置換したオートクレーブ用の内管に,3−テトラヒドロピラニルオキシフェニルヨージド(0.2M)のDMF溶液(4ml)を準備し,その中にトリフェニルアルシン(0.02M)とビス(ジベンジリデンアセトン)パラジウム(0.01M)を加え,最後に実施例1の3−トリブチルスタンニルベンズアミド担持固相担体と4−トリブチルスタンニルベンズアミド担持固相担体を各2個浸した。この内管をすばやくオートクレーブ中に封入し,一酸化炭素を15気圧導入した。これを80℃のオイルバス中で24時間加熱放置した。反応後,固相担体を取り出しDMF,THF,ジクロロメタンで洗浄し,減圧下で乾燥させることにより,3−(3−テトラヒドロピラニルオキシベンゾイル)ベンズアミド担持固相担体,および4−(3−テトラヒドロピラニルオキシベンゾイル)ベンズアミド担持固相担体を得た。同様の操作で3−テトラヒドロピラニルオキシフェニルヨージドの代わりに4−テトラヒドロピラニルオキシフェニルヨージドを用いることで,3−(4−テトラヒドロピラニルオキシベンゾイル)ベンズアミド担持固相担体,および4−(4−テトラヒドロピラニルオキシベンゾイル)ベンズアミド担持固相担体を得た。固相担体はTranSortに記録された情報により仕分けされ,次の反応に用いた。
【0022】
実施例8(トリフルオロメタンスルホニルオキシベンゾイル)ベンズアミド担持固相担体の合成
アルゴン置換をしたオートクレーブ用の内管に,3−トリフルオロメタンスルホニルオキシフェニルヨージド(0.2M)のDMF溶液(4ml)を準備し,その中にトリフェニルアルシン(0.02M)とビス(ジベンジリデンアセトン)パラジウム(0.01M)を加え,最後に実施例1の3−トリブチルスタンニルベンズアミド担持固相担体と4−トリブチルスタンニルベンズアミド担持固相担体を各2個浸した。この内管をすばやくオートクレーブ中に封入し,一酸化炭素を15気圧導入した。これを80℃のオイルバス中で24時間加熱放置した。反応後,固相担体を取り出しDMF,THF,ジクロロメタンで洗浄し,減圧下で乾燥させることにより,3−(3−トリフルオロメタンスルホニルオキシベンゾイル)ベンズアミド担持固相担体,および4−(3−トリフルオロメタンスルホニルオキシベンゾイル)ベンズアミド担持固相担体を得た。同様の操作で3−トリフルオロメタンスルホニルオキシフェニルヨージドの代わりに4−トリフルオロメタンスルホニルオキシフェニルヨージドを用いることで,3−(4−トリフルオロメタンスルホニルオキシベンゾイル)ベンズアミド担持固相担体,および4−(4−トリフルオロメタンスルホニルオキシベンゾイル)ベンズアミド担持固相担体を得た。固相担体はTranSortに記録された情報により仕分けされ,次の反応に用いた。
【0023】
実施例9(テトラヒドロピラニルオキシフェニル)エチニルベンズアミド担持固相担体の合成
アルゴン置換した反応容器に,3−テトラヒドロピラニルオキシフェニルヨージド(0.2M)とトリエチルアミン(0.2M)のDMF溶液(4ml)を準備し,その中に実施例1の3−エチニルベンズアミド担持固相担体と4−エチニルベンズアミド担持固相担体を各2個浸し,ヨウ化銅(0.03M)を加えた。固相担体が黄色に呈色したのを確認後(約30秒),テトラキス(トリフェニルホスフィン)パラジウム(0.01M)を加え,室温下で24時間放置した。反応後,固相担体を取り出しDMF,THF,ジクロロメタンで洗浄し,減圧下で乾燥させることにより,3−[(3−テトラヒドロピラニルオキシフェニル)エチニル]ベンズアミド担持固相担体,および4−[(3−テトラヒドロピラニルオキシフェニル)エチニル]ベンズアミド担持固相担体を得た同様の操作で3−テトラヒドロピラニルオキシフェニルヨージドの代わりに4−テトラヒドロピラニルオキシフェニルヨージドを用いることで,3−[(4−テトラヒドロピラニルオキシフェニル)エチニル]ベンズアミド担持固相担体,および4−[(4−テトラヒドロピラニルオキシフェニル)エチニル]ベンズアミド担持固相担体を得た。固相担体はTranSortに記録された情報により仕分けされ,次の反応に用いた。
【0024】
実施例10(トリフルオロメタンスルホニルオキシフェニル)エチニルベンズアミド担持固相担体の合成
アルゴン置換した反応容器に,3−トリフルオロメタンスルホニルオキシフェニルヨージド(0.2M)とトリエチルアミン(0.2M)のDMF溶液(4ml)を準備し,その中に実施例1の3−エチニルベンズアミド担持固相担体と4−エチニルベンズアミド担持固相担体を各2個浸し,ヨウ化銅(0.03M)を加えた。固相担体が黄色に呈色したのを確認後(約30秒),テトラキス(トリフェニルホスフィン)パラジウム(0.01M)を加え,室温下で24時間放置した。反応後,固相担体を取り出しDMF,THF,ジクロロメタンで洗浄し,減圧下で乾燥させることにより,3−[(3−トリフルオロメタンスルホニルオキシフェニル)エチニル]ベンズアミド担持固相担体,および4−[(3−トリフルオロメタンスルホニルオキシフェニル)エチニル]ベンズアミド担持固相担体を得た。同様の操作で3−トリフルオロメタンスルホニルオキシフェニルヨージドの代わりに4−トリフルオロメタンスルホニルオキシフェニルヨージドを用いることで,3−[(4−トリフルオロメタンスルホニルオキシフェニル)エチニル]ベンズアミド担持固相担体,および4−[(4−トリフルオロメタンスルホニルオキシフェニル)エチニル]ベンズアミド担持固相担体を得た。固相担体はTranSortに記録された情報により仕分けされ,次の反応に用いた。
【0025】
実施例11テトラヒドロピラニル基の脱保護
反応容器に酢酸,THF,水の3:3:1の混合溶液(40ml)を準備し,実施例2から9で合成した保護基としてテトラヒドロピラニル基を持つ固相担体40個を浸した。これを80℃のオイルバス中で10時間加熱放置した。反応後,固相担体を取り出しTHF,ジクロロメタンで洗浄し,減圧下で乾燥させることによりテトラヒドロピラニル基の脱保護を行った。固相担体はTranSortに記録された情報により仕分けされ,次の反応に用いた。
【0026】
実施例12ベンゾイルオキシ基の導入
アルゴン置換したオートクレーブ用の内管に,3−メトキシフェニルヨージド(0.5M)とトリエチルアミン(0.5M),ジメチルアミノピリジン(0.1M)のDMF溶液(20ml)を準備し,その中にテトラキス(トリフェニルホスフィン)パラジウム(0.01M)を加え,最後に実施例11の固相担体20個浸した。この内管をすばやくオートクレーブ中に封入し,一酸化炭素を15気圧導入した。これを80℃のオイルバス中で24時間加熱放置した。反応後,固相担体を取り出しDMF,THF,ジクロロメタンで洗浄し,減圧下で乾燥させることにより,3−メトキシベンゾイルオキシ基をもつ20種の固相担体を得た。また,同様の操作で3−メトキシフェニルヨージドの代わりに4−メトキシフェニルヨージドを用いることで,4−メトキシベンゾイルオキシ基をもつ20種の固相担体を得た。
【0027】
実施例13フェノキシカルボニル基の導入
アルゴン置換をした反応容器中で,ビス(ジベンジリデンアセトン)パラジウム(0.01M)とジフェニルホスフィノプロパン(0.01M)をDMF(16ml)に溶解させ,室温で30分間攪拌した。アルゴン置換したオートクレーブ用の内管に,3−メトキシフェノール(0.5M),トリエチルアミン(0.5M),ジメチルアミノピリジン(0.1M)のDMF溶液(12ml)を準備した。その中に前述のパラジウム錯体のDMF溶液を加え,最後に実施例3から10で合成したトリフルオロメタンスルホニルオキシ基を持つ固相担体16個を浸す。この内管をすばやくオートクレーブ中に封入し,一酸化炭素を15気圧導入した。これを80℃のオイルバス中で24時間加熱放置した。反応後,固相担体を取り出しDMF,THF,ジクロロメタンで洗浄し,減圧下で乾燥させることにより,3−メトキシフェノキシカルボニル基をもつ16種の固相担体を得た。また,同様の操作で3−メトキシフェノールの代わりに4−メトキシフェノールを用いることで,4−メトキシフェノキシカルボニル基をもつ16種の固相担体を得た。
【0028】
実施例14固相担体からの切り出し
得られた72種の固相担体を別々の容器に入れ,ジクロロメタンとトリフルオロ酢酸の混合溶液中,室温下で30分放置することにより72種のベンズアミドを得た。以下に得られた72種のベンズアミドの収率(%)および質量分析結果を示す。
【0029】
【化10】
Figure 2004099576
【0030】
【表1】
Figure 2004099576
【0031】
【発明の効果】
上記のように本発明はベンゼン環連結鎖状化合物の製法に関するものであり,液晶表示素子等の属する分野およびその他の分野において要求されている棒状液晶化合物コア部位に供するものである。本発明を用いることにより,棒状液晶化合物コア部位に利用可能な多種類のベンゼン環連結鎖状化合物を一度に合成することができる。新たな液晶表示素子の開発には液晶性化合物を迅速に入手する必要があり,本発明はそれを可能とする有用な製法である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a benzene ring-linked chain compound, which is used for synthesizing a rod-shaped liquid crystal compound core site required in a field to which a liquid crystal display device belongs and other fields.
[0002]
[Prior art]
The demand for liquid crystal is growing year by year as a material for display devices such as calculators, displays for personal computers, and television monitors. Many liquid crystals are mixtures of various compounds that exhibit liquid crystallinity, and the molecular shapes include rod-like molecules, disk-like molecules, and amphiphilic molecules. Among them, rod-like compounds as shown in the following figure are relatively frequently used.
[0003]
Embedded image
Figure 2004099576
[0004]
In the above figure, X is a symmetrical connector such as an ethylene bond, an acetylene bond, a phenylene bond or an azo bond, or an asymmetrical connector such as a methyleneamino bond, a carboxy bond or an azoxy bond. Y is an acetyl group, an acetoxy group, a halogen, a cyano group, a nitro group, an amino group or the like, and Y ′ is an alkyl group or an alkoxy group. The six-membered rings Z and Z 'are each independently benzene, cyclohexane, pyrimidine, dioxane, biphenyl, terphenyl, or the like. By combining these, liquid crystalline compounds having various characteristics can be obtained. The obtained liquid crystalline compound is mixed in various ratios according to its use. For example, it is effective to mix a p-ester type or a p-biphenyl type to reduce a driving voltage required for power saving of a mobile device. To improve the heat resistance required for in-vehicle displays, a mixture of tricyclic and tetracyclic systems is considered to be effective.
[0005]
[Problems to be solved by the invention]
As described above, in order to improve the required performance of the liquid crystal, various liquid crystal compounds are mixed. In addition, new liquid crystalline compounds are being actively synthesized with the aim of improving performance. However, only a handful of the synthesized liquid crystalline compounds are useful, and it is essential to obtain many liquid crystalline compounds in a short period of time and evaluate their performance for rapid development of liquid crystal display devices. . In general, the number of compounds that a single chemist can synthesize in one year is said to be 10 to 100. To obtain a large number of liquid crystal compounds, multiple chemists must synthesize for a relatively long time. Must. In order to rapidly develop a liquid crystal display device, a method for obtaining a large number of liquid crystal compounds in a short period of time is strongly desired.
[0006]
[Means for Solving the Problems]
The inventors have conducted intensive studies and as a result have completed the present invention. That is, the present invention relates to a method for producing a benzene ring-linked chain compound, and provides a method for synthesizing a rod-shaped liquid crystal compound core portion required in the field to which a liquid crystal display device belongs and other fields.
[0007]
Synthesis of the benzene ring linked chain compound in the present invention may be prepared by reacting the benzamide and phenyl halide having a functional group R 1 which is supported so as to the solid phase following the step of connecting the benzene ring via the A, before It comprises a step of further linking a benzene derivative to the reaction product obtained in the step, and a step of cutting out a benzene ring-linked chain compound from the solid support. The synthesis according to the present invention is characterized by simultaneously synthesizing various kinds of benzene ring-linked chain compounds by using a combinatorial synthesis technique.
[0008]
Embedded image
Figure 2004099576
[0009]
Embedded image
Figure 2004099576
[0010]
Embedded image
Figure 2004099576
[0011]
In order to show the usefulness of the present invention, a synthesis method of 100 kinds of benzene ring-linked chain compounds will be described as an example of the present invention. This is an example and does not limit the invention.
[0012]
The first step is a step of reacting and linking a benzamide-supported solid support having 10 kinds of functional groups with a phenyl halide having 10 kinds of functional groups. The solid phase carrier used here is a resin used for combinatorial synthesis such as a polystyrene resin. Lantern or crown may be used instead of resin. The solid phase carrier to be used is labeled in advance (for example, numbered from 1 to 100) and numbered 1 to 10, 11 to 20, 21 to 30, 31 to 40, 41 to 50, 51 to 60, 61 to 61 70, 71-80, 81-90, 91-100 are divided into 10 groups, and each group is placed in 10 reaction vessels. A phenyl halide having ten kinds of functional groups is prepared, and one kind is added to each reaction vessel and reacted. The solvent in this reaction includes an organic solvent such as DMF. As the palladium catalyst, tetrakis (triphenylphosphine) palladium, bis (triphenylphosphine) palladium dichloride, bis (dibenzylideneacetone) palladium or the like is appropriately selected. The reaction temperature depends on the solvent, the solid phase carrier, the functional group, etc., but is selected from room temperature to the reflux temperature of the solvent. The reaction time varies depending on the solvent, the solid support, the reaction temperature and the like, but is usually appropriately selected from 1 hour to 100 hours.
[0013]
The next step is a reaction for linking the reaction product of the previous step with 10 kinds of benzene derivatives. The 10 kinds of reaction products obtained in the previous step are mixed and again divided into 10 groups according to the number assigned to the solid support [(X + 1), (X + 2), (X + 3), (X + 4), (X + 5) ), (X + 6), (X + 7), (X + 8), (X + 9), (X + 10) (where X is 0, 10, 20, 30, 40, 50, 60, 70, 80, 90)]. This solid support is put into 10 reaction vessels for each group. A halobenzene derivative or a phenol derivative having ten kinds of functional groups is prepared, and one kind is added to each reaction vessel and reacted. Thereby, a benzene ring-linked chain compound-carrying solid support having a total of 100 combinations can be obtained. The solvent, reaction temperature and reaction time in this reaction are the same as in the previous step. Finally, the benzene ring-linked chain compound is cut out from the solid support to obtain 100 kinds of benzene ring-linked chain compounds. This is merely an example, and by increasing the types of phenyl halides and benzene derivatives, it is possible to simultaneously synthesize more types of benzene ring-linked chain compounds.
[0014]
【Example】
Hereinafter, representative examples of the present invention will be described, but these are for the purpose of illustration and do not limit the present invention. It will be apparent to those skilled in the art that variations are possible within the scope of the invention.
[0015]
Example 1 Synthesis of benzamide-supported solid phase carrier 72 TranStems to which a lanthanum having an amino group was attached were prepared and recorded in advance using TranSort. A DMF solution (4 ml) of 3-hydroxybenzoyl chloride (0.2 M), 1-hydroxybenzotriazole (0.24 M), and diisopropylcarbodiimide (0.2 M) was prepared in a reaction vessel purged with argon. After 10 minutes, the above four lanterns were immersed in this solution and left at room temperature for 24 hours. The solid was washed with DMF, methanol, and dichloromethane, and dried under reduced pressure to obtain four 3-hydroxybenzamide-supported solid supports. By changing the substrate in various ways by the same operation, four 4-hydroxybenzamide-supported solid carriers, eight 3-vinylbenzamide-supported solid carriers, eight 4-vinylbenzamide-supported solid carriers, Sixteen solid carriers carrying tributylstannylbenzamide, sixteen solid carriers carrying 4-dributylstannylbenzamide, eight solid carriers carrying 3-ethynylbenzamide, and eight solid carriers carrying 4-ethynylbenzamide. Pieces were obtained.
[0016]
Example 2 Synthesis of a solid support supporting tetrahydropyranyloxybenzoyloxybenzamide A 3-tetrahydropyranyloxyphenyl iodide (0.5M), triethylamine (0.5M) were placed in an inner tube for an autoclave purged with argon. ), Dimethylaminopyridine (0.1 M) in DMF (4 ml) was prepared, and tetrakis (triphenylphosphine) palladium (0.01 M) was added thereto. Two phase carriers and two 4-hydroxybenzamide-supported solid carriers were immersed. The inner tube was quickly sealed in an autoclave, and 15 atm of carbon monoxide was introduced. This was heated and left in an 80 ° C. oil bath for 48 hours. After the reaction, the solid support is taken out, washed with DMF, THF, and dichloromethane, and dried under reduced pressure to obtain 3- (3-tetrahydropyranyloxy) benzoyloxybenzamide-supported solid support and 4- (3-tetrahydro A pyranyloxy) benzoyloxybenzamide-supported solid support was obtained. By using 4-tetrahydropyranyloxyphenyl iodide instead of 3-tetrahydropyranyloxyphenyl iodide in the same operation, 3- (4-tetrahydropyranyloxy) benzoyloxybenzamide-supported solid support, A solid support carrying-(4-tetrahydropyranyloxy) benzoyloxybenzamide was obtained. The supported solid phase carrier was sorted based on the information recorded in TranSort and used for the next reaction.
[0017]
Example 3 Synthesis of [ 2- (tetrahydropyranyloxyphenyl) vinyl] benzamide-supported solid support In a reaction vessel purged with argon, 3-tetrahydropyranyloxyphenyl iodide (0.2 M) and triethylamine ( A 0.2 M) DMF solution (4 ml) was prepared, into which tris (o-tolyl) phosphine (0.02 M) and bis (dibenzylideneacetone) palladium (0.01 M) were added. Each of the 2-vinylbenzamide-supported solid-phase carrier and the 4-vinylbenzamide-supported solid-phase carrier was immersed. This was heated and left in an oil bath at 80 ° C. for 24 hours. After the reaction, the solid support is taken out, washed with DMF, THF, dichloromethane, and dried under reduced pressure to give 3- [2- (3-tetrahydropyranyloxyphenyl) vinyl] benzamide-supported solid support, [2- (3-Tetrahydropyranyloxyphenyl) vinyl] benzamide-supported solid support was obtained. By using 4-tetrahydropyranyloxyphenyl iodide instead of 3-tetrahydropyranyloxyphenyl iodide in the same operation, 3- [2- (4-tetrahydropyranyloxyphenyl) vinyl] benzamide-supported solid phase A solid support having a carrier and 4- [2- (4-tetrahydropyranyloxyphenyl) vinyl] benzamide was obtained. The solid support was sorted based on the information recorded in TranSort and used for the next reaction.
[0018]
Example 4 Synthesis of [ 2- (trifluoromethanesulfonyloxyphenyl) vinyl] benzamide-supported solid support In a reaction vessel purged with argon, 3-trifluoromethanesulfonyloxyphenyliodide (0.2M) and triethylamine were placed. (0.2 M) DMF solution (4 ml) was prepared, bis (dibenzylideneacetone) palladium (0.01 M) was added thereto, and finally, the 3-vinylbenzamide-supported solid support and 4- Two vinyl benzamide-supported solid supports were each immersed. This was heated and left in an 80 ° C. oil bath for 24 hours. After the reaction, the solid phase carrier is taken out, washed with DMF, THF, dichloromethane, and dried under reduced pressure to give 3- [2- (3-trifluoromethanesulfonyloxyphenyl) vinyl] benzamide-supported solid carrier, [2- (3-trifluoromethanesulfonyloxyphenyl) vinyl] benzamide-supported solid support was obtained. By using 4-trifluoromethanesulfonyloxyphenyliodide instead of 3-trifluoromethanesulfonyloxyphenyliodide in the same operation, 3- [2- (4-trifluoromethanesulfonyloxyphenyl) vinyl] benzamide-supported solid phase A carrier and a solid support carrying 4- [2- (4-trifluoromethanesulfonyloxyphenyl) vinyl] benzamide were obtained. The solid support was sorted based on the information recorded in TranSort and used for the next reaction.
[0019]
Example 5 Synthesis of (tetrahydropyranyloxyphenyl) benzamide-supported solid support DMF solution (4 ml) of 3-tetrahydropyranyloxyphenyl iodide (0.2 M) was prepared in a reaction vessel purged with argon. Then, triphenylarsine (0.02M) and bis (dibenzylideneacetone) palladium (0.01M) were added thereto, and finally, the solid support supporting 3-tributylstannylbenzamide and 4-tributylstanne of Example 1 were added. Two each of the nilbenzamide-supported solid-phase carriers were immersed. This was heated and left in an oil bath at 80 ° C. for 24 hours. After the reaction, the solid support is taken out, washed with DMF, THF, and dichloromethane, and dried under reduced pressure to obtain 3- (3-tetrahydropyranyloxyphenyl) benzamide-supported solid support and 4- (3-tetrahydropyranide). (Roxyphenyl) benzamide-supported solid support was obtained. By using 4-tetrahydropyranyloxyphenyl iodide instead of 3-tetrahydropyranyloxyphenyl iodide in the same operation, 3- (4-tetrahydropyranyloxyphenyl) benzamide-supported solid support, (4-tetrahydropyranyloxyphenyl) benzamide-supported solid support was obtained. The solid support was sorted based on the information recorded in TranSort and used for the next reaction.
[0020]
Example 6 Synthesis of (trifluoromethanesulfonyloxyphenyl) benzamide-supported solid support A DMF solution (4 ml) of 3-trifluoromethanesulfonyloxyphenyliodide (0.2 M) was placed in a reaction vessel purged with argon. Prepare and add triphenylarsine (0.02M) and bis (dibenzylideneacetone) palladium (0.01M), and finally add 3-tributylstannylbenzamide-supported solid support and 4-tributyl Two stannylbenzamide-supported solid-phase carriers were each immersed. This was heated and left in an oil bath at 80 ° C. for 24 hours. After the reaction, the solid support is taken out, washed with DMF, THF, and dichloromethane, and dried under reduced pressure to obtain a solid support supporting 3- (3-trifluoromethanesulfonyloxyphenyl) benzamide and 4- (3-trifluoromethane). A solid support carrying sulfonyloxyphenyl) benzamide was obtained. By using 4-trifluoromethanesulfonyloxyphenyliodide instead of 3-trifluoromethanesulfonyloxyphenyliodide in the same operation, 3- (4-trifluoromethanesulfonyloxyphenyl) benzamide-supported solid support, (4-trifluoromethanesulfonyloxyphenyl) benzamide-supported solid support was obtained. The solid support was sorted based on the information recorded in TranSort and used for the next reaction.
[0021]
Example 7 Synthesis of (tetrahydropyranyloxybenzoyl) benzamide-supported solid support A DMF solution (4 ml) of 3-tetrahydropyranyloxyphenyl iodide (0.2 M) was placed in an inner tube for an autoclave purged with argon. ) Was prepared, and triphenylarsine (0.02M) and bis (dibenzylideneacetone) palladium (0.01M) were added thereto. Finally, 3-tributylstannylbenzamide-supported solid support of Example 1 and 4 -Two pieces of each of the solid supports each supporting tributylstannylbenzamide were soaked. The inner tube was quickly sealed in an autoclave, and 15 atm of carbon monoxide was introduced. This was heated and left in an oil bath at 80 ° C. for 24 hours. After the reaction, the solid phase carrier is taken out, washed with DMF, THF, dichloromethane and dried under reduced pressure to obtain a solid phase carrier supporting 3- (3-tetrahydropyranyloxybenzoyl) benzamide and 4- (3-tetrahydropyranide). (Ruoxybenzoyl) benzamide-supported solid support was obtained. By using 4-tetrahydropyranyloxyphenyl iodide instead of 3-tetrahydropyranyloxyphenyl iodide in the same operation, 3- (4-tetrahydropyranyloxybenzoyl) benzamide-supported solid support, A (4-tetrahydropyranyloxybenzoyl) benzamide-supported solid support was obtained. The solid support was sorted based on the information recorded in TranSort and used for the next reaction.
[0022]
Example 8 Synthesis of (trifluoromethanesulfonyloxybenzoyl) benzamide-supported solid support A 3-trifluoromethanesulfonyloxyphenyliodide (0.2 M) DMF solution (0.2 M) was placed in an inner tube for an autoclave purged with argon. 4 ml), and triphenylarsine (0.02 M) and bis (dibenzylideneacetone) palladium (0.01 M) were added thereto. Finally, the solid support having 3-tributylstannylbenzamide supported in Example 1 was added. Two 4-tributylstannylbenzamide-supported solid-phase carriers were immersed in each. The inner tube was quickly sealed in an autoclave, and 15 atm of carbon monoxide was introduced. This was heated and left in an oil bath at 80 ° C. for 24 hours. After the reaction, the solid support is taken out, washed with DMF, THF, dichloromethane, and dried under reduced pressure to obtain a solid support supporting 3- (3-trifluoromethanesulfonyloxybenzoyl) benzamide and 4- (3-trifluoromethane). A solid support having sulfonyloxybenzoyl) benzamide was obtained. By using 4-trifluoromethanesulfonyloxyphenyliodide instead of 3-trifluoromethanesulfonyloxyphenyliodide in the same operation, 3- (4-trifluoromethanesulfonyloxybenzoyl) benzamide-supported solid support, (4-trifluoromethanesulfonyloxybenzoyl) benzamide-supported solid support was obtained. The solid support was sorted based on the information recorded in TranSort and used for the next reaction.
[0023]
Example 9 Synthesis of (tetrahydropyranyloxyphenyl) ethynylbenzamide-supported solid support In a reaction vessel purged with argon, 3-tetrahydropyranyloxyphenyl iodide (0.2M) and triethylamine (0.2M) were placed. A DMF solution (4 ml) was prepared, and the 3-ethynylbenzamide-carrying solid support and the 4-ethynylbenzamide-carrying solid support of Example 1 were immersed in two each, and copper iodide (0.03 M) was added thereto. Was. After confirming that the solid phase carrier was colored yellow (about 30 seconds), tetrakis (triphenylphosphine) palladium (0.01 M) was added and left at room temperature for 24 hours. After the reaction, the solid phase carrier is taken out, washed with DMF, THF, dichloromethane, and dried under reduced pressure to obtain 3-[(3-tetrahydropyranyloxyphenyl) ethynyl] benzamide-supported solid phase carrier and 4-[( [3-tetrahydropyranyloxyphenyl) ethynyl] benzamide-supported solid support was obtained, and by using 4-tetrahydropyranyloxyphenyl iodide instead of 3-tetrahydropyranyloxyphenyl iodide, A solid support supporting [(4-tetrahydropyranyloxyphenyl) ethynyl] benzamide and a solid support supporting 4-[(4-tetrahydropyranyloxyphenyl) ethynyl] benzamide were obtained. The solid support was sorted based on the information recorded in TranSort and used for the next reaction.
[0024]
Example 10 Synthesis of (trifluoromethanesulfonyloxyphenyl) ethynylbenzamide-supported solid support In a reaction vessel purged with argon, 3-trifluoromethanesulfonyloxyphenyliodide (0.2M) and triethylamine (0.2M) were placed. A DMF solution (4 ml) was prepared, and the 3-ethynylbenzamide-carrying solid support and the 4-ethynylbenzamide-carrying solid support of Example 1 were immersed in two each, and copper iodide (0.03 M) was added thereto. Was. After confirming that the solid phase carrier was colored yellow (about 30 seconds), tetrakis (triphenylphosphine) palladium (0.01 M) was added and left at room temperature for 24 hours. After the reaction, the solid support is taken out, washed with DMF, THF, and dichloromethane, and dried under reduced pressure to obtain a solid support supporting 3-[(3-trifluoromethanesulfonyloxyphenyl) ethynyl] benzamide and 4-[( [3-trifluoromethanesulfonyloxyphenyl) ethynyl] benzamide-supported solid support was obtained. By using 4-trifluoromethanesulfonyloxyphenyliodide instead of 3-trifluoromethanesulfonyloxyphenyliodide in the same operation, 3-[(4-trifluoromethanesulfonyloxyphenyl) ethynyl] benzamide-supported solid support, And 4-[(4-trifluoromethanesulfonyloxyphenyl) ethynyl] benzamide-loaded solid support. The solid support was sorted based on the information recorded in TranSort and used for the next reaction.
[0025]
Example 11 Deprotection of tetrahydropyranyl group A mixed solution (40 ml) of acetic acid, THF and water in a ratio of 3: 3: 1 was prepared in a reaction vessel, and tetrahydropyranyl was used as a protecting group synthesized in Examples 2 to 9. Forty solid-phase carriers having a pyranyl group were soaked. This was heated and left in an oil bath at 80 ° C. for 10 hours. After the reaction, the solid support was taken out, washed with THF and dichloromethane, and dried under reduced pressure to deprotect the tetrahydropyranyl group. The solid support was sorted based on the information recorded in TranSort and used for the next reaction.
[0026]
Example 12 Introduction of benzoyloxy group In an inner tube for an autoclave purged with argon, 3-methoxyphenyliodide (0.5M), triethylamine (0.5M), and dimethylaminopyridine (0.1M) were added. A DMF solution (20 ml) was prepared, and tetrakis (triphenylphosphine) palladium (0.01 M) was added thereto. Finally, 20 solid supports of Example 11 were immersed. The inner tube was quickly sealed in an autoclave, and 15 atm of carbon monoxide was introduced. This was heated and left in an oil bath at 80 ° C. for 24 hours. After the reaction, the solid phase carrier was taken out, washed with DMF, THF, and dichloromethane, and dried under reduced pressure to obtain 20 kinds of solid phase carriers having a 3-methoxybenzoyloxy group. Further, by using 4-methoxyphenyliodide instead of 3-methoxyphenyliodide in the same operation, 20 kinds of solid carriers having a 4-methoxybenzoyloxy group were obtained.
[0027]
Example 13 Introduction of phenoxycarbonyl group Dissolve bis (dibenzylideneacetone) palladium (0.01 M) and diphenylphosphinopropane (0.01 M) in DMF (16 ml) in a reaction vessel purged with argon. And stirred at room temperature for 30 minutes. A DMF solution (12 ml) of 3-methoxyphenol (0.5 M), triethylamine (0.5 M), and dimethylaminopyridine (0.1 M) was prepared in an inner tube for an autoclave replaced with argon. The DMF solution of the above-mentioned palladium complex is added thereto, and finally 16 solid-phase carriers having a trifluoromethanesulfonyloxy group synthesized in Examples 3 to 10 are immersed. The inner tube was quickly sealed in an autoclave, and 15 atm of carbon monoxide was introduced. This was heated and left in an oil bath at 80 ° C. for 24 hours. After the reaction, the solid phase carrier was taken out, washed with DMF, THF, and dichloromethane, and dried under reduced pressure to obtain 16 types of solid phase carriers having a 3-methoxyphenoxycarbonyl group. By using 4-methoxyphenol instead of 3-methoxyphenol in the same operation, 16 kinds of solid supports having 4-methoxyphenoxycarbonyl groups were obtained.
[0028]
Example 14 Cutting out from solid phase carrier The obtained 72 types of solid phase carriers were put in separate containers, and left in a mixed solution of dichloromethane and trifluoroacetic acid at room temperature for 30 minutes to obtain 72 types of solid phase carriers. Of benzamide was obtained. The yields (%) and the results of mass spectrometry of the obtained 72 benzamides are shown below.
[0029]
Embedded image
Figure 2004099576
[0030]
[Table 1]
Figure 2004099576
[0031]
【The invention's effect】
As described above, the present invention relates to a method for producing a benzene ring-linked chain compound, and is provided for a rod-shaped liquid crystal compound core site required in the field to which a liquid crystal display device belongs and other fields. By using the present invention, various kinds of benzene ring-linked chain compounds usable for the rod-shaped liquid crystal compound core site can be synthesized at a time. In order to develop a new liquid crystal display element, it is necessary to quickly obtain a liquid crystal compound, and the present invention is a useful production method that enables this.

Claims (1)

下記構造式
Figure 2004099576
(式中,Pは固相担体,Rはヒドロキシル基,ビニル基,トリブチルスタニル基,エチニル基から選択される)で示されるベンズアミド担持固相担体をパラジウム触媒の存在下,下記構造式
Figure 2004099576
(式中,Rはテトラヒドロピラニルオキシ基,あるいはトリフルオロメタンスルホニルオキシ基,Xはハロゲンから選択される)で示されるフェニルハライドを一酸化炭素雰囲気下または雰囲気下ではない条件で反応させて得られる下記式
Figure 2004099576
(式中,−A−は上記のA−1〜A−5のいずれかで,Rはテトラヒドロピラニルオキシ基,あるいはトリフルオロメタンスルホニルオキシ基から選択される。ただし,Rがテトラヒドロピラニルオキシ基の場合は反応後,脱保護を行いヒドロキシル基とする)で示される化合物[1]をパラジウム触媒の存在下,下記構造式
Figure 2004099576
(式中,Zはヨウ素,ヒドロキシル基,Rはアルキル基,アルコキシ基から選択される)で示されるベンゼン誘導体と一酸化炭素雰囲気下で反応させた後,固相担体から回収することから成る下記式
Figure 2004099576
(式中,−A−は上記のA−1〜A−5のいずれかで,−B−は上記B−1,B−2のいずれかで,Rはアルキル基,アルコキシ基から選択される)で示されるベンゼン環連結鎖状化合物[2]の多成分同時合成方法。
The following structural formula
Figure 2004099576
(Wherein P is a solid support and R 1 is selected from a hydroxyl group, vinyl group, tributylstannyl group and ethynyl group) in the presence of a palladium catalyst in the presence of a palladium catalyst.
Figure 2004099576
(Wherein, R 2 is a tetrahydropyranyloxy group or a trifluoromethanesulfonyloxy group, and X is selected from halogen). The following equation
Figure 2004099576
(Wherein -A- is any of the above A-1 to A-5, and R 2 is selected from a tetrahydropyranyloxy group or a trifluoromethanesulfonyloxy group, provided that R 2 is tetrahydropyranyl. In the case of an oxy group, after the reaction, the compound is deprotected to form a hydroxyl group).
Figure 2004099576
(Wherein, Z is iodine, hydroxyl group, and R 3 is selected from alkyl group and alkoxy group), and reacted under a carbon monoxide atmosphere and then recovered from a solid support. The following formula
Figure 2004099576
(In the formula, -A- is any of the above A-1 to A-5, -B- is any of the above B-1 and B-2, and R 3 is selected from an alkyl group and an alkoxy group. Multi-component simultaneous synthesis method of benzene ring-linked chain compound [2] represented by the following formula:
JP2002298019A 2002-09-05 2002-09-05 Combinatorial synthesis for chain connected benzene ring compound Withdrawn JP2004099576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298019A JP2004099576A (en) 2002-09-05 2002-09-05 Combinatorial synthesis for chain connected benzene ring compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298019A JP2004099576A (en) 2002-09-05 2002-09-05 Combinatorial synthesis for chain connected benzene ring compound

Publications (1)

Publication Number Publication Date
JP2004099576A true JP2004099576A (en) 2004-04-02

Family

ID=32287570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298019A Withdrawn JP2004099576A (en) 2002-09-05 2002-09-05 Combinatorial synthesis for chain connected benzene ring compound

Country Status (1)

Country Link
JP (1) JP2004099576A (en)

Similar Documents

Publication Publication Date Title
CN108178770B (en) Method for synthesizing α -amino boron compound
Wang et al. Hydrogen bonded arylamide-linked cholesteryl dimesogenic liquid crystals: a study of the length and side chain effects
CN110776525B (en) Phenylethynyl fluoboron pyrrole fluorescent dichroic liquid crystal compound and application thereof
Idziak et al. Structure and mesophases of hexacyclen derivatives
CN108503552A (en) A kind of preparation method of trifluoromethyl aromatic amine
CN107188906B (en) Dibenzo phospha cyclopentadinyl compound and its synthetic method and application
CN107365278A (en) A kind of polysubstituted isoxazole alkane derivatives and preparation method thereof
JP2004099576A (en) Combinatorial synthesis for chain connected benzene ring compound
CN111233666A (en) Method for efficiently synthesizing trifluoromethyl compound, trifluoromethyl compound and application
CN112210056A (en) Porous covalent organic framework material and synthesis method and application thereof
CN104447336A (en) Triptycene derivative and preparation method thereof
WO2016197580A1 (en) Method of synthesizing α-amino acid derivative with α-alkyl side chain substitution
JP2005281504A (en) Photoresponsive liquid crystal composition
JP4338478B2 (en) Solid phase carrier and solid phase synthesis of liquid crystal compound using it
CN104211741B (en) A kind of synthetic method of deuterated nucleoside phosphoramidites monomer
JPH10114714A (en) Benzene derivative and liquid crystal composition
CN114163395B (en) Chiral oxazolinone derivative, synthesis method and application thereof in preparation of linezolid and rivaroxaban
CN115197041B (en) Deuteration method for benzyl carbon-hydrogen bond
CN115611947B (en) Chiral phosphoric acid catalyst and synthesis method thereof
CN109232249B (en) Preparation method of polysubstituted benzoate
JP2687022B2 (en) Optically active liquid crystalline compound
CN108329928B (en) Method for synthesizing alkoxy ester liquid crystal by one-pot method
CN106543040A (en) A kind of synthetic method of medicine intermediate carbamate compounds
Yoshida et al. Solid-phase combinatorial synthesis of ester-type banana-shaped molecules by sequential palladium-catalyzed carbonylation
JPH0680612A (en) Optically inactive liquid crystal compound

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110