JP2004095362A - Power supply device for vehicle - Google Patents

Power supply device for vehicle Download PDF

Info

Publication number
JP2004095362A
JP2004095362A JP2002255401A JP2002255401A JP2004095362A JP 2004095362 A JP2004095362 A JP 2004095362A JP 2002255401 A JP2002255401 A JP 2002255401A JP 2002255401 A JP2002255401 A JP 2002255401A JP 2004095362 A JP2004095362 A JP 2004095362A
Authority
JP
Japan
Prior art keywords
battery
case
duct
supply
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002255401A
Other languages
Japanese (ja)
Other versions
JP4070543B2 (en
Inventor
Toshikatsu Kamoda
鴨田 年勝
Yasuharu Kuroki
黒木 靖治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002255401A priority Critical patent/JP4070543B2/en
Publication of JP2004095362A publication Critical patent/JP2004095362A/en
Application granted granted Critical
Publication of JP4070543B2 publication Critical patent/JP4070543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To uniformly cool down all battery modules by housing a number of battery modules in a plurality of steps in a battery case. <P>SOLUTION: The power supply device houses battery modules 1 in a plurality of steps in a battery case 4 formed with a supply opening 2 and an exhaust opening 3 at opposing sides, an inter-battery supply duct 8 and an inter-battery exhaust duct 9 are fitted between the battery modules in each step, and cooling ducts 10 of the battery modules 1 are linked between the inter-battery supply duct 8 and the inter-battery exhaust duct 9. An outside-case supply duct 5 is linked with the supply opening 2, and an outside-case exhaust duct 6 with the exhaust opening 3. The supply opening 2 is set in parallel with the inter-battery supply duct 8, and the exhaust opening 3 with the inter-battery exhaust duct 9, and the outside-case supply duct 5 and the outside-case exhaust duct 6 are of long and narrow shapes extended along the end face of the battery case 4 each with a contrary side open, and in almost the same shape facing the direction of air passage. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、モーターに電力を供給して電動機器を駆動する電源装置に関し、とくに、ハイブリッドカーや電気自動車等の自動車のように、大電流で駆動されるモーターの電源用に使用される大電流用の電源装置に関する。
【0002】
【従来の技術】
自動車走行用のモーターを駆動する電源に使用される大電流、大出力用の車両用の電源装置は、複数の電池を直列に連結した電池モジュールをさらに直列に接続して出力電圧を高くしている。駆動モーターの出力を大きくするためである。この種の用途に使用される電源装置は、極めて大きな電流が流れる。たとえば、ハイブリッド自動車等では、スタートするときや加速するときに、電池の出力で自動車を加速するので、100A以上と極めて大きな電流が流れる。さらに、短時間で急速に充電するときにも大きな電流が流れる。
【0003】
大電流を流して使用される電源装置は、電池の温度が上昇したときに、強制的に冷却する必要がある。とくに、多数の電池モジュールを、縦横に並べて電池ケースに入れている電源装置は、各々の電池モジュールを均等に冷却することが大切である。冷却される電池の温度にむらができると、温度が高くなる電池の性能が低下するからである。この傾向は、多数の電池モジュールを備える電源装置において極めて大きな弊害である。それは、なんらかの原因で特定の電池モジュールが劣化すると、この電池モジュールの劣化がさらに加速されるからである。劣化した電池モジュールは充電容量が小さくなる。充電容量が減少した電池モジュールは、過充電され、あるいは過放電される傾向が強くなり、この状態が劣化を加速する。車両用の電源装置は、多数の電池モジュールを備えると共に、大電流で放電されるので、全ての電池モジュールを均一に冷却するのは極めて難しい。にもかかわらず、この種の電源装置は、長い寿命特性が要求されることから、全ての電池モジュールを均一温度に冷却して、特定の電池モジュールの劣化を確実に阻止することが特に大切である。多数の電池モジュールを備える電源装置は、製造コストが高額で簡単には交換できない。また、いずれかの電池モジュールが劣化すると、これを交換するのにも相当な手間がかかる。電源装置のメンテナンスを簡単にしかも経済的にすることから、多数の電池モジュールは全てを均一に冷却することが特に大切である。
【0004】
電池ケースに複数の電池モジュールを収納して、各々の電池モジュールを均等に冷却する構造は、たとえば以下の公報に記載される。
(1) 特開平10−270095号
(2) 特開平11−180168号
(3) 特開2001−167806
(4) 特開2002−50412
これ等の公報に記載される電源装置は、多数の電池モジュールを収納している電池ケースを外装ケースに入れて、外装ケースと電池ケースとの間に空気ダクトを設けている。
【0005】
【発明が解決しようとする課題】
(1)〜(3)の公報に記載される電源装置は、電池ケースに収納している特定の電池モジュールが効率よく冷却されて、全体の電池モジュールを均一に連結するのが極めて難しい。それは、電池ケースに連結している供給ダクトと排気ダクトとが、電池ケースの全体に均一に冷却空気を供給して排気するのが難しいからである。(4)の公報に記載される電源装置は、多段に積層して配設している電池モジュールを均一に冷却するのが難しい。冷却空気を、1段目に積層している電池モジュールを通過した空気を、2段目に積層している電池モジュールの表面に通過させるからである。このため、電池モジュールを多段に積層して、いいかえると平面積の小さい電池ケースに、多数の電池モジュールを多段に積層する状態で収納すると、全ての電池モジュールを均一に冷却するのが難しくなる。
【0006】
本発明は、このような欠点を解消することを目的に開発されたものである。本発明の重要な目的は、電池ケースに多数の電池モジュールを複数段に収納して、しかも電池ケースに収納している全ての電池モジュールを均一に冷却できる車両用の電源装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明の車両用の電源装置は、前述の目的を達成するために以下の構成を備える。電源装置は、複数の電池モジュール1を収納すると共に、一端面に冷却空気の供給口2を設けて、他の端面には冷却空気の排気口3を設けている電池ケース4と、この電池ケース4の供給口2に連結されて電池ケース4に冷却空気を供給するケース外供給ダクト5と、電池ケース4の排気口3に連結されて電池ケース4内の空気を排気するケース外排気ダクト6と、ケース外供給ダクト5に強制的に冷却空気を供給し、あるいはケース外排気ダクト6から強制的に空気を排気する強制送風器7とを備える。電池ケース4は、複数の電池モジュール1を平行な姿勢で複数段に積層して、各段に配設している電池モジュール1の間に、電池モジュール1の積層方向に電池間供給ダクト8と電池間排気ダクト9とを交互に設けており、さらに上下に隣接する電池間供給ダクト8と電池間排気ダクト9に連結して、電池モジュール1の表面に冷却空気を流す冷却ダクト10を設けて、電池間供給ダクト8から冷却ダクト10を通過して電池間排気ダクト9に冷却空気を流して電池モジュール1を冷却するようにしている。電池ケース4に開口している供給口2は、電池間供給ダクト8と平行な方向に伸びるように開口されると共に、ケース外供給ダクト5を電池間供給ダクト8に連結している。電池ケース4の排気口3は、電池間排気ダクト9と平行な方向に伸びるように開口されると共に、ケース外排気ダクト6を電池間排気ダクト9に連結している。ケース外供給ダクト5は、供給口2を設けている電池ケース4の端面に沿って伸びる細長い形状であり、ケース外排気ダクト6は排気口3を設けている電池ケース4の端面に沿って伸びる細長い形状である。ケース外供給ダクト5とケース外排気ダクト6は、互いに反対側の端部を開口部とすると共に、空気の通過方向に向かってほぼ同じ形状に成形している。ケース外供給ダクト5に開口部から供給される冷却空気は、ケース外供給ダクト5から供給口2を通過して電池ケース4内の電池間供給ダクト8に流入し、電池間供給ダクト8の空気は冷却ダクト10を通過して各々の電池モジュール1を冷却し、冷却した空気は電池間排気ダクト9と排気口3とケース外排気ダクト6とを通過して外部に排気される。
【0008】
本発明の車両用の電源装置は、電池間供給ダクト8を供給側から排気側に向かって幅が次第に狭く形成し、電池間排気ダクト9を供給側から排気側に向かって幅を次第に広くすることができる。さらに、本発明の車両用の電源装置は、電池ケース4を四角形として、互いに対向する面に供給口2と排気口3を設けることができる。
【0009】
また、本発明の車両用の電源装置は、電池ケース4の一端面に電池間供給ダクト8の方向に伸びるスリット状の供給口2を開口して、電池ケース4の他端面にも電池間排気ダクト9の方向に伸びるスリット状の排気口3を開口することができる。また、本発明の電源装置は、ケース外供給ダクト5とケース外排気ダクト6を、空気の送風方向に向かって断面積をほぼ一定とすることができる。
【0010】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電源装置を例示するものであって、本発明は電源装置を以下のものに特定しない。
【0011】
さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲の欄」、および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
【0012】
図1の平面図と図2の断面図に示す車両用の電源装置は、複数の電池モジュール1を収納すると共に、一端面に冷却空気の供給口2を設けて、他の端面には冷却空気の排気口3を設けている電池ケース4と、この電池ケース4の供給口2に連結されて、供給口2を通過させて電池ケース4に冷却空気を供給するケース外供給ダクト5と、電池ケース4の排気口3に連結されて、電池ケース4内の空気を排気口3に通過させて排気するケース外排気ダクト6と、このケース外供給ダクト5に強制的に冷却空気を供給する強制送風器7とを備える。図の電源装置は、ケース外供給ダクト5に強制送風器7を設けているが、強制送風器7は、図の鎖線で示すように、ケース外排気ダクト6に設けてケース外排気ダクト6から強制的に空気を排気することもできる。
【0013】
電池ケース4は、複数の電池モジュール1を平行な姿勢で複数段に積層して、各段に配設している電池モジュール1の間に、電池モジュール1の積層方向に電池間供給ダクト8と電池間排気ダクト9とを交互に設けている。図の電池ケース4は、複数の電池モジュール1を4段に積層して収納している。電池間排気ダクト9は、1段目と2段目の電池モジュール1の間と、3段目と4段目の電池モジュール1の間とに設けている。電池間排気ダクト9は、供給側から排気側に向かって間隔を次第に広くしている。電池間排気ダクト9は、上下に配設している電池モジュール1の間に配設される。したがって、上下の電池モジュール1の間隔を狭くして、電池間排気ダクト9の幅を狭くしている。電池間供給ダクト8は、2段目と3段目の電池モジュール1の間に設けている。さらに、電池間供給ダクト8は、1段目の電池モジュール1とケース内面との間、さらに4段目の電池モジュール1とケース内面との間にも設けている。電池間供給ダクト8は、供給側から排気側に向かって幅を次第に狭くしている。
【0014】
電池ケース4には、上下に隣接する電池間供給ダクト8と電池間排気ダクト9に連結して、電池モジュール1の表面に冷却空気を流す冷却ダクト10を設けている。電池ケース4は、電池モジュール1を収納するインナーケース11を内蔵して、このインナーケース11で冷却ダクト10を設けている。インナーケース11はプラスチックを成形したもので、複数の収納筒12を同一平面に平行に連結している。各々の収納筒12は内部に電池モジュール1を収納している。収納筒12の内形は電池モジュール1の外形よりも大きく、ここに電池モジュール1を収納して、電池モジュール1の表面と収納筒12の内面との間に冷却ダクト10を設けている。図の電池モジュール1は円柱状で、収納筒12を円筒状に成形している。電池モジュールは、細長い角柱状とすることができる。この電池モジュールを収納する収納筒は、角筒状に成形される。電池モジュール1は、Oリング等のリング状のスペーサー(図示せず)を介して収納筒12に配設される。スペーサーはゴム状弾性体をリング状に成形したものである。複数のリング状のスペーサーは所定の間隔でひとつの電池モジュール1に装着される。リング状のスペーサーは、電池モジュール1を収納筒12に配設すると共に、電池モジュール1の全周と収納筒12の内面との間に等間隔の冷却ダクト10を設ける。インナーケース11は、図において電池モジュール1の中心で上下に分割されている。上下のインナーケース11でOリング等のスペーサーを入れた電池モジュール1を挟着して、電池モジュール1を定位置に保持する。このとき、Oリング等のスペーサーは多少変形する程度に押し潰されて、収納筒12の内面に密着し、電池モジュール1を遊びのない状態でしっかりと保持する。
【0015】
インナーケース11の収納筒12は、上下に貫通孔13を設けている。貫通孔13は、電池モジュール1の縦方向に伸びて開口されている。貫通孔13は、冷却ダクト10を電池間排気ダクト9又は電池間供給ダクト8に連結する。この電池ケース4は、図2と図3に示すように、電池間供給ダクト8に供給される空気を、一方の貫通孔13から冷却ダクト10に供給し、冷却ダクト10を通過するときに電池モジュール1の表面に沿って流して電池モジュール1を強制冷却し、その後、他方の貫通孔13から電池間排気ダクト9に排出する。電池ケース4の供給口2から電池間供給ダクト8に供給される冷却空気は、複数の冷却ダクト10に分岐して流れて、同一平面に並べている電池モジュール1を冷却し、その後、電池間排気ダクト9に集合されて排気口3から電池ケース4の外部に排気される。すなわち、冷却空気は、
ケース外供給ダクト5→供給口2→電池間供給ダクト8→貫通孔13→冷却ダクト10→貫通孔13→電池間排気ダクト9→排気口3→ケース外排気ダクト6を流れて電池モジュール1を冷却する。
【0016】
電池ケース4の供給口2は、電池間供給ダクト8に沿って開口されて、ケース外供給ダクト5を電池間供給ダクト8に連結している。図の電池ケース4は、複数段に積層している1段目の電池モジュール1の下と、4段目の電池モジュール1の上と、2段目と3段目の電池モジュール1の間に電池間供給ダクト8を設けているので、電池ケース4には、最下段と最上段と中間とに供給口2を開口している。供給口2は、電池間供給ダクト8と平行な方向に伸びるように開口されて、ケース外供給ダクト5から供給される冷却空気を、電池間供給ダクト8の全体に均一に供給する。
【0017】
電池ケース4の排気口3は、電池間排気ダクト9に沿って開口されて、ケース外排気ダクト6を電池間排気ダクト9に連結している。図の電池ケース4は、複数段に積層している1段目と2段目の電池モジュール1の間と、3段目と4段目の電池モジュール1の間に電池間排気ダクト9を設けているので、電池ケース4には、1段目と2段目の電池モジュール1の間と、3段目と4段目の電池モジュール1の間に排気口3を開口している。排気口3は、電池間排気ダクト9と平行な方向に伸びるように開口されて、電池間排気ダクト9の空気をむらなくケース外排気ダクト6に排気する。
【0018】
図1に示す電池ケース4は四角形で、互いに対向する面に供給口2と排気口3を設けている。図において電池ケース4は、右側の面に供給口2を開口して、左側の面に排気口3を開口している。図4は、供給口2と排気口3の位置をわかりやすくするために、電池モジュール1を除いた電池ケース4とケース外供給ダクト5とケース外排気ダクト6とを示している。この電池ケース4は、電池ケース4の一端面(図において右上面)に電池間供給ダクト8の方向に伸びるスリット状の供給口2を開口して、電池ケース4の他端面(図において左下面)には電池間排気ダクト9の方向に伸びるスリット状の排気口3を開口している。
【0019】
図1と図4に示すように、ケース外供給ダクト5は、供給口2を設けている電池ケース4の端面に沿って伸びる細長い形状であり、ケース外排気ダクト6は、排気口3を設けている電池ケース4の端面に沿って伸びる細長い形状である。ケース外供給ダクト5とケース外排気ダクト6は、複数の電池間供給ダクト8及び電池間排気ダクト9に冷却空気を均一に送風できるように、互いに反対側の端部を開口部とすると共に、空気の通過方向に向かってほぼ同じ形状に成形している。さらに、図1と図4のケース外供給ダクト5とケース外排気ダクト6は、空気の送風方向に向かって断面積をほぼ一定としている。ただし、図示しないが、ケース外供給ダクトとケース外排気ダクトは、空気の送風方向にむかって次第に断面積を小さくすることもできる。
【0020】
図1の電源装置は、ケース外供給ダクト5の上端を開口して、ケース外排気ダクト6の下端を開口し、ケース外供給ダクト5とケース外排気ダクト6は互いに反対側を開口している。ほぼ同じ形状で互いに反対側を開口しているケース外供給ダクト5とケース外排気ダクト6は、図1のA、B、Cで示すような異なる送風部分において均一に冷却空気を送風できる。それは、A、B、Cの送風部分において、両端の圧力差が等しくなるからである。たとえば、図1に示すように、ケース外供給ダクト5に強制送風器7を連結して冷却空気を圧送する場合、ケース外供給ダクト5の内部の圧力は、A、B、Cの部分で順番に高くなる。それは、ケース外供給ダクト5の内部に送風される空気に送風抵抗があるからである。またケース外排気ダクト6内の圧力もA、B、Cの順番に高くなる。ケース外排気ダクト6内に送風される空気も送風抵抗があるからである。電池ケース4内をA、B、Cの経路で通過する空気は、各々流入側と排気側がA、B、Cの順番で圧力が高くなるので、A、B、Cの経路において流入側と排出側の圧力差はほぼ等しくなり、A、B、Cに均等に冷却空気が送風される。この状態は、ケース外供給ダクト5を、供給口2を設けている電池ケース4の端面に沿って伸びる細長い形状とし、ケース外排気ダクト6を排気口3を設けている電池ケース4の端面に沿って伸びる細長い形状とし、さらに、ケース外供給ダクト5とケース外排気ダクト6の開口部を、互いに反対側の端部に開口し、さらに、空気の通過方向に向かってほぼ同じ形状に成形することによって実現される。
【0021】
ところで、本明細書においてケース外供給ダクトとケース外排気ダクトとをほぼ同じ形状に成形するとは、完全に一致する形状に限定することなく、ケース外供給ダクトとケース外排気ダクトが、実質的に同じように空気を送風できる形状を意味するものとする。したがって、たとえば、ケース外供給ダクトとケース外排気ダクトを横に切断した断面積の差が10%以下である場合には、ケース外供給ダクトとケース外排気ダクトはほぼ同じ形状であるとする。
【0022】
【発明の効果】
本発明の車両用の電源装置は、電池ケースに多数の電池モジュールを収納して、全ての電池モジュールを冷却空気で均一に冷却できる特長がある。それは、本発明の電源装置が、複数の電池を収納している電池ケースの反対側に供給口と排気口を設けて、供給口をケース外供給ダクトに、排気口をケース外排気ダクトに連結しており、電池ケースには電池モジュールを複数段に積層するように収納して多段に積層している電池モジュールの間に電池間供給ダクトと電池間排気ダクトを交互に設けており、さらに電池間供給ダクトと電池間排気ダクトに連結して、電池モジュールの表面に冷却空気を流す冷却ダクトを設け、さらにまた、電池ケースの供給口を電池間供給ダクトと平行な方向に開口すると共に、排気口を電池間排気ダクトと平行な方向に開口し、また、ケース外供給ダクトは、供給口を設けている電池ケースの端面に沿って伸びる細長い形状で、ケース外排気ダクトは排気口を設けている電池ケースの端面に沿って伸びる細長い形状とし、かつ、ケース外供給ダクトとケース外排気ダクトは、互いに反対側の端部を開口部とすると共に、空気の通過方向に向かってほぼ同じ形状に成形しているからである。この構造の電源装置は、ケース外供給ダクトとケース外排気ダクトでもって、電池ケースの内部にむらなく冷却空気を送風できると共に、電池ケースには多段に電池モジュールを収納しているが、全ての電池モジュールを新鮮な冷却空気で冷却して、電池モジュールを通過した空気が再び別の電池モジュールを冷却することはない。このため、電池ケースに多段に収納している全ての電池モジュールを均一に斑なく冷却できる優れた特徴が実現される。
【図面の簡単な説明】
【図1】本発明の実施例にかかる電源装置の平面図
【図2】図1に示す電源装置の断面斜視図
【図3】図1に示す電源装置の冷却空気が送風される状態を示す概略断面図
【図4】図1に示す電源装置のケース外供給ダクトとケース外排気ダクトと電池ケースを示す斜視図
【符号の説明】
1…電池モジュール
2…供給口
3…排気口
4…電池ケース
5…ケース外供給ダクト
6…ケース外排気ダクト
7…強制送風器
8…電池間供給ダクト
9…電池間排気ダクト
10…冷却ダクト
11…インナーケース
12…収納筒
13…貫通孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power supply device for supplying electric power to a motor to drive an electric device, and particularly to a large current used for a power supply of a motor driven by a large current, such as a hybrid car or an electric vehicle. The present invention relates to a power supply device.
[0002]
[Prior art]
A high-current, high-output vehicle power supply device used as a power supply for driving a motor for automobile driving is configured by further connecting a battery module in which a plurality of batteries are connected in series and further increasing the output voltage. I have. This is to increase the output of the drive motor. An extremely large current flows through a power supply device used for this type of application. For example, in a hybrid vehicle or the like, when starting or accelerating, the vehicle is accelerated by the output of the battery, so that an extremely large current of 100 A or more flows. Further, a large current flows even when charging is performed quickly in a short time.
[0003]
A power supply device used by passing a large current needs to be forcibly cooled when the temperature of the battery rises. In particular, in a power supply device in which a large number of battery modules are arranged in a battery case in a state of being arranged vertically and horizontally, it is important to cool each battery module uniformly. This is because if the temperature of the battery to be cooled becomes uneven, the performance of the battery whose temperature increases becomes lower. This tendency is an extremely bad effect in a power supply device having a large number of battery modules. This is because if a specific battery module deteriorates for some reason, the deterioration of this battery module is further accelerated. A deteriorated battery module has a small charge capacity. A battery module with a reduced charge capacity has a greater tendency to be overcharged or overdischarged, and this condition accelerates deterioration. Since a power supply device for a vehicle includes a large number of battery modules and is discharged with a large current, it is extremely difficult to uniformly cool all the battery modules. Nevertheless, since long-life characteristics are required for this type of power supply, it is particularly important to cool all battery modules to a uniform temperature and reliably prevent the deterioration of specific battery modules. is there. A power supply device having a large number of battery modules is expensive to manufacture and cannot be easily replaced. In addition, when any one of the battery modules deteriorates, it takes considerable time to replace the battery module. It is particularly important to cool all of the battery modules uniformly, so that maintenance of the power supply is simple and economical.
[0004]
A structure in which a plurality of battery modules are housed in a battery case and each battery module is cooled uniformly is described in, for example, the following publication.
(1) JP-A-10-270095 (2) JP-A-11-180168 (3) JP-A-2001-167806
(4) JP-A-2002-50412
In the power supply devices described in these publications, a battery case accommodating a large number of battery modules is placed in an outer case, and an air duct is provided between the outer case and the battery case.
[0005]
[Problems to be solved by the invention]
In the power supply devices described in the publications of (1) to (3), it is extremely difficult to efficiently cool a specific battery module housed in a battery case and uniformly connect the entire battery modules. This is because it is difficult for the supply duct and the exhaust duct connected to the battery case to uniformly supply and exhaust the cooling air to the entire battery case. In the power supply device described in the publication of (4), it is difficult to uniformly cool the battery modules arranged in multiple layers. This is because the cooling air passes through the surface of the battery module stacked in the second stage while passing through the battery module stacked in the first stage. For this reason, when battery modules are stacked in multiple stages, in other words, when a large number of battery modules are stored in a multi-tiered state in a battery case having a small flat area, it becomes difficult to uniformly cool all battery modules.
[0006]
The present invention has been developed for the purpose of solving such disadvantages. An important object of the present invention is to provide a power supply device for a vehicle in which a large number of battery modules are housed in a battery case in a plurality of stages and all the battery modules housed in the battery case can be uniformly cooled. is there.
[0007]
[Means for Solving the Problems]
The power supply device for a vehicle according to the present invention has the following configuration to achieve the above object. The power supply device accommodates a plurality of battery modules 1 and has a cooling air supply port 2 provided at one end face and a cooling air exhaust port 3 provided at the other end face. An outside case supply duct 5 connected to the supply port 2 of the battery case 4 and supplying cooling air to the battery case 4, and an outside case exhaust duct 6 connected to the exhaust port 3 of the battery case 4 and exhausting the air inside the battery case 4. And a forced air blower 7 for forcibly supplying cooling air to the outside case supply duct 5 or forcibly exhausting air from the outside case exhaust duct 6. The battery case 4 includes a plurality of battery modules 1 stacked in a plurality of stages in a parallel posture, and an inter-cell supply duct 8 in a stacking direction of the battery modules 1 between the battery modules 1 arranged in each stage. Inter-battery exhaust ducts 9 are provided alternately, and a cooling duct 10 for flowing cooling air to the surface of the battery module 1 is provided by being connected to the vertically inter-battery supply duct 8 and the inter-battery exhaust duct 9. The cooling module 10 is cooled by flowing cooling air from the inter-cell supply duct 8 to the inter-cell exhaust duct 9 through the cooling duct 10. The supply port 2 opened in the battery case 4 is opened so as to extend in a direction parallel to the inter-battery supply duct 8, and connects the outside case supply duct 5 to the inter-battery supply duct 8. The exhaust port 3 of the battery case 4 is opened so as to extend in a direction parallel to the inter-battery exhaust duct 9, and connects the out-of-case exhaust duct 6 to the inter-battery exhaust duct 9. The outside case supply duct 5 has an elongated shape extending along the end face of the battery case 4 provided with the supply port 2, and the outside case exhaust duct 6 extends along the end face of the battery case 4 having the exhaust port 3. It has an elongated shape. The outside-case supply duct 5 and the outside-case exhaust duct 6 have openings at opposite ends, and are formed in substantially the same shape in the air passage direction. The cooling air supplied from the opening to the outside-case supply duct 5 passes through the supply port 2 from the outside-case supply duct 5, flows into the inter-cell supply duct 8 in the battery case 4, and the air in the inter-cell supply duct 8. Cools each battery module 1 through the cooling duct 10, and the cooled air is exhausted to the outside through the inter-cell exhaust duct 9, the exhaust port 3, and the case-exhaust duct 6.
[0008]
In the power supply device for a vehicle according to the present invention, the width of the inter-cell supply duct 8 is gradually reduced from the supply side to the exhaust side, and the width of the inter-cell exhaust duct 9 is gradually increased from the supply side to the exhaust side. be able to. Further, in the power supply device for a vehicle according to the present invention, the battery case 4 may be formed in a rectangular shape, and the supply port 2 and the exhaust port 3 may be provided on surfaces facing each other.
[0009]
In the power supply device for a vehicle according to the present invention, the slit-shaped supply port 2 extending in the direction of the inter-cell supply duct 8 is opened at one end of the battery case 4, and the inter-cell exhaust is also provided at the other end of the battery case 4. A slit-shaped exhaust port 3 extending in the direction of the duct 9 can be opened. In the power supply device of the present invention, the cross-sectional area of the outside-case supply duct 5 and the outside-case exhaust duct 6 can be made substantially constant in the air blowing direction.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments described below exemplify a power supply device for embodying the technical idea of the present invention, and the present invention does not specify the power supply device as follows.
[0011]
Further, in this specification, in order to make it easy to understand the claims, the numbers corresponding to the members shown in the embodiments are referred to as “claims” and “means for solving the problems”. Are added to the members indicated by "." However, the members described in the claims are not limited to the members of the embodiments.
[0012]
The power supply device for a vehicle shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 2 accommodates a plurality of battery modules 1, has a cooling air supply port 2 at one end face, and has a cooling air supply port at another end face. A battery case 4 provided with an exhaust port 3 of the battery case, an external supply duct 5 connected to the supply port 2 of the battery case 4 and supplying cooling air to the battery case 4 through the supply port 2; An exhaust duct 6 outside the case, which is connected to the exhaust port 3 of the case 4 to allow the air in the battery case 4 to pass through the exhaust port 3 and exhaust it, and forcibly supply cooling air to the supply duct 5 outside the case. And a blower 7. In the power supply device shown in the drawing, a forced blower 7 is provided in the supply duct 5 outside the case, but the forced blower 7 is provided in the exhaust duct 6 outside the case as shown by a dashed line in the drawing, and the forced air blower 7 Air can also be forcibly exhausted.
[0013]
The battery case 4 includes a plurality of battery modules 1 stacked in a plurality of stages in a parallel posture, and an inter-cell supply duct 8 in a stacking direction of the battery modules 1 between the battery modules 1 arranged in each stage. Inter-battery exhaust ducts 9 are provided alternately. The illustrated battery case 4 houses a plurality of battery modules 1 stacked in four layers. The inter-cell exhaust duct 9 is provided between the first and second battery modules 1 and between the third and fourth battery modules 1. The interval between the battery exhaust ducts 9 is gradually increased from the supply side to the exhaust side. The inter-battery exhaust duct 9 is disposed between the battery modules 1 disposed vertically. Therefore, the interval between the upper and lower battery modules 1 is reduced, and the width of the inter-cell exhaust duct 9 is reduced. The inter-battery supply duct 8 is provided between the second-stage and third-stage battery modules 1. Further, the inter-battery supply duct 8 is provided between the first-stage battery module 1 and the inner surface of the case, and further between the fourth-stage battery module 1 and the inner surface of the case. The width of the inter-cell supply duct 8 is gradually reduced from the supply side to the exhaust side.
[0014]
The battery case 4 is provided with a cooling duct 10 that is connected to a vertically adjacent battery supply duct 8 and a battery exhaust duct 9 and that allows cooling air to flow through the surface of the battery module 1. The battery case 4 has a built-in inner case 11 for accommodating the battery module 1, and a cooling duct 10 is provided by the inner case 11. The inner case 11 is made of plastic, and connects a plurality of storage tubes 12 in parallel on the same plane. Each storage tube 12 stores the battery module 1 therein. The inner shape of the storage tube 12 is larger than the outer shape of the battery module 1. The battery module 1 is stored here, and the cooling duct 10 is provided between the surface of the battery module 1 and the inner surface of the storage tube 12. The illustrated battery module 1 has a cylindrical shape, and the storage tube 12 is formed in a cylindrical shape. The battery module can be in the shape of an elongated prism. The storage tube for storing the battery module is formed in a rectangular tube shape. The battery module 1 is disposed in the storage tube 12 via a ring-shaped spacer (not shown) such as an O-ring. The spacer is formed by molding a rubber-like elastic body into a ring shape. The plurality of ring-shaped spacers are mounted on one battery module 1 at predetermined intervals. The ring-shaped spacer arranges the battery module 1 in the storage tube 12 and provides cooling ducts 10 at equal intervals between the entire periphery of the battery module 1 and the inner surface of the storage tube 12. The inner case 11 is vertically divided at the center of the battery module 1 in the figure. The battery module 1 containing a spacer such as an O-ring is sandwiched between the upper and lower inner cases 11 to hold the battery module 1 in a fixed position. At this time, the spacer such as the O-ring is crushed to a degree that the spacer is slightly deformed, and closely adheres to the inner surface of the storage tube 12 to securely hold the battery module 1 without play.
[0015]
The storage tube 12 of the inner case 11 is provided with through holes 13 on the upper and lower sides. The through-hole 13 extends in the longitudinal direction of the battery module 1 and is open. The through holes 13 connect the cooling duct 10 to the inter-battery exhaust duct 9 or the inter-battery supply duct 8. As shown in FIGS. 2 and 3, the battery case 4 supplies the air supplied to the inter-battery supply duct 8 from one through hole 13 to the cooling duct 10, and when passing through the cooling duct 10, the battery The battery module 1 is forced to cool down by flowing along the surface of the module 1, and then is discharged from the other through hole 13 to the battery exhaust duct 9. Cooling air supplied from the supply port 2 of the battery case 4 to the inter-battery supply duct 8 branches off into a plurality of cooling ducts 10 and cools the battery modules 1 arranged on the same plane, and then exhausts between the batteries. The gas is collected in the duct 9 and exhausted from the exhaust port 3 to the outside of the battery case 4. That is, the cooling air is
Supply duct 5 outside the case 5 → Supply port 2 → Supply duct 8 between batteries → Through hole 13 → Cooling duct 10 → Through hole 13 → Exhaust duct 9 between batteries → Exhaust port 3 → Flow through the exhaust duct 6 outside the case and the battery module 1 Cooling.
[0016]
The supply port 2 of the battery case 4 is opened along the inter-battery supply duct 8, and connects the outside case supply duct 5 to the inter-battery supply duct 8. The battery case 4 shown in the figure is below the first-stage battery module 1 stacked in a plurality of stages, above the fourth-stage battery module 1, and between the second- and third-stage battery modules 1. Since the battery supply duct 8 is provided, the battery case 4 has the supply ports 2 opened at the lowermost stage, the uppermost stage, and the middle. The supply port 2 is opened so as to extend in a direction parallel to the inter-battery supply duct 8, and uniformly supplies cooling air supplied from the outside-case supply duct 5 to the entire inter-battery supply duct 8.
[0017]
The exhaust port 3 of the battery case 4 is opened along the inter-cell exhaust duct 9, and connects the extra-case exhaust duct 6 to the inter-cell exhaust duct 9. In the battery case 4 shown in the figure, an inter-cell exhaust duct 9 is provided between the first and second battery modules 1 stacked in a plurality of stages and between the third and fourth battery modules 1. Therefore, the battery case 4 has an exhaust port 3 opened between the first and second battery modules 1 and between the third and fourth battery modules 1. The exhaust port 3 is opened so as to extend in a direction parallel to the inter-cell exhaust duct 9, and uniformly exhausts the air in the inter-cell exhaust duct 9 to the outside case exhaust duct 6.
[0018]
The battery case 4 shown in FIG. 1 is rectangular and has a supply port 2 and an exhaust port 3 on surfaces facing each other. In the figure, the battery case 4 has a supply port 2 opened on the right side surface and an exhaust port 3 opened on the left side surface. FIG. 4 shows the battery case 4 excluding the battery module 1, the supply duct 5 outside the case, and the exhaust duct 6 outside the case in order to make the positions of the supply port 2 and the exhaust port 3 easy to understand. The battery case 4 has a slit-shaped supply port 2 extending in the direction of the inter-battery supply duct 8 at one end face (the upper right face in the drawing) of the battery case 4 and the other end face (the lower left face in the drawing) of the battery case 4. ), A slit-shaped exhaust port 3 extending in the direction of the inter-cell exhaust duct 9 is opened.
[0019]
As shown in FIGS. 1 and 4, the supply duct 5 outside the case has an elongated shape extending along the end surface of the battery case 4 having the supply port 2, and the exhaust duct 6 outside the case has the exhaust port 3. It has an elongated shape extending along the end face of the battery case 4. The outside-case supply duct 5 and the outside-case exhaust duct 6 have opposite ends as openings so that cooling air can be uniformly blown to the plurality of inter-battery supply ducts 8 and inter-battery exhaust ducts 9. They are formed in substantially the same shape in the direction of air passage. Further, the outside case supply duct 5 and outside case exhaust duct 6 shown in FIGS. 1 and 4 have a substantially constant cross-sectional area in the air blowing direction. However, although not shown, the outside-case supply duct and the outside-case exhaust duct can be gradually reduced in cross-sectional area toward the air blowing direction.
[0020]
In the power supply device of FIG. 1, the upper end of the outside case supply duct 5 is opened, the lower end of the outside case exhaust duct 6 is opened, and the outside case supply duct 5 and the outside case exhaust duct 6 are opened on opposite sides. . The out-of-case supply duct 5 and the out-of-case exhaust duct 6, which have substantially the same shape and open on opposite sides, can blow cooling air uniformly in different air blowing portions as shown by A, B, and C in FIG. This is because the pressure difference between both ends becomes equal in the air blowing portions of A, B, and C. For example, as shown in FIG. 1, when the forced air blower 7 is connected to the supply duct 5 outside the case and the cooling air is pressure-fed, the pressure inside the supply duct 5 outside the case is changed in the order of A, B, and C in order. Become higher. This is because the air blown into the outside case supply duct 5 has a blowing resistance. Further, the pressure in the outside exhaust duct 6 also increases in the order of A, B, and C. This is because the air blown into the outside case exhaust duct 6 also has blowing resistance. The air passing through the inside of the battery case 4 along the paths A, B, and C increases in pressure in the order of A, B, and C on the inflow side and the exhaust side. The pressure difference on the side is substantially equal, and the cooling air is blown evenly to A, B and C. In this state, the supply duct 5 outside the case has an elongated shape extending along the end face of the battery case 4 provided with the supply port 2, and the exhaust duct 6 outside the case is attached to the end face of the battery case 4 provided with the exhaust port 3. The case is formed to have an elongated shape extending along the opening, and the openings of the outside-case supply duct 5 and the outside-case exhaust duct 6 are opened at opposite ends, and are formed into substantially the same shape in the air passage direction. This is achieved by:
[0021]
By the way, in this specification, forming the outside-case supply duct and the outside-case exhaust duct into substantially the same shape means that the outside-case supply duct and the outside-case exhaust duct are substantially not limited to a completely coincident shape. Similarly, it means a shape that can blow air. Therefore, for example, when the difference between the cross-sectional areas of the outside-case supply duct and the outside-case exhaust duct cut laterally is 10% or less, it is assumed that the outside-case supply duct and the outside-case exhaust duct have substantially the same shape.
[0022]
【The invention's effect】
The power supply device for a vehicle according to the present invention has a feature that a large number of battery modules are housed in a battery case and all the battery modules can be uniformly cooled by cooling air. That is, the power supply device of the present invention provides a supply port and an exhaust port on the opposite side of the battery case containing a plurality of batteries, and connects the supply port to the supply duct outside the case and the exhaust port to the exhaust duct outside the case. In the battery case, the battery modules are housed so as to be stacked in a plurality of stages, and inter-battery supply ducts and inter-battery exhaust ducts are alternately provided between the multi-stage stacked battery modules. A cooling duct that allows cooling air to flow on the surface of the battery module is connected to the battery supply duct and battery exhaust duct, and the battery case supply port is opened in a direction parallel to the battery supply duct, The outlet is open in the direction parallel to the inter-cell exhaust duct, and the supply duct outside the case is an elongated shape that extends along the end surface of the battery case where the supply port is provided. The battery case has an elongated shape that extends along the end face of the battery case, and the outside supply duct and outside case exhaust duct have opposite ends as openings, and are almost the same in the air passage direction. This is because it is formed into a shape. The power supply device of this structure can supply cooling air evenly to the inside of the battery case with the supply duct outside the case and the exhaust duct outside the case, and the battery case contains battery modules in multiple stages. The battery module is cooled with fresh cooling air, and the air passing through the battery module does not cool another battery module again. Therefore, an excellent feature that all the battery modules housed in the battery case in multiple stages can be uniformly cooled without unevenness is realized.
[Brief description of the drawings]
FIG. 1 is a plan view of a power supply device according to an embodiment of the present invention. FIG. 2 is a cross-sectional perspective view of the power supply device shown in FIG. 1. FIG. 3 shows a state in which cooling air of the power supply device shown in FIG. FIG. 4 is a perspective view showing a supply duct outside a case, an exhaust duct outside a case, and a battery case of the power supply device shown in FIG. 1;
DESCRIPTION OF SYMBOLS 1 ... Battery module 2 ... Supply port 3 ... Exhaust port 4 ... Battery case 5 ... Outside case supply duct 6 ... Outside case exhaust duct 7 ... Forced blower 8 ... Between battery supply duct 9 ... Between battery exhaust duct 10 ... Cooling duct 11 ... Inner case 12 ... Storage cylinder 13 ... Through-hole

Claims (5)

複数の電池モジュール(1)を収納すると共に、一端面に冷却空気の供給口(2)を設けて、他の端面には冷却空気の排気口(3)を設けている電池ケース(4)と、この電池ケース(4)の供給口(2)に連結されて電池ケース(4)に冷却空気を供給するケース外供給ダクト(5)と、電池ケース(4)の排気口(3)に連結されて電池ケース(4)内の空気を排気するケース外排気ダクト(6)と、ケース外供給ダクト(5)に強制的に冷却空気を供給し、あるいはケース外排気ダクト(6)から強制的に空気を排気する強制送風器(7)とを備えており、
電池ケース(4)は、複数の電池モジュール(1)を平行な姿勢で複数段に積層して、各段に配設している電池モジュール(1)の間に、電池モジュール(1)の積層方向に電池間供給ダクト(8)と電池間排気ダクト(9)とを交互に設けており、さらに上下に隣接する電池間供給ダクト(8)と電池間排気ダクト(9)に連結して、電池モジュール(1)の表面に冷却空気を流す冷却ダクト(10)を設けて、電池間供給ダクト(8)から冷却ダクト(10)を通過して電池間排気ダクト(9)に冷却空気を流して電池モジュール(1)を冷却するようにしており、
電池ケース(4)に開口している供給口(2)は、電池間供給ダクト(8)と平行な方向に伸びるように開口されると共に、ケース外供給ダクト(5)を電池間供給ダクト(8)に連結しており、電池ケース(4)の排気口(3)は、電池間排気ダクト(9)と平行な方向に伸びるように開口されると共に、ケース外排気ダクト(6)を電池間排気ダクト(9)に連結しており、
ケース外供給ダクト(5)は、供給口(2)を設けている電池ケース(4)の端面に沿って伸びる細長い形状であり、ケース外排気ダクト(6)は排気口(3)を設けている電池ケース(4)の端面に沿って伸びる細長い形状であり、さらに、ケース外供給ダクト(5)とケース外排気ダクト(6)は、互いに反対側の端部を開口部とすると共に、空気の通過方向に向かってほぼ同じ形状に成形され、
ケース外供給ダクト(5)に開口部から供給される冷却空気が、ケース外供給ダクト(5)から供給口(2)を通過して電池ケース(4)内の電池間供給ダクト(8)に流入し、電池間供給ダクト(8)の空気が冷却ダクト(10)を通過して各々の電池モジュール(1)を冷却し、冷却した空気が電池間排気ダクト(9)と排気口(3)とケース外排気ダクト(6)とを通過して外部に排気されるようにしてなる車両用の電源装置。
A battery case (4) that houses a plurality of battery modules (1), and has a cooling air supply port (2) on one end face and a cooling air exhaust port (3) on another end face; A supply duct (5) connected to the supply port (2) of the battery case (4) and supplying cooling air to the battery case (4); and an exhaust port (3) of the battery case (4). The cooling air is forcibly supplied to the outside case exhaust duct (6) for exhausting the air inside the battery case (4) and the outside case supply duct (5), or the cooling air is forced from the outside case exhaust duct (6). And a forced air blower (7) for exhausting air.
The battery case (4) includes a plurality of battery modules (1) stacked in a plurality of stages in a parallel posture, and the battery modules (1) are stacked between the battery modules (1) arranged in each stage. In the direction, inter-cell supply ducts (8) and inter-cell exhaust ducts (9) are provided alternately, and further connected to the vertically adjacent inter-cell supply duct (8) and inter-cell exhaust duct (9), A cooling duct (10) for flowing cooling air is provided on the surface of the battery module (1), and the cooling air flows from the inter-cell supply duct (8) through the cooling duct (10) to the inter-cell exhaust duct (9). To cool the battery module (1)
The supply port (2) opening to the battery case (4) is opened so as to extend in a direction parallel to the inter-battery supply duct (8), and the outside case supply duct (5) is connected to the inter-battery supply duct ( 8), the exhaust port (3) of the battery case (4) is opened so as to extend in a direction parallel to the inter-cell exhaust duct (9), and the external exhaust duct (6) is connected to the battery. To the exhaust duct (9),
The outside case supply duct (5) has an elongated shape extending along the end face of the battery case (4) provided with the supply port (2), and the outside case exhaust duct (6) has an exhaust port (3). The battery case (4) has an elongated shape extending along the end face thereof, and the outside-case supply duct (5) and the outside-case exhaust duct (6) have openings at opposite ends and have air. It is molded into almost the same shape toward the passing direction of
Cooling air supplied from the opening to the outside-case supply duct (5) passes from the outside-case supply duct (5) through the supply port (2) to the inter-cell supply duct (8) in the battery case (4). Inflow, the air in the inter-cell supply duct (8) passes through the cooling duct (10) to cool each of the battery modules (1), and the cooled air is supplied to the inter-cell exhaust duct (9) and the exhaust port (3). And a power supply device for a vehicle, which is configured to be exhausted to the outside through an exhaust duct (6) outside the case.
電池間供給ダクト(8)が供給側から排気側に向かって幅が次第に狭くなっており、電池間排気ダクト(9)は供給側から排気側に向かって幅が次第に広くなっている請求項1に記載される車両用の電源装置。The inter-battery supply duct (8) has a width that gradually decreases from the supply side to the exhaust side, and the inter-battery exhaust duct (9) gradually increases in width from the supply side to the exhaust side. A power supply device for a vehicle according to claim 1. 電池ケース(4)が四角形で、互いに対向する面に供給口(2)と排気口(3)を設けている請求項1に記載される車両用の電源装置。The power supply device for a vehicle according to claim 1, wherein the battery case (4) has a rectangular shape, and a supply port (2) and an exhaust port (3) are provided on surfaces facing each other. 電池ケース(4)の一端面に電池間供給ダクト(8)の方向に伸びるスリット状の供給口(2)を開口して、電池ケース(4)の他端面にも電池間排気ダクト(9)の方向に伸びるスリット状の排気口(3)を開口している請求項1に記載される車両用の電源装置。A slit-shaped supply port (2) extending in the direction of the inter-cell supply duct (8) is opened at one end of the battery case (4), and the inter-cell exhaust duct (9) is also provided at the other end of the battery case (4). The power supply device for a vehicle according to claim 1, wherein a slit-shaped exhaust port (3) extending in the direction of (2) is opened. ケース外供給ダクト(5)とケース外排気ダクト(6)が、空気の送風方向に向かって断面積をほぼ一定としている請求項1に記載される車両用の電源装置。The power supply device for a vehicle according to claim 1, wherein the outside-case supply duct (5) and the outside-case exhaust duct (6) have a substantially constant cross-sectional area in the air blowing direction.
JP2002255401A 2002-08-30 2002-08-30 Power supply for vehicle Expired - Fee Related JP4070543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255401A JP4070543B2 (en) 2002-08-30 2002-08-30 Power supply for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255401A JP4070543B2 (en) 2002-08-30 2002-08-30 Power supply for vehicle

Publications (2)

Publication Number Publication Date
JP2004095362A true JP2004095362A (en) 2004-03-25
JP4070543B2 JP4070543B2 (en) 2008-04-02

Family

ID=32060931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255401A Expired - Fee Related JP4070543B2 (en) 2002-08-30 2002-08-30 Power supply for vehicle

Country Status (1)

Country Link
JP (1) JP4070543B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851756A (en) * 2021-09-23 2021-12-28 中原工学院 Air cooling and liquid cooling hybrid battery heat management device and heat management method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851756A (en) * 2021-09-23 2021-12-28 中原工学院 Air cooling and liquid cooling hybrid battery heat management device and heat management method
CN113851756B (en) * 2021-09-23 2023-06-16 中原工学院 Air-cooling and liquid-cooling hybrid battery thermal management device and thermal management method

Also Published As

Publication number Publication date
JP4070543B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP5030500B2 (en) Power supply
JP5052057B2 (en) Power supply
JP4046463B2 (en) Power supply
JP4827558B2 (en) Power supply for vehicle
JP4118014B2 (en) Power supply
JP4646867B2 (en) Battery module
US8691414B2 (en) Battery module having coolant passage and gas exhaust passage
US7112387B2 (en) Battery power supply device
US7150935B2 (en) Cooling device for battery pack and rechargeable battery
JP4136269B2 (en) Power supply
JP3625683B2 (en) Power supply
WO2018142674A1 (en) Rack-type power supply device
JP2007042637A (en) Battery module
KR20090030545A (en) Unified air cooling structure of high-capacity battery system
JP2007207523A (en) Battery pack
JP4698344B2 (en) Assembled battery
JP4024021B2 (en) Power supply
JP4007763B2 (en) Assembled battery
JP5036194B2 (en) Power supply for vehicle
JP4086490B2 (en) Power supply
JP4293980B2 (en) Power supply for vehicle
JP2014179178A (en) Battery system
JP4376162B2 (en) Power supply
JP4484653B2 (en) Power supply
JP4070543B2 (en) Power supply for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees