JP2004093461A - Refractive index sensor having inverse opal structure - Google Patents

Refractive index sensor having inverse opal structure Download PDF

Info

Publication number
JP2004093461A
JP2004093461A JP2002256977A JP2002256977A JP2004093461A JP 2004093461 A JP2004093461 A JP 2004093461A JP 2002256977 A JP2002256977 A JP 2002256977A JP 2002256977 A JP2002256977 A JP 2002256977A JP 2004093461 A JP2004093461 A JP 2004093461A
Authority
JP
Japan
Prior art keywords
refractive index
opal structure
polystyrene
spherical space
reactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002256977A
Other languages
Japanese (ja)
Inventor
Osamu Sato
佐藤 治
Chutaku Ko
顧 忠沢
Eihei Sen
銭 衛平
Akira Fujishima
藤嶋 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Japan Science and Technology Agency
Original Assignee
Kanagawa Academy of Science and Technology
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology, Japan Science and Technology Corp filed Critical Kanagawa Academy of Science and Technology
Priority to JP2002256977A priority Critical patent/JP2004093461A/en
Publication of JP2004093461A publication Critical patent/JP2004093461A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refractive index sensor having a sensitivity higher than that of a conventional refractive index sensor and capable of rapidly measuring a refractive index. <P>SOLUTION: This refractive index sensor having an inverse opal structure comprises the steps of forming a membrane by filling polystyrene between the particles of an opal structural body formed of the particles of the same grain size arranged at specified intervals, forming a polystyrene inverse opal structure in which spherical spaces are arranged at specified intervals by removing the particles from the membrane, and decorating reactants on the surfaces of the spherical spaces of the inverse opal structural body. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、物質、特に抗原抗体などの蛋白質、DNA、RNAなどの生体関連の反応を計測ことができる物質の物質間相互作用による状態変化を、その状態変化に応じた光の屈折率変化に基づいて測定するために用いられる屈折率センサに関する。
【0002】
【従来の技術】
従来から測定表面上に反応物を固定し、その測定表面に反応物と作用する第二の成分を供給し、前記反応物と第二の成分との相互作用を検知することが知られている。
前記反応物と第二成分との相互作用を定量化信号として検出する方法は、光吸収、蛍光、表面プラズモン共鳴等の様々な方法があり、その中の一つに、光の回折を用いる方法がある。
これは、反応物と第二の成分との相互作用に応じて光の回折ピーク波長が変化することを利用するもので、表面が金属でコーティングされた同じサイズの複数のシリカ粒子を周期的に配列してなる多層膜を備え、前記多層膜内のシリカ粒子間に測定すべき物質が入り得る隙間を有する屈折率測定用センサとして出願人が既に出願している(特許文献1参照)。
【0003】
【特許文献1】
特願2002−46861号
【0004】
【発明が解決しようとする課題】
出願人は、上記した特許出願後も、より高感度に、しかも、早くバイオ分子の状態変化を検出するために、屈折率測定用センサの研究開発を続け、既に提案した屈折率測定用センサより、高感度で速くバイオ分子の状態変化を検出できる屈折率センサを発明した。
本発明は、従来の屈折率センサに比べて、高感度で、かつ、早く測定をすることができる屈折率センサを提供することを目的としている。
また、本発明のもう一つの目的は、従来の屈折率センサに比べて、簡便に製造することができる屈折率センサを提供することにある。
【0005】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係る逆オパール構造を備えた屈折率センサは、同じ粒径の微粒子を周期配列して成るオパール構造体の各微粒子間にポリスチレンを充填して膜を形成し、次いで、前記膜から前記微粒子を除去することにより球状の空間が周期的に配列されたポリスチレン逆オパール構造体を形成し、前記逆オパール構造体の各球状空間の表面に反応物を装飾して成ることを特徴とする。
好ましくは、上記したように構成された屈折率センサにおいては、リガンド等の反応物が物理吸着により球状空間の表面に固定され得る。
また、上記したように構成された屈折率センサにおいては、ポリスチレンからなる逆オパール構造体の各球状空間を水で満たして水を該構造体のポリスチレンに浸透させた後、反応物を混入した水溶液を各球状空間に充填するだけで、反応物を各球状空間の表面に簡単に吸着させることができる。
【0006】
【発明の実施の形態】
以下、添付図面に示した実施例を参照して本発明に係る逆オパール構造を備えた屈折率センサの実施の形態について説明していく。
【0007】
始めに、本発明に係る屈折率センサの測定原理について説明する。
図1(a)は逆オパール構造体の球状空間に水のみを充填した状態を示し、Rはその空間の半径、dは直径を示している。一方図1(b)は逆オパール構造体の球状空間に水を充填した後リガンドを結合させた状態を示し、Tはリガンドの膜厚を示す。
このとき、回折ピークと膜厚の関係は次式に示すように理論上で算出することが出来る。

Figure 2004093461
図2のグラフは、この理論上で膜厚と回折ピークの移動の関係を示す。
このグラフから、膜厚の変化に応じて回折ピークがシフトすることが分かる。本発明に係る屈折率センサは、この球状空間の表面に形成された膜の厚さの変化に応じて回折ピークが変化するという原理に基づいて屈折率を測定するものである。
【0008】
次に、本発明に係る逆オパール構造を備えた屈折率センサの製造方法について説明していく。
図3(a)〜(f)は、本発明に係る屈折率測定用センサに用いられる逆オパール構造体の製造工程の一例を示している。
図3(a)に示すように、始めに適当な基板1上に、同径のシリカ微粒子2を周期配列して成るオパール構造体3を形成する。
次いで、図3(b)に示すように、オパール構造体3を前記シリカ微粒子(より粒径が小さいナノサイズ)のポリスチレン微粒子4を溶解したポリスチレン−トルエン溶液5に浸してオパール構造体3の各微粒子間の隙間にポリスチレン−トルエン溶液を満たす。
次いで、図3(c)に示すように、トルエン溶液を蒸発させた後、図3(d)に示すように、基板1を取り外す。
図3(e)は、基板1を完全に取り外した状態を示しており、この状態からシリカ微粒子2をフッ化水素で溶かして、球状空間6が周期的に配列された逆オパール構造体7が完成する。
【0009】
次に上記したように構成されたポリスチレンから成る逆オパール構造体7の各球状空間6の表面に反応物を吸着させる工程について説明する。
逆オパール構造体7を構成するポリスチレンは疎水性なので反応物を溶解した溶解液に直接浸しても溶解液は逆オパール構造体7に浸透しない。従って、始めにエタノール溶液中に逆オパール構造体7を浸して逆オパール構造体7にエタノールを浸透させる。その後、水でエタノールを交換する。
次いで、水が浸透した逆オパール構造体7を、リガンド等の反応物を溶かした水溶液を入れたガラス容器内に入れると、反応物が各球状空間6の表面に吸着され、屈折率センサが完成する。
この状態で、一度、光を照射して回折ピークが現われる波長を測定しておく。
次いで、リガンドを球状空間6の表面に吸着させた屈折率センサに、アナライトを溶解した水溶液を供給し、リガンドとアナライトとを反応させた後に、光を照射して回折ピークが現われる波長を測定する。
図4は、球状空間6の表面にリガンドが吸着した状態及び前記リガンドにアナライトを供給した状態を示す概念図であり、図5は、アナライト供給前と供給後の回折ピークの測定結果を示すグラフである。図面に示すように、アナライトと反応する前と後では回折ピークがシフトしており、上記した屈折率測定用センサにより、リガンドとアナライトとの間の相互作用に応じて回折ピークがシフトすることが分かる。
【0010】
発明者等は、本発明に係る逆オパール構造を備えた屈折率センサが、リガンドとアナライトとの相互反応により屈折率変化が生じていることを確認するために、逆オパール構造体の球状空間の表面にリガンドとしてSPA(Staphylococcal protein A)を固定し、それにSPAと結合可能な結合部位を持つイムノグロブリンG(IgG)を、幾つかの異なる形態でアナライトとして供給し、供給前と供給後の屈折率ピークが生じる波長を測定した。
図6(a)は、IgGを完全体で供給した時の、供給前と供給後の屈折率ピーク波長の変化を示すグラフである。このグラフに示すように、供給前と供給後とでは屈折率ピークが生じる波長がシフトしており、このことから、IgGとSPAとの相互反応により屈折率が変化していることが分かる。
図6(b)は、IgGの結合部位のみを供給した時の、供給前と供給後の屈折率ピーク波長の変化を示すグラフである。この場合も図6(a)の場合と同様に供給前と供給後とでは屈折率ピークが生じる波長がシフトしており、IgGとSPAとの相互反応により屈折率が変化していることが分かる。
図6(c)及び図6(d)は、結合部位を取り除いた状態のIgGを供給した時の、供給前と供給後の屈折率ピーク波長の変化を示すグラフである。このグラフから分かるように、結合部位を持たないIgGを供給した場合、供給前と供給後とで屈折率ピーク波長に変化がない。このことから、供給したIgGがSPAと相互反応しなければ屈折率が変化ないことが確認できる。
上記した確認実験により、屈折率の変化がリガンドとアナライトとの相互反応によるものであることが確認できる。
【0011】
以上説明したように、本実施例に係る逆オパール構造を備えた屈折率センサによれば、周期配列された多数の球状空間の表面に反応物を固定するので、反応の場が大きくなり、測定すべき物質と反応する反応物を装飾できる量が多く、その結果、反応量を多くすることができるので感度を高めることができる。
また、本実施例に係る逆オパール構造を備えた屈折率センサは、出願人が提案したオパール構造を持つ屈折率センサに比べ、隙間が広いため、タンパク等のアナライトを供給した時に、アナライトがリガンドに到達する過程での障害物が少なく、アナライトがリガンドに到達する速度が速くなるので、結果として、検出速度の向上が期待できる。 さらに、従来のセンサでは、バイオ分子を化学的手法を用いて固定していたが、本実施例に係る逆オパール構造を備えた屈折率センサでは、バイオ分子を物理吸着法を用いて固定しているので、センサの製造がより簡単になる。
【0012】
【発明の効果】
以上説明したように、本発明に係る逆オパール構造を備えた屈折率測定用センサは、同じ粒径の微粒子を周期配列して成るオパール構造体の各微粒子間にポリスチレンを充填して膜を形成し、次いで、前記膜から前記微粒子を除去することにより球状の空間が周期的に配列されたポリスチレン逆オパール構造体を形成し、前記逆オパール構造体の各球状空間の表面に反応物を装飾して成るので、反応の場が大きくなり、測定すべき物質と反応する反応物を装飾できる量が多く、その結果、反応量を多くすることができるので感度を高めることができ、また、分子の拡散速度が速いため、検出速度の向上が期待できる。
また、本発明に係る逆オパール構造を備えた屈折率測定用センサは、前記ポリスチレンからなる逆オパール構造の球状空間の表面に、物理吸着によりリガンドを固定するので、従来の化学的手法を用いてリガンドを固定していたセンサに比べて製造が極めて簡単になるという効果を奏する。
【図面の簡単な説明】
【図1】(a)及び(b)は、本発明に係る屈折率測定用センサの測定原理を説明するための球状空間の二つの状態の概略図である。
【図2】球状空間の表面に形成された膜の厚みに応じた回折ピークの変化の理論値を示すグラフである。
【図3】(a)〜(f)は本発明に係る屈折率測定用センサにおける逆オパール構造体の製造工程の概略を示す図である。
【図4】逆オパール構造体の球状空間6の表面にリガンドが吸着した状態及び前記リガンドにアナライトを供給した状態を示す概念図である。
【図5】アナライト供給前と供給後の回折ピークの測定結果を示すグラフである。
【図6】(a)はIgGを完全体で供給した時の、供給前と供給後の屈折率ピーク波長の変化を示すグラフであり、(b)はIgGの結合部位のみを供給した時の、供給前と供給後の屈折率ピーク波長の変化を示すグラフであり、(c)及び(d)は結合部位を取り除いた状態のIgG供給した時の、供給前と供給後の屈折率ピーク波長の変化を示すグラフである。
【符号の説明】
1 基板
2 シリカ微粒子
3 オパール構造体
4 ポリスチレン微粒子
5 ポリスチレン−トルエン溶液
6 球状空間
7 逆オパール構造体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a change in state of a substance, in particular, a substance capable of measuring a biological-related reaction such as a protein such as an antigen-antibody, a DNA, or an RNA, due to an interaction between substances. The present invention relates to a refractive index sensor used for measurement based on the refractive index.
[0002]
[Prior art]
It is conventionally known to fix a reactant on a measurement surface, supply a second component acting on the measurement surface to the reactant, and detect an interaction between the reactant and the second component. .
Methods for detecting the interaction between the reactant and the second component as a quantification signal include various methods such as light absorption, fluorescence, and surface plasmon resonance, and one of them is a method using light diffraction. There is.
This utilizes the fact that the diffraction peak wavelength of light changes according to the interaction between the reactant and the second component, and a plurality of silica particles of the same size whose surface is coated with metal are periodically removed. The applicant has already filed an application as a refractive index measurement sensor having a multilayer film formed in an array and having a gap into which a substance to be measured can enter between silica particles in the multilayer film (see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Application No. 2002-46861 [0004]
[Problems to be solved by the invention]
The applicant has continued research and development of a refractive index measurement sensor in order to detect a change in the state of biomolecules with higher sensitivity even after the patent application described above. Invented a refractive index sensor that can detect a change in state of a biomolecule with high sensitivity and high speed.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a refractive index sensor that can measure with higher sensitivity and faster than a conventional refractive index sensor.
Another object of the present invention is to provide a refractive index sensor that can be manufactured more easily than conventional refractive index sensors.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, a refractive index sensor having an inverted opal structure according to the present invention fills polystyrene between particles of an opal structure formed by periodically arranging particles having the same particle size to form a film. Forming, and then removing the fine particles from the film to form a polystyrene inverse opal structure in which spherical spaces are periodically arranged, and decorate the surface of each spherical space of the inverse opal structure with a reactant. It is characterized by comprising.
Preferably, in the refractive index sensor configured as described above, a reactant such as a ligand can be fixed to the surface of the spherical space by physical adsorption.
Further, in the refractive index sensor configured as described above, after filling each spherical space of the inverted opal structure made of polystyrene with water and allowing water to permeate the polystyrene of the structure, an aqueous solution mixed with a reactant is used. The reactants can be easily adsorbed on the surface of each spherical space simply by filling in each spherical space.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a refractive index sensor having an inverted opal structure according to the present invention will be described with reference to the embodiments shown in the accompanying drawings.
[0007]
First, the measurement principle of the refractive index sensor according to the present invention will be described.
FIG. 1A shows a state in which only the water is filled in the spherical space of the inverted opal structure, R indicates the radius of the space, and d indicates the diameter. On the other hand, FIG. 1 (b) shows a state where the spherical space of the inverted opal structure is filled with water and the ligand is bound thereto, and T indicates the film thickness of the ligand.
At this time, the relationship between the diffraction peak and the film thickness can be theoretically calculated as shown in the following equation.
Figure 2004093461
The graph of FIG. 2 shows the relationship between the film thickness and the shift of the diffraction peak on this theory.
From this graph, it can be seen that the diffraction peak shifts according to the change in the film thickness. The refractive index sensor according to the present invention measures the refractive index based on the principle that the diffraction peak changes according to the change in the thickness of the film formed on the surface of the spherical space.
[0008]
Next, a method for manufacturing a refractive index sensor having an inverted opal structure according to the present invention will be described.
3A to 3F show an example of a manufacturing process of an inverted opal structure used in the refractive index measuring sensor according to the present invention.
As shown in FIG. 3A, an opal structure 3 is first formed on a suitable substrate 1 by periodically arranging silica fine particles 2 of the same diameter.
Next, as shown in FIG. 3B, the opal structure 3 is immersed in a polystyrene-toluene solution 5 in which polystyrene fine particles 4 of the silica fine particles (smaller in size) are dissolved, and each of the opal structures 3 The space between the fine particles is filled with a polystyrene-toluene solution.
Next, as shown in FIG. 3C, after the toluene solution is evaporated, the substrate 1 is removed as shown in FIG. 3D.
FIG. 3 (e) shows a state in which the substrate 1 is completely removed. From this state, the silica fine particles 2 are dissolved with hydrogen fluoride, and the inverted opal structure 7 in which the spherical spaces 6 are periodically arranged is formed. Complete.
[0009]
Next, a process of adsorbing a reactant on the surface of each spherical space 6 of the inverted opal structure 7 made of polystyrene configured as described above will be described.
Since the polystyrene constituting the inverted opal structure 7 is hydrophobic, the solution does not permeate the inverted opal structure 7 even if it is directly immersed in the solution in which the reactant is dissolved. Therefore, first, the inverted opal structure 7 is immersed in an ethanol solution to allow ethanol to permeate the inverted opal structure 7. Then, exchange the ethanol with water.
Next, when the inverted opal structure 7 impregnated with water is placed in a glass container containing an aqueous solution in which a reactant such as a ligand is dissolved, the reactant is adsorbed on the surface of each spherical space 6, and the refractive index sensor is completed. I do.
In this state, light is once irradiated to measure a wavelength at which a diffraction peak appears.
Next, an aqueous solution in which the analyte is dissolved is supplied to the refractive index sensor in which the ligand is adsorbed on the surface of the spherical space 6, and after reacting the ligand with the analyte, the light is irradiated and the wavelength at which the diffraction peak appears appears. Measure.
FIG. 4 is a conceptual diagram showing a state in which a ligand is adsorbed on the surface of the spherical space 6 and a state in which an analyte is supplied to the ligand. FIG. 5 shows measurement results of diffraction peaks before and after the supply of the analyte. It is a graph shown. As shown in the drawing, the diffraction peak is shifted before and after reacting with the analyte, and the above-described sensor for measuring the refractive index shifts the diffraction peak according to the interaction between the ligand and the analyte. You can see that.
[0010]
In order to confirm that the refractive index sensor having the inverted opal structure according to the present invention has caused a change in the refractive index due to the interaction between the ligand and the analyte, the inventors have studied the spherical space of the inverted opal structure. (Staphylococcal protein A) is immobilized as a ligand on the surface of the immunoglobulin G, and immunoglobulin G (IgG) having a binding site capable of binding to SPA is supplied as an analyte in several different forms, before and after supply. Was measured at a wavelength at which a refractive index peak occurred.
FIG. 6A is a graph showing the change in the refractive index peak wavelength before and after the supply of IgG in a complete form. As shown in this graph, the wavelength at which the refractive index peak occurs is shifted between before and after the supply, indicating that the refractive index has changed due to the interaction between IgG and SPA.
FIG. 6B is a graph showing a change in the refractive index peak wavelength before and after the supply when only the binding site of IgG is supplied. In this case as well, as in the case of FIG. 6A, the wavelength at which the refractive index peak occurs before and after the supply is shifted, and it can be seen that the refractive index changes due to the interaction between IgG and SPA. .
FIG. 6C and FIG. 6D are graphs showing changes in the refractive index peak wavelength before and after the supply of IgG in a state where the binding site has been removed. As can be seen from this graph, when IgG having no binding site is supplied, there is no change in the refractive index peak wavelength before and after the supply. From this, it can be confirmed that the refractive index does not change unless the supplied IgG reacts with SPA.
From the above confirmation experiment, it can be confirmed that the change in the refractive index is due to the interaction between the ligand and the analyte.
[0011]
As described above, according to the refractive index sensor having the inverted opal structure according to the present embodiment, the reactant is fixed on the surface of a large number of spherical spaces arranged periodically, so that the reaction field is increased, and the measurement is performed. The amount of the reactant reacting with the substance to be decorated is large, and as a result, the reaction amount can be increased, so that the sensitivity can be increased.
The refractive index sensor having the inverted opal structure according to the present embodiment has a wider gap than the refractive index sensor having the opal structure proposed by the applicant. There are few obstacles in the process of reaching the ligand, and the speed at which the analyte reaches the ligand is increased. As a result, an improvement in the detection speed can be expected. Further, in the conventional sensor, the biomolecules are fixed using a chemical method, but in the refractive index sensor having the inverted opal structure according to the present embodiment, the biomolecules are fixed using the physical adsorption method. Makes the manufacture of the sensor easier.
[0012]
【The invention's effect】
As described above, the refractive index measurement sensor having the inverted opal structure according to the present invention forms a film by filling polystyrene between the fine particles of the opal structure formed by periodically arranging fine particles having the same particle size. Then, removing the fine particles from the film to form a polystyrene inverse opal structure in which spherical spaces are periodically arranged, and decorating the surface of each spherical space of the inverse opal structure with a reactant. Therefore, the reaction field becomes large, the amount of the reactant reacting with the substance to be measured can be decorated, and as a result, the reaction amount can be increased, so that the sensitivity can be increased. Since the diffusion speed is high, an improvement in the detection speed can be expected.
In addition, the refractive index measurement sensor having the inverted opal structure according to the present invention fixes the ligand by physical adsorption on the surface of the spherical space of the inverted opal structure made of polystyrene, and thus uses a conventional chemical method. There is an effect that the production becomes extremely simple as compared with the sensor in which the ligand is immobilized.
[Brief description of the drawings]
FIGS. 1A and 1B are schematic views of two states of a spherical space for explaining a measurement principle of a refractive index measurement sensor according to the present invention.
FIG. 2 is a graph showing a theoretical value of a change in a diffraction peak according to a thickness of a film formed on a surface of a spherical space.
FIGS. 3 (a) to 3 (f) are diagrams schematically showing a manufacturing process of an inverted opal structure in a refractive index measuring sensor according to the present invention.
FIG. 4 is a conceptual diagram showing a state in which a ligand is adsorbed on the surface of a spherical space 6 of an inverted opal structure and a state in which an analyte is supplied to the ligand.
FIG. 5 is a graph showing measurement results of diffraction peaks before and after supply of an analyte.
FIG. 6 (a) is a graph showing a change in the refractive index peak wavelength before and after supply when IgG is supplied in a complete form, and FIG. 6 (b) is a graph when only the binding site of IgG is supplied. FIG. 4 is a graph showing a change in a refractive index peak wavelength before and after supply, wherein (c) and (d) are refractive index peak wavelengths before and after supply of IgG in a state where a binding site is removed. 5 is a graph showing a change in the graph.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Silica fine particle 3 Opal structure 4 Polystyrene fine particle 5 Polystyrene-toluene solution 6 Spherical space 7 Inverted opal structure

Claims (3)

同じ粒径の微粒子を周期配列して成るオパール構造体の各微粒子間にポリスチレンを充填して膜を形成し、
次いで、前記膜から前記微粒子を除去することにより球状の空間が周期的に配列されたポリスチレン逆オパール構造体を形成し、
前記逆オパール構造体の各球状空間の表面に反応物を装飾して成る
ことを特徴とする逆オパール構造を備えた屈折率センサ。
A film is formed by filling polystyrene between each fine particle of the opal structure formed by periodically arranging fine particles of the same particle size,
Next, a spherical space is periodically arranged by removing the fine particles from the film to form a polystyrene inverse opal structure,
A refractive index sensor having an inverted opal structure, wherein a reactant is decorated on the surface of each spherical space of the inverted opal structure.
前記ポリスチレンからなる逆オパール構造の球状空間の表面に、
物理吸着によりリガンドを固定し、
アナライトとのバイオ反応を屈折率変化で検出できるようにした
ことを特徴とする請求項1に記載のセンサ。
On the surface of the spherical space of the inverse opal structure made of polystyrene,
Immobilize the ligand by physical adsorption,
The sensor according to claim 1, wherein a bioreaction with the analyte can be detected by a change in refractive index.
前記ナノサイズのポリスチレン微粒子からなる逆オパール構造体の各球状空間をエタノール水で満たしてエタノール水を該構造体のポリスチレン逆オパール膜に浸透させ、
反応物を水に混入したの水溶液を各球状空間に充填し、水をバッファとして反応物を各球状空間の表面に吸着させて成る
ことを特徴とする請求項1又は2に記載のセンサ。
Filling each spherical space of the inverted opal structure composed of the nano-sized polystyrene fine particles with ethanol water and allowing ethanol water to permeate the polystyrene inverted opal membrane of the structure,
3. The sensor according to claim 1, wherein each spherical space is filled with an aqueous solution of a reactant mixed with water, and the reactant is adsorbed on the surface of each spherical space using water as a buffer.
JP2002256977A 2002-09-02 2002-09-02 Refractive index sensor having inverse opal structure Pending JP2004093461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256977A JP2004093461A (en) 2002-09-02 2002-09-02 Refractive index sensor having inverse opal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256977A JP2004093461A (en) 2002-09-02 2002-09-02 Refractive index sensor having inverse opal structure

Publications (1)

Publication Number Publication Date
JP2004093461A true JP2004093461A (en) 2004-03-25

Family

ID=32062037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256977A Pending JP2004093461A (en) 2002-09-02 2002-09-02 Refractive index sensor having inverse opal structure

Country Status (1)

Country Link
JP (1) JP2004093461A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243343A (en) * 2005-03-03 2006-09-14 Ricoh Co Ltd Optical device and manufacturing method thereof
WO2007026408A1 (en) * 2005-08-30 2007-03-08 Osaka University Stable labeling medium usable in biological experiments
JP2007271609A (en) * 2006-03-08 2007-10-18 Hokkaido Univ Biosensor
JP2007286113A (en) * 2006-04-12 2007-11-01 Toyo Seikan Kaisha Ltd Structural body, method of forming structure and apparatus for forming the same
US8139292B2 (en) 2006-04-12 2012-03-20 Toyo Seikan Kaisha, Ltd. Structural body, a method for reading a structural color and/or diffraction light, and a truth/false discriminating method
CN103257123A (en) * 2013-05-28 2013-08-21 北京科技大学 Preparation method of photonic crystal thin film heavy metal sensor with multilevel structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243343A (en) * 2005-03-03 2006-09-14 Ricoh Co Ltd Optical device and manufacturing method thereof
WO2007026408A1 (en) * 2005-08-30 2007-03-08 Osaka University Stable labeling medium usable in biological experiments
JP2007271609A (en) * 2006-03-08 2007-10-18 Hokkaido Univ Biosensor
JP2007286113A (en) * 2006-04-12 2007-11-01 Toyo Seikan Kaisha Ltd Structural body, method of forming structure and apparatus for forming the same
US8139292B2 (en) 2006-04-12 2012-03-20 Toyo Seikan Kaisha, Ltd. Structural body, a method for reading a structural color and/or diffraction light, and a truth/false discriminating method
CN103257123A (en) * 2013-05-28 2013-08-21 北京科技大学 Preparation method of photonic crystal thin film heavy metal sensor with multilevel structure

Similar Documents

Publication Publication Date Title
Gupta et al. Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures
US10962536B2 (en) Biological sensor and a method of the production of biological sensor
Li et al. Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels
US7869032B2 (en) Biosensors with porous dielectric surface for fluorescence enhancement and methods of manufacture
JP4994682B2 (en) Detection element, target substance detection apparatus using the detection element, and method for detecting target substance
Lee et al. Handbook of molecular imprinting: advanced sensor applications
US20190369092A1 (en) Method for the topographically-selective passivation of micro- and nanoscale devices
US20030092034A1 (en) Analytical chip
WO2013070948A1 (en) Sers, fluorescence, absorption, and luminescence detection with flow-through multi-hole capillaries
JP2007218900A (en) Element for detecting target substance
US20060276047A1 (en) Macroporous silicon microcavity with tunable pore size
JP2015503097A (en) Plasmon optical transducer
Chen et al. Real-time multicolor antigen detection with chemoresponsive diffraction gratings of silicon oxide nanopillar arrays
EP1484599B1 (en) An optical biosensor
Politi et al. Reversible sensing of heavy metal ions using lysine modified oligopeptides on porous silicon and gold
JP2004093461A (en) Refractive index sensor having inverse opal structure
Fernández et al. Regenerable plasmonic biosensor based on gold nanolines pattern and common laboratory spectrophotometer
JP2008232720A (en) Detection element, detection element device, and detection method
WO2013089996A1 (en) Nanohole sensor chip with reference sections
Lifson et al. Photonic crystals as robust label-free biosensors
CN116438137A (en) Resonant nanophotonic biosensor
JP4215636B2 (en) Biochip and manufacturing method thereof
Jin et al. Micro-systems for optical protein-chip
Malekian Novel Functionalized Nanopores for Plasmonic Sensing
EP1415139A2 (en) Method for determining a mass changing event

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Effective date: 20040129

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A621 Written request for application examination

Effective date: 20050708

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071205