JP2004094323A - Image inputting method and device - Google Patents

Image inputting method and device Download PDF

Info

Publication number
JP2004094323A
JP2004094323A JP2002251061A JP2002251061A JP2004094323A JP 2004094323 A JP2004094323 A JP 2004094323A JP 2002251061 A JP2002251061 A JP 2002251061A JP 2002251061 A JP2002251061 A JP 2002251061A JP 2004094323 A JP2004094323 A JP 2004094323A
Authority
JP
Japan
Prior art keywords
light
line sensor
sensor camera
light shielding
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002251061A
Other languages
Japanese (ja)
Inventor
Takutetsu Chinju
鎮守 卓哲
Masahiko Soeda
添田 正彦
Atsushi Okazawa
岡沢 敦司
Manabu Mizumachi
水町 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2002251061A priority Critical patent/JP2004094323A/en
Publication of JP2004094323A publication Critical patent/JP2004094323A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Image Input (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To automatically perform the light shielding of an area whose transmissivity is higher than a work area when imaging an object to be inspected where a work whose transmissivity is lower than that of a sheet-shaped substrate whose transmissivity is high is arranged at a predetermined position of the substrate under transmitted illumination by a line sensor camera. <P>SOLUTION: In this image inputting device for allowing the object where the work whose transmissivity is lower than that of the substrate is arranged at the predetermined position of the sheet-shaped substrate whose transmissivity is high pass between transmissive illumination and a line sensor camera 12 in order to image the object by the camera, the transmitted lights passing through an area outside the work positioned on a cross line where the optical axis of the camera crosses the object are automatically shielded by putting light shielding plates (1)(2)(3)(6)(7)(11)(12) in a high luminance area into light shielding state where the light shielding plates cross the optical axis based on luminance information acquired by imaging the object by the camera. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、画像入力方法及び装置、特に透過率が高いシート状基体の所定位置に、該基体より透過率が低いワークが配されている検査対象物を、透過照明とラインセンサカメラとの間を通過させながら、該ラインセンサカメラにより撮像してワーク内の領域の画像を入力する際に適用して好適な画像入力方法及び装置に関する。
【0002】
【従来の技術】
今、画像入力する検査対象物が、図11に平面方向の一部のイメージを示すように、透明フィルムからなるシート状基体Sの所定位置に絵柄が印刷された印刷物等のように、絵柄等のワークWaの周囲領域にあたるワーク外に比べて、その内側領域のワーク内が非常に光の透過性が低いものであるとする。
【0003】
このような検査対象物(入力対象物)Wを、図12(A)に正面から見た場合のイメージを示すように、下方に位置する透過光源10により照明しながら、上方に位置するラインセンサカメラ12によりワークWaの幅以上の範囲を視野として撮像する場合を考える。
【0004】
このようにラインセンサカメラ12により撮像する場合、図12(A)の検査対象物Wに対応させて、該カメラ12が備えている撮像素子12Aにより受光した際の輝度値の関係の一例を同図(B)に示すように、ワーク外にワーク内よりも透過率の高い領域が存在する。これは、十分な光量の透過照明下で撮像した場合の例であり、入力画像におけるワークの境界部分は、丸で囲んで示すように、二点鎖線で示す本来の輝度値より高い値を示すため、ワーク内における輝度値の最大値と最小値との範囲であるダイナミックレンジを広くできないことから、正確な画像入力ができないことになる。この現象は、図で輝度値が最大値255(8bitの場合)で一定になっているように、特にワーク外の光量が撮像素子の飽和光量を超えた場合に顕著になる。そこで、このような現象が起こらないようにするために、同図(C)に示すように、透過照明の光量はワーク外の領域の透過光量が、撮像素子の飽和光量より小さくなるように設定し、輝度値が最大値の255より小さくなるようにしていた。
【0005】
【発明が解決しようとする課題】
しかしながら、上記のように透過照明の光量を小さく設定する場合には、前記図12(C)に丸で囲んで示すように、ワーク境界部分は透過光量の影響が小さくなるために本来の輝度値に近くなるものの、入力画像における最大輝度値がフルレンジ(255)より図中aだけ下がることになるため、ワーク内の領域における最大輝度値も同程度小さくなることから、ダイナミックレンジが狭くなる。理想的には、上述した同図(B)のニ点鎖線にあたる同図(D)に示すような広いダイナミックレンジであるべきなのに、このように狭くなると入力画像の濃度差が小さくなるため、画像精度が低下するという問題がある。
【0006】
本発明は、前記従来の問題点を解決するべくなされたもので、高透過率のシート状基体の所定位置に、該基体より透過率が低いワークが配されている検査対象物をラインセンサカメラにより透過照明下で撮像する際、ワーク領域よりも透過率が高い領域を自動的に遮光できるようにすることにより、照明の光量を十分に大きくした状態でワーク領域を画像入力することができるラインセンサカメラによる画像入力方法及び装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明は、透過率が高いシート状基体の所定位置に、該基体より透過率が低いワークが配されている検査対象物を、透過照明とラインセンサカメラとの間を通過させながら、該ラインセンサカメラにより撮像する画像入力方法であって、前記ラインセンサカメラの光軸が前記検査対象物と交差する交線上に位置するワーク外の領域に入射する照明光又は同領域を通過した透過光を、前記ラインセンサカメラにより前記検査対象物を撮像して得られる画像情報に基づいて自動的に遮断することにより、前記課題を解決したものである。
【0008】
本発明は、又、透過率が高いシート状基体の所定位置に、該基体より透過率が低いワークが配されている検査対象物を、透過照明とラインセンサカメラとの間を通過させながら、該ラインセンサカメラにより撮像する画像入力装置であって、前記ラインセンサカメラの光軸が前記検査対象物と交差する交線上に位置するワーク外の領域に入射する照明光又は同領域を通過した透過光を、前記ラインセンサカメラにより前記検査対象物を撮像して得られる画像情報に基づいて自動的に遮断する遮光装置を備えたことにより、同様に前記課題を解決したものである。
【0009】
即ち、本発明においては、前記図12(A)、(B)に相当する図1(A)、(B)にイメージを示すように、ラインセンサカメラ12が有する撮像素子12Aを構成するCCD等の単位素子について、該カメラ12を走査した際に蓄積可能な電荷量を超えて飽和している、即ち輝度値が最大値(図中、Max)に達している単位素子の走査方向の位置と範囲(数)を判定し、この判定結果に基づいて、対応する図2(A)に示すようにワークWaの領域外に遮光板16を自動的に配置できるようにした。その結果、人手を煩わすことなく、飽和光量領域の影響を受けることを防止できることから、十分な大きさの照明光量の下でワーク領域を画像入力できるようになるため、同図(B)に示すように広いダイナミックレンジの画像を得ることができ、画像精度を向上することができる。
【0010】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態について詳細に説明する。
【0011】
図3(A)は、本発明に係る一実施形態の画像入力装置のハード的な概要を示す正面図、同図(B)はその平面図である。
【0012】
本実施形態の画像入力装置は、図3(A)に示すように、紙面に直交する方向に搬送される透明フィルム(シート状基体)Sの所定位置に絵柄(ワーク)Waが印刷された印刷物を検査対象物(入力対象物)Wとし、該対象物Wの下方には蛍光灯からなるライン状の透過光源10が、又その上方にはラインセンサカメラ12が、それぞれの光軸が紙面に平行、即ち検査対象物Wの搬送方向に直交するように配設された構成になっている。
【0013】
上記検査対象物Wは、同図(B)に示されるように印刷絵柄である所定の大きさのワークWaが、透明フィルムS上に所定の間隔をおいて多面付けされており、絵柄の範囲内がワーク内で、それ以外の透明フィルムのみの領域はワーク外であるとする。
【0014】
本実施形態の画像入力装置は、遮光装置14を備えており、この遮光装置14は、図3(A)では一部を省略してあるが、同図(B)に示されるようにラインセンサカメラ12の光軸が検査対象物Wと交差する交線K(カメラの走査方向に相当する)に沿って、該カメラ12の視野を越える範囲にわたって並設された、多数の遮光板16を有している。
【0015】
この遮光板16は、図4に示すように、搬送方向に直交する方向に配設された回動軸18が軸挿され、該軸18を中心に回動することにより、先端部分をラインセンサカメラ12の光軸と交差する下げた状態16Aと、二点鎖線で示す交差しない上げた状態16Bとの2つの状態に切換可能になっている。又、各遮光板16には、図5に一部を斜視図で示すように、エアシリンダ(アクチュエータ)20がそれぞれ配設され、各エアシリンダ20のピストンロッド20Aを下動させて対応する遮光板16の後端部分を押し下げることにより、遮光状態16Aから非遮光状態16Bに切換えることが可能になっている。
【0016】
この遮光装置14においては、ラインセンサカメラ12により検査対象物Wを撮像する時に、該対象物Wのワーク外に対しては、光軸を遮る下げた状態の遮光板16Aにし、ワーク内に対しては光軸を遮らない上げた状態の遮光板16Bに設定し、前記図3(A)、(B)にイメージを示すような並べ方にすることにより、ワークWaの領域のみからの透過光がラインセンサカメラ12に入射されるようにしている。そのために、個々の遮光板16は、光の反射防止加工が施された金属により、例えば、並設方向にあたる幅を4mm、厚さを20mmの各寸法で形成され、それぞれ隙間無く敷き詰めることができるようになっている。特に、ワーク内の領域全体を高精度に入力したい場合は、遮光板がワークの内側に入り込まないようにするために、できるだけ幅の値を小さくすることが望ましい。
【0017】
本実施形態においては、前記遮光装置14が、更に図6に要部を示すような制御系を備えている。即ち、前記ラインセンサカメラ12から出力される輝度信号(画像信号)が信号処理ボード22を介して、制御演算部であるコンピュータ24に入力されるようになっており、該コンピュータ24では入力された輝度信号に基づいて、透過率の高い領域に当たる撮像素子12Aにおける単位素子(図示せず)の位置座標と、その範囲(数)を演算し、その結果がRS232Cのシリアルインターフェースを介してシーケンサIOユニット26に出力され、該ユニット26により演算結果に該当するエアシリンダ20を駆動させ、対応する位置の前記遮光板16を遮光状態16Aに自動的に制御できるようになっている。
【0018】
次に、本実施形態の制御アルゴリズムを、図7に示すフローチャートに従って説明する。
【0019】
検査対象物Wである製品の品種切換を行なう(ステップ1)場合には、遮光板16を全て非遮光状態16Bにする遮光解除を行なう(ステップ2)。その状態で、新しい品種の検査対象物Wを搬送して検査を開始すると共に、ラインセンサカメラ12を走査して画像情報である1走査分の輝度情報(信号)を入力する(ステップ3)。
【0020】
次いで、入力された輝度情報に基づいて、ラインセンサカメラ12が有する撮像素子12Aにおける輝度の飽和部分(透過率が大きい素子領域)を検出し(ステップ4)、検出された撮像素子12Aの走査方向における単位素子の位置から、対応する遮光位置(遮光状態16Aにすべき遮光板16の位置)を決定し(ステップ5)、決定された遮光位置とその幅(範囲)を算出し、図示しないメモリに保存する(ステップ6)と共に、決定された遮光位置の遮光板16を、対応するエアシリンダ20を操作して遮光状態16Aにする(ステップ7)。検査継続中は、上記ステップ3〜ステップ7の各処理を繰り返す。
【0021】
本実施形態のアルゴリズムについて、8bitのラインセンサカメラ12(飽和輝度値=255)を使用すると共に、遮光装置14は、便宜上12枚の遮光板16を有している場合として、図8を用いて更に具体的に説明する。
【0022】
前記ステップ3で図8(A)のように入力した輝度情報(画像情報)が、同図(B)であったとすると、前記ステップ4では入力信号を輝度値250を閾値として2値化し、得られる同図(C)に示す2値データでH(高)レベルの部分を飽和部分と判定する。そして、前記ステップ5では、走査方向にあたる撮像素子12AのX座標の値(単位素子の位置)と、該座標値と予め対応付けられている、同図(D)に示す遮光板の番号(1)〜(12)との関係を用いて、遮光すべき遮光板16の具体的な位置を決定する。この例では、(1)(2)(3)(6)(7)(11)(12)の各遮光板16を遮光位置として決定している。このように、ここでは予め輝度プロファイルに示す座標と、遮光板16とを1枚毎に対応付けておくことにより、実際の位置を決定するようにしている。
【0023】
本実施形態では、図9(A)にイメージを示すように、(5)(6)の遮光板16で遮光した状態で検査対象物Wの検査を継続している際に、該対象物Wが突然蛇行した場合には、同図(B)に示すように遮光幅を変えずに遮光位置だけを(6)(7)に変更することにより対応できる。即ち、同一品種の場合は、遮光幅は通常変わらないので、ラインセンサカメラ12から入力された輝度情報に突然新たな飽和部分が現われても、遮光幅を変えずに遮光位置のみをシフトすることで対応できる。但し、開口部が広がる場合も考えられるため、その場合は遮光幅を変えることにより同様に対応できる。
【0024】
本実施形態においては、図10の斜視図にイメージを示すように、透明フィルム上に連続して印刷されたフープ(帯状の製品)上の、その幅方向に絵柄が多面付けされている印刷物を画像入力する場合に、絵柄と絵柄の間の透明な開口部に対しては、前記図8を用いて説明した方法により、該当する遮光板16を自動的に操作することにより、ラインセンサカメラ12に対して確実に遮光することができる。
【0025】
以上詳述した本実施形態によれば、ラインセンサカメラ12により入力した輝度情報に基づいて、輝度の飽和部分を検出し、その検出結果を基に数値制御するようにしたので、遮光幅を正確に決定できる上に、遮光操作を自動的に行なうことが可能となる。従って、検査対象物Wの搬送挙動に追従した遮光が可能となり、蛇行が生じた場合でも常に同じ条件で画像を入力することが可能となる。
【0026】
又、該当する遮光板16の操作を自動的に行なうことが可能となることから、オペレータがワークの状態を見て遮光幅を決定し、手動操作する場合のように、個人差が生じることを防止できる。更に、メンテナンス作業を簡略化できる上に、人間が介在しないで済むようにできることから、ゴミの発生を低減できるという利点もある。
【0027】
以上、本発明について具体的に説明したが、本発明は、前記実施形態に示したものに限られるものでなく、その要旨を逸脱しない範囲で種々変更可能である。
【0028】
例えば、遮光装置14を検査対象物Wの上方に配設し、透過光を遮断する場合を示したが、下方に配設して照明光を遮断するようにしてもよい。
【0029】
又、遮光板16が、回動軸18を中心に回動する例を示したが、これに限定されず、光軸位置に対して遮光板16が進退動するような機構を採用するようにしてもよい。
【0030】
又、実施形態ではワークが印刷絵柄である場合を説明したが、これに限定されず、光学的に同様の性質をもつものであれば特に制限されない。
【0031】
【発明の効果】
以上説明したとおり、本発明によれば、高透過率のシート状基体の所定位置に、該基体より透過率が低いワークが配されている検査対象物をラインセンサカメラにより透過照明下で撮像する際、ワーク領域よりも透過率が高い領域を自動的に遮光することにより、照明の光量を十分に大きくしてワーク領域を画像入力することができる。
【図面の簡単な説明】
【図1】非遮光状態のラインセンサカメラによる撮像と、得られる輝度情報との関係を示す説明図
【図2】遮光状態のラインセンサカメラによる撮像と、得られる輝度情報との関係を示す説明図
【図3】本発明に係る一実施形態の画像入力装置の概要を示す正面図及び平面図
【図4】遮光板の遮光状態と非遮光状態の関係を示す概略側面図
【図5】遮光板と駆動用のエアシリンダの関係を示す部分斜視図
【図6】本実施形態の画像入力装置の制御系の要部を示す制御ブロック図
【図7】本実施形態のアルゴリズムを示すフローチャート
【図8】ラインセンサカメラによる輝度情報と決定される遮光位置との対応を示す説明図
【図9】検査対象物が蛇行したときの制御方法の一例を示す説明図
【図10】検査対象物の撮像状態のイメージを示す概略斜視図
【図11】検査対象物の特徴を示す部分平面図
【図12】従来の問題点を示す説明図
【符号の説明】
10…透過光源
12…ラインセンサカメラ
14…遮光装置
16…遮光板
18…回動軸
20…エアシリンダ
W…検査対象物
Wa…絵柄(ワーク)
S…透明フィルム(シート状基体)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an image input method and apparatus, in particular, an object to be inspected in which a workpiece having a lower transmittance than a substrate is disposed at a predetermined position on a sheet-like substrate having a high transmittance, between a transmission illumination and a line sensor camera. The present invention relates to an image input method and apparatus suitable for applying when inputting an image of a region in a work by taking an image with the line sensor camera while passing through the image sensor.
[0002]
[Prior art]
Now, as shown in FIG. 11, the inspection object to be image-inputted has a pattern such as a printed matter in which a pattern is printed at a predetermined position on a sheet-like substrate S made of a transparent film. It is assumed that the inside of the work inside the work Wa has extremely low light transmittance as compared with the outside of the work corresponding to the surrounding area of the work Wa.
[0003]
As shown in FIG. 12A, when the inspection object (input object) W is viewed from the front, the line sensor positioned above is illuminated by the transmission light source 10 positioned below. Consider a case where the camera 12 captures an image with a range equal to or larger than the width of the work Wa as a visual field.
[0004]
When an image is captured by the line sensor camera 12 in this manner, an example of the relationship between the brightness values when light is received by the image sensor 12A provided in the camera 12 in correspondence with the inspection object W in FIG. As shown in FIG. 7B, there is a region outside the work with higher transmittance than inside the work. This is an example of a case where an image is captured under transmitted illumination with a sufficient amount of light, and the boundary portion of the work in the input image shows a value higher than the original luminance value indicated by the two-dot chain line as indicated by a circle. Therefore, the dynamic range, which is the range between the maximum value and the minimum value of the luminance value in the work, cannot be widened, so that accurate image input cannot be performed. This phenomenon becomes remarkable especially when the light amount outside the work exceeds the saturation light amount of the image sensor, as the luminance value is constant at the maximum value 255 (in the case of 8 bits) in the figure. Therefore, in order to prevent such a phenomenon from occurring, the amount of transmitted illumination is set so that the amount of transmitted light outside the work is smaller than the amount of saturated light of the image sensor, as shown in FIG. Then, the luminance value was set to be smaller than the maximum value of 255.
[0005]
[Problems to be solved by the invention]
However, when the light amount of the transmitted illumination is set to be small as described above, as shown by the circle in FIG. However, since the maximum luminance value in the input image is lower than the full range (255) by a in the figure, the maximum luminance value in the region in the work is also reduced by about the same, and the dynamic range is narrowed. Ideally, the dynamic range should be as wide as shown in FIG. 2D, which corresponds to the two-dot chain line in FIG. 2B, but if the width becomes narrower, the density difference of the input image becomes smaller. There is a problem that accuracy is reduced.
[0006]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problem, and a line sensor camera is provided for inspecting an object to be inspected in which a work having a lower transmittance than a substrate is arranged at a predetermined position on a sheet substrate having a high transmittance. When capturing an image under transmitted illumination, an area having a higher transmittance than the work area can be automatically shaded, so that the work area can be image-input with a sufficiently large amount of illumination. It is an object to provide an image input method and apparatus using a sensor camera.
[0007]
[Means for Solving the Problems]
The present invention provides an inspection method in which a workpiece having a transmittance lower than that of a substrate is disposed at a predetermined position on a sheet-like substrate having a high transmittance, while passing the inspection target between the transmission illumination and the line sensor camera. An image input method of capturing an image with a sensor camera, wherein the optical axis of the line sensor camera is an illumination light incident on a region outside the work located on an intersection line intersecting with the inspection target or a transmitted light passing through the region. The present invention has solved the above-mentioned problem by automatically shutting off the inspection object based on image information obtained by imaging the inspection object by the line sensor camera.
[0008]
The present invention also provides an inspection object in which a workpiece having a lower transmittance than the substrate is arranged at a predetermined position on a sheet-like substrate having a high transmittance, while passing between the transmitted illumination and the line sensor camera. An image input apparatus for capturing an image with the line sensor camera, wherein the optical axis of the line sensor camera is incident on an area outside the work located on an intersection line intersecting with the inspection object, or transmitted through the area. The object is similarly solved by providing a light shielding device that automatically blocks light based on image information obtained by imaging the inspection object with the line sensor camera.
[0009]
That is, in the present invention, as shown in FIGS. 1A and 1B corresponding to FIGS. 12A and 12B, a CCD or the like constituting an image sensor 12A of the line sensor camera 12 is shown. Of the unit element is saturated beyond the amount of charge that can be accumulated when the camera 12 is scanned, that is, the position in the scanning direction of the unit element whose luminance value has reached the maximum value (Max in the figure). The range (number) is determined, and based on the determination result, the light shielding plate 16 can be automatically arranged outside the area of the workpiece Wa as shown in FIG. 2A. As a result, it is possible to prevent the influence of the saturated light amount area from being affected without any trouble, and it becomes possible to input an image of the work area under a sufficiently large amount of illumination light. An image with such a wide dynamic range can be obtained, and image accuracy can be improved.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
FIG. 3A is a front view showing a hardware outline of an image input apparatus according to an embodiment of the present invention, and FIG. 3B is a plan view thereof.
[0012]
As shown in FIG. 3A, the image input device of the present embodiment is a printed matter in which a picture (work) Wa is printed at a predetermined position on a transparent film (sheet-like substrate) S conveyed in a direction perpendicular to the paper surface. Is an inspection object (input object) W, a linear transmission light source 10 composed of a fluorescent lamp is provided below the object W, and a line sensor camera 12 is provided above the object W. It is configured to be arranged in parallel, that is, perpendicular to the transport direction of the inspection object W.
[0013]
In the inspection object W, a work Wa of a predetermined size, which is a print pattern, is multi-faced at a predetermined interval on the transparent film S as shown in FIG. It is assumed that the inside is the inside of the work, and the other area including only the transparent film is outside the work.
[0014]
The image input device according to the present embodiment includes a light-shielding device 14. The light-shielding device 14 is partially omitted in FIG. 3A, but as shown in FIG. The camera 12 has a large number of light shielding plates 16 arranged side by side along an intersecting line K (corresponding to the scanning direction of the camera) where the optical axis of the camera 12 intersects the inspection object W over a range beyond the field of view of the camera 12. are doing.
[0015]
As shown in FIG. 4, the light-shielding plate 16 is provided with a rotation shaft 18 disposed in a direction orthogonal to the conveyance direction, and is rotated around the rotation shaft 18 so that the front end of the light-shielding plate 16 is a line sensor. It is possible to switch between two states: a lowered state 16A that intersects with the optical axis of the camera 12, and an raised state 16B that does not intersect as indicated by a two-dot chain line. Air shields (actuators) 20 are disposed on the respective light shielding plates 16 as shown in a perspective view in FIG. 5, and the corresponding light shielding plates 16 are moved downward by moving the piston rods 20A of the respective air cylinders 20. By pushing down the rear end portion of the plate 16, it is possible to switch from the light shielding state 16A to the non-light shielding state 16B.
[0016]
In the light-shielding device 14, when the inspection object W is imaged by the line sensor camera 12, the light-shielding plate 16A in a state in which the optical axis is blocked is provided outside the work of the object W, By setting the light shielding plate 16B in a raised state so as not to block the optical axis and by arranging the images as shown in FIGS. 3A and 3B, transmitted light from only the region of the work Wa can be reduced. The light is incident on the line sensor camera 12. For this purpose, the individual light-shielding plates 16 are formed of metal subjected to light reflection prevention processing, for example, each having a width of 4 mm and a thickness of 20 mm in the juxtaposition direction, and can be spread without gaps. It has become. In particular, when it is desired to input the entire area in the work with high accuracy, it is desirable to reduce the width value as much as possible in order to prevent the light shielding plate from entering the inside of the work.
[0017]
In the present embodiment, the light shielding device 14 further includes a control system as shown in FIG. That is, a luminance signal (image signal) output from the line sensor camera 12 is input to a computer 24 which is a control operation unit via a signal processing board 22. Based on the luminance signal, the position coordinates of a unit element (not shown) in the image sensor 12A corresponding to a region having a high transmittance and the range (number) thereof are calculated, and the result is output to the sequencer IO unit via the RS232C serial interface. 26, the unit 26 drives the air cylinder 20 corresponding to the calculation result, and the light shielding plate 16 at the corresponding position can be automatically controlled to the light shielding state 16A.
[0018]
Next, the control algorithm of the present embodiment will be described with reference to the flowchart shown in FIG.
[0019]
When the product type of the product to be inspected W is changed (step 1), the light shielding is released so that all the light shielding plates 16 are in the non-light shielding state 16B (step 2). In this state, inspection is started by transporting a new type of inspection object W, and the line sensor camera 12 is scanned to input luminance information (signal) for one scan as image information (step 3).
[0020]
Next, based on the input luminance information, a saturated portion of the image sensor 12A of the line sensor camera 12 (an element region having a large transmittance) is detected (step 4), and the detected scanning direction of the image sensor 12A is detected. The corresponding light shielding position (the position of the light shielding plate 16 to be in the light shielding state 16A) is determined from the position of the unit element in (5), the determined light shielding position and its width (range) are calculated, and a memory (not shown) (Step 6), and the light shielding plate 16 at the determined light shielding position is set to the light shielding state 16A by operating the corresponding air cylinder 20 (Step 7). During the continuation of the inspection, the processes of the above steps 3 to 7 are repeated.
[0021]
The algorithm of the present embodiment uses an 8-bit line sensor camera 12 (saturation luminance value = 255), and the light shielding device 14 has 12 light shielding plates 16 for convenience, using FIG. This will be described more specifically.
[0022]
Assuming that the luminance information (image information) input as shown in FIG. 8A in step 3 is as shown in FIG. 8B, in step 4, the input signal is binarized by using the luminance value 250 as a threshold to obtain The H (high) level portion of the binary data shown in FIG. In step 5, the value of the X coordinate (the position of the unit element) of the image sensor 12A corresponding to the scanning direction and the number (1) of the light shielding plate shown in FIG. Using the relations (1) to (12), the specific position of the light shielding plate 16 to be shielded from light is determined. In this example, the light shielding plates 16 of (1), (2), (3), (6), (7), (11), and (12) are determined as the light shielding positions. As described above, the actual position is determined by associating the coordinates shown in the luminance profile with the light shielding plate 16 in advance for each sheet.
[0023]
In the present embodiment, as shown in the image of FIG. 9A, when the inspection of the inspection target W is continued while the light is shielded by the light shielding plate 16 of (5) and (6), the target W Can be handled by changing only the light shielding position to (6) and (7) without changing the light shielding width as shown in FIG. That is, in the case of the same type, since the light-shielding width does not usually change, even if a new saturated portion suddenly appears in the luminance information input from the line sensor camera 12, it is necessary to shift only the light-shielding position without changing the light-shielding width. Can respond. However, since it is conceivable that the opening may be widened, such a case can be similarly handled by changing the light shielding width.
[0024]
In the present embodiment, as shown in the perspective view of FIG. 10, a hoop (band-shaped product) continuously printed on a transparent film is printed on a hoop (band-shaped product), in which a picture is multifaceted in the width direction. In the case of inputting an image, the corresponding light shielding plate 16 is automatically operated for the transparent opening between the patterns by the method described with reference to FIG. Can be reliably shielded from light.
[0025]
According to the present embodiment described above, the saturated portion of the luminance is detected based on the luminance information input by the line sensor camera 12, and the numerical control is performed based on the detection result. , And the light-shielding operation can be automatically performed. Therefore, light can be shielded following the transport behavior of the inspection object W, and an image can always be input under the same conditions even when meandering occurs.
[0026]
In addition, since the operation of the corresponding light shielding plate 16 can be performed automatically, it is possible for the operator to determine the light shielding width by looking at the state of the work and to cause individual differences as in the case of manual operation. Can be prevented. Further, since the maintenance work can be simplified and no human intervention is required, there is an advantage that generation of dust can be reduced.
[0027]
As described above, the present invention has been specifically described. However, the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist thereof.
[0028]
For example, although the case where the light shielding device 14 is disposed above the inspection object W to block transmitted light has been described, the light shielding device 14 may be disposed below to block illumination light.
[0029]
Further, the example in which the light shielding plate 16 rotates about the rotation shaft 18 has been described. However, the present invention is not limited to this, and a mechanism in which the light shielding plate 16 moves forward and backward with respect to the optical axis position is adopted. You may.
[0030]
Further, in the embodiment, the case where the work is a printed picture has been described. However, the present invention is not limited thereto, and there is no particular limitation as long as the work has optically similar properties.
[0031]
【The invention's effect】
As described above, according to the present invention, an object to be inspected in which a work having a lower transmittance than the substrate is arranged at a predetermined position on a sheet-like substrate having a high transmittance is imaged under transmission illumination by a line sensor camera. At this time, an area having a transmittance higher than that of the work area is automatically shielded, so that the amount of illumination light can be sufficiently increased to input an image of the work area.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a relationship between imaging by a line sensor camera in a non-light-shielded state and obtained luminance information. FIG. 2 is an explanatory diagram showing a relationship between imaging by a line sensor camera in a light-shielded state and obtained luminance information. FIG. 3 is a front view and a plan view schematically showing an image input device according to an embodiment of the present invention. FIG. 4 is a schematic side view showing a relationship between a light-shielded state and a non-light-shielded state of a light-shielding plate. FIG. 6 is a partial perspective view showing a relationship between a plate and a driving air cylinder. FIG. 6 is a control block diagram showing a main part of a control system of the image input device of the present embodiment. FIG. 7 is a flowchart showing an algorithm of the present embodiment. 8 is an explanatory diagram showing the correspondence between the luminance information obtained by the line sensor camera and the determined light blocking position. FIG. 9 is an explanatory diagram showing an example of a control method when the inspection object is meandering. FIG. 10 is an image of the inspection object. Show state image Schematic perspective view and FIG. 11 is an explanatory diagram showing a partial plan view and FIG. 12 conventional problem indicating characteristics of the inspection object EXPLANATION OF REFERENCE NUMERALS
DESCRIPTION OF SYMBOLS 10 ... Transmission light source 12 ... Line sensor camera 14 ... Shading device 16 ... Shading plate 18 ... Rotating shaft 20 ... Air cylinder W ... Inspection object Wa ... Picture (work)
S: Transparent film (sheet-like substrate)

Claims (5)

透過率が高いシート状基体の所定位置に、該基体より透過率が低いワークが配されている検査対象物を、透過照明とラインセンサカメラとの間を通過させながら、該ラインセンサカメラにより撮像する画像入力方法であって、
前記ラインセンサカメラの光軸が前記検査対象物と交差する交線上に位置するワーク外の領域に入射する照明光又は同領域を通過した透過光を、前記ラインセンサカメラにより前記検査対象物を撮像して得られる画像情報に基づいて自動的に遮断することを特徴とする画像入力方法。
An object to be inspected, in which a workpiece having a lower transmittance than that of the substrate is disposed at a predetermined position on a sheet-like substrate having a high transmittance, is imaged by the line sensor camera while passing between the transmission illumination and the line sensor camera. Image input method,
The line sensor camera captures the inspection object by the line sensor camera, for illumination light incident on a region outside the work positioned on an intersection line intersecting with the inspection object or transmitted light passing through the region. An image input method characterized in that the cutoff is automatically performed based on image information obtained as a result.
前記照明光又は透過光の遮断を、前記画像情報に基づいて所定幅の遮光板を操作し、前記交線上に配列して行なうことを特徴とする請求項1に記載の画像入力方法。The image input method according to claim 1, wherein the blocking of the illumination light or the transmitted light is performed by operating a light shielding plate having a predetermined width based on the image information and arranging the light on the intersection line. 透過率が高いシート状基体の所定位置に、該基体より透過率が低いワークが配されている検査対象物を、透過照明とラインセンサカメラとの間を通過させながら、該ラインセンサカメラにより撮像する画像入力装置であって、
前記ラインセンサカメラの光軸が前記検査対象物と交差する交線上に位置するワーク外の領域に入射する照明光又は同領域を通過した透過光を、前記ラインセンサカメラにより前記検査対象物を撮像して得られる画像情報に基づいて自動的に遮断する遮光装置を備えたことを特徴とする画像入力装置。
An object to be inspected, in which a workpiece having a lower transmittance than that of the substrate is disposed at a predetermined position on a sheet-like substrate having a high transmittance, is imaged by the line sensor camera while passing between the transmission illumination and the line sensor camera. An image input device,
The line sensor camera captures the inspection object by the line sensor camera, for illumination light incident on a region outside the work positioned on an intersection line intersecting with the inspection object or transmitted light passing through the region. An image input device, comprising: a light-shielding device that automatically blocks light based on image information obtained by performing the above operation.
前記遮光装置が、前記光軸と交差する遮光状態と交差しない非遮光状態とに切換可能な遮光板を、前記交線に沿って並設した構成を備えていることを特徴とする請求項3に記載の画像入力装置。4. The light shielding device according to claim 3, wherein a light shielding plate that can be switched between a light shielding state intersecting with the optical axis and a non-light shielding state not intersecting is arranged along the intersection line. An image input device according to claim 1. 前記遮光板が、前記交線方向に配設された回動軸に軸挿され、前記画像情報に基づいて該回動軸を中心に回動して遮光状態と非遮光状態とに切換えられるようになっていることを特徴とする請求項4に記載の画像入力装置。The light-shielding plate is axially inserted into a rotation shaft provided in the intersection line direction, and is turned around the rotation shaft based on the image information to be switched between a light-shielding state and a non-light-shielding state. The image input device according to claim 4, wherein:
JP2002251061A 2002-08-29 2002-08-29 Image inputting method and device Withdrawn JP2004094323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002251061A JP2004094323A (en) 2002-08-29 2002-08-29 Image inputting method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251061A JP2004094323A (en) 2002-08-29 2002-08-29 Image inputting method and device

Publications (1)

Publication Number Publication Date
JP2004094323A true JP2004094323A (en) 2004-03-25

Family

ID=32057739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251061A Withdrawn JP2004094323A (en) 2002-08-29 2002-08-29 Image inputting method and device

Country Status (1)

Country Link
JP (1) JP2004094323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007079634A (en) * 2005-09-09 2007-03-29 Matsushita Electric Ind Co Ltd Imaging device and component-mounting device
JP2007102375A (en) * 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd Imaging device and component mounter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007079634A (en) * 2005-09-09 2007-03-29 Matsushita Electric Ind Co Ltd Imaging device and component-mounting device
JP4522928B2 (en) * 2005-09-09 2010-08-11 パナソニック株式会社 Imaging device, component mounter, imaging method, imaging program
JP2007102375A (en) * 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd Imaging device and component mounter
JP4522936B2 (en) * 2005-09-30 2010-08-11 パナソニック株式会社 Imaging device, component mounter, imaging method, imaging program

Similar Documents

Publication Publication Date Title
JP4822103B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
GB2459675A (en) Double sided substrate scanning
JPH11211442A (en) Method and device for detecting defect of object surface
JP5261847B2 (en) Alignment method, alignment apparatus, and exposure apparatus
CN209745834U (en) Optical defect detection system with brightness adjustment
JP3332208B2 (en) Defect detection method and apparatus for netted glass
JP2004094323A (en) Image inputting method and device
JP7267665B2 (en) WORK INSPECTION DEVICE AND WORK INSPECTION METHOD
JP2002175520A (en) Device and method for detecting defect of substrate surface, and recording medium with recorded program for defect detection
JP3784762B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
JP4212904B2 (en) Method and apparatus for detecting pinhole defects and dirt defects on a transparent body
JP2004012423A (en) Inspection method and device for optically-transparent object
KR101542070B1 (en) Method and apparatus for removing show-through in scanned image
JP2005351825A (en) Defect inspection device
JP2004117290A (en) Periodic pattern inspection method and apparatus
JP2008275487A (en) Shape inspection device and shape inspection method
JP2004028729A (en) Signature panel inspection method for card
JP4382210B2 (en) Periodic pattern inspection method and apparatus
JP3721847B2 (en) How to detect solder balls
JP2683246B2 (en) Defect detection method
JP3984367B2 (en) Surface defect inspection method and inspection apparatus
JP2004245829A (en) Apparatus for inspecting pattern defect, and method of inspecting pattern defect
JP2997306B2 (en) Method and apparatus for detecting pattern position using transmitted illumination
JP2007003389A (en) Inspection device and inspection method
JP2002319017A (en) Method and apparatus for inspecting light-blocking pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080620