JP2004096935A - Eddy current type reduction gear - Google Patents

Eddy current type reduction gear Download PDF

Info

Publication number
JP2004096935A
JP2004096935A JP2002257368A JP2002257368A JP2004096935A JP 2004096935 A JP2004096935 A JP 2004096935A JP 2002257368 A JP2002257368 A JP 2002257368A JP 2002257368 A JP2002257368 A JP 2002257368A JP 2004096935 A JP2004096935 A JP 2004096935A
Authority
JP
Japan
Prior art keywords
rotor
eddy current
magnetic
current type
magnetic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002257368A
Other languages
Japanese (ja)
Inventor
Makoto Ogawa
小川 誠
Masaki Asano
浅野 雅樹
Noritoshi Narumi
鳴海 礼斗史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2002257368A priority Critical patent/JP2004096935A/en
Publication of JP2004096935A publication Critical patent/JP2004096935A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an eddy current type reduction gear which can reduce in weight without decreasing a braking performance. <P>SOLUTION: In the eddy current type reduction gear 1, a support member 3 made of a nonmagnetic material is disposed oppositely to a rotatable rotor 2, a plurality of permanent magnets 4 are provided at the rotor 2 side of the member 3 in such a manner that poles are directed in a circumferential direction and opposed poles are provided at the same polarity at an interval in the circumferential direction, and magnetic members 5 are provided between the adjacent magnets 4. Further, holes 12 for lightening are formed at the side radially separate from the rotor 2 at circumferential intermediate positions of the members 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、駆動軸等の回転体に減速制動を与える渦電流式減速装置に関するものである。
【0002】
【従来の技術】
永久磁石を用いた渦電流式減速装置としては、本出願人の特許出願に係る特許文献1記載のものが知られている。
【0003】
図19に示すように、この渦電流式減速装置50は、回転軸(図示せず)に結合されたロータ51と、ロータ51の内周側に対向して設けられ非磁性体からなるヨーク52と、ヨーク52の外周に磁極を周方向に向けると共に向かい合う磁極同士を同極とするように周方向に間隔を隔てて設けられた永久磁石53と、隣り合う永久磁石53同士の間に設けられ磁性体からなる磁性部材54と、永久磁石53の外周側に設けられ非磁性体からなるカバー55とを備えて構成されている。
【0004】
磁性部材54はポールピースを構成するようになっており、周方向に対面する磁極からの磁束を径方向に対面するロータ51に進入させるようになっている。
【0005】
渦電流式減速装置50は、永久磁石53から発せられた磁束を磁性部材54を介してロータ51に到達させ、他の磁性部材54を介するのみで永久磁石53に戻すため、磁極を径方向に向けるタイプの渦電流式減速装置(図示せず)のようにヨーク52に磁束を流すことはなく、全磁束を制動に有効活用できるという優れた性能を発揮するものであった。
【0006】
【特許文献1】
特開2000−184690号公報(第3頁、第1図)
【0007】
【発明が解決しようとする課題】
しかしながら、全く新規な渦電流式減速装置であることから、性能への影響を考慮するとやみくもに軽量化を図ることもできず、軽量化については改良の余地が残されていた。
【0008】
そこで、本発明の目的は、上記課題を解決し、制動性能を落とすことなく軽量化できる渦電流式減速装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明は、回転自在なロータに対向して非磁性体からなる支持部材を配置し、該支持部材のロータ側に複数の永久磁石をそれぞれ磁極を周方向に向けると共に向かい合う磁極同士を同極とするように周方向に間隔を隔てて設け、これら隣り合う永久磁石同士の間にそれぞれ磁性部材を設けた渦電流式減速装置において、上記磁性部材の周方向中間位置であって上記ロータから径方向に離間される側に軽量化のための穴を形成したものである。
【0010】
穴が磁性部材内を流れる磁気に干渉しないため、磁気抵抗を高めることがなく、制動性能を落とすことなく軽量化できる。
【0011】
また、上記磁性部材の周方向中間位置であって上記ロータから径方向に離間される側の面に軽量化のための溝を形成してもよい。
【0012】
そして、回転自在なロータに対向して非磁性体からなる支持部材を配置し、該支持部材のロータ側に複数の永久磁石をそれぞれ磁極を周方向に向けると共に向かい合う磁極同士を同極とするように周方向に間隔を隔てて設け、これら隣り合う永久磁石同士の間にそれぞれ磁性部材を設けた渦電流式減速装置において、上記磁性部材の周方向中間位置であって上記ロータから径方向に離間される側の面に軽量化のための溝を形成したものであってもよい。
【0013】
また、上記穴又は上記溝又は上記穴と溝の両方が軸方向に延びるように形成されるとよい。
【0014】
上記磁性部材に上記穴又は上記溝又は上記穴と溝の両方を複数形成してもよい。
【0015】
【発明の実施の形態】
本発明の好適実施の形態を添付図面に基づいて詳述する。
【0016】
図1は本実施形態に係る渦電流式減速装置をロータの軸端側から見た正面断面図である。図2は渦電流式減速装置をロータの軸に沿って径方向に切断した断面図である。
【0017】
図1及び図2に示すように、渦電流式減速装置1は、車両の駆動軸等の動力伝達系の回転軸(図示せず)に取り付けられ回転軸と一体に回転するドラム状のロータ2と、ロータ2の内周側に軸方向移動自在に設けられた支持部材たるヨーク3と、ヨーク3の外周側(ロータ2側)に周方向に所定の間隔(等ピッチ)を隔てて複数設けられた永久磁石4と、隣り合う永久磁石4同士の間にそれぞれ設けられた磁性部材5とを備えて構成されている。
【0018】
ロータ2は、磁気を通す鉄などの磁性体で形成されており、常に一定の微小間隔で永久磁石4に近接されるように内周を真円に形成されている。ロータ2の外周には、放熱用のフィン6が複数形成されている。
【0019】
ヨーク3は、非磁性体にて筒状に形成されており、軸方向の長さをロータ2より短く形成されている。ヨーク3は、筒状に形成されたガイド7に外接しており、軸方向移動可能に支持されると共に、軸方向に伸縮するエアシリンダ8のシリンダロッド9に取り付けられている。そしてヨーク3は、エアシリンダ8が伸張することでロータ2内に入ってロータ2の内周面10に磁性部材5の外周面11を対向させる制動位置に移動され、エアシリンダ8が縮退することでロータ2外に出て磁性部材5をロータ2から軸方向に離間させる非制動位置に移動されるようになっている。
【0020】
永久磁石4は、全て同じ形状同じ磁力を有するものであり、それぞれ磁極を周方向に向けると共に向かい合う磁極同士を同極(例えばN極同士を向かい合わせる)とするように交互に向きを反転させて配置されている。
【0021】
磁性部材5は、磁性体(例えば、軟磁性材:鉄のブロック材、積層電磁鋼板等)をブロック状に形成してなるものであり、全て同じ形状に形成されている。磁性部材5は、それぞれ周方向の長さを径方向の厚さよりも大きくするように形成されており、ヨーク3に取り付けられたときに外周面11をロータ2の内周面10に所定の微小間隔を隔てて沿わせるように円弧状に形成されている。
【0022】
そして、磁性部材5の周方向中間位置であってロータ2から径方向に離間される内周側には、軽量化のための穴12がそれぞれ1つづつ形成されている。穴12は、軸方向に延びるように形成されており、磁性部材5を貫通している。穴12は加工容易な円形に形成されており、φ7mm(磁性部材5の軸方向の端面面積(穴の端面面積を含む)の約5.7%)に形成されている。
【0023】
次に本実施の形態の作用を述べる。
【0024】
エアシリンダ8を伸張させてヨーク3をロータ2の内部に移動させると、ロータ2の内周面10に磁性部材5の外周面11が微小間隔を隔てて対向される。永久磁石4から発せられる磁気は、磁性部材5を通じてロータ2へ伝わり、周方向に隣接する他の磁性部材5を経て磁気発生源である永久磁石4に戻る。すなわち、永久磁石4とロータ2との間に磁気回路13が構成される。そして、永久磁石4に対してロータ2が回転することで発生する渦電流と、永久磁石4からの磁界との相互作用により制動力が発生する。
【0025】
このとき、磁性部材5の穴12は、周方向中間位置であってロータ2から径方向に離間される内周側の位置に形成されているため、磁束に干渉して磁気抵抗を大きくすることはなく、制動性能に影響を及ぼすことはない。
【0026】
エアシリンダ8を縮退させると、ヨーク3はロータ2外に移動され、永久磁石4からの磁気はロータ2に流れなくなる。
【0027】
このように、磁性部材5の周方向中間位置であってロータ2から径方向に離間される側に軽量化のための穴12を形成したため、制動性能を保ちつつ渦電流式減速装置1を軽量化することができる。そして、ヨーク3を磁性部材5ごと軸方向に移動させるエアシリンダ8を小型で軽量なものに代えることができる。
【0028】
なお、本実施の形態では磁性部材5にφ7mmの丸穴12を軸方向に貫通して形成するものとしたがこれに限るものではない。
【0029】
図3に示すように、φ7mmの丸穴12に代えて磁性部材20にφ15mm(磁性部材の軸方向の端面面積の約26%)の丸穴21を形成しても実用可能であることが確認できた。
【0030】
具体的には、磁性部材に軽量化のための穴を形成しない場合と、φ7mmの丸穴12を形成した場合と、φ15mmの丸穴21を形成した場合とについてロータ2の回転数が1000rpm、2000rpm、3000rpmの時の制動トルクを電磁界解析した。
【0031】
結果は図13に示すトルクカーブとなった。φ7mmの丸穴12がある場合の各回転数における制動トルク(図中白抜き三角印)は穴が空いていない場合(図中黒丸印)と同じであり、制動性能を落とさずに軽量化できたことが確認できた。そして、φ15mmの丸穴21がある場合(図中白抜き丸印)については、1000rpm(低回転)時に若干のトルク低下が認められたが、2000rpm以上(中高回転)の時にトルク低下はなく、ほぼ制動性能を維持しつつ軽量化できることが確認できた。
【0032】
また、ロータ2の回転数が1000rpm、2000rpm、3000rpmの各場合において穴径の大小が制動トルクに及ぼす影響について電磁界解析を行った。
【0033】
結果は図14に示す通りである。穴径がφ0〜7mmまでは1000rpm、2000rpm、3000rpmのいずれにおいても制動トルクの低下は認められず、穴径がφ7mmを超えるものについても1000rpm時における制動トルクが穴径の大きさに反比例して若干低下する程度でほぼ制動トルクを維持できることが確認できた。そして、これらの結果から実用上、穴径の最大値はφ15mm+2〜3mm程度と予想される。すなわち、最大φ18mm(磁性部材の軸方向の端面面積の約38%)までの丸穴を磁性部材に形成できることが解った。ただし、低回転時の性能トルク低下が問題となる場合は、φ15mmより小さな穴を形成するとよい。
【0034】
また、図4、図5及び図6に示すように穴22,23,24の形状は断面三角形であっても、矩形であっても、台形であっても構わない。そして、図7に示すように、円形と四角形を組み合わせた形状の穴25でも他の形状を組み合わせた形状の穴(図示せず)であっても構わない。また、上述した穴12,21,22,23,24,25は磁性部材5,20,26,27,28,29を貫通しないものであっても構わない。そして、図8に示すように、磁性部材30に複数の穴31,32を形成してもよい。ただし、磁束への干渉を防ぐため、ロータ2側に比較的近い位置にあってはロータ2に近づくにつれて永久磁石4から離れるように穴の形状等を決定することが好ましい。
【0035】
またさらに、図9に示すように、磁性部材40の周方向中間位置であってロータ2から径方向に離間される側(内周側)の周面41に軽量化のための溝42を形成してもよい。溝42は径方向外方(ロータ2側)へ向けて窄む断面三角形状に形成されている。そして、溝42は、図10及び図11に示すように断面半円状の溝43としても矩形状の溝44としてもよく、他の形状に形成しても構わない。また、図12に示すように、磁性部材45に複数の溝46を形成したり、溝46と穴47との両方を形成してもよい。この場合、溝46と穴47をそれぞれ複数形成してもよく、いずれか一方のみを複数形成してもよい。
【0036】
また、本実施の形態では制動時、磁性部材5がロータ2に直接対向するものとしたがこれに限るものではない。図15及び図16に示すように、磁性部材5と永久磁石4をヨーク3ごとケーシング60で囲繞し、ロータ2に磁性部材5をケーシング60越しに対向させるようにしたほうがより好ましい。ケーシング60は、アルミニウムなどの非磁性材で形成するとよい。そして、ケーシング60は、ヨーク3の軸方向の移動を許容するように軸方向に長く形成されるとよく、エアシリンダ8に設けられるとよい。このように磁性部材5、永久磁石4及びヨーク3をケーシング60で囲繞したほうが埃や水などの装置内部への侵入を防げるため耐久性を向上でき、実用的である。
【0037】
そして更にケーシング60はこれに限るものではなく、図17及び図18に示すように、一部(ロータ2と磁性部材5との間に挟まれる部分62)を低炭素鋼などの磁性材で形成したケーシング61としてもよい。なお、図3〜図12に示した全ての渦電流式減速装置が上述のケーシング60又はケーシング61を備えてよいのは勿論である。
【0038】
【発明の効果】
以上要するに本発明によれば、次のような優れた効果を奏する。
(1)渦電流式減速装置を制動性能を落とすことなく軽量化できる。
【図面の簡単な説明】
【図1】本発明の好適実施の形態を示す渦電流式減速装置の正面断面図である。
【図2】図1のII−II線矢視断面図である。
【図3】他の実施の形態を示す渦電流式減速装置の正面断面図である。
【図4】他の実施の形態を示す渦電流式減速装置の正面断面図である。
【図5】他の実施の形態を示す渦電流式減速装置の正面断面図である。
【図6】他の実施の形態を示す渦電流式減速装置の正面断面図である。
【図7】他の実施の形態を示す渦電流式減速装置の正面断面図である。
【図8】他の実施の形態を示す渦電流式減速装置の正面断面図である。
【図9】他の実施の形態を示す渦電流式減速装置の正面断面図である。
【図10】他の実施の形態を示す渦電流式減速装置の正面断面図である。
【図11】他の実施の形態を示す渦電流式減速装置の正面断面図である。
【図12】他の実施の形態を示す渦電流式減速装置の正面断面図である。
【図13】磁性部材が穴を有しない場合と、φ7mmの穴を有する場合と、φ15mmの穴を有する場合のロータの回転数と制動トルクの関係を示す線図である。
【図14】ロータの回転数が1000rpmの場合と、2000rpmの場合と、3000rpmの場合の穴径と制動トルクの関係を示す線図である。
【図15】他の実施の形態を示す渦電流式減速装置の正面断面図である。
【図16】図15のXVI−XVI線矢視断面図である。
【図17】他の実施の形態を示す渦電流式減速装置の正面断面図である。
【図18】図17のXVIII−XVIII線矢視断面図である。
【図19】従来の渦電流式減速装置の正面断面図である。
【符号の説明】
1 渦電流式減速装置
2 ロータ
3 ヨーク(支持部材)
4 永久磁石
5 磁性部材
12 穴
42 溝
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an eddy current type speed reducer that applies deceleration braking to a rotating body such as a drive shaft.
[0002]
[Prior art]
2. Description of the Related Art As an eddy current type speed reducer using a permanent magnet, there is known an eddy current type speed reducer described in Patent Literature 1 of the present applicant.
[0003]
As shown in FIG. 19, the eddy current type speed reducer 50 includes a rotor 51 coupled to a rotating shaft (not shown), and a yoke 52 provided on the inner peripheral side of the rotor 51 so as to face the rotor 51 and made of a non-magnetic material. A permanent magnet 53 is provided between the permanent magnets 53 adjacent to each other, and a permanent magnet 53 is provided in the circumferential direction so that the magnetic poles are directed in the circumferential direction on the outer periphery of the yoke 52 and the magnetic poles facing each other are made the same. It is provided with a magnetic member 54 made of a magnetic material and a cover 55 provided on the outer peripheral side of the permanent magnet 53 and made of a non-magnetic material.
[0004]
The magnetic member 54 is configured to form a pole piece, and allows a magnetic flux from a magnetic pole facing in the circumferential direction to enter the rotor 51 facing in the radial direction.
[0005]
The eddy current type reduction gear 50 causes the magnetic flux emitted from the permanent magnet 53 to reach the rotor 51 via the magnetic member 54 and returns to the permanent magnet 53 only via the other magnetic member 54. Unlike the eddy current type speed reducer (not shown) of the directing type, the magnetic flux does not flow through the yoke 52, and the excellent performance that the entire magnetic flux can be effectively used for braking is exhibited.
[0006]
[Patent Document 1]
JP-A-2000-184690 (page 3, FIG. 1)
[0007]
[Problems to be solved by the invention]
However, since it is a completely new type of eddy current type speed reducer, it was not possible to reduce the weight in a blind manner considering the effect on the performance, and there is room for improvement in the weight reduction.
[0008]
Therefore, an object of the present invention is to solve the above-described problems and to provide an eddy current type speed reducer that can be reduced in weight without reducing braking performance.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a support member made of a non-magnetic material is arranged facing a rotatable rotor, and a plurality of permanent magnets are respectively directed in a circumferential direction on a rotor side of the support member, and In an eddy current type speed reducer in which magnetic poles facing each other are provided at intervals in the circumferential direction so as to have the same polarity, and magnetic members are provided between these adjacent permanent magnets, at a circumferential intermediate position of the magnetic member. In addition, a hole for reducing the weight is formed on the side radially separated from the rotor.
[0010]
Since the holes do not interfere with the magnetism flowing in the magnetic member, the weight can be reduced without increasing the magnetic resistance and without reducing the braking performance.
[0011]
Further, a groove for reducing the weight may be formed at a circumferentially intermediate position of the magnetic member and on a surface radially separated from the rotor.
[0012]
Then, a support member made of a non-magnetic material is arranged facing the rotatable rotor, and a plurality of permanent magnets are directed to the rotor side of the support member in the circumferential direction and the facing magnetic poles are made to be the same. In the eddy current type reduction gear transmission provided with a magnetic member between these adjacent permanent magnets at an intermediate position in the circumferential direction of the magnetic member and radially separated from the rotor, A groove for reducing the weight may be formed on the surface on the side to be formed.
[0013]
Further, the hole, the groove, or both the hole and the groove may be formed so as to extend in the axial direction.
[0014]
The magnetic member may have a plurality of holes or grooves or both holes and grooves.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0016]
FIG. 1 is a front cross-sectional view of the eddy current type speed reducer according to the present embodiment as viewed from the shaft end side of a rotor. FIG. 2 is a cross-sectional view of the eddy current type speed reducer cut radially along the axis of the rotor.
[0017]
As shown in FIGS. 1 and 2, an eddy current type speed reducer 1 is mounted on a rotating shaft (not shown) of a power transmission system such as a drive shaft of a vehicle, and is a drum-shaped rotor 2 which rotates integrally with the rotating shaft. And a yoke 3 as a support member provided movably in the axial direction on the inner peripheral side of the rotor 2, and a plurality of yokes 3 provided on the outer peripheral side (rotor 2 side) of the yoke 3 at predetermined intervals (equal pitch) in the circumferential direction. And a magnetic member 5 provided between adjacent permanent magnets 4.
[0018]
The rotor 2 is formed of a magnetic material such as iron that transmits magnetism, and has an inner circumference formed in a perfect circle so as to be always close to the permanent magnet 4 at a fixed minute interval. A plurality of heat dissipating fins 6 are formed on the outer periphery of the rotor 2.
[0019]
The yoke 3 is formed of a nonmagnetic material in a cylindrical shape, and has a length in the axial direction shorter than that of the rotor 2. The yoke 3 circumscribes a guide 7 formed in a cylindrical shape, is supported movably in the axial direction, and is attached to a cylinder rod 9 of an air cylinder 8 that expands and contracts in the axial direction. The yoke 3 is moved into a braking position where the air cylinder 8 extends into the rotor 2 and the outer peripheral surface 11 of the magnetic member 5 faces the inner peripheral surface 10 of the rotor 2 when the air cylinder 8 expands, and the air cylinder 8 retracts. , The magnetic member 5 is moved to a non-braking position where the magnetic member 5 is separated from the rotor 2 in the axial direction.
[0020]
The permanent magnets 4 all have the same shape and the same magnetic force, and are alternately reversed so that the magnetic poles are directed in the circumferential direction and the magnetic poles facing each other have the same polarity (for example, the N poles face each other). Are located.
[0021]
The magnetic member 5 is formed by forming a magnetic material (for example, a soft magnetic material: an iron block material, a laminated electromagnetic steel plate, or the like) in a block shape, and all have the same shape. The magnetic member 5 is formed so that the length in the circumferential direction is greater than the thickness in the radial direction, and when attached to the yoke 3, the outer peripheral surface 11 is attached to the inner peripheral surface 10 of the rotor 2 by a predetermined minute size. It is formed in an arc shape so as to be spaced apart.
[0022]
One hole 12 for reducing the weight is formed on the inner peripheral side of the magnetic member 5 in the circumferential direction and radially separated from the rotor 2. The hole 12 is formed to extend in the axial direction, and penetrates the magnetic member 5. The hole 12 is formed in a circular shape that is easy to process and has a diameter of 7 mm (about 5.7% of the axial end surface area (including the end surface area of the hole) of the magnetic member 5).
[0023]
Next, the operation of the present embodiment will be described.
[0024]
When the yoke 3 is moved into the rotor 2 by extending the air cylinder 8, the outer peripheral surface 11 of the magnetic member 5 is opposed to the inner peripheral surface 10 of the rotor 2 at a small interval. The magnetism emitted from the permanent magnet 4 is transmitted to the rotor 2 through the magnetic member 5 and returns to the permanent magnet 4 as a magnetic source via another magnetic member 5 adjacent in the circumferential direction. That is, the magnetic circuit 13 is configured between the permanent magnet 4 and the rotor 2. Then, an interaction between an eddy current generated by the rotation of the rotor 2 with respect to the permanent magnet 4 and a magnetic field from the permanent magnet 4 generates a braking force.
[0025]
At this time, since the hole 12 of the magnetic member 5 is formed at an intermediate position in the circumferential direction and at an inner circumferential side which is radially separated from the rotor 2, it is necessary to increase the magnetic resistance by interfering with the magnetic flux. There is no effect on braking performance.
[0026]
When the air cylinder 8 is retracted, the yoke 3 is moved out of the rotor 2, and the magnetism from the permanent magnet 4 stops flowing to the rotor 2.
[0027]
As described above, since the hole 12 for reducing the weight is formed at the circumferentially intermediate position of the magnetic member 5 and on the side radially separated from the rotor 2, the eddy current type reduction gear 1 can be reduced in weight while maintaining the braking performance. Can be Then, the air cylinder 8 for moving the yoke 3 in the axial direction together with the magnetic member 5 can be replaced with a small and lightweight one.
[0028]
In this embodiment, the magnetic member 5 is formed so that the φ7 mm round hole 12 is formed so as to penetrate in the axial direction. However, the present invention is not limited to this.
[0029]
As shown in FIG. 3, it has been confirmed that it is practical to form a round hole 21 of φ15 mm (about 26% of the axial end surface area of the magnetic member) in the magnetic member 20 instead of the round hole 12 of φ7 mm. did it.
[0030]
Specifically, when the hole for reducing the weight is not formed in the magnetic member, when the round hole 12 of 7 mm is formed, and when the round hole 21 of 15 mm is formed, the rotation speed of the rotor 2 is 1000 rpm, An electromagnetic field analysis of the braking torque at 2000 rpm and 3000 rpm was performed.
[0031]
The result was the torque curve shown in FIG. When there is a φ7 mm round hole 12, the braking torque at each rotation speed (open triangle in the figure) is the same as when there is no hole (black circle in the figure), and the weight can be reduced without deteriorating the braking performance. Was confirmed. In the case where there is a round hole 21 of φ15 mm (open circles in the figure), a slight decrease in torque was observed at 1000 rpm (low rotation), but there was no decrease in torque at 2000 rpm or more (middle and high rotation). It was confirmed that the weight can be reduced while maintaining the braking performance.
[0032]
In addition, electromagnetic field analysis was performed on the influence of the size of the hole diameter on the braking torque when the rotation speed of the rotor 2 was 1000 rpm, 2000 rpm, and 3000 rpm.
[0033]
The results are as shown in FIG. No reduction in braking torque is observed at any of 1000 rpm, 2000 rpm, and 3000 rpm until the hole diameter is φ0 to 7 mm, and the braking torque at 1000 rpm is inversely proportional to the size of the hole diameter even when the hole diameter exceeds φ7 mm. It was confirmed that the braking torque could be almost maintained with a slight decrease. From these results, it is expected that the maximum value of the hole diameter is about 15 mm + 2 to 3 mm in practical use. That is, it has been found that a round hole up to φ18 mm (about 38% of the axial end surface area of the magnetic member) can be formed in the magnetic member. However, if a decrease in performance torque at low rotation becomes a problem, a hole smaller than φ15 mm may be formed.
[0034]
4, 5, and 6, the shape of the holes 22, 23, and 24 may be triangular in cross section, rectangular, or trapezoidal. Then, as shown in FIG. 7, a hole 25 having a shape combining a circle and a rectangle or a hole (not shown) having a shape combining other shapes may be used. Further, the holes 12, 21, 22, 23, 24, 25 described above may not penetrate the magnetic members 5, 20, 26, 27, 28, 29. Then, a plurality of holes 31 and 32 may be formed in the magnetic member 30 as shown in FIG. However, in order to prevent interference with the magnetic flux, it is preferable to determine the shape of the hole and the like so that the hole is separated from the permanent magnet 4 as it approaches the rotor 2 at a position relatively close to the rotor 2.
[0035]
Further, as shown in FIG. 9, a groove 42 for reducing the weight is formed in the circumferential surface 41 at the intermediate position in the circumferential direction of the magnetic member 40 and on the side (inner circumferential side) radially separated from the rotor 2. May be. The groove 42 is formed in a triangular cross-section that narrows radially outward (toward the rotor 2). The groove 42 may be a groove 43 having a semicircular cross section or a rectangular groove 44 as shown in FIGS. 10 and 11, and may be formed in another shape. Further, as shown in FIG. 12, a plurality of grooves 46 may be formed in the magnetic member 45, or both the grooves 46 and the holes 47 may be formed. In this case, a plurality of grooves 46 and a plurality of holes 47 may be respectively formed, or only one of the plurality of grooves 46 and a plurality of holes 47 may be formed.
[0036]
Further, in the present embodiment, the magnetic member 5 is directly opposed to the rotor 2 at the time of braking, but the present invention is not limited to this. As shown in FIGS. 15 and 16, it is more preferable that the magnetic member 5 and the permanent magnet 4 are surrounded by the casing 60 together with the yoke 3, and the magnetic member 5 is opposed to the rotor 2 through the casing 60. The casing 60 may be formed of a non-magnetic material such as aluminum. The casing 60 may be formed to be long in the axial direction so as to allow the yoke 3 to move in the axial direction, and may be provided in the air cylinder 8. Surrounding the magnetic member 5, the permanent magnet 4, and the yoke 3 with the casing 60 in this way can prevent dust and water from entering the inside of the apparatus, so that the durability can be improved and is practical.
[0037]
Further, the casing 60 is not limited to this, and as shown in FIGS. 17 and 18, a part (a part 62 sandwiched between the rotor 2 and the magnetic member 5) is formed of a magnetic material such as low carbon steel. It is good also as casing 61 made. In addition, it goes without saying that all the eddy current type speed reducers shown in FIGS. 3 to 12 may include the above-described casing 60 or casing 61.
[0038]
【The invention's effect】
In short, according to the present invention, the following excellent effects can be obtained.
(1) The eddy current type reduction gear can be reduced in weight without deteriorating the braking performance.
[Brief description of the drawings]
FIG. 1 is a front sectional view of an eddy current type reduction gear transmission showing a preferred embodiment of the present invention.
FIG. 2 is a sectional view taken along line II-II of FIG.
FIG. 3 is a front sectional view of an eddy current type reduction gear transmission showing another embodiment.
FIG. 4 is a front sectional view of an eddy current type reduction gear transmission according to another embodiment.
FIG. 5 is a front sectional view of an eddy current type speed reducer showing another embodiment.
FIG. 6 is a front sectional view of an eddy current type reduction gear transmission according to another embodiment.
FIG. 7 is a front sectional view of an eddy current type reduction gear transmission showing another embodiment.
FIG. 8 is a front sectional view of an eddy current type speed reducer according to another embodiment.
FIG. 9 is a front sectional view of an eddy current type reduction gear transmission showing another embodiment.
FIG. 10 is a front sectional view of an eddy current type reduction gear transmission according to another embodiment.
FIG. 11 is a front sectional view of an eddy current type speed reducer according to another embodiment.
FIG. 12 is a front sectional view of an eddy current type reduction gear transmission according to another embodiment.
FIG. 13 is a diagram showing the relationship between the rotational speed of the rotor and the braking torque when the magnetic member has no hole, when it has a hole of φ7 mm, and when it has a hole of φ15 mm.
FIG. 14 is a diagram showing the relationship between the hole diameter and the braking torque when the rotation speed of the rotor is 1000 rpm, 2000 rpm, and 3000 rpm.
FIG. 15 is a front sectional view of an eddy current type reduction gear transmission according to another embodiment.
FIG. 16 is a sectional view taken along line XVI-XVI in FIG. 15;
FIG. 17 is a front sectional view of an eddy current type speed reducer according to another embodiment.
18 is a sectional view taken along the line XVIII-XVIII in FIG.
FIG. 19 is a front sectional view of a conventional eddy current type speed reducer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Eddy current type reduction gear 2 Rotor 3 Yoke (support member)
4 permanent magnet 5 magnetic member 12 hole 42 groove

Claims (5)

回転自在なロータに対向して非磁性体からなる支持部材を配置し、該支持部材のロータ側に複数の永久磁石をそれぞれ磁極を周方向に向けると共に向かい合う磁極同士を同極とするように周方向に間隔を隔てて設け、これら隣り合う永久磁石同士の間にそれぞれ磁性部材を設けた渦電流式減速装置において、上記磁性部材の周方向中間位置であって上記ロータから径方向に離間される側に軽量化のための穴を形成したことを特徴とする渦電流式減速装置。A support member made of a non-magnetic material is arranged facing the rotatable rotor, and a plurality of permanent magnets are arranged on the rotor side of the support member such that the magnetic poles are oriented in the circumferential direction and the magnetic poles facing each other have the same polarity. In an eddy current reduction device provided with a magnetic member between these adjacent permanent magnets, the magnetic member is provided at an intermediate position in a circumferential direction of the magnetic member and is radially separated from the rotor. An eddy current type speed reducer, wherein a hole for reducing the weight is formed on the side. 上記磁性部材の周方向中間位置であって上記ロータから径方向に離間される側の面に軽量化のための溝を形成した請求項1記載の渦電流式減速装置。2. The eddy current type reduction gear according to claim 1, wherein a groove for reducing the weight is formed on a surface at a radially intermediate position of the magnetic member and radially separated from the rotor. 回転自在なロータに対向して非磁性体からなる支持部材を配置し、該支持部材のロータ側に複数の永久磁石をそれぞれ磁極を周方向に向けると共に向かい合う磁極同士を同極とするように周方向に間隔を隔てて設け、これら隣り合う永久磁石同士の間にそれぞれ磁性部材を設けた渦電流式減速装置において、上記磁性部材の周方向中間位置であって上記ロータから径方向に離間される側の面に軽量化のための溝を形成したことを特徴とする渦電流式減速装置。A support member made of a non-magnetic material is arranged facing the rotatable rotor, and a plurality of permanent magnets are arranged on the rotor side of the support member such that the magnetic poles are oriented in the circumferential direction and the magnetic poles facing each other have the same polarity. In an eddy current reduction device provided with a magnetic member between these adjacent permanent magnets, the magnetic member is provided at an intermediate position in a circumferential direction of the magnetic member and is radially separated from the rotor. An eddy current type speed reducer, wherein a groove for reducing weight is formed on a side surface. 上記穴又は上記溝又は上記穴と溝の両方が軸方向に延びるように形成された請求項1〜3いずれかに記載の渦電流式減速装置。The eddy current reduction device according to any one of claims 1 to 3, wherein the hole, the groove, or both the hole and the groove are formed to extend in an axial direction. 上記磁性部材に上記穴又は上記溝又は上記穴と溝の両方を複数形成した請求項1〜4いずれかに記載の渦電流式減速装置。The eddy current type reduction gear according to any one of claims 1 to 4, wherein a plurality of the holes, the grooves, or both the holes and the grooves are formed in the magnetic member.
JP2002257368A 2002-09-03 2002-09-03 Eddy current type reduction gear Pending JP2004096935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257368A JP2004096935A (en) 2002-09-03 2002-09-03 Eddy current type reduction gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257368A JP2004096935A (en) 2002-09-03 2002-09-03 Eddy current type reduction gear

Publications (1)

Publication Number Publication Date
JP2004096935A true JP2004096935A (en) 2004-03-25

Family

ID=32062280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257368A Pending JP2004096935A (en) 2002-09-03 2002-09-03 Eddy current type reduction gear

Country Status (1)

Country Link
JP (1) JP2004096935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264576A4 (en) * 2015-02-24 2018-10-17 Nippon Steel & Sumitomo Metal Corporation Eddy-current heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264576A4 (en) * 2015-02-24 2018-10-17 Nippon Steel & Sumitomo Metal Corporation Eddy-current heater

Similar Documents

Publication Publication Date Title
JP5673899B2 (en) Eddy current reducer
EP0948118A2 (en) Eddy current reduction apparatus
JP6314399B2 (en) Eddy current reducer
JP3765291B2 (en) Eddy current reducer
JP2004096935A (en) Eddy current type reduction gear
JP3885606B2 (en) Permanent magnet type eddy current reducer
JP4752414B2 (en) Eddy current reducer
JP4839851B2 (en) Eddy current reducer
JP4296835B2 (en) Eddy current reducer
JP4010279B2 (en) Eddy current reducer
JP2007110804A (en) Eddy current decelerator
JP4882355B2 (en) Eddy current reducer
JPH05328706A (en) Eddy-current plate and cooling structure of retarder
JP2601177Y2 (en) Eddy current retarder pole piece structure
JP2004173474A (en) Eddy current type decelerator
JP2006352952A (en) Eddy current type reduction gear
JP4752416B2 (en) Eddy current reducer
JP4296836B2 (en) Eddy current reducer
JP2004328862A (en) Eddy current type reduction gear unit
JP3941740B2 (en) Eddy current reducer
JP2005143262A (en) Eddy current reduction gear
JP2004048847A (en) Eddy current speed reducer
JP2007082338A (en) Eddy current decelerator
JP2005020809A (en) Eddy current type reduction gear
JP2005143261A (en) Eddy current reduction gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050523

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070302

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Effective date: 20070510

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821