JP2004094720A - System for monitoring disaster damage prevention - Google Patents

System for monitoring disaster damage prevention Download PDF

Info

Publication number
JP2004094720A
JP2004094720A JP2002256660A JP2002256660A JP2004094720A JP 2004094720 A JP2004094720 A JP 2004094720A JP 2002256660 A JP2002256660 A JP 2002256660A JP 2002256660 A JP2002256660 A JP 2002256660A JP 2004094720 A JP2004094720 A JP 2004094720A
Authority
JP
Japan
Prior art keywords
line
transmission
receiver
telephone
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002256660A
Other languages
Japanese (ja)
Other versions
JP3803075B2 (en
Inventor
Mitsuhiro Kurimoto
栗本 光広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2002256660A priority Critical patent/JP3803075B2/en
Publication of JP2004094720A publication Critical patent/JP2004094720A/en
Application granted granted Critical
Publication of JP3803075B2 publication Critical patent/JP3803075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Alarm Systems (AREA)
  • Fire Alarms (AREA)
  • Selective Calling Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance reliability with the minimum configuration by reducing the interference of the calling signal of a transmission signal and the adverse effect of the external noise on a sensor line on the transmission signal. <P>SOLUTION: A transmission line S, a transmission common line SC, a power line V, a telephone line T, and a common line C with respect to the power line V and the telephone line T are pulled out as transmission lines 2 from a receiver 1. A repeater 3 for a sensor comprises a transmission circuit section 13, a CPU (Central Processing Unit) circuit section 14, and a fire reception circuit section 15. The transmission circuit section 13 is connected to the CPU circuit section 14 through electrically isolating photocouplers 16, 17. The transmission circuit section 13 is connected to the transmission line S and the transmission common line SC from the receiver 1. The CPU circuit section 14 and the fire reception circuit section 15 side are connected to the power line V and the common line C from the receiver 1. In addition, the telephone line T from the receiver 1 is connected to one end of a telephone jack 5; and a telephone common line TC from the other end of the telephone jack 5 is connected to the common line C from the receiver 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、受信機からの端末アドレスの指定により感知器用中継器の呼出しを行って火災感知器の火災検出信号を含む端末情報を収集して監視し、更に受信機から引き出された電話回線の端末側の電話ジャックに電話器を選択的に挿入接続して通話連絡を可能とする防災監視システムに関する。
【0002】
【従来の技術】
従来、R型として知られた受信機と端末の間でアドレス指定による呼出で防災情報を収集して監視する防災監視システムとしては、例えば図7のものがある。
【0003】
図7において、100は受信機であり、受信機100から引き出された伝送路102に複数の感知器用中継器104を接続している。受信機100からの伝送路102は、電源線V、伝送線S、伝送コモン線SC、電話線Tとなる。
【0004】
感知器用中継器104からは複数の感知器線L1〜Lnと感知器コモン線LCが引き出され、各感知器線L1〜Lnのそれぞれと感知器コモン線LCとの間にオン、オフ型の火災感知器106を接続している。
【0005】
更に感知器用中継器104が設置された端末側には電話ジャック108が設置されており、電話ジャック108の一端に受信機100からの電話線Tを接続し、電話ジャック108の他端からの電話コモン線TCは、感知器コモン線LCに接続している。
【0006】
受信機100は感知器用中継器104に設定した端末アドレスを指定した呼出コマンドを送信し、自己アドレスとの一致を判別した感知器用中継器104から火災感知器106の火災検出信号を含む端末情報を収集して監視している。
【0007】
また、端末の電話ジャック108に電話器110を挿入接続すると受信機100で通話呼出が行われ、受信機100に設けている電話ジャックに電話器を挿入接続すると、電話線Tと伝送コモン線SCを経由した通話回路が形成され、受信機100と端末側で通話連絡をとることができる。
【0008】
図8は、図7の感知器用中継器一台を例にとって内部回路を受信機と共に示している。感知機用中継器104は、伝送回路部112,CPU回路部114及び火災受信回路部116を備える。伝送回路部112は伝送線Sと伝送コモン線SCの間に印加された電源電圧を受けて動作し、この電源電圧に重畳されて送信される呼出信号を受信増幅してCPU回路部114に入力している。またCPU回路部114からの応答信号を電流信号に変換して受信機100に送信している。
【0009】
CPU回路部114は、呼出信号のアドレスと自己アドレスを比較して一致したときに、自己の呼出しと判別し、火災感知器106の火災検出信号を含む端末情報を受信機100に応答信号として送信させる。
【0010】
火災受信回路部116は、感知器線L1〜Lnと感知器コモン線LCの間に接続した火災感知器106の火災検出による発報電流を受信し、回線単位に火災検出信号をCPU回路部11うに出力する。また火災受信回路部116は感知器線L1〜Lnと感知器コモン線LCの間の断線検出も行っている。
【0011】
【特許文献1】
特開平4−348498号公報
【特許文献2】
特開平5−336261号公報
【特許文献3】
特開平9−81870号公報
【0012】
【発明が解決しようとする課題】
しかしながら、このような従来の防災監視システムにおいては、電源線V、伝送線S及び電話線Tに対するコモン線を全て伝送コモン線SCとして一緒にしていたため、伝送線Sに対する伝送信号が電話の通話音に重畳し、非常に聞きづらかった。即ち、受信機と感知器用中継器の間のデータ伝送速度は、例えば1200bpsと比較的低速であり、この伝送速度では伝送パルスの主成分が音声周波数帯域に存在しており、伝送信号が電話の通話音に重畳し、非常に聞きづらい。
【0013】
また、感知器線L1〜Lnに外来ノイズが誘起されると伝送コモン線SCにも外来ノイズが誘起され、伝送にも悪影響を与える問題もあった。
【0014】
この対策として図9のように、伝送コモン線SCから電話線Tの電話コモンTCを分離することが考えられる。しかし、感知器線L1〜Lnに誘起された外来ノイズの伝送コモン線SCへの影響は依然として残っている。
【0015】
別の他の対策として図10のように、CPU回路部114と火災受信回路部116の間をフォトカプラ118で電気的に分離することも考えられる。しかし、フォトカプラ118は、1つの感知器回線につき例えば4個必要となり、標準的な感知器回線の数を8回線とすると32個ものフォトカプラが必要となり、回路規模が大きくなりすぎて採用することはできない。
【0016】
また図7の従来システムにあっては、感知器用中継器104の火災受信回路部116に内蔵した断線検出回路により感知器線L1〜Lnと感知器コモン線LCの間の断線検出も行っており、この断線検出は線間電圧を所定の閾値電圧と比較して断線の有無を判断している。しかし、電話コモン線TCと感知器コモンLCを共用しているため、電話器110を使用している際に通話音が感知器回線に重畳され、特に断線検出は閾値がシビアなため、通話音が断線検出機能に悪影響を与え、断線誤検出を起こす恐れがあった。
【0017】
また、断線検出回路には、感知回線に加える電圧を変化させて断線検出を行っているものもあり、この場合には感知器回線の電圧変化によるノイズが通話音に重畳し、電話の通話音が聞き苦しい問題もあった。
【0018】
本発明は、伝送信号の通話信号への影響及び感知器回線の外来ノイズの伝送信号への影響を最小限の設備および回路構成で低減して信頼性を向上させる防災監視システムを提供することを目的とする。
【0019】
【課題を解決するための手段】
この目的を達成するため本発明は次のように構成する。
【0020】
本発明は、受信機から引き出された伝送路に対し複数の感知器用中継器を接続すると共に、感知器用中継器から引き出された感知器回線に火災感知器を接続し、受信機からの端末アドレスの指定により感知器用中継器の呼出しを行って火災感知器の火災検出信号を含む端末情報を収集して監視し、更に受信機から引き出された電話回線の端末側の電話ジャックに電話器を選択的に挿入接続して通話連絡を可能とする防災監視システムを対象とする。
【0021】
このような防災監視システムにつき、本発明は、受信機からは伝送路として、伝送線、伝送コモン線、電源線、電話線、電源線と電話線に対するコモン線が引き出され、感知器用中継器は、伝送回路部、CPU回路部及び火災受信回路部で構成され、伝送回路部とCPU回路部との間を上り信号と下り信号を電気的に分離してやり取りするフォトカプラで結合し、伝送回路部に受信機からの伝送線と伝送コモン線を接続し、CPU回路部及び火災受信回路部側に受信機からの電源線とコモン線を接続し、更に受信機からの電話線を電話ジャックの一端に接続すると共に電話ジャックの他端からの電話コモン線を受信機からのコモン線に接続したことを特徴とする。
【0022】
このように感知器用中継器における伝送回路部とCPU回路部との間をフォトカプラで結合して電気的に分離することで、フォトカプラの数が最小限で済み、受信機に対する伝送線側と火災感知器に対する感知器回線側が分離されたことで、伝送信号が電話線に重畳されることはなく、外来ノイズが伝送信号に悪影響を与えることもない。
【0023】
本発明の防災監視システムにあっては、受信機からの伝送回線に感知器用中継器が例えば数百台接続されている。このため受信機からの呼出信号の場合、呼出信号に同期して全ての感知器用中継器に分離用に設けたフォトカプラのLEDが一斉に点灯し消灯する。このため伝送線の電流が大きく変化する。伝送線には線路抵抗があるため、これにより伝送線の電圧が変化する。この線路電圧の変動は伝送信号に同期しているため、伝送信号が変化したことになり、伝送の信頼性が損なわれる。
【0024】
そこで本発明は、感知器用中継器の伝送回路部として、伝送線と伝送コモン線の間に受信機から電源電圧に重畳して送信された呼出信号を受信増幅してフォトカプラの発光部を駆動する増幅器と、呼出信号が重畳された伝送線と伝送コモン線の線間電圧を電源として定電流を出力する定電流回路と、定電流回路の定電流出力を一定の電源電圧に変換して増幅器に印加する定電圧回路とを備えたことを特徴とする。
【0025】
これにより伝送回路部のフォトカプラを発光駆動する増幅器には、定電流回路から定電流出力に基づく一定の電源電圧が供給されるので、伝送信号によりフォトカプラのLEDが点灯し消灯しても、伝送線の電流は変化せず、伝送信号に影響を与えない。
【0026】
本発明の防災監視システムに於いて、感知器用中継器は、感知器回線の断線を検出する断線検出回路を備え、受信機は、端末側の電話ジャックに対する電話器の挿入接続を検出する挿入検出部と、挿入検出部の挿入検出出力が得られている間、感知器用中継器の断線検出回路の動作を停止させる制御信号を送信する伝送回路部とを備えたことを特徴とする。
【0027】
このように電話ジャックに電話器が挿入されると、受信機で電話器挿入が検出されて感知器用中継器に感知器回線の断線検出動作を停止させることができ、電話による通話時に、通話音が断線検出機能に悪影響を与えることが無く、同時に、
断線検出のための感知器回線の電圧変化が通話音に悪影響を与えない。
【0028】
【発明の実施の形態】
図1は本発明の防災監視システムのシステム構成の説明図である。図1において、本発明の防災監視システムは、管理人室などに設置された受信機1から警戒区域に対し伝送路2として、電源線V、伝送線S、伝送コモン線SC、電話線T及びコモン線Cを引き出している。ここでコモン線Cは、電源線Vと電話線Tに対するコモン線となる。
【0029】
受信機1から引き出された伝送路2に対しては感知器用中継器3が複数台設置されている。本発明の防災監視システムにあっては、受信機1は感知器用中継器3に設定した端末アドレスの指定により呼出しなどのコマンドを送信して応答情報を受信しており、受信機1に対しては端末アドレスの設定可能数分だけの感知器用中継器3を接続することができ、大規模な防災監視システムにあっては受信機1に対し数百台といった感知器用中継器3が接続される。
【0030】
感知器用中継器3からは複数の感知器線L1〜Lnと感知器コモン線LCが引き出され、各感知器線L1〜Lnとの感知器コモン線LCとの間にオン、オフ型の火災感知器4を接続している。
【0031】
なお、この例では、感知器線L1〜Lnのそれぞれに1台の火災感知器4を接続した場合を例にとっているが、必要に応じて複数台の火災感知器4が各感知器線ごとに接続される。また、感知器線L1〜Lnの終端には断線検出のための終端器を接続するが、これは省略している。
【0032】
一方、感知器用中継器3が設置されている警戒区域には、受信機1と現場との間で通話連絡を行うため電話ジャック5が設けられている。この電話ジャック5は具体的には、警戒区域に設置されている火災発信機などに設けられることになる。
【0033】
電話ジャック5の一端には受信機1から引き出された電話線Tが接続され、電話ジャック5の他端は電話コモン線TCにより感知器用中継器3から引き出された感知器コモン線LCに接続され、この感知器コモン線LCには受信機1から引き出されたコモン線Cが接続される。
【0034】
ここで、複数の感知器用中継器3のうち一番上の感知器用中継器3に対応して設けた電話ジャック5に対し、電話器6をそのプラグにより挿入接続しており、電話ジャック5に対する電話器6の挿入接続により、受信機1からの電話線Tと電話コモン線TC、コモン線LC及び感知器コモン線Cを経由した通話回路が形成され、受信機1において通話呼出しが行われ、これに対し受信機1に設けている後の説明で明らかにする電話ジャックに対し電話器を挿入接続することで、端末側の電話器6との間で通話連絡を行うことができる。
【0035】
図2は図1の感知器用中継器3の1つを取り出して受信機1と共に示した本発明の実施形態のブロック図である。図2において、受信機1には、監視制御部7、伝送回路部8、操作表示部9、電話回路部10、電話ジャック11が設けられる。電話ジャックに対しては、通話の際には電話器12が挿入接続される。
【0036】
一方、感知器用中継器3には伝送回路部13、CPU回路部14及び火災受信回路部15が設けられる。本発明の感知器用中継器3にあっては、伝送回路部13とCPU回路部14との間の下り信号と上り信号のやり取りについて、フォトカプラ16,17を設け、電気的に分離している。
【0037】
フォトカプラ16,17は、発光部となるLED16a,17aと受光部となるフォトトランジスタ16b,17bを備えている。フォトカプラ16は伝送回路部13からCPU回路部14に信号を伝送する下り信号用である。またフォトカプラ17はCPU回路部14から伝送回路部13に信号を伝送する上り信号用である。
【0038】
伝送回路部13に対する電源供給は、伝送線Sと伝送コモン線SCにより行われている。このため伝送線Sと伝送コモン線Cの間には、電源電圧と同時に伝送回路部8からの下り信号及び伝送回路部13からの上り信号が重畳されることになる。
【0039】
ここで受信機1の伝送回路部8からの下り信号は、電源線を兼ねる伝送線Sと伝送コモン線SC間に電圧信号として重畳させている。また感知器用中継器3の伝送回路部13から受信機1に対する上り信号は、伝送線Sと伝送コモン線SC間に流れる線路電流を変化させることで送信している。
【0040】
受信機1の伝送回路部8は、通常監視状態にあっては、感知器用中継器3の端末アドレスを順番に指定した呼出コマンドを含む呼出信号を送信しており、この呼出信号は感知器用中継器3の伝送回路部13で受信され、フォトカプラ16を介してCPU回路部14に入力される。
【0041】
CPU回路部14は受信した呼出信号から呼出アドレスを抽出して、予め設定された自己アドレスと比較し、アドレス一致を判別したときに、そのときの感知器用中継器3における状態信号をフォトカプラ17を介して伝送回路部13に出力し、伝送回路部13より線路電流の変化として受信機1に送出する。
【0042】
受信機1からの呼出信号に対する感知器用中継器3の応答信号としては、例えば8ビットの応答データ中の特定のビットに対応して、正常、障害、火災などの検出状態を設定し、対応する状態ビットを立てることで応答信号を受信機に返す。
【0043】
また火災検出時にあっては、受信機1に火災割込信号を送出し、受信機1において火災割込処理を行わせる。即ち受信機1は、感知器用中継器3から火災割込信号の受信すると、火災を検出している感知器用中継器3のアドレスを検索するためのアドレス検索処理を実行して、火災を検出した感知器用中継器3を特定し、特定したアドレスの感知器用中継器3に対し継続的に呼出信号を送って火災検出情報の応答を得るようになる。
【0044】
更に受信機1の伝送回路部8にあっては、感知器用中継器3に対する呼出信号の転送と並行して、一定周期例えば1秒間隔で断線検出制御信号を送信しており、この断線検出制御信号を受けてCPU回路部14は、火災受信回路部15に感知器線L1〜Lnと感知器コモン線LC間の断線検出動作を行わせる。この断線検出動作による検出結果は、断線検出処理が終了した後の次の呼出信号に対する応答信号により送り返される。
【0045】
受信機1の監視制御部7は、伝送回路部8により感知器用中継器3との間の伝送制御で得られた感知器用中継器3に関する情報に基づいて、火災受信処理や障害発生処理などの監視制御を行う。この監視制御部7に対しては操作表示部9が設けられており、火災表示や障害表示に加え、それぞれの表示に必要な操作入力を行うようにしている。
【0046】
更に電話回路部10は、端末側の電話ジャック5に図示のように電話器6が挿入接続されると、このとき電話線Tとコモン線C間に流れる電流を検出して通話接続を認識し、監視制御部7に電話器挿入接続を通知して通話呼出動作を行わせる。
【0047】
通話呼出しがあったならば、管理者は受信機1に設置されている電話器12を取り出して電話ジャック11に接続することで、端末側の電話器6との間で通話を行うことができる。
【0048】
図3は図2の感知器用中継器3の各回路部の詳細を示した回路ブロック図である。図3において、伝送回路部13には受信回路18と送信回路19が設けられている。受信回路18にはフォトカプラ16のLED16aが設けられ、受信機から伝送された呼出信号によりLED16aを発光駆動し、CPU回路部14側のフォトトランジスタ16bをオンオフ制御する。
【0049】
また送信回路19にはフォトカプラ17が設けられ、CPU回路部14からの応答信号によりLED17aの発光駆動によるフォトトランジスタ17bのオンオフを受けて伝送線Sと伝送コモン線SCの線路電流を変化させることで、応答信号を受信機1に送出する。
【0050】
CPU回路部14には、CPU20、受光回路21、発光回路22、メモリ23、断線監視制御部24、A/D変換器25及び定電圧回路30が設けられている。このCPU回路部14のCPU20を含む各回路部は、受信機からの電源線Vで供給されたコモン線Cとの間の電源電圧を定電圧回路30に入力し、例えばCPU20に対しては5ボルトの電源電圧を出力し、一方、火災受信回路部15側には例えば20ボルトの電源電圧を出力している。
【0051】
CPU20に対する呼出信号は、フォトカプラ16を介して、受光te¥21で受光された信号が入力する。メモリ23には感知器用中継器3に予め割り当てられた端末アドレスが保存されており、CPU20は呼出信号から抽出したアドレスとメモリ23の受光アドレスとを比較して受信機の呼出しを判別する。
【0052】
またCPU20は、例えば1分間隔で受信機から断線検出制御信号を受信すると、断線監視制御部24を駆動し、火災受信回路部15側の感知器線L1〜Lnごとに設けている回線受信回路26に内蔵している断線検出回路の検出動作を行わせる。
【0053】
またCPU20はA/D変換器25に、火災受信回路部15に設けている感知器線L1〜Lnの回線受信回路26で検出した線路電流の変換電圧を並列的に入力しており、この入力を周期的にサンプリングしてCPU20に取り込んでいる。
【0054】
また断線監視制御部24を動作させた断線検出タイミングにあっては、回線受信回路部26の断線検出回路を動作させていることから、このときA/D変換器25でサンプリングされる線路電流の変換電圧は断線検出状態を表わすことになる。
【0055】
この図3の実施形態に示すような各回路部を備えた図2の感知器用中継器3を受信機1に接続した本発明の防災監視システムにあっては、感知器用中継器3において伝送回路部13とCPU回路部14の間がフォトカプラ16,17による結合で電気的に分離されているため、伝送線Sと伝送コモン線SC間に伝送される呼出信号(下り信号)及び応答信号(上り信号)の伝送パルスが例えば1200bpiのデータ伝送速度となることで、電話器6における可聴周波数帯域にあっても、電気的には分離されているために伝送パルスによる伝送ノイズ音が電話器6,12の通話音に重畳することはない。
【0056】
逆に、火災受信回路部15から引き出された感知器線L1〜Lnに外来ノイズが重畳しても、感知器コモン線LCと伝送コモン線SCは電気的に分離されているため、感知器線L1〜Lnに重畳した外来ノイズが伝送線Sと伝送コモン線SC側に重畳し、外来ノイズによって呼出信号や応答信号の伝送信号が悪影響を受けることはない。
【0057】
更に、フォトカプラ16,17で伝送回路部13とCPU回路部14との間を電気的に分離したことに伴い、受信機1から電源線Vと電話線Tに対するコモン線Cを新たに引き出して感知器用中継器3におけるCPU回路部14側に接続しているが、このコモン線Cについて、火災感知器4側については感知器コモン線LCをそのまま使用している。
【0058】
このため、新たに受信機から引き出したコモン線Cは感知器用中継器3までで済み、火災感知器4側への引出しは不要となり、受信機1からの伝送路2に新たにコモン線Cを1本追加することになっても、図9のように電話線Tに対し電話コモン線TCを完全に分離した場合に比べると、増設に伴う規模及び工数を十分に低減でき、この結果、既存の火災報知設備であっても本発明を適用することが比較的容易にできる。
【0059】
図4は図3の感知器用中継器3の伝送回路部13に設けている受信回路18の実施形態を示した回路図である。図2のような本発明の防災監視システムにあっては、感知器用中継器3の伝送回路部13とCPU回路部14との間にフォトカプラ16,17を設けたため、図1において受信機1に対し感知器用中継器3が例えば数百台接続されるような場合を考えると、受信機1からの呼出信号(下り信号)に同期して、伝送回路部13に設けているフォトカプラ16のLED16aが呼出信号に同期して一斉に点灯、消灯することになる。
【0060】
このような感知器用中継器3の伝送回路部13におけるフォトカプラ用のLEDの一斉動作により、伝送線Sと伝送コモン線SCに流れる伝送電流が大きく変化することになる。そして伝送線Sと伝送コモン線SCには線路抵抗があるため、この線路抵抗によりフォトカプラのLEDが一斉にオン、オフすることによる電流変化で伝送線Sと伝送コモン線SC間の電圧が大きく変化する。
【0061】
伝送回路部13は伝送線Sと伝送コモン線SC間の電源電圧の供給を受けて動作しているため、フォトカプラのLEDの一斉動作により線路電流が変化して線間電圧が変わると、電源電圧が大きく変動することとなり、伝送回路部13に設けている増幅器などの動作特性が変化し、伝送信号を正しく受信できなくなることで、信頼性が損なわれる恐れがある。
【0062】
そこで図4の伝送回路部13の受信回路18にあっては、ツェナーダイオードZD1、抵抗R1,R2及びトランジスタQ1により定電流回路を構成し、伝送線Sと伝送コモン線SC間の電圧がフォトカプラのLEDの駆動でパルス的に変動しても、常にトランジスタQ1のコレクタより一定電流を出力するようにしている。
【0063】
トランジスタQ1のコレクタには、定電圧回路として機能するツェナーダイオードZD2が接続されており、定電流出力はツェナーダイオードZD2のツェナー電圧で決まる一定電圧に変換され、増幅器27に一定の電源電圧を供給することになる。
【0064】
増幅器27の入力には伝送線Sが接続されており、伝送線Sの電圧に重畳された呼出信号を増幅し、フォトカプラ16のLED16aを発光駆動している。このLED16aの増幅器27による発光駆動の際の消費電流は、トランジスタQ1を含む定電流回路の定電流出力であり、このためLED16aをオン、オフ駆動しても、伝送線Sと伝送コモン線SCに流れる電流は一定電流である。
【0065】
このため多数の感知器用中継器3で呼出信号に同期してフォトカプラのLEDを発光駆動しても線路電流は変動せず、このため電源電圧として使用される線路電圧も変動がなく、受信回路18の増幅器27は安定して呼出信号を受信増幅して、フォトカプラ16を介してCPU回路部14に出力することができる。
【0066】
図5は本発明による防災監視システムの他の実施形態であり、この実施形態にあっては、端末側の電話ジャックに対する電話器6の挿入接続を受信機側で検出した際に、感知器用中継器における感知器回線の断線検出動作を停止させるようにしたことを特徴とする。
【0067】
図5の防災監視システムにおいて本発明にあっては、フォトカプラ16,17により電気的に分離されたCPU回路部14及び火災受信回路部15側の感知器コモン線LCに電話ジャック5からの電話コモン線TCを接続して共用しており、このため電話ジャック5に電話器6を挿入接続して受信機1の電話器12との間で通話を行った場合、通話信号によって火災感知器4側の感知器コモン線LCが変動し、感知器線L1〜Lnの断線検出は厳格に閾値を設定して線路電流を判断しているため、通話信号による変動で断線誤検出を起こす恐れがある。
【0068】
一方、通話側から見ると、図3に示したように、火災受信回路部15に設けている回線受信回路26はCPU回路部14の断線監視制御部24からの制御を受けて例えば1分間隔ごとに断線検出動作を行っている。この断線検出動作としては、通常監視状態における感知器線L1〜Lnの線路電圧20ボルトを例えば35ボルトという高い電圧に変化させた状態で、終端器を流れる線路電流を監視し、断線の有無を判断するようにしている。
【0069】
このため断線検出時にあっては、パルス的に感知器線L1〜Lnの電圧が変化することで電話コモン線TCを感知器コモン線LCに共用していることで、断線検出動作に伴うノイズが通話信号に重畳し、通話が聞き取りづらいという問題を起こしている。
【0070】
そこで図5の実施形態にあっては、受信機1に挿入検出部28を設け、挿入検出部28で端末の電話ジャック5に対する電話器6の挿入接続を検出した場合、伝送回路部8に挿入検出を通知し、これを受けて伝送回路部8は感知器用中継器3に対する断線検出制御信号の伝送を停止するようにしている。
【0071】
このため、電話器6を電話ジャック5に接続して受信機1の電話器12と通話を行っている間、伝送回路部8から感知器用中継器3に対し断線検出信号は出力されず、火災受信回路部15において感知器線L1〜Lnと感知器コモン線LC間の断線検出は行われないため、通話信号によって断線検出が悪影響を受けることがなく、同時に断線検出によるノイズがなくなることで、通話が聞き取りづらくなることを防ぐことができる。
【0072】
図6は図5の受信機1の伝送回路部8における伝送処理のフローチャートである。伝送回路部8にあっては、ステップS1で端末アドレスを順次指定しながら呼出コマンドを入れた呼出信号を送信して、アドレス一致が得られた感知器用中継器3からの応答信号を受信している。
【0073】
この呼出応答の間で一定時間例えば1秒を経過すると、ステップS2で断線検出タイミングが判別され、ステップS3で挿入検出部28による電話器の挿入検出の有無をチェックする。電話器6の電話ジャック5に対する挿入がない場合には、ステップS4で断線検出制御信号を送信して、感知器用中継器3で断線検出動作を行わせる。
【0074】
一方、断線検出タイミングで電話器の挿入接続を検出した場合には、ステップS4の断線試験信号の送信をスキップする。これによって、通話中は感知器用中継器3において断線検出動作は行われないことになる。
【0075】
続いてステップS5で火災割込みをチェックしており、火災割込みを検出すると、ステップS6で火災検出中の感知器用中継器のアドレスを特定するアドレス検索処理を行う。そしてステップS7で、アドレスを特定した火災検出中の感知器用中継器に対し継続的に呼出信号を送ってデータ検出処理を行う。この伝送回路部8による火災検出データの検出処理を受けて、受信機1の監視制御部7は火災判断と火災警報表示を行うことになる。
【0076】
ステップS8で、その後、火災が消火して監視員による復旧操作が行われると、火災復旧が判別され、一連の処理を終了し、ステップS9で受信機が停止でなければ、再びステップS1に戻り、火災監視を再開することになる。
【0077】
なお上記の実施形態は、受信機1からの伝送路2に感知器用中継器3のみを設けた防災監視システムを例にとっているが、この感知器用中継器3以外に、必要に応じて感知器用中継器3と同じデータ伝送機能を備えたアナログ火災感知器や防火戸や防排煙などを制御する制御用中継器を接続するようにしてもよい。
【0078】
また上記の実施形態にあっては、感知器用中継器3の火災受信回路部15側に設ける断線検出回路として、受信機からの断線検出制御信号により周期的に駆動されて断線検出時に感知器回線の電圧を変化させて断線検出する例を示すものであったが、受信機1からの制御によらず継続的に断線監視を行っている断線検出回路であってもよい。
【0079】
更に上記の実施形態にあっては、感知器用中継器側で火災を検出した際に受信機に対し火災割込みを行い、火災割込みに基づいて火災検出を行った感知器用中継器を特定するアドレス検索を行う場合を例にとっているが、これに限定されず、通常の呼出信号の応答に優先して火災信号を送出する方式であれば、適宜の伝送を行うことができる。
【0080】
【発明の効果】
以上説明してきたように本発明によれば、受信機からの伝送路に接続している感知器用中継器における伝送回路とCPU回路との間をフォトカプラで結合して電気的に分離し、同時に受信機からの伝送路についても伝送回路側とCPU回路側を分離したことで、感知器用中継器に使用するフォトカプラの数が必要最小限で済み、受信機に対し伝送線側と感知器回線及び電話回線側が分離されたことで、伝送信号によるノイズが電話線に重畳することにより通話が聞き取りづらくなる問題を解消でき、同時に感知器回線側の外来ノイズが伝送線側に重畳しないことから、外来ノイズによる伝送信号に対する悪影響を防止できる。
【0081】
また感知器用中継器の伝送回路部にフォトカプラを設けたことで、受信機に対し接続している多数の感知器用中継器に対する呼出信号でフォトカプラのLEDが一斉に駆動されて、これにより伝送回線の線路電流が大きく変動し、伝送回路部の電源電圧となる線路電圧も変動するが、本発明にあっては、感知器用中継器の伝送回路部の受信側に定電流回路を設け、定電流回路の出力で受信増幅器に対する電源供給を行って呼出信号によりフォトカプラのLEDを駆動するため、フォトカプラのLEDを駆動しても受信機からの伝送回線の電流は変動せず、フォトカプラのLEDの一斉駆動により伝送信号に悪影響を及ぼすことを防止できる。
【0082】
更に本発明にあっては、端末側の電話ジャックに電話器が挿入されると、受信機側で電話器挿入接続を検出して感知器用中継器に感知器回線の断線検出動作を停止させるため、通話時の断線検出によるノイズの混入を防ぐと同時に、通話信号による感知器回線の電圧変動で、断線検出のためにシビアな閾値を設定している場合の断線誤検出を未然に防止することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示したシステム構成の説明図
【図2】図1の感知器用中継器の1つを例にとって受信機と共にその実施形態を示したブロック図
【図3】図2の感知器用中継器における各回路部の実施形態を示したブロック図
【図4】本発明の感知器用中継器における伝送回路部の受信回路の実施形態の回路図
【図5】電話器挿入を検出して感知器用中継器で断線検出を停止させる本発明の防災監視システムの説明図
【図6】図5の実施形態における受信機伝送回路部の処理動作のフローチャート
【図7】従来の防災監視システムの説明図
【図8】図7の感知器用中継器の1つを例にとって受信機と共に回路構成を示したブロック図
【図9】電話線と電話コモン線を分離した防災監視システムの説明図
【図10】感知器用中継器でCPU回路部と火災受信回路部との間をフォトカプラにより電気的に分離した防災監視システムの説明図
【符号の説明】
1:受信機
2:伝送路
3:感知器用中継器
4:火災感知器
5,11:電話ジャック
6,12:電話器
7:監視制御部
8,13:伝送回路部
9:操作表示部
10:電話回路部
14:CPU回路部
15:火災受信回路部
16,17:フォトカプラ
16a,17a:LED
16b,17b:フォトトランジスタ
18:受信回路
19:送信回路
20:CPU
21:受光回路
22:発光回路
23:メモリ
24:断線監視制御部
25:A/D変換器
26:回線受信回路
27:増幅器
28:挿入検出部
30:定電圧回路
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, a receiver repeater is called by designating a terminal address from a receiver to collect and monitor terminal information including a fire detection signal of a fire detector. The present invention relates to a disaster prevention monitoring system that allows a telephone to be selectively inserted into and connected to a telephone jack on a terminal side to enable communication.
[0002]
[Prior art]
FIG. 7 shows an example of a conventional disaster prevention monitoring system that collects and monitors disaster prevention information by a call by address designation between a receiver and a terminal known as an R type.
[0003]
In FIG. 7, reference numeral 100 denotes a receiver, and a plurality of sensor repeaters 104 are connected to a transmission line 102 drawn from the receiver 100. A transmission line 102 from the receiver 100 is a power line V, a transmission line S, a transmission common line SC, and a telephone line T.
[0004]
A plurality of sensor lines L1 to Ln and a sensor common line LC are drawn from the sensor repeater 104, and an ON / OFF type fire is generated between each of the sensor lines L1 to Ln and the sensor common line LC. The sensor 106 is connected.
[0005]
Further, a telephone jack 108 is installed on the terminal side where the sensor repeater 104 is installed. A telephone line T from the receiver 100 is connected to one end of the telephone jack 108, and a telephone call from the other end of the telephone jack 108 is made. The common line TC is connected to the sensor common line LC.
[0006]
The receiver 100 transmits a call command specifying the set terminal address to the repeater for sensor 104, and transmits terminal information including a fire detection signal of the fire detector 106 from the repeater for sensor 104 that has determined coincidence with its own address. Collect and monitor.
[0007]
When the telephone 110 is inserted and connected to the telephone jack 108 of the terminal, a telephone call is made by the receiver 100. When the telephone is inserted and connected to the telephone jack provided on the receiver 100, the telephone line T and the transmission common line SC are connected. Is formed, and the terminal can communicate with the receiver 100 by telephone.
[0008]
FIG. 8 shows an internal circuit together with a receiver, taking one sensor repeater of FIG. 7 as an example. The sensor repeater 104 includes a transmission circuit unit 112, a CPU circuit unit 114, and a fire reception circuit unit 116. The transmission circuit unit 112 operates by receiving a power supply voltage applied between the transmission line S and the transmission common line SC, receives and amplifies a call signal transmitted by being superimposed on the power supply voltage, and inputs the amplified signal to the CPU circuit unit 114. are doing. The response signal from the CPU circuit unit 114 is converted into a current signal and transmitted to the receiver 100.
[0009]
The CPU circuit unit 114 compares the address of the call signal with its own address and determines that the call is its own call, and transmits terminal information including the fire detection signal of the fire detector 106 to the receiver 100 as a response signal. Let it.
[0010]
The fire receiving circuit unit 116 receives a current generated by the fire detection of the fire detector 106 connected between the detector lines L1 to Ln and the detector common line LC, and outputs a fire detection signal for each line to the CPU circuit unit 11. Output. Further, the fire receiving circuit unit 116 also performs disconnection detection between the sensor lines L1 to Ln and the sensor common line LC.
[0011]
[Patent Document 1]
JP-A-4-348498
[Patent Document 2]
JP-A-5-336261
[Patent Document 3]
JP-A-9-81870
[0012]
[Problems to be solved by the invention]
However, in such a conventional disaster prevention monitoring system, since the common lines for the power supply line V, the transmission line S, and the telephone line T are all combined as the transmission common line SC, the transmission signal for the transmission line S is generated by the telephone call sound. And it was very difficult to hear. That is, the data transmission rate between the receiver and the sensor repeater is relatively low, for example, 1200 bps. At this transmission rate, the main component of the transmission pulse exists in the audio frequency band, and the transmission signal is transmitted by the telephone. Superimposed on call sound, very difficult to hear.
[0013]
In addition, when external noise is induced in the sensor lines L1 to Ln, external noise is also induced in the transmission common line SC, and there is a problem that transmission is adversely affected.
[0014]
As a countermeasure, it is conceivable to separate the telephone common TC of the telephone line T from the transmission common line SC as shown in FIG. However, the influence of the external noise induced on the sensor lines L1 to Ln on the transmission common line SC still remains.
[0015]
As another countermeasure, it is conceivable to electrically separate the CPU circuit unit 114 and the fire receiving circuit unit 116 with a photocoupler 118 as shown in FIG. However, for example, four photocouplers 118 are required for one sensor line, and if the number of standard sensor lines is eight, as many as 32 photocouplers are required, and the circuit scale becomes too large to be adopted. It is not possible.
[0016]
Further, in the conventional system of FIG. 7, the disconnection detection between the sensor lines L1 to Ln and the sensor common line LC is also performed by a disconnection detection circuit built in the fire receiving circuit unit 116 of the sensor repeater 104. In this disconnection detection, the line voltage is compared with a predetermined threshold voltage to determine whether there is a disconnection. However, since the telephone common line TC and the sensor common LC are shared, a call sound is superimposed on the sensor line when the telephone 110 is used. However, this may adversely affect the disconnection detection function and cause erroneous disconnection detection.
[0017]
Some disconnection detection circuits perform disconnection detection by changing the voltage applied to the sensing line. In this case, noise due to the change in the voltage of the detector line is superimposed on the call sound, and the telephone call sound is reduced. But there were some difficulties.
[0018]
An object of the present invention is to provide a disaster prevention monitoring system that improves the reliability by reducing the influence of a transmission signal on a call signal and the influence of external noise of a detector line on a transmission signal with minimum equipment and circuit configuration. Aim.
[0019]
[Means for Solving the Problems]
To achieve this object, the present invention is configured as follows.
[0020]
According to the present invention, a plurality of sensor repeaters are connected to a transmission line drawn from a receiver, a fire detector is connected to a sensor line drawn from the sensor repeater, and a terminal address from the receiver is connected. Calls the repeater for the sensor according to the specification, collects and monitors the terminal information including the fire detection signal of the fire detector, and selects the telephone as the telephone jack on the terminal side of the telephone line drawn from the receiver. It is intended for a disaster prevention monitoring system that can be inserted and connected to enable telephone communication.
[0021]
With respect to such a disaster prevention monitoring system, the present invention provides a transmission line, a transmission common line, a power line, a telephone line, a common line for the power line and the telephone line as a transmission line from the receiver, and a repeater for the sensor is provided. , A transmission circuit unit, a CPU circuit unit, and a fire receiving circuit unit. The transmission circuit unit and the CPU circuit unit are coupled by a photocoupler that electrically separates an upstream signal and a downstream signal and exchanges them. Section, connect the transmission line from the receiver and the transmission common line, connect the CPU circuit section and the fire receiving circuit section to the power supply line and the common line from the receiver, and connect the telephone line from the receiver to the telephone jack. It is characterized in that it is connected to one end and a telephone common line from the other end of the telephone jack is connected to a common line from a receiver.
[0022]
As described above, the transmission circuit unit and the CPU circuit unit in the sensor repeater are electrically separated by coupling with a photocoupler, so that the number of photocouplers is minimized, and the transmission line side with respect to the receiver is connected to the transmission line side. Since the detector line side is separated from the fire detector, the transmission signal is not superimposed on the telephone line, and external noise does not adversely affect the transmission signal.
[0023]
In the disaster prevention monitoring system of the present invention, for example, several hundred repeaters for sensors are connected to the transmission line from the receiver. Therefore, in the case of a calling signal from the receiver, the LEDs of the photocouplers provided for separation in all the sensor repeaters are turned on and off at the same time in synchronization with the calling signal. For this reason, the current of the transmission line changes greatly. Since the transmission line has a line resistance, this changes the voltage of the transmission line. Since the fluctuation of the line voltage is synchronized with the transmission signal, the transmission signal changes, and the reliability of the transmission is impaired.
[0024]
Therefore, the present invention, as a transmission circuit section of a repeater for a sensor, receives and amplifies a call signal transmitted by being superimposed on a power supply voltage from a receiver between a transmission line and a transmission common line, and drives the light emitting section of the photocoupler. Amplifier, a constant current circuit that outputs a constant current using the line voltage between the transmission line and the transmission common line on which the calling signal is superimposed, and an amplifier that converts the constant current output of the constant current circuit to a constant power supply voltage. And a constant voltage circuit for applying the voltage to the power supply.
[0025]
As a result, a constant power supply voltage based on the constant current output from the constant current circuit is supplied to the amplifier that drives the light emission of the photocoupler of the transmission circuit unit, so even if the LED of the photocoupler is turned on and off by the transmission signal, The current in the transmission line does not change and does not affect the transmission signal.
[0026]
In the disaster prevention monitoring system according to the present invention, the sensor repeater includes a disconnection detection circuit that detects disconnection of the sensor line, and the receiver detects the insertion connection of the telephone to the telephone jack on the terminal side. And a transmission circuit unit for transmitting a control signal for stopping the operation of the disconnection detection circuit of the sensor repeater while the insertion detection output of the insertion detection unit is obtained.
[0027]
When the telephone is inserted into the telephone jack in this way, the receiver detects the insertion of the telephone, and the sensor repeater can stop the detection of the disconnection of the sensor line. Does not adversely affect the disconnection detection function,
A change in the voltage of the sensor line for detecting a disconnection does not adversely affect the speech sound.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an explanatory diagram of the system configuration of the disaster prevention monitoring system of the present invention. In FIG. 1, the disaster prevention monitoring system of the present invention includes a power supply line V, a transmission line S, a transmission common line SC, a telephone line T, and a transmission line 2 from a receiver 1 installed in an administrator room or the like to a guard area. The common line C is drawn. Here, the common line C is a common line for the power line V and the telephone line T.
[0029]
A plurality of sensor repeaters 3 are provided for the transmission path 2 drawn from the receiver 1. In the disaster prevention monitoring system of the present invention, the receiver 1 transmits a command such as a call by designating the terminal address set in the sensor repeater 3 and receives response information. Can connect as many repeaters 3 as the number of terminals that can be set to the terminal address. In a large-scale disaster prevention monitoring system, several hundred repeaters 3 are connected to the receiver 1. .
[0030]
A plurality of sensor lines L1 to Ln and a sensor common line LC are drawn from the sensor repeater 3, and an ON / OFF type fire detection is provided between each of the sensor lines L1 to Ln and the sensor common line LC. Unit 4 is connected.
[0031]
In this example, a case where one fire detector 4 is connected to each of the detector lines L1 to Ln is taken as an example, but a plurality of fire detectors 4 may be provided for each detector line as necessary. Connected. A terminator for disconnection detection is connected to the ends of the sensor lines L1 to Ln, but this is omitted.
[0032]
On the other hand, a telephone jack 5 is provided in the guard area where the repeater 3 for the sensor is installed, for performing communication between the receiver 1 and the site. Specifically, the telephone jack 5 is provided in a fire transmitter or the like installed in a security area.
[0033]
One end of the telephone jack 5 is connected to a telephone line T drawn from the receiver 1, and the other end of the telephone jack 5 is connected to a sensor common line LC drawn from the sensor repeater 3 by a telephone common line TC. The common line C drawn from the receiver 1 is connected to the sensor common line LC.
[0034]
Here, the telephone 6 is inserted and connected by a plug to the telephone jack 5 provided corresponding to the uppermost sensor repeater 3 among the plurality of sensor repeaters 3. By the insertion connection of the telephone 6, a communication circuit is formed through the telephone line T from the receiver 1, the telephone common line TC, the common line LC, and the sensor common line C, and a telephone call is performed in the receiver 1. On the other hand, by inserting and connecting a telephone to a telephone jack provided in the receiver 1 as will be described later, a telephone call can be made with the telephone 6 on the terminal side.
[0035]
FIG. 2 is a block diagram of an embodiment of the present invention in which one of the sensor repeaters 3 of FIG. 2, the receiver 1 is provided with a monitoring control unit 7, a transmission circuit unit 8, an operation display unit 9, a telephone circuit unit 10, and a telephone jack 11. A telephone 12 is inserted and connected to the telephone jack during a call.
[0036]
On the other hand, the sensor repeater 3 is provided with a transmission circuit unit 13, a CPU circuit unit 14, and a fire reception circuit unit 15. In the sensor repeater 3 of the present invention, photocouplers 16 and 17 are provided for the exchange of the downstream signal and the upstream signal between the transmission circuit unit 13 and the CPU circuit unit 14, and are electrically separated. .
[0037]
The photocouplers 16 and 17 include LEDs 16a and 17a as light emitting units and phototransistors 16b and 17b as light receiving units. The photocoupler 16 is for a downstream signal for transmitting a signal from the transmission circuit unit 13 to the CPU circuit unit 14. The photocoupler 17 is for an upstream signal for transmitting a signal from the CPU circuit unit 14 to the transmission circuit unit 13.
[0038]
Power is supplied to the transmission circuit unit 13 by the transmission line S and the transmission common line SC. Therefore, between the transmission line S and the transmission common line C, a down signal from the transmission circuit unit 8 and an up signal from the transmission circuit unit 13 are superimposed simultaneously with the power supply voltage.
[0039]
Here, the downstream signal from the transmission circuit unit 8 of the receiver 1 is superimposed as a voltage signal between the transmission line S also serving as a power supply line and the transmission common line SC. The upstream signal from the transmission circuit unit 13 of the sensor repeater 3 to the receiver 1 is transmitted by changing the line current flowing between the transmission line S and the transmission common line SC.
[0040]
In the normal monitoring state, the transmission circuit unit 8 of the receiver 1 transmits a paging signal including a paging command in which the terminal addresses of the sensor repeaters 3 are sequentially specified. The signal is received by the transmission circuit unit 13 of the device 3 and input to the CPU circuit unit 14 via the photocoupler 16.
[0041]
The CPU circuit unit 14 extracts a call address from the received call signal, compares the extracted call address with a preset self-address, and when it determines that the address matches, the photocoupler 17 converts the state signal in the sensor repeater 3 at that time into a photocoupler 17. To the transmission circuit unit 13 via the interface, and the transmission circuit unit 13 sends the change to the receiver 1 as a change in line current.
[0042]
As a response signal of the sensor repeater 3 to the call signal from the receiver 1, for example, a detection state such as normal, failure, or fire is set and corresponded to a specific bit in 8-bit response data. A response signal is returned to the receiver by setting the status bit.
[0043]
When a fire is detected, a fire interrupt signal is sent to the receiver 1 so that the receiver 1 performs a fire interrupt process. That is, when receiving the fire interrupt signal from the sensor repeater 3, the receiver 1 executes an address search process for searching for the address of the sensor repeater 3 that has detected the fire, and detects the fire. The repeater 3 for the sensor is specified, and a call signal is continuously transmitted to the repeater 3 for the sensor at the specified address to obtain a response of the fire detection information.
[0044]
Further, the transmission circuit section 8 of the receiver 1 transmits a disconnection detection control signal at a constant period, for example, every one second, in parallel with the transfer of the call signal to the sensor repeater 3. Upon receiving the signal, the CPU circuit unit 14 causes the fire receiving circuit unit 15 to perform a disconnection detection operation between the sensor lines L1 to Ln and the sensor common line LC. The result of the disconnection detection operation is returned by a response signal to the next call signal after the disconnection detection processing is completed.
[0045]
The monitoring control unit 7 of the receiver 1 performs a fire reception process, a failure occurrence process, and the like based on the information about the sensor repeater 3 obtained by the transmission control with the sensor repeater 3 by the transmission circuit unit 8. Perform monitoring control. An operation display unit 9 is provided for the monitoring control unit 7, and an operation input necessary for each display is performed in addition to a fire display and a failure display.
[0046]
Further, when the telephone 6 is inserted and connected to the telephone jack 5 on the terminal side as shown in the figure, the telephone circuit section 10 detects a current flowing between the telephone line T and the common line C and recognizes the telephone connection. Then, it notifies the monitoring control unit 7 of the telephone insertion connection and causes the telephone call operation to be performed.
[0047]
If there is a call, the administrator can take out the telephone 12 installed in the receiver 1 and connect it to the telephone jack 11 to make a telephone call with the telephone 6 on the terminal side. .
[0048]
FIG. 3 is a circuit block diagram showing details of each circuit section of the sensor repeater 3 of FIG. In FIG. 3, the transmission circuit unit 13 is provided with a reception circuit 18 and a transmission circuit 19. The receiving circuit 18 is provided with an LED 16a of the photocoupler 16, drives the LED 16a to emit light by a calling signal transmitted from the receiver, and controls on / off of the phototransistor 16b on the CPU circuit unit 14 side.
[0049]
The transmission circuit 19 is provided with a photocoupler 17 to change the line currents of the transmission line S and the transmission common line SC by turning on and off the phototransistor 17b by the light emission driving of the LED 17a in response to a response signal from the CPU circuit unit 14. Then, a response signal is transmitted to the receiver 1.
[0050]
The CPU circuit unit 14 includes a CPU 20, a light receiving circuit 21, a light emitting circuit 22, a memory 23, a disconnection monitoring control unit 24, an A / D converter 25, and a constant voltage circuit 30. Each circuit section of the CPU circuit section 14 including the CPU 20 inputs a power supply voltage between the power supply line V from the receiver and the common line C to the constant voltage circuit 30. A power supply voltage of 20 volts is output to the fire receiving circuit unit 15 side, for example.
[0051]
As a calling signal to the CPU 20, a signal received at the light receiving terminal te # 21 is input via the photocoupler 16. In the memory 23, a terminal address previously assigned to the sensor repeater 3 is stored, and the CPU 20 compares the address extracted from the calling signal with the light receiving address in the memory 23 to determine the calling of the receiver.
[0052]
Further, when the CPU 20 receives a disconnection detection control signal from the receiver at intervals of, for example, one minute, it drives the disconnection monitoring control unit 24, and the line receiving circuit provided for each of the sensor lines L1 to Ln on the fire receiving circuit unit 15 side. The detection operation of the disconnection detection circuit built in the controller 26 is performed.
[0053]
Further, the CPU 20 inputs, in parallel, the converted voltage of the line current detected by the line receiving circuit 26 of the sensor lines L1 to Ln provided in the fire receiving circuit unit 15 to the A / D converter 25. Is periodically sampled and taken into the CPU 20.
[0054]
Further, at the disconnection detection timing when the disconnection monitoring control unit 24 is operated, since the disconnection detection circuit of the line receiving circuit unit 26 is operating, the line current sampled by the A / D converter 25 at this time is detected. The conversion voltage indicates a disconnection detection state.
[0055]
In the disaster prevention monitoring system of the present invention in which the sensor repeater 3 of FIG. 2 having the respective circuit units as shown in the embodiment of FIG. 3 is connected to the receiver 1, the transmission circuit in the sensor repeater 3 is used. Since the unit 13 and the CPU circuit unit 14 are electrically separated by the coupling of the photocouplers 16 and 17, a call signal (down signal) and a response signal (down signal) transmitted between the transmission line S and the transmission common line SC. Since the transmission pulse of the upstream signal has a data transmission rate of, for example, 1200 bpi, even if it is in the audible frequency band of the telephone 6, the transmission noise due to the transmission pulse is electrically separated because of the electrical separation. , 12 are not superimposed.
[0056]
Conversely, even if extraneous noise is superimposed on the sensor lines L1 to Ln drawn from the fire receiving circuit unit 15, the sensor common line LC and the transmission common line SC are electrically separated from each other. The external noise superimposed on L1 to Ln is superimposed on the transmission line S and the transmission common line SC, and the transmission signal of the call signal and the response signal is not adversely affected by the external noise.
[0057]
Further, since the transmission circuit unit 13 and the CPU circuit unit 14 are electrically separated by the photocouplers 16 and 17, a common line C for the power line V and the telephone line T is newly drawn from the receiver 1. The common line C is connected to the CPU circuit section 14 side of the relay unit 3 for the sensor, and the common line LC is used as it is for the fire detector 4 side.
[0058]
For this reason, the common line C newly drawn from the receiver only needs to reach the relay unit 3 for the detector, and drawing out to the fire detector 4 side becomes unnecessary, and the common line C is newly connected to the transmission line 2 from the receiver 1. Even if one line is added, the scale and man-hours required for the extension can be reduced sufficiently compared to the case where the telephone common line TC is completely separated from the telephone line T as shown in FIG. It is relatively easy to apply the present invention even to the fire alarm system described above.
[0059]
FIG. 4 is a circuit diagram showing an embodiment of the receiving circuit 18 provided in the transmission circuit unit 13 of the sensor repeater 3 of FIG. In the disaster prevention monitoring system of the present invention as shown in FIG. 2, since the photocouplers 16 and 17 are provided between the transmission circuit unit 13 and the CPU circuit unit 14 of the sensor repeater 3, the receiver 1 shown in FIG. Considering the case where, for example, hundreds of sensor repeaters 3 are connected, the photocoupler 16 provided in the transmission circuit unit 13 is synchronized with a calling signal (down signal) from the receiver 1. The LEDs 16a are simultaneously turned on and off in synchronization with the calling signal.
[0060]
The simultaneous operation of the photocoupler LEDs in the transmission circuit section 13 of the sensor repeater 3 causes a large change in the transmission current flowing through the transmission line S and the transmission common line SC. Since the transmission line S and the transmission common line SC have a line resistance, the voltage between the transmission line S and the transmission common line SC increases due to a current change caused by turning on and off the LEDs of the photocoupler at the same time due to the line resistance. Change.
[0061]
Since the transmission circuit unit 13 operates by receiving the supply of the power supply voltage between the transmission line S and the transmission common line SC, when the line current changes due to the simultaneous operation of the LEDs of the photocoupler, the line voltage changes. The voltage greatly fluctuates, the operating characteristics of the amplifier and the like provided in the transmission circuit unit 13 change, and it becomes impossible to correctly receive a transmission signal, so that reliability may be impaired.
[0062]
Therefore, in the receiving circuit 18 of the transmission circuit unit 13 in FIG. 4, a constant current circuit is formed by the Zener diode ZD1, the resistors R1 and R2, and the transistor Q1, and the voltage between the transmission line S and the transmission common line SC is changed by a photocoupler. Even if the LED fluctuates in a pulsed manner, a constant current is always output from the collector of the transistor Q1.
[0063]
A Zener diode ZD2 functioning as a constant voltage circuit is connected to the collector of the transistor Q1. The constant current output is converted to a constant voltage determined by the Zener voltage of the Zener diode ZD2, and a constant power supply voltage is supplied to the amplifier 27. Will be.
[0064]
The transmission line S is connected to the input of the amplifier 27, amplifies the ringing signal superimposed on the voltage of the transmission line S, and drives the LED 16a of the photocoupler 16 to emit light. The current consumed when the LED 16a is driven to emit light by the amplifier 27 is a constant current output of the constant current circuit including the transistor Q1, so that even if the LED 16a is turned on and off, the transmission line S and the transmission common line SC The flowing current is a constant current.
[0065]
For this reason, even if the LED of the photocoupler is driven to emit light in synchronization with the ringing signal by a large number of sensor repeaters 3, the line current does not fluctuate, and the line voltage used as the power supply voltage does not fluctuate. The amplifier 27 of 18 can stably receive and amplify the calling signal and output it to the CPU circuit unit 14 via the photocoupler 16.
[0066]
FIG. 5 shows another embodiment of the disaster prevention monitoring system according to the present invention. In this embodiment, when the receiver detects the insertion connection of the telephone 6 to the telephone jack on the terminal side, the relay for the sensor is detected. The disconnection detection operation of the sensor line in the detector is stopped.
[0067]
In the disaster prevention monitoring system shown in FIG. 5, according to the present invention, a telephone call from the telephone jack 5 is connected to the sensor common line LC of the CPU circuit section 14 and the fire receiving circuit section 15 which are electrically separated by the photocouplers 16 and 17. The common line TC is connected and shared. Therefore, when a telephone 6 is inserted into the telephone jack 5 and connected to the telephone 12 of the receiver 1, a call signal causes the fire detector 4 to communicate. Since the sensor common line LC on the side fluctuates and the disconnection detection of the sensor lines L1 to Ln is set strictly to determine the line current, the disconnection may be erroneously detected due to the variation due to the speech signal. .
[0068]
On the other hand, when viewed from the call side, as shown in FIG. 3, the line receiving circuit 26 provided in the fire receiving circuit unit 15 receives control from the disconnection monitoring control unit 24 of the CPU circuit unit 14, for example, every one minute. A disconnection detection operation is performed every time. As the disconnection detecting operation, the line current flowing through the terminator is monitored while the line voltage of the sensor lines L1 to Ln in the normal monitoring state is changed to a high voltage of, for example, 35 volts, and the presence or absence of a disconnection is monitored. I'm trying to judge.
[0069]
For this reason, when the disconnection is detected, the telephone common line TC is shared with the sensor common line LC by changing the voltage of the sensor lines L1 to Ln in a pulsed manner, so that noise accompanying the disconnection detection operation is reduced. It is superimposed on the call signal, causing a problem that the call is difficult to hear.
[0070]
In the embodiment shown in FIG. 5, the receiver 1 is provided with an insertion detector 28. When the insertion detector 28 detects the insertion connection of the telephone 6 to the telephone jack 5 of the terminal, the insertion detector 28 is inserted into the transmission circuit unit 8. The transmission circuit unit 8 is notified of the detection, and stops transmitting the disconnection detection control signal to the sensor repeater 3 in response to the notification.
[0071]
For this reason, while the telephone 6 is connected to the telephone jack 5 and talking with the telephone 12 of the receiver 1, the disconnection detection signal is not output from the transmission circuit unit 8 to the repeater 3 for the sensor, and Since disconnection detection between the sensor lines L1 to Ln and the sensor common line LC is not performed in the receiving circuit unit 15, the disconnection detection is not adversely affected by the speech signal, and at the same time, noise due to the disconnection detection is eliminated. It is possible to prevent the call from being difficult to hear.
[0072]
FIG. 6 is a flowchart of a transmission process in the transmission circuit unit 8 of the receiver 1 of FIG. The transmission circuit unit 8 transmits a call signal containing a call command while sequentially specifying the terminal address in step S1, and receives a response signal from the repeater 3 for a sensor that has obtained an address match. I have.
[0073]
When a predetermined time, for example, one second, elapses between the call responses, the disconnection detection timing is determined in step S2, and it is checked in step S3 whether the insertion detection unit 28 detects the insertion of the telephone. If there is no insertion of the telephone 6 into the telephone jack 5, a disconnection detection control signal is transmitted in step S4, and the repeater for sensor 3 performs a disconnection detection operation.
[0074]
On the other hand, when the insertion connection of the telephone is detected at the disconnection detection timing, the transmission of the disconnection test signal in step S4 is skipped. As a result, the disconnection detecting operation is not performed in the sensor repeater 3 during a call.
[0075]
Subsequently, a fire interrupt is checked in step S5, and when a fire interrupt is detected, an address search process for specifying an address of the sensor repeater in which a fire is detected is performed in step S6. Then, in step S7, a call signal is continuously transmitted to the repeater for the fire-detecting device whose address has been detected and the data detection process is performed. In response to the detection processing of the fire detection data by the transmission circuit section 8, the monitoring control section 7 of the receiver 1 performs a fire judgment and a fire alarm display.
[0076]
In step S8, when the fire is extinguished and a recovery operation is performed by the monitor, the recovery from the fire is determined, and a series of processes is terminated. If the receiver is not stopped in step S9, the process returns to step S1 again. , Will resume fire monitoring.
[0077]
In the above embodiment, the disaster prevention monitoring system in which only the sensor repeater 3 is provided on the transmission path 2 from the receiver 1 is taken as an example. In addition to the sensor repeater 3, if necessary, the relay for the sensor may be used. An analog fire detector having the same data transmission function as the device 3 or a control repeater for controlling a fire door or smoke emission may be connected.
[0078]
In the above-described embodiment, the disconnection detection circuit provided on the fire receiving circuit unit 15 side of the sensor repeater 3 is periodically driven by a disconnection detection control signal from the receiver, and is used when the disconnection is detected. Although the example in which the disconnection is detected by changing the voltage is shown, a disconnection detection circuit that continuously monitors the disconnection without control from the receiver 1 may be used.
[0079]
Furthermore, in the above embodiment, when a fire is detected on the sensor repeater side, a fire interrupt is issued to the receiver, and an address search for specifying the sensor repeater that has performed the fire detection based on the fire interrupt is performed. However, the present invention is not limited to this, and any transmission may be performed as long as a fire signal is transmitted prior to a response to a normal call signal.
[0080]
【The invention's effect】
As described above, according to the present invention, the transmission circuit and the CPU circuit in the sensor repeater connected to the transmission line from the receiver are electrically separated by coupling with a photocoupler between the transmission circuit and the CPU circuit. The transmission circuit side and the CPU circuit side are also separated for the transmission line from the receiver, so the number of photocouplers used for the sensor repeater is minimized, and the transmission line side and the sensor line And since the telephone line side is separated, it is possible to eliminate the problem that the call signal is hard to hear due to the superimposition of noise due to the transmission signal on the telephone line, and at the same time the external noise on the sensor line side does not superimpose on the transmission line side, It is possible to prevent adverse effects on transmission signals due to external noise.
[0081]
In addition, by providing a photocoupler in the transmission circuit section of the sensor repeater, the LEDs of the photocoupler are simultaneously driven by a call signal to a number of the sensor repeaters connected to the receiver, thereby transmitting. Although the line current of the line fluctuates greatly and the line voltage that is the power supply voltage of the transmission circuit also fluctuates, in the present invention, a constant current circuit is provided on the receiving side of the transmission circuit of the sensor repeater, and the constant current circuit is provided. Since the power of the receiving amplifier is supplied by the output of the current circuit and the LED of the photocoupler is driven by the calling signal, the current of the transmission line from the receiver does not fluctuate even when the LED of the photocoupler is driven. It is possible to prevent the transmission signals from being adversely affected by the simultaneous driving of the LEDs.
[0082]
Further, in the present invention, when the telephone is inserted into the telephone jack on the terminal side, the receiver side detects the telephone insertion connection and the relay for the sensor stops the disconnection detection operation of the sensor line. In addition to preventing noise contamination due to disconnection detection during a call, it also prevents false disconnection detection when a severe threshold is set for disconnection detection due to voltage fluctuations in the detector line due to a call signal. Can be.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a system configuration showing an embodiment of the present invention.
FIG. 2 is a block diagram showing an embodiment of the present invention together with a receiver using one of the sensor repeaters of FIG. 1 as an example;
FIG. 3 is a block diagram showing an embodiment of each circuit unit in the sensor repeater of FIG. 2;
FIG. 4 is a circuit diagram of an embodiment of a receiving circuit of a transmission circuit unit in the sensor repeater of the present invention.
FIG. 5 is an explanatory diagram of a disaster prevention monitoring system according to the present invention in which insertion of a telephone is detected and disconnection detection is stopped by a sensor repeater.
6 is a flowchart of a processing operation of a receiver transmission circuit unit in the embodiment of FIG.
FIG. 7 is an explanatory diagram of a conventional disaster prevention monitoring system.
FIG. 8 is a block diagram showing a circuit configuration together with a receiver using one of the sensor repeaters of FIG. 7 as an example;
FIG. 9 is an explanatory diagram of a disaster prevention monitoring system in which a telephone line and a telephone common line are separated.
FIG. 10 is an explanatory view of a disaster prevention monitoring system in which a CPU circuit unit and a fire receiving circuit unit are electrically separated by a photocoupler in a sensor repeater;
[Explanation of symbols]
1: Receiver
2: Transmission path
3: Repeater for sensor
4: Fire detector
5, 11: telephone jack
6, 12: Telephone
7: Monitoring control unit
8, 13: Transmission circuit unit
9: Operation display section
10: Telephone circuit
14: CPU circuit unit
15: Fire receiving circuit section
16, 17: Photocoupler
16a, 17a: LED
16b, 17b: Phototransistor
18: Receiver circuit
19: Transmission circuit
20: CPU
21: Light receiving circuit
22: Light emitting circuit
23: Memory
24: Disconnection monitoring control unit
25: A / D converter
26: Line receiving circuit
27: Amplifier
28: Insertion detection unit
30: constant voltage circuit

Claims (3)

受信機から引き出された伝送路に対し複数の感知器用中継器を接続すると共に、前記感知器用中継器から引き出された感知器回線に火災感知器を接続し、前記受信機からの端末アドレスの指定により前記感知器用中継器の呼出しを行って前記火災感知器の火災検出信号を含む端末情報を収集して監視し、更に前記受信機から引き出された電話回線の端末側の電話ジャックに電話器を選択的に挿入接続して通話連絡を可能とする防災監視システムに於いて、
前記受信機からは前記伝送路として、伝送線、伝送コモン線、電源線、電話線、前記電源線と電話線に対するコモン線が引き出され、
前記感知器用中継器は、伝送回路部、CPU回路部及び火災受信回路部で構成され、前記伝送回路部とCPU回路部との間を上り信号と下り信号を電気的に分離してやり取りするフォトカプラで結合し、前記伝送回路部に受信機からの伝送線と伝送コモン線を接続し、前記CPU回路部及び火災受信回路部側に前記受信機からの電源線とコモン線を接続し、更に前記受信機からの電話線を前記電話ジャックの一端に接続すると共に電話ジャックの他端からの電話コモン線を前記受信機からのコモン線に接続したことを特徴とする防災監視システム。
A plurality of repeaters for sensors are connected to a transmission line drawn from the receiver, and a fire detector is connected to a detector line drawn from the repeater for sensors, and designation of a terminal address from the receiver. By calling the repeater for the sensor to collect and monitor terminal information including a fire detection signal of the fire detector, furthermore, a telephone is connected to a telephone jack on a terminal side of a telephone line drawn from the receiver. In a disaster prevention monitoring system that enables selective call connection and call communication,
From the receiver, as the transmission path, a transmission line, a transmission common line, a power line, a telephone line, a common line for the power line and the telephone line are drawn out,
The repeater for the sensor comprises a transmission circuit unit, a CPU circuit unit, and a fire reception circuit unit, and a photo that electrically separates an upstream signal and a downstream signal between the transmission circuit unit and the CPU circuit unit and exchanges them. Coupled with a coupler, a transmission line and a transmission common line from a receiver are connected to the transmission circuit unit, and a power line and a common line from the receiver are connected to the CPU circuit unit and the fire reception circuit unit side, A disaster prevention monitoring system, wherein a telephone line from the receiver is connected to one end of the telephone jack, and a telephone common line from the other end of the telephone jack is connected to a common line from the receiver.
請求項1記載の防災監視システムに於いて、前記感知器用中継器の伝送回路部は、
前記伝送線と伝送コモン線の線路間に前記受信機から電源電圧に重畳して送信された呼出信号を受信増幅して前記フォトカプラの発光部を駆動する増幅器と、
前記呼出信号が重畳された前記伝送線と伝送コモン線の線路電圧を電源として定電流を出力する定電流回路と、
前記定電流回路の定電流出力を一定の電源電圧に変換して前記増幅器に印加する定電圧回路と、
を備えたことを特徴とする防災監視システム。
In the disaster prevention monitoring system according to claim 1, the transmission circuit section of the sensor repeater includes:
An amplifier that receives and amplifies a call signal transmitted by being superimposed on a power supply voltage from the receiver between the transmission line and the transmission common line and drives a light emitting unit of the photocoupler,
A constant current circuit that outputs a constant current using the line voltage of the transmission line and the transmission common line on which the calling signal is superimposed as a power supply,
A constant voltage circuit that converts a constant current output of the constant current circuit into a constant power supply voltage and applies the constant power output to the amplifier;
A disaster prevention monitoring system comprising:
請求項1記載の防災監視システムに於いて、
前記感知器用中継器は、前記感知器回線の断線を検出する断線検出回路を備え、
前記受信機は、端末側の前記電話ジャックに対する電話器の挿入接続を検出する挿入検出部と、前記挿入検出部の挿入検出出力が得られている間、前記感知器用中継器の断線検出回路の動作を停止させる制御信号を送信する伝送回路部とを備えたことを特徴とする防災監視システム。
In the disaster prevention monitoring system according to claim 1,
The sensor repeater includes a disconnection detection circuit that detects disconnection of the sensor line,
The receiver, an insertion detection unit for detecting the insertion connection of the telephone to the telephone jack on the terminal side, and while the insertion detection output of the insertion detection unit is obtained, the disconnection detection circuit of the repeater for the sensor A disaster prevention monitoring system, comprising: a transmission circuit for transmitting a control signal for stopping operation.
JP2002256660A 2002-09-02 2002-09-02 Disaster prevention monitoring system Expired - Fee Related JP3803075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256660A JP3803075B2 (en) 2002-09-02 2002-09-02 Disaster prevention monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256660A JP3803075B2 (en) 2002-09-02 2002-09-02 Disaster prevention monitoring system

Publications (2)

Publication Number Publication Date
JP2004094720A true JP2004094720A (en) 2004-03-25
JP3803075B2 JP3803075B2 (en) 2006-08-02

Family

ID=32061828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256660A Expired - Fee Related JP3803075B2 (en) 2002-09-02 2002-09-02 Disaster prevention monitoring system

Country Status (1)

Country Link
JP (1) JP3803075B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065552A (en) * 2004-08-26 2006-03-09 Hochiki Corp Fire alarm system
WO2010021958A1 (en) * 2008-08-20 2010-02-25 Siemens Industry, Inc. Arrangement and method for communicating audio and dc signals
JP2010067024A (en) * 2008-09-11 2010-03-25 Hochiki Corp Relay
JP2015139658A (en) * 2014-01-30 2015-08-03 ホーチキ株式会社 Gas system fire extinguishing equipment
JP2021020014A (en) * 2019-07-30 2021-02-18 ヤマトプロテック株式会社 Replacement determination device and replacement determination method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065552A (en) * 2004-08-26 2006-03-09 Hochiki Corp Fire alarm system
WO2010021958A1 (en) * 2008-08-20 2010-02-25 Siemens Industry, Inc. Arrangement and method for communicating audio and dc signals
US8280070B2 (en) 2008-08-20 2012-10-02 Siemens Industry, Inc. Arrangement and method for communicating audio and DC signals
KR101299591B1 (en) * 2008-08-20 2013-08-23 지멘스 인더스트리 인코포레이티드 Arrangement and method for communicating audio and dc signals
JP2010067024A (en) * 2008-09-11 2010-03-25 Hochiki Corp Relay
JP2015139658A (en) * 2014-01-30 2015-08-03 ホーチキ株式会社 Gas system fire extinguishing equipment
JP2021020014A (en) * 2019-07-30 2021-02-18 ヤマトプロテック株式会社 Replacement determination device and replacement determination method
JP7229531B2 (en) 2019-07-30 2023-02-28 ヤマトプロテック株式会社 Replacement determination device and replacement determination method

Also Published As

Publication number Publication date
JP3803075B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
US7068781B2 (en) Alarm of a telecommunications terminal connected to a LAN
JP3695635B2 (en) Fire alarm system
KR102022992B1 (en) A Method of self-diagnosis for Fire Detector Using Fire Alarm Repeater
JP3788711B2 (en) Fire alarm system
JP3803075B2 (en) Disaster prevention monitoring system
JP2024016274A (en) booster
KR102022986B1 (en) A Method For high speed scanning with Fire Detecter
JP2002024953A (en) Monitoring device for disconnection of line and fire, fire alarming device having the same and line disconnection and fire monitoring method
JP3622401B2 (en) Method of detecting short circuit in monitoring system for disaster prevention, monitoring method for disaster prevention using the same, monitoring system for disaster prevention
JP2854491B2 (en) Disaster prevention monitoring device and method
JP3988108B2 (en) Fire alarm repeater
KR101801551B1 (en) Apparatus for power line communication
JP3803077B2 (en) Fire alarm equipment telephone equipment
US11501631B2 (en) Fire alarm system and booster
JPH087189A (en) Disaster prevention monitor
JP7390792B2 (en) fire alarm equipment
KR20040048533A (en) Fire alarm system using power line communication
JP2511187B2 (en) Disaster prevention monitoring device
JPH06282786A (en) Disaster prevention monitor
JP2552272B2 (en) Automatic fire alarm
JP2854490B2 (en) Disaster prevention monitoring device and terminal testing method of disaster prevention monitoring device
JPH09147270A (en) Disaster prevention monitoring control device and method thereof
JP2003151054A (en) Low power consumption security system
JPH087187A (en) Disaster prevention monitor
JPH07182589A (en) Disaster prevention monitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3803075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees