JP2004094004A - Multi-focal lens - Google Patents

Multi-focal lens Download PDF

Info

Publication number
JP2004094004A
JP2004094004A JP2002256365A JP2002256365A JP2004094004A JP 2004094004 A JP2004094004 A JP 2004094004A JP 2002256365 A JP2002256365 A JP 2002256365A JP 2002256365 A JP2002256365 A JP 2002256365A JP 2004094004 A JP2004094004 A JP 2004094004A
Authority
JP
Japan
Prior art keywords
lens
center
distance
curvature
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002256365A
Other languages
Japanese (ja)
Inventor
Shigeo Kawamoto
川元 茂男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON VISION EASE KK
Original Assignee
NIPPON VISION EASE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON VISION EASE KK filed Critical NIPPON VISION EASE KK
Priority to JP2002256365A priority Critical patent/JP2004094004A/en
Publication of JP2004094004A publication Critical patent/JP2004094004A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Eyeglasses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a multi-focal lens in which, optical points exist near respective eye points in both cases of nearsight and farsight without prismatic refraction. <P>SOLUTION: The multi-focal lens has a common frontal convex surface 11 and the center P4 of the radius of curvature of the rear concave surface 13 of a lens part for farsight is located on a straight line connecting the focal point A of the lens part for farsight set according to specifications and the center P1 of the radius of curvature of the common frontal convex surface 11. The center P5 of the radius of curvature of the rear concave surface 12 of a lens part for nearsight is located on a straight line connecting the focal point C of the lens part for nearsight set according to specifications and the center P1 of the radius of curvature of the common frontal convex surface 11. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、マルチフォーカルレンズに関し、特に、眼の調節力の補助として使用する眼鏡用のマルチフォーカルレンズに関するものである。
【0002】
【従来の技術】
眼鏡用のマルチフォーカルレンズには、バイフォーカルレンズ、トライフォーカルレンズ等多数あるが、それらの製造法は、図4(a)に正面図、(b)に断面図を示したバイフォーカルレンズ40を例にとると、一定の曲率半径を持つ遠用レンズの凸面(前面)41上の固定位置に異なる曲率半径の近用レンズ部分42を形成した半製品レンズを使い、凹面(後面)43を所望の一定のカーブで切削して、遠用及び近用のディオプトリー(屈折力)を出している。
【0003】
【発明が解決しようとする課題】
このようなマルチフォーカルレンズにおいては、何れも遠用レンズの光学中心、すなわち、前面の曲率中心と後面の曲率中心を結んだ光軸位置が指定製作されており、近用レンズの光学中心に関しては過小評価されている。従来は、上記のように、近用レンズ部分42が遠用レンズの凸面41の固定した位置にある半製品を使っているため、遠用レンズの光学中心は所定の位置に作られるが、近用レンズ部分42の光学中心の位置は、遠用レンズのディオプトリーや近用レンズの加入度数によって変化してしまう。
【0004】
この点を図4〜図7を参照にして詳しく説明する。バイフォーカルレンズ40の場合、図4に示すように、遠用レンズの前面41は曲率半径の中心P1を持つ凸面で構成され、その凸面41上の鼻側に寄った固定位置に異なる曲率半径の中心P2を持つ凸面の近用レンズ部分42が形成される。ここで、近用レンズ部分42の凸面の曲率半径の中心P2は、近用レンズ部分42の幾何学中心Bと凸面41の曲率半径の中心P1とを結ぶ直線上のBとP1の間に配置される。
【0005】
そして、所望のディオプトリーを出すために、後面43を所望の曲率半径の凹面に切削されるが、その凹面43の曲率半径の中心P3は、遠用レンズの光学中心Aとその曲率半径の中心P1とを結ぶ直線上に配置される。
【0006】
なお、遠用レンズの光学中心Aは必ずしもバイフォーカルレンズ40の外形の中心(幾何学中心)に設定されるものではなく、鼻側等に偏心するように設定される場合もある。ただし、その場合でも、遠用レンズの光学中心Aと近用レンズ部分42の幾何学中心Bとの相対関係は一定になるように定められる。具体的には、図5に示すように、平均的に、Aに対するBの鼻側へ水平方向の内寄せ距離が2mm、Aに対するBの下側への下げ幅が9.5mmとなっており、さらに、遠用レンズの前面41に対する近用レンズ部分42の切り口44の位置が、垂直方向でAから5mm、Bから4.5mmとなっている。
【0007】
ここで、近用レンズ部分42に注目すると、その前面の凸面の曲率半径の中心はP2であり、後面43の曲率半径の中心はP3である。そのため、近用レンズ部分42の光学中心はP2とP3を結んだ直線とレンズ40の交点になるが、図4(b)から明らかなように、近用レンズ部分42の幾何学中心Bと一致しないのが一般的であり、図5に示すように、遠用レンズと近用レンズの屈折力の関係でAとBを結ぶ直線上の何れかの点に位置する。
【0008】
バイフォーカルレンズとしては、図6(a)に示すように、遠用レンズ、近用レンズ共に+の屈折力、図6(b)に示すように、遠用レンズが−の屈折力、近用レンズが+の屈折力、図6(c)に示すように、遠用レンズ、近用レンズ共に−の屈折力の場合があるが、それぞれの場合の近用レンズ部分42の光学中心Cは、ぞれぞれ図7(a)〜(c)に示すように、AとBの間、Bより下側、Aより上側の位置で、遠用レンズと近用レンズの屈折力差(加入度数)に応じて移動する。
【0009】
したがって、このように近用レンズの光学中心が幾何学中心と一致しないマルチフォーカルレンズを装着した場合、近方へ視線を向けると、アイポイントは幾何学中心近傍の位置になるので、近方のアイポイントにおいてプリズム度が付いた状態になってしまい、眼鏡を装着しない場合に比べて視線の方向が変化したり影像の歪みが起きやすい。そのため、見難く、疲労が起きやすく、長時間近方視を続けることが困難であったり、視線を近方から遠方、遠方から近方へ移動させるときの違和感が強く、使用し難いものとなる。
【0010】
本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、近方視、遠方視何れにおいても、それぞれのアイポイント近傍に光学中心が存在し、プリズム度が付いた状態にならないマルチフォーカルレンズを提供することである。
【0011】
【課題を解決するための手段】
上記目的を達成する本発明のマルチフォーカルレンズは、少なくとも遠用レンズ部と近用レンズ部を備えたマルチフォーカルレンズにおいて、前記遠用レンズ部の光学中心は仕様にのっとり設定された遠用レンズ部の光学中心Aと一致し、前記近用レンズ部の光学中心は仕様にのっとり設定された近用レンズ部の光学中心Cと一致することを特徴とするものである。
【0012】
本発明のもう1つのマルチフォーカルレンズは、共通の前面の凸面を有し、仕様にのっとり設定された遠用レンズ部の光学中心Aと前記共通の前面の凸面の曲率半径の中心P1とを結ぶ直線上に遠用レンズ部の後面の凹面の曲率半径の中心P4が位置し、また、仕様にのっとり前記遠用レンズ部の光学中心Aに対して相対的に設定された近用レンズ部の光学中心Cと前記共通の前面の凸面の曲率半径の中心P1とを結ぶ直線上に近用レンズ部の後面の凹面の曲率半径の中心P5が位置することを特徴とするものである。
【0013】
本発明のさらにもう1つのマルチフォーカルレンズは、遠用レンズ部の前面の凸面を有し、その凸面上の所定位置に異なる曲率半径の近用レンズ部の前面の凸面を有し、近用レンズ部の幾何学中心Bに対して仕様にのっとり相対的に設定された遠用レンズ部の光学中心Aと前記遠用レンズ部の前面の凸面の曲率半径の中心P1とを結ぶ直線上に遠用レンズ部の後面の凹面の曲率半径の中心P4が位置し、また、近用レンズ部の幾何学中心Bと前記近用レンズ部の前面の凸面の曲率半径の中心P2とを結ぶ直線上に近用レンズ部の後面の凹面の曲率半径の中心P5が位置することを特徴とするものである。
【0014】
この場合、近用レンズ部の幾何学中心Bと光学中心Cとが一致していることが望ましい。
【0015】
なお、以上のマルチフォーカルレンズをバイフォーカルレンズとして構成することができる。
【0016】
また、上記の仕様は、実際に測定された装着者の遠用瞳孔間距離、近用瞳孔間距離及び下げ幅に基づいて与えることが望ましい。
【0017】
本発明においては、遠用レンズ部の光学中心は仕様にのっとり設定された遠用レンズ部の光学中心Aと一致し、近用レンズ部の光学中心は仕様にのっとり設定された近用レンズ部の光学中心Cと一致するので、常に光学中心を通して見ることができるようになり、プリズム効果による影像の歪みや、近方から遠方、遠方から近方へ視線を移動させるときにブレが起こらず、見やすく疲れない状態で、快適な視野を得られ、使用しやすい眼鏡レンズが得られる。また、近用レンズ部の度数、位置、形、大きさを自由に設定できるため、装着者の顔の大きさやフレームの形及び用途に応じた眼鏡レンズが製作できる。
【0018】
【発明の実施の形態】
本発明のマルチフォーカルレンズを実施例に基づいて説明する。
【0019】
図1は、本発明の第1の実施例のマルチフォーカルレンズを示す図であり、この例はマルチフォーカルレンズを遠用レンズ部と近用レンズ部からなるバイフォーカルレンズ10として構成する例であり、図1(a)にそのバイフォーカルレンズ10の正面図、(b)に(a)の直線a−a’に沿う断面図を示す。なお、図1(c)は変形例の同様の断面図である。
【0020】
バイフォーカルレンズ10の半製品として、前面に曲率半径の中心P1の凸面11が形成されたものとして供給される。
【0021】
そして、老眼鏡用のバイフォーカルレンズ10として用いるには、遠用レンズの光学中心Aと近用レンズの光学中心Cとが、相対的に仕様として、水平方向の内寄せ距離xと垂直方向の下げ幅yとして与えられる。通常は、前記のように、x=2mm、y=9.5mmで与えられるが、後記のように、眼鏡装着者の遠用瞳孔間距離と近用瞳孔間距離及び下げ幅を実際に測って、その内寄せ距離xと垂下げ幅yを与えることがより望ましい。したがって、装着者によっては、x=1.5mmあるいは3mmとされることもある。
【0022】
このような仕様にのっとり遠用レンズの光学中心Aと近用レンズの光学中心Cとが決められた後、遠用レンズ部の後面13と近用レンズ部の後面12とがカーブジェネレータにより切削形成される。
【0023】
その際、図1(b)又は(c)に示すように、遠用レンズ部の後面13の曲率半径の中心P4は、遠用レンズの光学中心Aと前面11の曲率半径の中心P1と結ぶ直線上の遠用レンズとして所望のディオプトリーを出す位置に設定される。また、近用レンズ部の後面12の曲率半径の中心P5は、近用レンズの光学中心Cと前面11の曲率半径の中心P1と結ぶ直線上の近用レンズとして所望のディオプトリーを出す位置に設定される。ここで、図1(b)と(c)に違いは、(b)に比べて(c)の場合は近用レンズ部の周辺の厚さを薄くするように、中心P5をよりレンズ10に近づけて後面12を形成している点である。
【0024】
このように、仕様にのっとり設定した遠用レンズの光学中心A、近用レンズの光学中心Cと、前面11の曲率半径の中心P1とをそれぞれ結ぶ直線上にそれぞれの後面13、12の曲率半径の中心P4、P5を設定して、それぞれの後面13、12を切削し、つや出し研磨し、ハードコート、A/Rコートを施すことにより、本発明による1実施例の老眼鏡用のバイフォーカルレンズ10が完成する。
【0025】
このように、仕様にのっとり設定された遠用レンズの光学中心A、近用レンズの光学中心Cが、それぞれ前面11と後面13の曲率中心P1、P4、前面11と後面12の曲率中心P1、P5を結ぶ直線上に位置することになるので、点A、Cは正に光軸上に位置し、遠方のアイポイント、近方のアイポイントがくるように視線を向けても、プリズム度が付くことはなく、遠方でも近方でも見やすく、疲労が起き難く、長時間近方視を続けることができ、視線を近方から遠方、遠方から近方へ移動させるときに違和感も起こらず、使用しやすいものとなる。
【0026】
図2は、本発明の別の実施例のマルチフォーカルレンズ10’を示す図であり、この例は、一定の曲率半径を持つ遠用レンズの凸面(前面)41上の固定位置に異なる曲率半径の近用レンズ部分42を形成した半製品レンズを用いて、近用レンズ部分42の幾何学中心Bに近用レンズの光学中心Cを設定し、この幾何学中心Bに対して、仕様にのっとり相対的に遠用レンズの光学中心Aを設定し、次いで、図1の場合と同様にして、遠用レンズ部の後面13の曲率半径の中心P4を、遠用レンズの光学中心Aと遠用レンズの前面41の曲率半径の中心P1と結ぶ直線上の遠用レンズとして所望のディオプトリーを出す位置に設定する。また、近用レンズ部の後面12の曲率半径の中心P5を、近用レンズの光学中心C(幾何学中心B)と近用レンズ部分の前面42の曲率半径の中心P2と結ぶ直線上の近用レンズとして所望のディオプトリーを出す位置に設定する。このC(B)とP2と結ぶ直線上には遠用レンズの前面41の曲率半径の中心P1も結果的に位置する。
【0027】
このように、仕様にのっとり設定した遠用レンズの光学中心Aと遠用レンズの前面41の曲率半径の中心P1と結ぶ直線上に遠用レンズ部の後面13の曲率半径の中心P4を設定し、また、近用レンズ部分42の幾何学中心Bとその曲率半径の中心P2と結ぶ直線上に近用レンズ部の後面12の曲率半径の中心P5を設定して、それぞれの後面13、12を切削し、つや出し研磨し、ハードコート、A/Rコートを施すことにより、本発明による別の実施例の老眼鏡用のバイフォーカルレンズ10’が完成する。
【0028】
この場合も、点A、C(B)は正に光軸上に位置し、それぞれ遠方のアイポイント、近方のアイポイントがくるように視線を向けても、プリズム度が付くことはなく、遠方でも近方でも見やすく、疲労が起き難く、長時間近方視を続けることができ、視線を近方から遠方、遠方から近方へ移動させるときに違和感も起こらず、使用しやすいものとなる。
【0029】
なお、図1、図2何れの実施例においても、乱視を矯正するために後面12、13をトーリク面にするには直交方向で異なる2つの曲率中心を同じ直線(例えば、AとP1、CとP1、CとP2を結ぶ直線)上に位置するようにすればよい。
【0030】
また、以上は、本発明のマルチフォーカルレンズをバイフォーカルレンズとして構成する例であったが、遠用レンズ部と近用レンズ部の間に中間部が設けられるトライフォーカルレンズ等の場合にも本発明は適用できる。その場合には、少なくとも3つ以上の領域の中の遠用レンズ部と近用レンズ部に本発明の以上の考え方を適用してそれぞれのアイポイントでプリズム度が付かないようにする。
【0031】
ところで、以上のようなマルチフォーカルレンズ10、10’の後面12、13のような面を切削するには、近年のコンピューター制御によるカーブジェネレーターが使用可能である。このようなカーブジェネレーターは、米国、ドイツ等で開発され、X軸、Y軸、Z軸、回転軸、時間軸の設定ができるようになったため、多面体のレンズ切削が可能になった。さらに、切削工具も良くなり、切削面の仕上りも滑らかになった。
【0032】
現在の一般的なカーブジェネレーターの動作を図3に示す。レンズを幾何学中心Fを中心にR方向に回転させておき、レンズ面切削はカッターツール(切削工具)TによりE点から始まり、レンズを回転させながら、レンズをZ軸に沿って矢印方向へカッターツールTがF点に達するまで移動させる。その間にカッターツールTを同期させながらZ軸に直交するX軸上を前後に動かすことにより渦巻き状に切削し、所定形状のカーブを得るものである。
【0033】
この装置により、球面、トーリック面、非球面、非球面トーリック面の凸面でも凹面でも製作可能である。
【0034】
このような切削の後、研磨機でつや出し研磨を行い、ハードコートとA/Rコートを施すことにより、所望形状のレンズ面が得られる。
【0035】
なお、本発明によるマルチフォーカルレンズをフィッテイングするには、フレーム図面上にアイポイントを設定する。遠用瞳孔間距離(PD)と近用瞳孔間距離を測り、遠用アイポイントに遠用光学中心Aを、近用アイポイントに近用光学中心C又は近用幾何学中心Bをセットする。本発明のマルチマルチフォーカルレンズは、近用光学中心Cが近用幾何学中心Bと一致するので、従来と同じ方法でより良い眼鏡が仕上がる。
【0036】
ただし、近用光学中心の内寄せ距離及び下げ幅を勘案した検眼技術及びフレーム加工技術が要求される。その理由は、フィッテイングが悪いと、その段階でプリズム状態が生じるからである。
【0037】
以上、本発明のマルチフォーカルレンズを実施例に基づいて説明してきたが、本発明はこれら実施例に限定されず種々の変形が可能である。
【0038】
【発明の効果】
以上の説明から明らかなように、本発明のマルチフォーカルレンズによると、遠用レンズ部の光学中心は仕様にのっとり設定された遠用レンズ部の光学中心Aと一致し、近用レンズ部の光学中心は仕様にのっとり設定された近用レンズ部の光学中心Cと一致するので、常に光学中心を通して見ることができるようになり、プリズム効果による影像の歪みや、近方から遠方、遠方から近方へ視線を移動させるときにブレが起こらず、見やすく疲れない状態で、快適な視野を得られ、使用しやすい眼鏡レンズが得られる。また、近用レンズ部の度数、位置、形、大きさを自由に設定できるため、装着者の顔の大きさやフレームの形及び用途に応じた眼鏡レンズが製作できる。
【図面の簡単な説明】
【図1】本発明の第1の実施例のマルチフォーカルレンズを示す図である。
【図2】本発明の別の実施例のマルチフォーカルレンズを示す図である。
【図3】現在の一般的なカーブジェネレーターの動作を示す図である。
【図4】従来のバイフォーカルレンズの製造法を示す図である。
【図5】内寄せ距離と下げ幅を説明するための図である。
【図6】従来のバイフォーカルレンズの屈折力配置の類型を示す図である。
【図7】図6の類型の場合の近用レンズ部分の光学中心の位置を示す図である。
【符号の説明】
10、10’…バイフォーカルレンズ
11…前面の凸面
12…近用レンズ部の後面(凹面)
13…遠用レンズ部の後面(凹面)
41…遠用レンズの凸面(前面)
42…近用レンズ部分(前面)
A…遠用レンズの光学中心
B…近用レンズ部分の幾何学中心
C…近用レンズの光学中心
T…カッターツール(切削工具)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multifocal lens, and more particularly, to a multifocal lens for spectacles used as an aid to accommodation power of an eye.
[0002]
[Prior art]
There are many types of multifocal lenses for spectacles, such as bifocal lenses and trifocal lenses, and the manufacturing method thereof is a bifocal lens 40 shown in a front view in FIG. For example, a semi-finished lens in which a near lens portion 42 having a different radius of curvature is formed at a fixed position on a convex surface (front surface) 41 of a distance lens having a constant radius of curvature, and a concave surface (rear surface) 43 is desired. The diopter (refractive power) for distance and near is output by cutting at a constant curve.
[0003]
[Problems to be solved by the invention]
In such a multifocal lens, the optical center of the distance lens, that is, the optical axis position connecting the center of curvature of the front surface and the center of curvature of the rear surface is designated and manufactured, and the optical center of the near lens is manufactured. Underestimated. Conventionally, as described above, since the near lens portion 42 uses a semi-finished product at the position where the convex surface 41 of the distance lens is fixed, the optical center of the distance lens is formed at a predetermined position. The position of the optical center of the use lens portion 42 changes depending on the diopter of the distance lens and the addition power of the near lens.
[0004]
This will be described in detail with reference to FIGS. In the case of the bifocal lens 40, as shown in FIG. 4, the front surface 41 of the distance lens is formed of a convex surface having a center P1 of a radius of curvature, and has a different radius of curvature at a fixed position on the convex surface 41 closer to the nose. A convex near lens portion 42 having a center P2 is formed. Here, the center P2 of the radius of curvature of the convex surface of the near lens portion 42 is located between B and P1 on a straight line connecting the geometric center B of the near lens portion 42 and the center P1 of the radius of curvature of the convex surface 41. Is done.
[0005]
Then, in order to obtain a desired diopter, the rear surface 43 is cut into a concave surface having a desired radius of curvature. The center P3 of the radius of curvature of the concave surface 43 is the optical center A of the distance lens and the center P1 of the radius of curvature. Are arranged on a straight line connecting.
[0006]
Note that the optical center A of the distance lens is not necessarily set to the center (geometric center) of the outer shape of the bifocal lens 40, but may be set to be eccentric to the nose side or the like. However, even in that case, the relative relationship between the optical center A of the distance lens and the geometric center B of the near lens portion 42 is determined to be constant. Specifically, as shown in FIG. 5, on the average, the horizontal inward distance of B with respect to A toward the nose side is 2 mm, and the lowering width of B with respect to A is 9.5 mm. Further, the position of the cutout 44 of the near lens portion 42 with respect to the front surface 41 of the distance lens is 5 mm from A and 4.5 mm from B in the vertical direction.
[0007]
Here, focusing on the near lens portion 42, the center of the radius of curvature of the front convex surface is P2, and the center of the radius of curvature of the rear surface 43 is P3. Therefore, the optical center of the near lens portion 42 is the intersection of the straight line connecting P2 and P3 and the lens 40, but as shown in FIG. 4B, coincides with the geometric center B of the near lens portion 42. Generally, as shown in FIG. 5, it is located at any point on a straight line connecting A and B due to the refractive power of the distance lens and the near lens.
[0008]
As a bifocal lens, as shown in FIG. 6A, the distance lens and the near lens both have a positive refractive power, and as shown in FIG. 6B, the distance lens has a negative refractive power and a near lens. As shown in FIG. 6C, the lens may have a refractive power of + and both the distance lens and the near lens may have a negative refractive power. In each case, the optical center C of the near lens portion 42 is As shown in FIGS. 7 (a) to 7 (c), the refractive power difference between the distance lens and the near lens (addition power) between A and B, below B, and above A, respectively. Move according to).
[0009]
Therefore, when the multifocal lens in which the optical center of the near lens does not coincide with the geometric center is attached, the eye point is located near the geometric center when the gaze is directed to the near side. The eye point has a degree of prism, and the direction of the line of sight changes and image distortion is more likely to occur than in the case where no glasses are worn. Therefore, it is difficult to see, it is easy to be tired, it is difficult to continue near vision for a long time, and the discomfort when moving the line of sight from near to far, from far to near is strong, making it difficult to use .
[0010]
The present invention has been made in view of such problems of the prior art, and has an object to provide an optical center near each eye point and a prism degree in both near vision and far vision. It is an object of the present invention to provide a multifocal lens that does not enter the state.
[0011]
[Means for Solving the Problems]
The multifocal lens of the present invention that achieves the above object is a multifocal lens having at least a distance lens portion and a near lens portion, wherein the optical center of the distance lens portion is a distance lens portion set according to specifications. And the optical center of the near lens portion coincides with the optical center C of the near lens portion set according to the specifications.
[0012]
Another multifocal lens of the present invention has a common front convex surface, and connects the optical center A of the distance lens portion set according to the specification to the center P1 of the radius of curvature of the common front convex surface. The center P4 of the radius of curvature of the concave surface on the rear surface of the distance lens portion is located on a straight line, and the optical power of the near lens portion set relatively to the optical center A of the distance lens portion according to specifications. The center P5 of the radius of curvature of the concave surface on the rear surface of the near lens portion is located on a straight line connecting the center C and the center P1 of the radius of curvature of the common front convex surface.
[0013]
Still another multifocal lens of the present invention has a convex surface on the front surface of the distance lens portion, and has a convex surface on the front surface of the near lens portion having a different radius of curvature at a predetermined position on the convex surface. Distance on a straight line connecting the optical center A of the distance lens portion, which is set relatively to the geometric center B of the portion according to the specification, and the center P1 of the radius of curvature of the convex surface on the front surface of the distance lens portion. The center P4 of the radius of curvature of the concave surface on the rear surface of the lens portion is located, and is close to a straight line connecting the geometric center B of the near lens portion and the center P2 of the convex radius of curvature of the front surface of the near lens portion. The center of the radius of curvature of the concave surface of the rear surface of the lens unit is located at P5.
[0014]
In this case, it is desirable that the geometric center B and the optical center C of the near lens portion match.
[0015]
Note that the above multifocal lens can be configured as a bifocal lens.
[0016]
In addition, it is desirable that the above specifications be given based on the actually measured distance between the distance pupils, the distance between the near pupils, and the reduction width of the wearer.
[0017]
In the present invention, the optical center of the distance lens unit matches the optical center A of the distance lens unit set according to the specification, and the optical center of the near lens unit corresponds to the optical center A of the near lens unit set according to the specification. Since it coincides with the optical center C, it is possible to always see through the optical center. Distortion of the image due to the prism effect and blurring when moving the line of sight from near to far and from far to near are easy to see. A comfortable viewing field can be obtained without fatigue, and a spectacle lens that is easy to use can be obtained. In addition, since the power, position, shape, and size of the near lens portion can be freely set, spectacle lenses can be manufactured according to the size of the face of the wearer, the shape of the frame, and the application.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The multifocal lens of the present invention will be described based on examples.
[0019]
FIG. 1 is a diagram showing a multifocal lens according to a first embodiment of the present invention. In this example, a multifocal lens is configured as a bifocal lens 10 including a distance lens portion and a near lens portion. FIG. 1A is a front view of the bifocal lens 10, and FIG. 1B is a cross-sectional view taken along a line aa ′ of FIG. FIG. 1C is a similar sectional view of the modification.
[0020]
It is supplied as a semi-finished product of the bifocal lens 10 with a convex surface 11 having a center P1 of a radius of curvature formed on the front surface.
[0021]
For use as the bifocal lens 10 for reading glasses, the optical center A of the distance lens and the optical center C of the near lens are relatively specified as a horizontal inset distance x and a vertical decrease. Given as width y. Usually, as described above, x is 2 mm and y is 9.5 mm. However, as described later, the distance between the distance pupil and the distance between the near pupil of the spectacle wearer and the reduction width are actually measured. It is more desirable to provide the inset distance x and the hanging width y. Therefore, x may be set to 1.5 mm or 3 mm depending on the wearer.
[0022]
After the optical center A of the distance lens and the optical center C of the near lens are determined according to such specifications, the rear surface 13 of the distance lens portion and the rear surface 12 of the near lens portion are cut and formed by a curve generator. Is done.
[0023]
At this time, as shown in FIG. 1B or 1C, the center P4 of the radius of curvature of the rear surface 13 of the distance lens unit is connected to the optical center A of the distance lens and the center P1 of the radius of curvature of the front surface 11. It is set at a position where a desired diopter is obtained as a distance lens on a straight line. The center P5 of the radius of curvature of the rear surface 12 of the near lens portion is set at a position where a desired diopter is obtained as a near lens on a straight line connecting the optical center C of the near lens and the center P1 of the radius of curvature of the front surface 11. Is done. Here, the difference between FIG. 1B and FIG. 1C is that, in the case of FIG. 1C, the center P5 is made closer to the lens 10 in the case of FIG. This is the point that the rear surface 12 is formed close to it.
[0024]
In this manner, the radii of curvature of the rear surfaces 13 and 12 on a straight line connecting the optical center A of the distance lens, the optical center C of the near lens, and the center P1 of the radius of curvature of the front surface 11 set according to the specifications. By setting the centers P4 and P5 of the lenses, the rear surfaces 13 and 12 are cut, polished and polished, and a hard coat and an A / R coat are applied. Is completed.
[0025]
As described above, the optical center A of the distance lens and the optical center C of the near lens set according to the specifications are the centers of curvature P1 and P4 of the front surface 11 and the rear surface 13, respectively, and the center of curvature P1 of the front surface 11 and the rear surface 12, respectively. Since points A and C are located on the optical axis exactly because they are located on a straight line connecting P5, even if the eyes are turned so that the distant eye point and the near eye point come, the prism degree is It does not stick, is easy to see even in the distance or near, is hard to cause fatigue, can continue near vision for a long time, does not cause discomfort when moving the gaze from near to far, far to near It is easy to do.
[0026]
FIG. 2 is a view showing a multifocal lens 10 ′ according to another embodiment of the present invention. In this example, a different radius of curvature is fixed at a fixed position on a convex surface (front surface) 41 of a distance lens having a constant radius of curvature. The near center lens optical axis C of the near lens is set to the geometric center B of the near lens section 42 by using the semi-finished lens having the near lens section 42 formed therein. The optical center A of the distance lens is relatively set, and then the center P4 of the radius of curvature of the rear surface 13 of the distance lens portion is set to the optical center A of the distance lens in the same manner as in FIG. The lens is set at a position where a desired diopter is obtained as a distance lens on a straight line connecting to the center P1 of the radius of curvature of the front surface 41 of the lens. Also, the center P5 of the radius of curvature of the rear surface 12 of the near lens portion is defined as a near line on a straight line connecting the optical center C (geometric center B) of the near lens and the center P2 of the radius of curvature of the front surface 42 of the near lens portion. Is set to a position where a desired diopter is output as a lens for use. The center P1 of the radius of curvature of the front surface 41 of the distance lens is consequently located on the straight line connecting C (B) and P2.
[0027]
In this manner, the center P4 of the radius of curvature of the rear surface 13 of the distance lens portion is set on a straight line connecting the optical center A of the distance lens set according to the specification and the center P1 of the radius of curvature of the front surface 41 of the distance lens. Also, the center P5 of the radius of curvature of the rear surface 12 of the near lens portion is set on a straight line connecting the geometric center B of the near lens portion 42 and the center P2 of the radius of curvature thereof, and the rear surfaces 13, 12 are respectively set. By cutting, polishing and hard coating and A / R coating, a bifocal lens 10 'for reading glasses according to another embodiment of the present invention is completed.
[0028]
Also in this case, the points A and C (B) are located exactly on the optical axis, and even if the eyes are turned so that the distant eye point and the near eye point come respectively, the prism degree is not attached, It is easy to see even at a distance or near, it is hard to cause fatigue, you can continue near vision for a long time, it does not cause discomfort when moving your gaze from near to far, from far to near, and it is easy to use .
[0029]
In both the embodiments shown in FIGS. 1 and 2, in order to correct the astigmatism, the rear surfaces 12 and 13 are made toric surfaces by using two different centers of curvature in the orthogonal direction in the same straight line (for example, A and P1, C1, C2). And P1, and a straight line connecting C and P2).
[0030]
The above is an example in which the multifocal lens of the present invention is configured as a bifocal lens. However, the present invention is also applicable to a trifocal lens or the like in which an intermediate portion is provided between a distance lens portion and a near lens portion. The invention is applicable. In such a case, the above-described concept of the present invention is applied to the distance lens portion and the near lens portion in at least three or more regions so that each eye point does not have a prism degree.
[0031]
By the way, in order to cut the surfaces such as the rear surfaces 12 and 13 of the multifocal lenses 10 and 10 'as described above, a recent computer-controlled curve generator can be used. Such a curve generator has been developed in the United States, Germany, and the like, and the X-axis, Y-axis, Z-axis, rotation axis, and time axis can be set, so that a polyhedron lens can be cut. In addition, the cutting tools have improved, and the finished surface has been smoothed.
[0032]
FIG. 3 shows the operation of a current general curve generator. The lens is rotated in the R direction about the geometric center F, and the lens surface cutting is started from point E by a cutter tool (cutting tool) T, and the lens is rotated in the direction of the arrow along the Z axis while rotating the lens. The cutter tool T is moved until it reaches the point F. In the meantime, the cutter tool T is moved back and forth on the X axis orthogonal to the Z axis while synchronizing the cutter tool T, thereby cutting in a spiral shape to obtain a curve of a predetermined shape.
[0033]
With this apparatus, it is possible to manufacture a spherical surface, a toric surface, an aspheric surface, and a convex or concave surface of an aspheric toric surface.
[0034]
After such cutting, polishing is performed with a polishing machine, and a hard coat and an A / R coat are applied to obtain a lens surface having a desired shape.
[0035]
In order to fit the multifocal lens according to the present invention, an eye point is set on a frame drawing. The distance between the distance pupil (PD) and the distance between the near pupils are measured, and the distance optical center A is set at the distance eye point, and the near optical center C or the near geometric center B is set at the near eye point. In the multi-multifocal lens of the present invention, since the near optical center C coincides with the near geometric center B, better spectacles can be finished in the same manner as before.
[0036]
However, an optometry technique and a frame processing technique that take into account the inward distance and the reduction width of the near optical center are required. The reason is that poor fitting causes a prism state at that stage.
[0037]
Although the multifocal lens of the present invention has been described based on the embodiments, the present invention is not limited to these embodiments, and various modifications can be made.
[0038]
【The invention's effect】
As is clear from the above description, according to the multifocal lens of the present invention, the optical center of the distance lens unit matches the optical center A of the distance lens unit set according to the specifications, and the optical center of the near lens unit. The center coincides with the optical center C of the near lens unit set according to the specifications, so that the user can always see through the optical center, distorting the image due to the prism effect, and moving from near to far and far to near. A comfortable field of view can be obtained without blurring when moving the line of sight, making it easy to see and not tired, and a spectacle lens that is easy to use can be obtained. In addition, since the power, position, shape, and size of the near lens portion can be freely set, spectacle lenses can be manufactured according to the size of the face of the wearer, the shape of the frame, and the application.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a multifocal lens according to a first example of the present invention.
FIG. 2 is a diagram showing a multifocal lens according to another embodiment of the present invention.
FIG. 3 is a diagram showing the operation of a current general curve generator.
FIG. 4 is a diagram showing a conventional method for manufacturing a bifocal lens.
FIG. 5 is a diagram for explaining an inward distance and a reduction width.
FIG. 6 is a diagram showing a type of refractive power arrangement of a conventional bifocal lens.
7 is a diagram showing the position of the optical center of the near lens portion in the case of the type shown in FIG.
[Explanation of symbols]
10, 10 ': bifocal lens 11: front convex surface 12: rear surface (concave surface) of the near lens portion
13: Rear surface (concave surface) of distance lens
41: convex surface of the distance lens (front)
42 ... near lens part (front)
A: Optical center of distance lens B: Geometric center of near lens part C: Optical center of near lens T: Cutter tool (cutting tool)

Claims (6)

少なくとも遠用レンズ部と近用レンズ部を備えたマルチフォーカルレンズにおいて、前記遠用レンズ部の光学中心は仕様にのっとり設定された遠用レンズ部の光学中心Aと一致し、前記近用レンズ部の光学中心は仕様にのっとり設定された近用レンズ部の光学中心Cと一致することを特徴とするマルチフォーカルレンズ。In a multifocal lens having at least a distance lens portion and a near lens portion, the optical center of the distance lens portion coincides with the optical center A of the distance lens portion set according to the specification, and the near lens portion A multifocal lens, characterized in that the optical center of (1) coincides with the optical center C of the near lens portion set according to the specifications. 共通の前面の凸面を有し、仕様にのっとり設定された遠用レンズ部の光学中心Aと前記共通の前面の凸面の曲率半径の中心P1とを結ぶ直線上に遠用レンズ部の後面の凹面の曲率半径の中心P4が位置し、また、仕様にのっとり前記遠用レンズ部の光学中心Aに対して相対的に設定された近用レンズ部の光学中心Cと前記共通の前面の凸面の曲率半径の中心P1とを結ぶ直線上に近用レンズ部の後面の凹面の曲率半径の中心P5が位置することを特徴とするマルチフォーカルレンズ。The concave surface of the rear surface of the distance lens portion on a straight line connecting the optical center A of the distance lens portion set according to the specification and the center P1 of the radius of curvature of the common front surface having a common front convex surface. The center P4 of the radius of curvature is located, and the curvature of the common front convex surface and the optical center C of the near lens unit, which is set relatively to the optical center A of the distance lens unit according to the specifications. A multifocal lens, characterized in that a center P5 of a curvature radius of a concave surface on the rear surface of the near lens portion is located on a straight line connecting the center P1 of the radius. 遠用レンズ部の前面の凸面を有し、その凸面上の所定位置に異なる曲率半径の近用レンズ部の前面の凸面を有し、近用レンズ部の幾何学中心Bに対して仕様にのっとり相対的に設定された遠用レンズ部の光学中心Aと前記遠用レンズ部の前面の凸面の曲率半径の中心P1とを結ぶ直線上に遠用レンズ部の後面の凹面の曲率半径の中心P4が位置し、また、近用レンズ部の幾何学中心Bと前記近用レンズ部の前面の凸面の曲率半径の中心P2とを結ぶ直線上に近用レンズ部の後面の凹面の曲率半径の中心P5が位置することを特徴とするマルチフォーカルレンズ。It has a convex surface on the front surface of the distance lens portion, has a convex surface on the front surface of the near lens portion having a different radius of curvature at a predetermined position on the convex surface, and conforms to the specifications with respect to the geometric center B of the near lens portion. The center P4 of the concave radius of curvature of the rear surface of the distance lens is formed on a straight line connecting the optical center A of the distance lens set relatively to the center P1 of the radius of curvature of the front convex surface of the distance lens. And the center of the radius of curvature of the concave surface on the rear surface of the near lens portion on a straight line connecting the geometric center B of the near lens portion and the center P2 of the radius of curvature of the convex surface on the front surface of the near lens portion. A multifocal lens, wherein P5 is located. 近用レンズ部の幾何学中心Bと光学中心Cとが一致していることを特徴とする請求項3記載のマルチフォーカルレンズ。4. The multifocal lens according to claim 3, wherein the geometric center B and the optical center C of the near lens portion match. バイフォーカルレンズとして構成されていることを特徴とする請求項1から4の何れか1項記載のマルチフォーカルレンズ。The multifocal lens according to claim 1, wherein the multifocal lens is configured as a bifocal lens. 前記仕様が実際に測定された装着者の遠用瞳孔間距離、近用瞳孔間距離及び下げ幅に基づいて与えられたものであることを特徴とする請求項1から5の何れか1項記載のマルチフォーカルレンズ。6. The specification according to claim 1, wherein the specification is given based on the distance between the distance pupil, the distance between the near pupil, and the reduction width of the wearer actually measured. Multifocal lens.
JP2002256365A 2002-09-02 2002-09-02 Multi-focal lens Pending JP2004094004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256365A JP2004094004A (en) 2002-09-02 2002-09-02 Multi-focal lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256365A JP2004094004A (en) 2002-09-02 2002-09-02 Multi-focal lens

Publications (1)

Publication Number Publication Date
JP2004094004A true JP2004094004A (en) 2004-03-25

Family

ID=32061608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256365A Pending JP2004094004A (en) 2002-09-02 2002-09-02 Multi-focal lens

Country Status (1)

Country Link
JP (1) JP2004094004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517088A (en) * 2007-01-25 2010-05-20 ローデンストック.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング Method for determining reference points for distance and near parts
CN109641315A (en) * 2016-06-14 2019-04-16 艾维纳科技有限责任公司 Laser processing and a kind of system cut using Multi sectional condenser lens or cut wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517088A (en) * 2007-01-25 2010-05-20 ローデンストック.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング Method for determining reference points for distance and near parts
CN109641315A (en) * 2016-06-14 2019-04-16 艾维纳科技有限责任公司 Laser processing and a kind of system cut using Multi sectional condenser lens or cut wafer

Similar Documents

Publication Publication Date Title
JP7474813B2 (en) Progressive spectacle lens with variable refractive index and method for designing and manufacturing same
EP0900403B1 (en) Improved single vision lenses
JP4954419B2 (en) Glasses manufacturing method
EP1882973A1 (en) Design method for spectacle lens, spectacle lens, and spectacles
US8118425B2 (en) Glasses lens comprising a carrying edge
US8678586B2 (en) Method for producing cost-optimized spectacle lenses with especially advantageous properties for the user
JP4707256B2 (en) Manufacturing method of spectacle lens group and spectacle lens group
WO2009065962A1 (en) Method of calculating an optical system according to a given spectacle frame
EP3105634A1 (en) Quasi progressive lenses for eyewear
US11726350B2 (en) Progressive addition lens and method for manufacturing thereof
US3797922A (en) Azygous ophthalmic lens and spectacles for correcting presbyopia
US4163541A (en) Mold for the casting of resin ophthalmic lenses having a prismatic segment
JP6226873B2 (en) Method for determining a set of ophthalmic progressive lens and semi-finished lens blank
JP4070445B2 (en) Spectacle lens manufacturing method, spectacle lens, and spectacle lens supply method
CN105359031A (en) Non-progressive corridor bi-focal lens with substantially tangent boundary of near and distal visual fields
US4288149A (en) Resin ophthalmic lenses having a prismatic segment
JP4707705B2 (en) Eyeglass lens supply method
JP4707706B2 (en) Eyeglass lens supply method
JP2004094004A (en) Multi-focal lens
WO2018220737A1 (en) Spectacle lens, device for manufacturing spectacle lens, design method, and design program
JP2016057324A (en) Processing method of lens material block
JP5043594B2 (en) Glasses and eyeglass manufacturing system
CN111263912B (en) Ophthalmic lens set
JP2006527383A (en) Molding mold for near-focal compound lenses
CN115867852B (en) Computer-implemented method for generating data to produce at least one ophthalmic lens and method for producing a pair of spectacles