JP2004093303A - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
JP2004093303A
JP2004093303A JP2002254063A JP2002254063A JP2004093303A JP 2004093303 A JP2004093303 A JP 2004093303A JP 2002254063 A JP2002254063 A JP 2002254063A JP 2002254063 A JP2002254063 A JP 2002254063A JP 2004093303 A JP2004093303 A JP 2004093303A
Authority
JP
Japan
Prior art keywords
housing
gas sensor
diameter portion
disc spring
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002254063A
Other languages
Japanese (ja)
Inventor
Takashi Kojima
児島 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002254063A priority Critical patent/JP2004093303A/en
Publication of JP2004093303A publication Critical patent/JP2004093303A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas sensor, in which the reduction in the state of adhesion of an element-side insulator to a housing at high temperatures is slight, and gases to be measured hardly enter the atmospheric environment through between the element-side insulator the housing. <P>SOLUTION: The gas sensor 1 comprises both the element-side insulator 2 which pass through the housing 10 and a sensor element 29 passing through the element-side insulator 2. The element-side insulator 2 comprises a tapered surface. The housing 10 comprises a receiving surface for supporting a tapered surface; a conical spring 21 arranged at the face of the element-side insulator 2 on the side of a base end; and a press member 22 for pressing the coned disc spring 21 against the tip side of the gas sensor 1. The pressing member 22 comprises both a pressing plate 221 for pressing the coned disc spring 21 and a leg part 222, extended from the pressing plate 221 along a side surface 109 of the housing 10 on the side of the base end and fixed to the side surface 109 of the housing 10 on the side of the base end. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【技術分野】
本発明は,自動車エンジンの燃焼制御等に用いるガスセンサに関する。
【0002】
【従来技術】
自動車エンジンの空燃比制御を行うために,ガスセンサを自動車エンジンの排気系を構成する排気管等に設置することがある。
上記ガスセンサ9は,図6に示すごとく,筒状のハウジング90と,該ハウジング90に挿通する筒状の素子側絶縁碍子91と,該素子側絶縁碍子91に挿通するセンサ素子29と,上記素子側絶縁碍子91の基端側端面913に配置する大気側絶縁碍子92とよりなる。また,ハウジング90の先端側は被測定ガス側カバー101を,基端側は大気側カバー93を設ける。
【0003】
上記素子側絶縁碍子91の外側面は先端側へ向いたテーパー面911を有し,上記ハウジング90の内側面は上記テーパー面911を支承する基端側へ向いた受け面901を有する。上記受け面901とテーパー面911は金属製パッキン912を介して当接する。
【0004】
大気側絶縁碍子92は基端側付近において径の大きさが切り替わり,基端側に向いて皿バネ922を載置する載置面921を有する。
また,上記大気側カバー93は,上記載置面921と対向する位置で径の大きさを切り替えて,皿バネ922を先端側へ向けて押圧する押圧面931を有する。
押圧面931と載置面921との間に位置する皿バネ922は大気側カバー93をハウジング90に取り付ける際に先端側へ向かう押圧力を受けて,ガスセンサ軸方向に圧縮される。
【0005】
圧縮された皿バネ922の弾性が,大気側絶縁碍子92を介して素子側絶縁碍子91を先端側へ向けて押圧し,テーパー面911と金属パッキン912,受け面901との間を密着させる。
このように,素子側絶縁碍子91は押圧面931,皿バネ922,載置面921の位置する符合Cの近傍と,テーパー面911,金属パッキン912,受け面901の位置する符合Bの近傍との間において固定される。
【0006】
【解決しようとする課題】
ところで,金属の熱膨張は大きく,セラミックの熱膨張は小さい。特に高温において両者の熱膨張差は大きくなる。図6にかかる構成のガスセンサ9において,素子側絶縁碍子91の固定はB部とC部との間で行われるが,両者の間は金属とセラミックとが混在した状態にある。
【0007】
従って,高温になった時には,金属製ハウジング90や大気側カバー93等の伸びにセラミックである碍子91,92の伸びが追随できない。
このため,皿バネ載置面921,押圧面831の間に隙間が発生し皿バネ922による押圧力が低下する。
ガスセンサ9において,大気側カバー93の内部は大気雰囲気,被測定ガス側カバー101の内部は被測定ガス雰囲気である。
従って,皿バネ92による押圧力の低下はテーパー面911,受け面101,金属パッキン912の密着力を低下させ,被測定ガスが大気側カバーの大気雰囲気に侵入する原因となる。
【0008】
両雰囲気が分離して,被測定ガスが大気雰囲気に混じらないためには,ハウジング90と素子側絶縁碍子91との間,素子側絶縁碍子91とセンサ素子29との間で気密的な固定を行う必要がある。
被測定ガスが大気雰囲気に侵入した場合は,センサ素子29において基準ガスとなる大気雰囲気の状態が不安定となるため,センサ素子29の検出精度が低下するおそれがある。
【0009】
本発明は,かかる従来の問題点に鑑みてなされたもので,高温になった時の素子側絶縁碍子のハウジングに対する密着状態の低下が僅かであり,素子側絶縁碍子とハウジングとの間を通って被測定ガスが大気雰囲気へ侵入し難いガスセンサを提供しようとするものである。
【0010】
【課題の解決手段】
第1の発明は,筒状のハウジングと,該ハウジングに挿通する筒状の素子側絶縁碍子と,該素子側絶縁碍子に挿通するセンサ素子とよりなるガスセンサであって,
上記素子側絶縁碍子は外径が大なる大径部と該大径部より外径が小なる小径部を有し,大径部と小径部との間にガスセンサ先端側を向いたテーパー面を有し,
上記ハウジングは内径が大なる大内径部と該大内径部より内径が小なる小内径部を有し,大内径部と小内径部との間にガスセンサ基端側を向いて,上記テーパー面を支承する受け面を有し,
ガスセンサ軸方向への弾性を備え,上記素子側絶縁碍子の基端側端面に配置する皿バネと,該皿バネをガスセンサ先端側に向けて押圧する押さえ部材を有し,
上記押さえ部材は上記皿バネと接触してこれを押圧する押さえ板と,該押さえ板から上記ハウジングの基端側側面に沿って延設され,かつ上記ハウジングの基端側側面に対し固定される脚部とよりなることを特徴とするガスセンサにある(請求項1)。
【0011】
第2の発明は,筒状のハウジングと,該ハウジングに挿通する筒状の素子側絶縁碍子と,該素子側絶縁碍子に挿通するセンサ素子とよりなるガスセンサであって,
上記素子側絶縁碍子は外径が大なる大径部と該大径部より外径が小なる小径部を有し,大径部と小径部との間にガスセンサ先端側を向いたテーパー面を有し,
上記ハウジングは内径が大なる大内径部と該大内径部より内径が小なる径小内径部を有し,大内径部と径小内径部との間にガスセンサ基端側を向いて,上記テーパー面を支承する受け面を有し,
ガスセンサ軸方向への弾性を備え,上記素子側絶縁碍子の基端側端面に配置する皿バネ部と,該皿バネ部より上記ハウジングの基端側側面に沿って延設され,かつ上記ハウジングの基端側側面に対し固定される脚部とよりなる一体型押さえ部材を有することを特徴とするガスセンサにある(請求項5)。
【0012】
第1及び第2の発明にかかるガスセンサにおいて,皿バネや皿バネ部はガスセンサ軸方向の弾性を備えており,この方向に押圧することで変形する。この変形からの復元力によって素子側絶縁碍子はハウジングに設けた受け面に向かって押圧される。この押圧力が素子側絶縁碍子をハウジングに密着して固定する力となる。
【0013】
第1及び第2の発明にかかる構成とすることで,熱膨張差による寸法変化の絶対量を従来構成である図6のガスセンサと比較して小さくできる。
図6にかかる従来構成のガスセンサ9において,素子側絶縁碍子91の固定はB部とC部との間で行われるが,両者の間は金属とセラミックとが混在した状態にある。
【0014】
従って,高温になった時には,金属製ハウジング90や大気側カバー93等の伸びにセラミックである碍子91,92の伸びが追随できない。
このため,皿バネ載置面921,押圧面831の間に隙間が発生し皿バネ922による押圧力が低下する。
【0015】
第1及び第2の発明にかかるガスセンサでは,皿バネと押さえ部材(第1の発明),または皿バネ部を備えた一体型押さえ部材(第2の発明)を用いて素子側絶縁碍子をハウジングに対し固定しており,従来と比べて素子側絶縁碍子の固定がより短い距離において行われる。これは,後述する図1と図6とを比較すると明らかである。
【0016】
従って,高温になった時に,ハウジングや素子側絶縁碍子が従来と同様に伸びた場合でも,累積する寸法変化の絶対量が従来より少なくなる。
このため,高温になった時,皿バネや皿バネ部と素子側絶縁碍子の基端側端面との間で隙間の発生が少なくなり,皿バネや皿バネ部による素子側絶縁碍子をハウジングに向かって押す押圧力の低下を少なくことができる。
【0017】
また,第1及び第2の発明は,従来のような大気側絶縁碍子を介した間接固定ではなく,素子側絶縁碍子をハウジングに対し直接固定しているため,力の偏心が小さく,テーパー面から受け面へ力を確実に伝えることができる。
【0018】
以上,第1及び第2の発明によれば,高温になった時の素子側絶縁碍子のハウジングに対する密着状態の低下が僅かであり,素子側絶縁碍子とハウジングとの間を通って被測定ガスが大気雰囲気へ侵入し難いガスセンサを提供することができる。
【0019】
【発明の実施の形態】
第1及び第2の発明にかかるガスセンサとしては,被測定ガス中の酸素濃度を測る酸素センサ,NOx濃度を測るNOxセンサなどがある。1本のセンサで複数種類のガス濃度を測定する複合センサなどもある。
【0020】
第1の発明において,上記押さえ部材の上記脚部と上記ハウジングの基端側側面との間の固定は溶接固定とすることができる(請求項2)。
これにより,皿バネの押圧力を保持することができる。
【0021】
また,第1の発明において,上記押さえ部材の上記脚部と上記ハウジングの基端側側面との間の固定はかしめ固定とすることができる(請求項3)。
これにより,皿バネの押圧力を保持することができる。
【0022】
また,第1の発明において,上記押さえ部材は上記ハウジングの基端部に一体的に設けた径方向内方への包みかしめ部よりなることが好ましい(請求項4)。
これにより,皿バネの押圧力を保持することができる。
【0023】
また,第2の発明において,上記一体型押さえ部材の脚部は径方向内方に突出する突出部を有し,上記ハウジングの基端側側面は径方向内方に凹むと共に上記突出部に対応した凹部を有し,
上記突出部と上記凹部との嵌合により,上記脚部を上記基端側側面に固定することが好ましい(請求項6)。
これにより,皿バネの押圧力を保持することができる。
【0024】
【実施例】
以下に,図面を用いて本発明の実施例について説明する。
(実施例1)
本例は,図1,図2に示すごとく,筒状のハウジング10と,該ハウジング10に挿通する筒状の素子側絶縁碍子2と,該素子側絶縁碍子2に挿通するセンサ素子29とよりなるガスセンサ1である。
【0025】
図2に示すごとく,上記素子側絶縁碍子2は外径が大なる大径部207と該大径部207より外径が小なる小径部209を有し,大径部207と小径部209との間にガスセンサ先端側を向いたテーパー面208を有する。
上記ハウジング10は内径が大なる大内径部103と該大内径部103より内径が小なる小内径部101を有し,大内径部103と小内径部101との間にガスセンサ基端側を向いて,上記テーパー面208を支承する受け面102を有する。
【0026】
また,ガスセンサ軸方向への弾性を備え,上記素子側絶縁碍子2の基端側端面205に配置する皿バネ21と,該皿バネ21をガスセンサ先端側に向けて押圧する押さえ部材22とを有する。
上記押さえ部材22は上記皿バネ21と接触してこれを押圧する押さえ板221と,該押さえ板221から上記ハウジング10の基端側側面109に沿って延設され,かつ上記ハウジング10の基端側側面109に対し固定される脚部222とよりなる。
なお,本例の押さえ部材22は,図1,図2に示すごとく,皿バネ21を配置した素子側絶縁碍子2に対して被冠するキャップ型形状を有する。
【0027】
以下,詳細に説明する。
本例にかかるガスセンサ1は,自動車エンジンの排気管に設置し,排気ガス中の酸素濃度とNOx濃度,エンジン燃焼室の空燃比を測定する複合センサである。
上記ガスセンサ1が内蔵するセンサ素子29は,固体電解質板と絶縁板とを適宜積層構成した積層型板状素子で,素子内部に設けた被測定ガス室内の酸素濃度を測定,監視するモニタセルと,被測定ガス室内の酸素濃度を調整する酸素ポンプセルと,被測定ガス室内のNOx濃度を測定するセンサセルを有し,さらに通電により発熱するヒータが一体的に設けてある。
上記ヒータに対する電圧印加,各セルに対する電圧印加,出力取り出しはセンサ素子の外側面に設けた端子において行う(図示略)。
【0028】
図1,図2に示すごとく,本例のガスセンサ1は,耐熱金属製で筒型のハウジング10と該ハウジング10の先端側に取り付けた二重構造の被測定ガス側カバー100と,基端側に取り付けた大気側カバー13とを有する。
大気側カバー13はハウジング10にかしめ固定する第1カバー131と該第1カバー131の基端側に撥水フィルタ133を介してかしめ固定した外側カバー132とよりなる。
【0029】
また,ハウジング10に筒型の素子側絶縁碍子2を挿通するが,素子側絶縁碍子2の大径部207と小径部209との間がテーパー面208となる。そして,上記ハウジング10の大内径部103と小内径部101との間が受け面102となる。ハウジング10に素子側絶縁碍子2を挿通することで,上記テーパー面208は金属パッキン28を介して受け面102と当接する。すなわち,上記受け面102が素子側絶縁碍子2をガスセンサ先端側から支承する。
【0030】
素子側絶縁碍子2の基端側端面205に皿バネ21を載置し,皿バネ21の上から押さえ部材22を被冠する。押さえ部材22は皿バネ21を押さえて縮ませる押さえ板221と該押さえ板221からハウジング10の基端側側面109に沿って伸びる脚部222とよりなり,ハウジング10の基端側側面109と上記脚部222との間を全周で溶接固定することで,素子側絶縁碍子2を図面上側から固定する。
【0031】
ここに,図2に示すごとく,上記押さえ部材22はガスセンサ先端側が開口したキャップ型であり,押さえ板221は中央にセンサ素子29を通す穴部223を有する。また,皿バネ21も同様に中央はセンサ素子29を通す穴部213を有し,また押圧される前のフリーな状態では,径方向外側がより持ち上がった円板状である。
【0032】
また,素子側絶縁碍子2の上方で大気側カバー13の内部は大気側絶縁碍子3を設ける。大気側絶縁碍子3の内部には上記センサ素子29の端子と導通する端子バネ(図示略)を配置する。端子バネは接続部材409を通じてリード線40と電気的に導通する。
【0033】
上記大気側カバー13を構成する第1カバー131の基端側には弾性絶縁部材4を設ける。上記弾性絶縁部材4はリード線挿通穴(図示略)を有し,該リード線挿通孔は弾性絶縁部材4の基端側から先端側までを貫通する貫通穴よりなる。上記リード線40はこのリード線挿通穴を通じてガスセンサ1の外部から内部へ引きこむ。
【0034】
本例の作用効果について説明する。
本例のガスセンサ1において,皿バネ21はガスセンサ軸方向の弾性を備えており,この方向に押圧することで変形する。この変形からの復元力によって素子側絶縁碍子2はハウジング10に設けた受け面102に向かって押圧される。この押圧力が素子側絶縁碍子2を金属パッキン28を介してハウジング10に密着して固定する力となる。
【0035】
本例にかかる構成とすることで,熱膨張差による寸法変化の絶対量を従来構成である図6のガスセンサ9と比較して小さくできる。
図6にかかる従来構成のガスセンサ9において,素子側絶縁碍子91の固定はB部とC部との間で行われるが,両者の間は金属とセラミックとが混在した状態にある。従って,高温になった時には,金属製ハウジング90や大気側カバー93等の伸びにセラミックである碍子91,92の伸びが追随できない。このため,皿バネ載置面921,押圧面831の間に隙間が発生し皿バネ922による押圧力が低下する。
【0036】
本例では熱膨張差による寸法変化の絶対量を従来構成である図6のガスセンサと比較して小さくできる。
なぜなら,従来は図6に示すごとくB部〜C部間において素子側絶縁碍子を固定していたが,本例では図1に示すごとくB部〜A部間において素子側絶縁碍子を固定し,固定距離が短くなっている。よって,累積する寸法変化の絶対量も少ない。
このため,高温になった時,皿バネ21と素子側絶縁碍子2の基端側端面205との間で隙間の発生が少なくなり,皿バネ21による押圧力の低下を少なくすることができる。従って,本例によれば素子側絶縁碍子2の固定状態が安定する。
【0037】
また,従来のような大気側絶縁碍子を介した間接固定ではなく,素子側絶縁碍子2をハウジング10に対し皿バネ21と押さえ部材22とを用いて直接固定しているため,力の偏心が小さく,テーパー面208から金属パッキン28を介して受け面102へ力を確実に伝えることができる。この点からも素子側絶縁碍子2の固定状態が安定する。
【0038】
よって,本例によれば,高温になった時の素子側絶縁碍子2,金属パッキン28のハウジング10に対する密着状態の低下が僅かであり,素子側絶縁碍子2とハウジング10との間を通って被測定ガスが大気雰囲気へ侵入し難いガスセンサを提供することができる。
【0039】
また,図1,図2では押さえ部材22の脚部222とハウジング10の基端側側面109との間を全周溶接で固定したが,図3に示すように,脚部222をハウジング10の基端側側面109に当接させ,径方向外側からかしめて両者間を固定することもできる。
この場合も,図1や図2の構成と同様の作用効果を得ることができる。
【0040】
(実施例2)
本例の押さえ部材は,図4(a),(b)に示すごとく,ハウジング10の基端側に一体形成した包みかしめ部20よりなる。
本例においてハウジング10は基端側側面109が延長され,この延長された部分が押さえ部材として機能する包みかしめ部20となる。
【0041】
すなわち,図4(b)に示すごとく,延長された部分を矢線に示すごとく皿バネ21に向けて曲げる。
これにより,延長された基端側側面109の最も最先端となる部分が皿バネ21を押圧する押さえ板221となり,基端側側面109の最先端以外の部分が脚部224となる。脚部224はハウジング10の基端側側面109と一体化している。なお,ガスセンサのその他の構成は実施例1と同様である。
【0042】
本例にかかる構成は別部材である押さえ部材が不要であり,また溶接やかしめなどの加工が不要となり,加工コストを安価とすることができる。
その他は,実施例1と同様の作用効果を得ることができる。
【0043】
(実施例3)
本例は,実施例1に示した皿バネと押さえ部材とが一体化した一体型押さえ部材25について説明する。
図5(a)に示すごとく,本例にかかる一体型押さえ部材25は,ガスセンサ軸方向への弾性を備え,上記素子側絶縁碍子の基端側端面に配置する皿バネ部251と,上記皿バネ部251より上記ハウジングの基端側側面に沿って延設され,かつ上記ハウジングの基端側側面に対し固定される脚部252とよりなる。
【0044】
皿バネ部251は中央に穴部254を有し,ここからセンサ素子を挿通する。この穴は円と十字を組み合わせた形状を備えている。
また,図5(b)に示すごとく,脚部252には切り込みが設けてあり,この切り込みが径方向内側にたおしてある。この切り込みが脚部252の径方向内方に突出する突出部253となる。
【0045】
図示は省略したが,ガスセンサのハウジング,基端側側面に予め上記突出部253と嵌合可能な凹部を設けておくことで,一体型押さえ部材25を素子側絶縁碍子に被冠した際に,突出部253と凹部とが嵌合してより強固な固定を実現することができる。
突出部253と凹部とを嵌合させた後,溶接やかしめによってさらに固定を確実にすることができる。
なお,ガスセンサのその他の構成は実施例1と同様である。
【0046】
本例にかかる構成は別部材である押さえ部材が不要であり,また溶接やかしめなどの加工が不要となり,加工コストを安価とすることができる。
その他は,実施例1と同様の作用効果を得ることができる。
【図面の簡単な説明】
【図1】実施例1における,押さえ部材とハウジングとの間を溶接固定したガスセンサの軸方向に沿った断面説明図。
【図2】実施例1における,図1にかかるガスセンサの要部展開説明図。
【図3】実施例1における,押さえ部材とハウジングとの固定をかしめによって行ったガスセンサの要部説明図。
【図4】実施例2における,ハウジングに一体形成した包みかしめ部よりなる押さえ部材を備えたガスセンサの要部説明図。
【図5】実施例3における,一体型押さえ部材の平面図及び断面図。
【図6】従来における,ガスセンサの軸方向に沿った断面説明図。
【符号の説明】
1...ガスセンサ,
10...ハウジング,
109...基端側側面,
101...小内径部,
102...受け面,
103...大内径部,
2...素子側絶縁碍子,
20...包みかしめ部,
205...基端側端面,
207...大径部
208...テーパー面,
209...小径部
21...皿バネ,
22...押さえ部材,
221...押さえ板,
222...脚部,
25...一体型押さえ部材,
251...皿バネ部,
252...脚部,
29...センサ素子,
[0001]
【Technical field】
The present invention relates to a gas sensor used for controlling combustion of an automobile engine.
[0002]
[Prior art]
In order to control the air-fuel ratio of an automobile engine, a gas sensor is sometimes installed in an exhaust pipe or the like that constitutes an exhaust system of the automobile engine.
As shown in FIG. 6, the gas sensor 9 includes a cylindrical housing 90, a cylindrical element-side insulator 91 inserted through the housing 90, a sensor element 29 inserted through the element-side insulator 91, It consists of an air-side insulator 92 arranged on the base end surface 913 of the side insulator 91. Also, the measured gas side cover 101 is provided on the distal end side of the housing 90, and the atmosphere side cover 93 is provided on the proximal end side.
[0003]
The outer surface of the element-side insulator 91 has a tapered surface 911 facing the distal end, and the inner surface of the housing 90 has a receiving surface 901 facing the proximal end supporting the tapered surface 911. The receiving surface 901 and the tapered surface 911 are in contact with each other via a metal packing 912.
[0004]
The atmosphere-side insulator 92 has a diameter that is switched near the base end and has a mounting surface 921 on which the disc spring 922 is mounted facing the base end.
The atmosphere-side cover 93 has a pressing surface 931 that switches the size of the diameter at a position facing the mounting surface 921 and presses the disc spring 922 toward the distal end.
The disc spring 922 located between the pressing surface 931 and the mounting surface 921 is compressed in the gas sensor axial direction by receiving a pressing force toward the distal end when the atmosphere side cover 93 is attached to the housing 90.
[0005]
The compressed elasticity of the disc spring 922 presses the element-side insulator 91 toward the distal end via the atmosphere-side insulator 92, thereby bringing the tapered surface 911 into close contact with the metal packing 912 and the receiving surface 901.
As described above, the element-side insulator 91 has the vicinity of the symbol C where the pressing surface 931, the disc spring 922, and the mounting surface 921 are located, and the vicinity of the symbol B where the tapered surface 911, the metal packing 912, and the receiving surface 901 are located. Between the fixed.
[0006]
[Problem to be solved]
Incidentally, the thermal expansion of metal is large, and the thermal expansion of ceramic is small. Particularly at high temperatures, the difference in thermal expansion between the two becomes large. In the gas sensor 9 having the configuration shown in FIG. 6, the element-side insulator 91 is fixed between the portion B and the portion C, and a metal and a ceramic are mixed between the portions.
[0007]
Therefore, when the temperature becomes high, the expansion of the ceramic insulators 91 and 92 cannot follow the expansion of the metal housing 90 and the atmosphere side cover 93 and the like.
For this reason, a gap is generated between the disc spring mounting surface 921 and the pressing surface 831, and the pressing force by the disc spring 922 decreases.
In the gas sensor 9, the inside of the atmosphere side cover 93 is the atmosphere, and the inside of the measured gas side cover 101 is the atmosphere of the measured gas.
Therefore, a decrease in the pressing force by the disc spring 92 reduces the adhesion between the tapered surface 911, the receiving surface 101, and the metal packing 912, and causes the gas to be measured to enter the atmosphere of the atmosphere-side cover.
[0008]
In order to separate the two atmospheres so that the gas to be measured does not mix with the air atmosphere, airtight fixing between the housing 90 and the element-side insulator 91 and between the element-side insulator 91 and the sensor element 29 are required. There is a need to do.
When the gas to be measured enters the atmosphere, the state of the atmosphere serving as the reference gas in the sensor element 29 becomes unstable, and the detection accuracy of the sensor element 29 may be reduced.
[0009]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and when the temperature rises, the state of close contact between the element-side insulator and the housing is slightly reduced. Therefore, it is intended to provide a gas sensor in which the gas to be measured hardly enters the atmosphere.
[0010]
[Means for solving the problem]
A first invention is a gas sensor comprising a cylindrical housing, a cylindrical element-side insulator inserted into the housing, and a sensor element inserted into the element-side insulator.
The element-side insulator has a large-diameter portion having a large outer diameter and a small-diameter portion having a smaller outer diameter than the large-diameter portion, and has a tapered surface facing the gas sensor tip side between the large-diameter portion and the small-diameter portion. Have
The housing has a large-diameter portion having a large internal diameter and a small-diameter portion having a smaller internal diameter than the large-diameter portion. Between the large-diameter portion and the small-diameter portion, facing the gas sensor base end, the tapered surface is formed. Has a receiving surface to support,
A disc spring having elasticity in the gas sensor axial direction and disposed on a base end surface of the element-side insulator, and a pressing member for pressing the disc spring toward the gas sensor tip;
The press member is a press plate that contacts and presses the disc spring, and extends from the press plate along the base side surface of the housing and is fixed to the base side surface of the housing. A gas sensor comprising a leg portion (claim 1).
[0011]
A second invention is a gas sensor comprising a cylindrical housing, a cylindrical element-side insulator inserted into the housing, and a sensor element inserted into the element-side insulator.
The element-side insulator has a large-diameter portion having a large outer diameter and a small-diameter portion having a smaller outer diameter than the large-diameter portion, and has a tapered surface facing the gas sensor tip side between the large-diameter portion and the small-diameter portion. Have
The housing has a large inner diameter portion having a larger inner diameter and a small diameter inner diameter portion having an inner diameter smaller than the large inner diameter portion. Has a receiving surface that supports the surface,
A disc spring having elasticity in the axial direction of the gas sensor and disposed on a base end face of the insulator on the element side; a disc spring extending from the disc spring along a base side face of the housing; The gas sensor according to claim 5, further comprising an integral pressing member including a leg fixed to the base side surface (claim 5).
[0012]
In the gas sensor according to the first and second aspects of the invention, the disc spring and the disc spring portion have elasticity in the gas sensor axial direction, and are deformed by being pressed in this direction. The element-side insulator is pressed against the receiving surface provided on the housing by the restoring force from this deformation. This pressing force is a force for fixing the element-side insulator in close contact with the housing.
[0013]
With the configuration according to the first and second aspects of the present invention, the absolute amount of dimensional change due to the difference in thermal expansion can be made smaller than that of the conventional gas sensor of FIG.
In the gas sensor 9 having the conventional configuration shown in FIG. 6, the element-side insulator 91 is fixed between the portion B and the portion C, and a metal and a ceramic are mixed therebetween.
[0014]
Therefore, when the temperature becomes high, the expansion of the ceramic insulators 91 and 92 cannot follow the expansion of the metal housing 90 and the atmosphere side cover 93 and the like.
For this reason, a gap is generated between the disc spring mounting surface 921 and the pressing surface 831, and the pressing force by the disc spring 922 decreases.
[0015]
In the gas sensor according to the first and second inventions, the element-side insulator is mounted on the housing by using a disc spring and a pressing member (first invention) or an integrated pressing member having a disc spring portion (second invention). , And the element-side insulator is fixed at a shorter distance than before. This is clear when FIG. 1 and FIG. 6 described later are compared.
[0016]
Therefore, even when the housing or the element-side insulator expands in the same manner as before when the temperature rises, the absolute amount of the accumulated dimensional change becomes smaller than before.
For this reason, when the temperature becomes high, the generation of a gap between the disc spring or the disc spring portion and the base end face of the element-side insulator is reduced, and the element-side insulator by the disc spring or the disc spring portion is attached to the housing. It is possible to reduce the decrease in the pressing force that pushes toward.
[0017]
In the first and second inventions, the eccentricity of the force is small and the tapered surface is not fixed indirectly via the air-side insulator as in the prior art, but by fixing the element-side insulator directly to the housing. The force can be transmitted to the receiving surface from the surface.
[0018]
As described above, according to the first and second aspects of the invention, when the temperature of the element-side insulator becomes low, the state of close contact of the element-side insulator with the housing is small, and the gas to be measured passes between the element-side insulator and the housing. A gas sensor that does not easily enter the atmosphere.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the gas sensor according to the first and second aspects of the present invention include an oxygen sensor for measuring the oxygen concentration in the gas to be measured and a NOx sensor for measuring the NOx concentration. There is also a composite sensor that measures a plurality of types of gas concentrations with one sensor.
[0020]
In the first invention, the fixing between the leg portion of the pressing member and the side surface on the base end side of the housing can be welding fixing.
Thereby, the pressing force of the disc spring can be maintained.
[0021]
Further, in the first invention, the fixing between the leg portion of the pressing member and the side surface on the base end side of the housing can be caulked.
Thereby, the pressing force of the disc spring can be maintained.
[0022]
Further, in the first invention, it is preferable that the pressing member is formed of a radially inwardly swaging portion integrally provided at a base end portion of the housing (claim 4).
Thereby, the pressing force of the disc spring can be maintained.
[0023]
Further, in the second invention, the leg portion of the integral holding member has a projecting portion projecting radially inward, and the base end side surface of the housing is recessed radially inward and corresponds to the projecting portion. With a recess
It is preferable that the leg is fixed to the side surface on the base end side by fitting the projecting portion and the concave portion.
Thereby, the pressing force of the disc spring can be maintained.
[0024]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Example 1)
As shown in FIGS. 1 and 2, this embodiment includes a cylindrical housing 10, a cylindrical element-side insulator 2 inserted through the housing 10, and a sensor element 29 inserted through the element-side insulator 2. Gas sensor 1.
[0025]
As shown in FIG. 2, the element-side insulator 2 has a large-diameter portion 207 having a large outer diameter and a small-diameter portion 209 having a smaller outer diameter than the large-diameter portion 207. And a tapered surface 208 facing the gas sensor tip side.
The housing 10 has a large-diameter portion 103 having a large inner diameter and a small-diameter portion 101 having a smaller inner diameter than the large-diameter portion 103. The housing 10 faces the gas sensor base end between the large-diameter portion 103 and the small-diameter portion 101. And a receiving surface 102 that supports the tapered surface 208.
[0026]
Further, the gas sensor has elasticity in the axial direction and includes a disc spring 21 disposed on the base end surface 205 of the element-side insulator 2 and a pressing member 22 for pressing the disc spring 21 toward the gas sensor tip. .
The pressing member 22 is a pressing plate 221 that contacts and presses the disc spring 21, and extends from the pressing plate 221 along the base side surface 109 of the housing 10, and is connected to the base end of the housing 10. It comprises a leg 222 fixed to the side surface 109.
As shown in FIGS. 1 and 2, the pressing member 22 of this embodiment has a cap-shaped shape that covers the element-side insulator 2 on which the disc spring 21 is disposed.
[0027]
The details are described below.
The gas sensor 1 according to the present embodiment is a composite sensor that is installed in an exhaust pipe of an automobile engine and measures an oxygen concentration and a NOx concentration in exhaust gas and an air-fuel ratio of an engine combustion chamber.
The sensor element 29 incorporated in the gas sensor 1 is a laminated plate-like element in which a solid electrolyte plate and an insulating plate are appropriately laminated, and a monitor cell for measuring and monitoring the oxygen concentration in a gas chamber to be measured provided inside the element. An oxygen pump cell that adjusts the oxygen concentration in the gas chamber to be measured, a sensor cell that measures the NOx concentration in the gas chamber to be measured, and a heater that generates heat when energized are integrally provided.
The voltage application to the heater, the voltage application to each cell, and the output output are performed at terminals provided on the outer surface of the sensor element (not shown).
[0028]
As shown in FIGS. 1 and 2, the gas sensor 1 of the present embodiment includes a cylindrical housing 10 made of a heat-resistant metal, a gas-side cover 100 having a double structure attached to the distal end of the housing 10, And an atmosphere-side cover 13 attached to the camera.
The atmosphere-side cover 13 includes a first cover 131 that is caulked and fixed to the housing 10, and an outer cover 132 that is caulked and fixed to the base end side of the first cover 131 via a water-repellent filter 133.
[0029]
Further, the cylindrical element-side insulator 2 is inserted into the housing 10, and a portion between the large-diameter portion 207 and the small-diameter portion 209 of the element-side insulator 2 forms a tapered surface 208. The space between the large-diameter portion 103 and the small-diameter portion 101 of the housing 10 serves as a receiving surface 102. By inserting the element-side insulator 2 into the housing 10, the tapered surface 208 comes into contact with the receiving surface 102 via the metal packing 28. That is, the receiving surface 102 supports the element-side insulator 2 from the tip side of the gas sensor.
[0030]
The disc spring 21 is placed on the base end surface 205 of the element-side insulator 2, and the pressing member 22 is covered from above the disc spring 21. The pressing member 22 includes a pressing plate 221 for pressing and contracting the disc spring 21 and a leg 222 extending from the pressing plate 221 along the proximal side surface 109 of the housing 10. The element-side insulator 2 is fixed from above in the drawing by welding and fixing the entire circumference with the leg 222.
[0031]
Here, as shown in FIG. 2, the pressing member 22 is a cap type in which the tip side of the gas sensor is open, and the pressing plate 221 has a hole 223 through which the sensor element 29 passes in the center. Similarly, the disc spring 21 also has a hole 213 at the center for passing the sensor element 29, and in a free state before being pressed, has a disk shape in which the radial outside is further raised.
[0032]
The air-side insulator 3 is provided above the element-side insulator 2 and inside the air-side cover 13. A terminal spring (not shown) that conducts with the terminals of the sensor element 29 is disposed inside the air-side insulator 3. The terminal spring is electrically connected to the lead wire 40 through the connection member 409.
[0033]
An elastic insulating member 4 is provided on the base end side of the first cover 131 constituting the atmosphere side cover 13. The elastic insulating member 4 has a lead wire insertion hole (not shown), and the lead wire insertion hole is a through hole penetrating from the base end side to the distal end side of the elastic insulating member 4. The lead wire 40 is drawn into the gas sensor 1 from the outside through the lead wire insertion hole.
[0034]
The operation and effect of this example will be described.
In the gas sensor 1 of the present embodiment, the disc spring 21 has elasticity in the gas sensor axial direction, and is deformed when pressed in this direction. The element side insulator 2 is pressed toward the receiving surface 102 provided on the housing 10 by the restoring force from this deformation. This pressing force is a force for tightly fixing the element-side insulator 2 to the housing 10 via the metal packing 28.
[0035]
With the configuration according to the present example, the absolute amount of the dimensional change due to the difference in thermal expansion can be reduced as compared with the gas sensor 9 of FIG.
In the gas sensor 9 having the conventional configuration shown in FIG. 6, the element-side insulator 91 is fixed between the portion B and the portion C, and a metal and a ceramic are mixed therebetween. Therefore, when the temperature becomes high, the expansion of the ceramic insulators 91 and 92 cannot follow the expansion of the metal housing 90 and the atmosphere side cover 93 and the like. For this reason, a gap is generated between the disc spring mounting surface 921 and the pressing surface 831, and the pressing force by the disc spring 922 decreases.
[0036]
In this embodiment, the absolute amount of the dimensional change due to the difference in thermal expansion can be made smaller than that of the conventional gas sensor of FIG.
Because, conventionally, the element-side insulator is fixed between the portions B and C as shown in FIG. 6, but in this example, the element-side insulator is fixed between the portions B and A as shown in FIG. Fixed distance is shorter. Therefore, the absolute amount of cumulative dimensional change is also small.
Therefore, when the temperature rises, the generation of a gap between the disc spring 21 and the base end surface 205 of the element-side insulator 2 is reduced, and the reduction of the pressing force by the disc spring 21 can be reduced. Therefore, according to this example, the fixed state of the element-side insulator 2 is stabilized.
[0037]
Further, since the element-side insulator 2 is directly fixed to the housing 10 using the disc spring 21 and the holding member 22 instead of the conventional indirect fixing via the atmosphere-side insulator, the eccentricity of the force is reduced. The force can be reliably transmitted from the small tapered surface 208 to the receiving surface 102 via the metal packing 28. Also from this point, the fixed state of the element-side insulator 2 is stabilized.
[0038]
Therefore, according to the present embodiment, when the temperature becomes high, the state of close contact between the element-side insulator 2 and the metal packing 28 with respect to the housing 10 is slightly reduced. It is possible to provide a gas sensor in which the gas to be measured hardly enters the atmosphere.
[0039]
Also, in FIGS. 1 and 2, the leg 222 of the holding member 22 and the base side surface 109 of the housing 10 are fixed by full circumference welding. However, as shown in FIG. It is also possible to abut on the base side surface 109 and caulk from the outside in the radial direction to fix them therebetween.
Also in this case, the same operation and effect as those of the configurations of FIGS. 1 and 2 can be obtained.
[0040]
(Example 2)
As shown in FIGS. 4 (a) and 4 (b), the pressing member of the present embodiment includes a wrapping portion 20 integrally formed on the base end side of the housing 10.
In this example, the housing 10 has a base end side surface 109 extended, and the extended portion serves as a wrapping portion 20 functioning as a holding member.
[0041]
That is, as shown in FIG. 4B, the extended portion is bent toward the disc spring 21 as shown by the arrow.
As a result, the foremost portion of the extended base end side surface 109 becomes the pressing plate 221 for pressing the disc spring 21, and the portion other than the foremost end of the base end side surface 109 becomes the leg portion 224. The leg 224 is integrated with the base side surface 109 of the housing 10. Other configurations of the gas sensor are the same as those of the first embodiment.
[0042]
The configuration according to the present example does not require a pressing member, which is a separate member, and eliminates the need for processing such as welding and swaging, and can reduce processing costs.
Otherwise, the same operation and effect as in the first embodiment can be obtained.
[0043]
(Example 3)
In this embodiment, an integrated holding member 25 in which the disc spring and the holding member shown in the first embodiment are integrated will be described.
As shown in FIG. 5 (a), the integrated holding member 25 according to the present example has elasticity in the gas sensor axial direction, The leg portion 252 extends from the spring portion 251 along the base side surface of the housing and is fixed to the base side surface of the housing.
[0044]
The disc spring 251 has a hole 254 in the center, through which the sensor element is inserted. This hole has a shape combining a circle and a cross.
Further, as shown in FIG. 5B, a cut is provided in the leg portion 252, and the cut is set inward in the radial direction. This cut forms a projection 253 that projects radially inward of the leg 252.
[0045]
Although illustration is omitted, by providing in advance a recess that can be fitted to the protruding portion 253 on the housing and the base end side surface of the gas sensor, when the integrated holding member 25 is covered with the element-side insulator, The protruding portion 253 and the concave portion are fitted to each other, so that more secure fixing can be realized.
After the protrusion 253 and the recess are fitted, the fixing can be further ensured by welding or caulking.
Other configurations of the gas sensor are the same as those of the first embodiment.
[0046]
The configuration according to the present example does not require a pressing member, which is a separate member, and eliminates the need for processing such as welding and swaging, thereby reducing processing costs.
Otherwise, the same operation and effect as in the first embodiment can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory cross-sectional view along the axial direction of a gas sensor according to a first embodiment in which a pressing member and a housing are fixed by welding.
FIG. 2 is a development explanatory view of a main part of the gas sensor according to FIG. 1 in the first embodiment.
FIG. 3 is an explanatory view of a main part of the gas sensor in Embodiment 1 in which the holding member and the housing are fixed by caulking.
FIG. 4 is an explanatory view of a main part of a gas sensor according to a second embodiment, the gas sensor including a holding member formed of a wrapping portion integrally formed with a housing.
5A and 5B are a plan view and a cross-sectional view of an integrated holding member according to a third embodiment.
FIG. 6 is a cross-sectional explanatory view along the axial direction of a conventional gas sensor.
[Explanation of symbols]
1. . . Gas sensor,
10. . . housing,
109. . . Proximal side,
101. . . Small bore,
102. . . Receiving surface,
103. . . Large bore,
2. . . Element side insulator,
20. . . Wrapping part,
205. . . Proximal end face,
207. . . Large diameter portion 208. . . Tapered surface,
209. . . Small diameter section 21. . . Disc spring,
22. . . Holding member,
221. . . Holding plate,
222. . . leg,
25. . . Integrated holding member,
251. . . Disc spring,
252. . . leg,
29. . . Sensor element,

Claims (6)

筒状のハウジングと,該ハウジングに挿通する筒状の素子側絶縁碍子と,該素子側絶縁碍子に挿通するセンサ素子とよりなるガスセンサであって,
上記素子側絶縁碍子は外径が大なる大径部と該大径部より外径が小なる小径部を有し,大径部と小径部との間にガスセンサ先端側を向いたテーパー面を有し,
上記ハウジングは内径が大なる大内径部と該大内径部より内径が小なる小内径部を有し,大内径部と小内径部との間にガスセンサ基端側を向いて,上記テーパー面を支承する受け面を有し,
ガスセンサ軸方向への弾性を備え,上記素子側絶縁碍子の基端側端面に配置する皿バネと,該皿バネをガスセンサ先端側に向けて押圧する押さえ部材を有し,
上記押さえ部材は上記皿バネと接触してこれを押圧する押さえ板と,該押さえ板から上記ハウジングの基端側側面に沿って延設され,かつ上記ハウジングの基端側側面に対し固定される脚部とよりなることを特徴とするガスセンサ。
A gas sensor comprising a cylindrical housing, a cylindrical element-side insulator inserted into the housing, and a sensor element inserted into the element-side insulator,
The element-side insulator has a large-diameter portion having a large outer diameter and a small-diameter portion having a smaller outer diameter than the large-diameter portion, and a tapered surface facing the tip of the gas sensor is provided between the large-diameter portion and the small-diameter portion. Have
The housing has a large-diameter portion having a large internal diameter and a small-diameter portion having a smaller internal diameter than the large-diameter portion. Has a receiving surface to support,
A disc spring having elasticity in the gas sensor axial direction and disposed on a base end face of the insulator on the element side, and a pressing member for pressing the disc spring toward the gas sensor tip side;
The press member is a press plate that contacts and presses the disc spring, and extends from the press plate along the base side surface of the housing and is fixed to the base side surface of the housing. A gas sensor comprising a leg.
請求項1において,上記押さえ部材の上記脚部と上記ハウジングの基端側側面との間の固定は溶接固定であることを特徴とするガスセンサ。2. The gas sensor according to claim 1, wherein the fixing between the leg portion of the pressing member and the base end side surface of the housing is welding fixing. 請求項1または2において,上記押さえ部材の上記脚部と上記ハウジングの基端側側面との間の固定はかしめ固定であることを特徴とするガスセンサ。3. The gas sensor according to claim 1, wherein the fixing between the leg portion of the pressing member and a side surface of the housing on the proximal end side is caulking fixing. 請求項1において,上記押さえ部材は上記ハウジングの基端部に一体的に設けた径方向内方への包みかしめ部よりなることを特徴とするガスセンサ。2. The gas sensor according to claim 1, wherein the pressing member comprises a radially inward swaging portion integrally provided at a base end of the housing. 筒状のハウジングと,該ハウジングに挿通する筒状の素子側絶縁碍子と,該素子側絶縁碍子に挿通するセンサ素子とよりなるガスセンサであって,
上記素子側絶縁碍子は外径が大なる大径部と該大径部より外径が小なる小径部を有し,大径部と小径部との間にガスセンサ先端側を向いたテーパー面を有し,
上記ハウジングは内径が大なる大内径部と該大内径部より内径が小なる径小内径部を有し,大内径部と径小内径部との間にガスセンサ基端側を向いて,上記テーパー面を支承する受け面を有し,
ガスセンサ軸方向への弾性を備え,上記素子側絶縁碍子の基端側端面に配置する皿バネ部と,該皿バネ部より上記ハウジングの基端側側面に沿って延設され,かつ上記ハウジングの基端側側面に対し固定される脚部とよりなる一体型押さえ部材を有することを特徴とするガスセンサ。
A gas sensor comprising a cylindrical housing, a cylindrical element-side insulator inserted into the housing, and a sensor element inserted into the element-side insulator,
The element-side insulator has a large-diameter portion having a large outer diameter and a small-diameter portion having a smaller outer diameter than the large-diameter portion, and a tapered surface facing the tip of the gas sensor is provided between the large-diameter portion and the small-diameter portion. Have
The housing has a large inner diameter portion having a larger inner diameter and a small diameter inner diameter portion having an inner diameter smaller than the large inner diameter portion. Has a receiving surface that supports the surface,
A disc spring having elasticity in the axial direction of the gas sensor and disposed on a base end face of the insulator on the element side; a disc spring extending from the disc spring along a base side face of the housing; A gas sensor comprising an integral holding member comprising a leg fixed to a base side surface.
請求項5において,上記一体型押さえ部材の脚部は径方向内方に突出する突出部を有し,上記ハウジングの基端側側面は径方向内方に凹むと共に上記突出部に対応した凹部を有し,
上記突出部と上記凹部との嵌合により,上記脚部を上記基端側側面に固定することを特徴とするガスセンサ。
6. The integrated holding member according to claim 5, wherein the leg portion of the integral holding member has a projecting portion projecting radially inward, and the base end side surface of the housing is recessed radially inward and has a recess corresponding to the projecting portion. Have
A gas sensor, wherein the leg is fixed to the side surface on the base end side by fitting the projection and the recess.
JP2002254063A 2002-08-30 2002-08-30 Gas sensor Pending JP2004093303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002254063A JP2004093303A (en) 2002-08-30 2002-08-30 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002254063A JP2004093303A (en) 2002-08-30 2002-08-30 Gas sensor

Publications (1)

Publication Number Publication Date
JP2004093303A true JP2004093303A (en) 2004-03-25

Family

ID=32059899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002254063A Pending JP2004093303A (en) 2002-08-30 2002-08-30 Gas sensor

Country Status (1)

Country Link
JP (1) JP2004093303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067588A (en) * 2015-09-30 2017-04-06 日本碍子株式会社 Gas sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504117A (en) * 1996-01-31 1999-04-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Gas sensor
JP2000509822A (en) * 1997-02-25 2000-08-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Measurement sensor and method of manufacturing the measurement sensor
JP2002048760A (en) * 2000-05-22 2002-02-15 Denso Corp Gas sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504117A (en) * 1996-01-31 1999-04-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Gas sensor
JP2000509822A (en) * 1997-02-25 2000-08-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Measurement sensor and method of manufacturing the measurement sensor
JP2002048760A (en) * 2000-05-22 2002-02-15 Denso Corp Gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067588A (en) * 2015-09-30 2017-04-06 日本碍子株式会社 Gas sensor

Similar Documents

Publication Publication Date Title
US4591423A (en) Oxygen sensor
JP2007315952A (en) Gas sensor
US20070175267A1 (en) Gas sensor with increased heat resistance
JP2001311713A (en) Gas sensor
JP2014206479A (en) Gas sensor
JP5310170B2 (en) Gas sensor and manufacturing method thereof
JP2007155697A (en) Gas sensor
US7430894B2 (en) Gas sensor
JP4172267B2 (en) Gas sensor
JP2007101411A (en) Sensor
WO2020230505A1 (en) Gas sensor
US20230258533A1 (en) Gas sensor
JP2004198362A (en) Gas sensor
JP2005326396A (en) Gas sensor
US7565826B2 (en) Gas sensor
JP2004093303A (en) Gas sensor
JP2004198360A (en) Gas sensor
JP3822219B2 (en) Gas sensor
JP5139955B2 (en) Ceramic heater, gas sensor element and gas sensor
JP2003232768A (en) Oxygen sensor
JP2007155517A (en) Gas sensor
JP2506683Y2 (en) Oxygen concentration sensor
JP2004093302A (en) Gas sensor
JP2009115780A (en) Gas sensor
JP2004198363A (en) Gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731