JP2004092386A5 - - Google Patents

Download PDF

Info

Publication number
JP2004092386A5
JP2004092386A5 JP2003347355A JP2003347355A JP2004092386A5 JP 2004092386 A5 JP2004092386 A5 JP 2004092386A5 JP 2003347355 A JP2003347355 A JP 2003347355A JP 2003347355 A JP2003347355 A JP 2003347355A JP 2004092386 A5 JP2004092386 A5 JP 2004092386A5
Authority
JP
Japan
Prior art keywords
valve
transfer pipe
improved soil
outlet
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003347355A
Other languages
Japanese (ja)
Other versions
JP2004092386A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2003347355A priority Critical patent/JP2004092386A/en
Priority claimed from JP2003347355A external-priority patent/JP2004092386A/en
Publication of JP2004092386A publication Critical patent/JP2004092386A/en
Publication of JP2004092386A5 publication Critical patent/JP2004092386A5/ja
Pending legal-status Critical Current

Links

Description

改良土打設方法Improved soil casting method

本発明は、土砂に固化材を添加して混練した流動性改良土を、打設船上から水底まで移送管を通して下方に移送して水底に連続的に打設するようにした改良土打設方法に関する。 The present invention relates to improved soil striking setting method as with the addition of solidifying material to sand flowability modified soil by kneading and pouring continuously to the bottom of the water and transported downwards through the transfer tube from the hitting設船to the sea bed About.

沿岸海域の埋立や人工島の造成等の港湾工事において、海底等からの浚渫土砂、その他の土砂にセメント系の固化材や水を添加して混練したスラリ状の流動性改良土を、プラント船等の混練施設より打設船まで強制搬送し、更にその改良土を打設船上から移送管を通して処分地の水底まで流下させ、該管の下端出口から前記改良土を水底に打設して固化させるようにした工法は、従来公知である(例えば下記の特許文献1を参照)。
特開2000−129652号公報
In port construction such as reclamation of coastal sea areas and creation of artificial islands, a slurry-like fluidity-improved soil obtained by adding and cementing cement-based solidifying material and water to dredged sand and other sand from the seabed and the like is used for plant ships. Forcibly transported from the kneading facility to the casting vessel, the improved soil is allowed to flow down from the casting vessel through the transfer pipe to the bottom of the disposal site, and the improved soil is cast at the bottom from the lower end outlet of the pipe and solidified. A method of causing the above-described method is conventionally known (for example, see Patent Document 1 below).
JP 2000-129652 A

ところでこのような従来公知の打設工法において、上記改良土は自己の粘性により移送管内を比較的緩やかに流下して水底に向かい、移送管の下端出口より緩徐に且つ連続的に吐き出されて水底に打設されるようになっているが、従来では、移送管として、出口部を含む全体が略真っ直ぐな管が使用されているため、次のような問題があることが判明した。   By the way, in such a conventionally known casting method, the above-mentioned improved soil flows down the transfer pipe relatively slowly due to its own viscosity, and heads toward the water bottom, and is slowly and continuously discharged from the lower end outlet of the transfer pipe to be discharged. However, conventionally, since a substantially straight pipe including the outlet portion is used as the transfer pipe, the following problems have been found.

即ち、上記改良土の打設時においては、移送管内の下端出口から改良土を連続的に吐き出させるようにしているが、その際に、例えば図7の(a)に示すように移送管の下端出口から管の内壁近傍に外部の海水が多少侵入することがある。この侵入した海水は、改良土(土砂)との比重差により管内壁に沿って徐々に逆流上昇して、その管内壁近傍の改良土と混じり合うことによりその粘性を低下させる(図7の(b)を参照)。   That is, when the improved soil is poured, the improved soil is continuously discharged from the lower end outlet in the transfer pipe. At that time, for example, as shown in FIG. External seawater may enter the pipe near the inner wall from the lower end. The infiltrated seawater gradually rises backward along the inner wall of the pipe due to a difference in specific gravity with the improved soil (soil and sand), and mixes with the improved soil near the inner wall of the pipe to lower its viscosity (see FIG. b)).

そして、この粘性低下により、図7の(c)に示すように移送管の出口近くの改良土がその上側の改良土より剥がれ落ちて、管内を急速に(即ち通常の流下速度よりも高速で)下降し始め、その下降分だけ海水が管内を逆流上昇する。その上昇した水は、図7の(d)に示すように更にその上側の改良土と移送管内壁との間に侵入上昇しようとし、上記と同様の作用で、該上側の改良土が、更にその上側の改良土より剥がれ落ちて管内を急速に下降し始め、その下降分だけ海水が管内を更に逆流上昇する。   As a result, as shown in FIG. 7 (c), the improved soil near the outlet of the transfer pipe is peeled off from the improved soil on the upper side of the transfer pipe, so that the improved soil rapidly (i.e., at a speed higher than the normal flow speed). ) It starts to descend, and the seawater rises backward in the pipe by the descending amount. As shown in FIG. 7 (d), the raised water tends to invade between the improved soil on the upper side and the inner wall of the transfer pipe, and the upper improved soil is further increased by the same operation as described above. It comes off from the improved soil on the upper side and starts to descend rapidly in the pipe, and the seawater further flows upward in the pipe by the amount of the fall.

このようなことが繰り返されると、移送管内のかなり上方まで海水が逆流上昇し、そうした状態では、移送管内を落下する改良土は、それが管の下端出口に到達するまでの間に管内の多量の海水と十分に混じり合うこととなって、その管内でかなりの量の土砂が固化材等と分離してしまう。ところが斯かる移送管内での土砂の分離現象は、(1) 水底に打設した改良土(土砂)の固まる速度を遅くする、(2) その固まる強さが十分ではない、(3) 土砂から遊離した多量の固化材が打設処分地周辺の水域を汚濁する等の問題を生じさせる。   When this is repeated, the seawater flows back up to a considerable height in the transfer pipe, and in such a state, the improved soil falling in the transfer pipe will have a large amount of soil in the pipe before it reaches the lower end outlet of the pipe. The water is sufficiently mixed with the seawater, and a considerable amount of sediment separates from the solidified material in the pipe. However, such sedimentation of sediment in the transfer pipes is caused by (1) slowing down the speed of solidification of the improved soil (sediment) poured into the water bottom, (2) the solidification strength is not sufficient, (3) A large amount of liberated solidified material may cause problems such as polluting the water area around the landfill site.

尚、以上説明した移送管内への海水逆流の問題は、打設船上から移送管内への改良土の供給速度が特に遅い(従って供給量が少ない)場合や、供給が間欠的になされて一時的に供給が中断するような場合等において顕著に現れる。   The problem of the backflow of seawater into the transfer pipe described above occurs when the supply speed of the improved soil from the casting vessel to the transfer pipe is particularly low (therefore, the supply amount is small) or when the supply is intermittently performed. This is particularly noticeable when the supply is interrupted.

本発明は、斯かる実情に鑑みてなされたもので、移送管内への海水逆流の問題を簡単な構造で効果的に解決できるようにした、改良土打設方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and so can be effectively solved by a simple construction problems seawater backflow into the transfer tube, and an object thereof is to provide an improved soil hitting set method .

前記目的達成のため、請求項1の発明は、土砂に固化材を添加して混練した粘性のある流動性改良土を、打設船上のサージタンクに貯蔵し、そのサージタンクの底部から流動性改良土を、下端が水底まで延びる移送管の上部内に自重で徐々に流入させ、その移送管内を自重で流動、降下する流動性改良土を、移送管下端の出口から水底に連続的に打設できるようにした改良土打設方法であって、前記移送管には、その管の出口を開閉し得る開閉弁を取付けると共に、この開閉弁には、これを閉じ位置に保持するための閉弁方向の付勢力を該弁に付与する付勢手段を連結しておき、流動性改良土の前記打設に当たっては、前記サージタンクの底部から移送管内に自重で徐々に流入してきた流動性改良土の重量が前記開閉弁に及ぼす開弁力により、前記付勢手段の付勢力に抗して該開閉弁を開弁することで、移送管内への水の逆流を阻止しつつ流動性改良土が移送管の出口から連続的に吐き出されるようにし、また前記サージタンクから移送管への流動性改良土の補給が追いつかない場合には、該移送管内に残留する流動性改良土が所定限界量まで減少して該改良土の重量に基づく前記開弁力が減少するのに応じて、前記開閉弁が前記付勢力により再び閉弁動作して、該出口から移送管内への水の逆流を阻止するようにしたことを特徴とする。 In order to achieve the above object, the invention of claim 1 is to store a viscous fluidity-improved soil obtained by adding and solidifying a solidifying material to earth and sand in a surge tank on a cast-in ship, and the fluidity is improved from the bottom of the surge tank. The improved soil gradually flows under its own weight into the upper part of the transfer pipe whose lower end extends to the bottom of the water, and the fluidity-improved soil that flows and descends in the transfer pipe by its own weight is continuously struck from the outlet at the lower end of the transfer pipe to the bottom of the water. a modified soil hitting設方method to allow setting, the the transfer tube Rutotomoni mounted off valve capable of opening and closing the outlet of the tube, this opening and closing valve, for holding this closed position The urging means for applying the urging force in the valve closing direction to the valve is connected, and when the fluidity-improved soil is poured, the fluidity gradually flowing from the bottom of the surge tank into the transfer pipe by its own weight. the opening force the weight of the modified soil is on the on-off valve By opening the on-off valve against the urging force of the urging means, the fluidity-improved soil is continuously discharged from the outlet of the transfer pipe while preventing backflow of water into the transfer pipe, If the supply of fluidity-improved soil from the surge tank to the transfer pipe cannot keep up, the fluidity-improved soil remaining in the transfer pipe is reduced to a predetermined limit amount and the valve opening based on the weight of the improved soil is performed. As the force decreases, the on-off valve closes again by the urging force to prevent backflow of water from the outlet into the transfer pipe .

上記徴によれば、移送管を水中に沈めた状態で、その管内に改良土が無い場合あるいは少量有る場合には、上記開閉弁が、これに加わる水圧と付勢手段の付勢とに基づく閉弁力により閉じ位置に保持され。この状態より打設工程が始まり、打設船上から移送管の上流部に改良土が供給され、それが出口近くまで流下してくると、その重量が開閉弁に対し開弁力を及ぼすようになり、その開弁力限界値を超えると、開閉弁が上記付勢手段の付勢力及び水圧に抗して開弁動作して、移送管出口から改良土が徐々に吐き出されるようになる。その開弁後においても、開閉弁には付勢手段の付勢力に基づき適度な閉弁力が作用するため、移送管内への水の逆流を阻止しながら改良土移送管の出口から適量ずつ徐々に吐き出されて水底に打設される。 According to the above feature, in the state in which submerged the transfer tube into the water, when there or when small amounts there is no improved soil on the tube, said opening and closing valve, a biasing force of the water pressure and the biasing means acting to Ru is held in the closed position by the valve closing force based on. From this state, the casting process starts, and the improved soil is supplied from the casting boat to the upstream part of the transfer pipe, and when it flows down near the outlet, its weight exerts a valve opening force on the on-off valve. will, when the valve opening force exceeds the limit value, the on-off valve is operated to open valve against the urging force and pressure of the biasing means, so that modified soil is gradually discharged from the transfer tube outlet. Even after opening thereof, for proper valve closing force based on the biasing force of the biasing means to the opening and closing valve is applied, improved soil while preventing backflow of water into the transfer tract by an appropriate amount from the outlet of the transfer pipe It is exhaled gradually and is put on the bottom of the water.

斯かる打設工程中においては、打設船上から移送管内への改良土の供給速度が非常に遅くなる場合や、その改良土の供給が間欠的になされて一時的に供給が中断してしまう場合があり、このような場合には、移送管出口からの改良土排出に打設船上からの改良土補給が追いつかず、移送管内の改良土の残量が徐々に少なくなっていくが、その残量が所定限界(例えば、図示例では出口から上流側に1〜2m程度の残量)まで減少すると、開閉弁は、付勢手段の付勢力に基づき再び閉弁動作して移送管の出口を遮断する。 During such a casting process, the supply speed of the improved soil from the casting ship into the transfer pipe becomes extremely slow, or the supply of the improved soil is intermittently performed and the supply is temporarily interrupted. If there is, in such a case, not catch up the improved soil replenished from the hitting設船the modified soil discharged from the transfer tube outlet, although remaining amount of the modified soil transfer tube is gradually reduced, When the remaining amount decreases to a predetermined limit amount (for example, a remaining amount of about 1 to 2 m upstream from the outlet in the illustrated example), the on-off valve closes again based on the urging force of the urging means, and the transfer pipe is moved. Shut off exit.

かくして、打設工程中も、また待機中も、移送管内へはその下端出口から多量の水が逆流上昇することはなく、打設船上から移送管内を流下して水底に向かう改良土は、それが管出口に到達するまでの間に管内で水と混じり合う虞れは殆どなくなり、従って、改良土中の土砂が移送管内で水と混じって固化材等と分離するのを効果的に抑えることができる。これにより、移送管の出口からは、土砂が分離していない(即ち土砂と固化材とが十分に混合した)適正状態の改良土を適量ずつ水底に打設できるから、その打設された改良土(土砂)を迅速且つ強固に固まらせることができ、また土砂からの固化材の遊離も極力少量に抑えられるから、固化材の拡散に因る打設処分地周辺の水域の汚濁防止にも有効である Thus, during the casting process and during standby, a large amount of water does not flow backward from the lower end outlet into the transfer pipe, and the improved soil flowing down the transfer pipe from the casting boat to the bottom of the water is not There is almost no danger that water will mix with water in the pipe before it reaches the pipe outlet. Therefore, it is necessary to effectively prevent sediment in the improved soil from mixing with water in the transfer pipe and separating from solidified material. Can be. Thereby, the improved soil in a proper state in which the sediment is not separated (that is, the soil and the solidified material are sufficiently mixed) can be poured from the outlet of the transfer pipe into the water bottom in an appropriate amount. The soil (sand) can be solidified quickly and firmly, and the liberation of the solidified material from the soil is minimized as much as possible. It is valid .

以上のように発明によれば、粘性のある流動性改良土を打設船上のサージタンクに貯蔵し、そのサージタンクの底部から流動性改良土を移送管内に自重で徐々に流入させ、その移送管内を自重で流動、降下する流動性改良土を、移送管下端の出口から水底に連続的に打設できるようにした改良土打設方法において、サージタンクの底部から移送管内に自重で徐々に流入してきた流動性改良土の重量が開閉弁に及ぼす開弁力により、付勢手段の付勢力に抗して該開閉弁を開弁することで、移送管内への水の逆流を阻止しつつ流動性改良土が移送管の出口から連続的に吐き出されるようにし、またサージタンクから移送管への流動性改良土の補給が追いつかない場合には、該移送管内に残留する流動性改良土が所定限界量まで減少して該改良土の重量に基づく前記開弁力が減少するのに応じて、開閉弁が付勢力により再び閉弁動作することで、移送管内への水の逆流を阻止できるようにしたので、打設工程中も、また待機中も、移送管内へはその出口から多量の水が逆流上昇する恐れはなくなり、移送管内を流下する改良土は、それが管出口に到達するまでの間に管内で水と混じり合う虞れは殆どなくなるため、その移送管の下端出口からは、土砂が分離していない適正状態の改良土を適量ずつ連続的に水底に打設でき、これにより、その打設された改良土を迅速且つ強固に固まらせることができ、またその打設の際に土砂から遊離する固化材も極力少量に抑えられるから、固化材の拡散に因る打設処分地周辺の水域の汚濁防止にも有効である。その上、開閉弁を自動開閉させるために、該弁にはこれに閉弁付勢力を付与する付勢手を単に連結するだけでよく、その自動開閉を制御する高価な制御手段を特別に設ける必要はないから、装置の構造簡素化ひいてはコスト節減に寄与することができる。 As described above, according to the present invention, the viscous fluidity-improved soil is stored in the surge tank on the casting vessel, and the fluidity-improved soil is gradually flown by its own weight into the transfer pipe from the bottom of the surge tank. In the improved soil casting method in which the fluidity-improved soil that flows and descends in the transfer pipe by its own weight can be continuously poured into the water bottom from the outlet at the lower end of the transfer pipe, the soil is gradually moved under its own weight from the bottom of the surge tank into the transfer pipe. By opening the on-off valve against the urging force of the urging means by the valve-opening force exerted on the on-off valve by the weight of the fluidity-improved soil that has flowed into the water, the backflow of water into the transfer pipe is prevented. While the fluidity-improved soil is continuously discharged from the outlet of the transfer pipe while the supply of the fluidity-improved soil from the surge tank to the transfer pipe cannot keep up with the flow-improved soil remaining in the transfer pipe, Is reduced to the specified limit and the improved soil In response to the valve opening force is reduced based on the weight, the opening and closing valve by operating again closed by the urging force is, since to be able to prevent backflow of water into the transfer tube, even during the pouring process, Also, during standby, there is no danger that a large amount of water will flow back up from the outlet into the transfer pipe, and the improved soil flowing down in the transfer pipe may mix with water in the pipe before it reaches the pipe outlet. Since this is almost eliminated, it is possible to continuously pour an appropriate amount of improved soil in which sediment is not separated from the lower end of the transfer pipe into the water bottom in an appropriate amount , thereby quickly placing the improved soil. Also, it can be solidified firmly and the amount of solidified material released from the earth and sand at the time of casting is minimized as much as possible, so it is also effective in preventing pollution of the water area around the casting disposal site due to the diffusion of the solidified material It is. Thereon, in order to automatically open and close the closing valve, the valve only needs to simply connecting the biasing means to impart the closing biasing force thereto, especially the expensive control means for controlling the automatic opening and closing Since there is no need to provide such a device, it is possible to contribute to simplification of the structure of the device and, eventually, cost reduction.

また特に請求項2の発明によれば、開閉弁を閉じ位置に随時にロックし得る保持機構を備えるので、記保持機構を作動させることにより開閉弁を確実に閉じ位置に保持でき、これにより、移送管を水面近くで上下動させるような場合でも該管の出口を確実に塞ぐことができて、管内への水の逆流や管出口からの改良土排出を確実に防止できる According particularly to the second aspect of the present invention, since including a holding mechanism capable of locking at any time in a position closing the opening and closing valve can be held securely in the closed position the closing valve by actuating the upper Symbol holding mechanism, thereby Even when the transfer pipe is moved up and down near the water surface, the outlet of the pipe can be reliably closed, and the backflow of water into the pipe and the discharge of improved soil from the pipe outlet can be reliably prevented .

以下、本発明の実施の形態を、添付図面に例示した本発明の実施例に基づいて以下に具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described below based on examples of the present invention illustrated in the accompanying drawings.

図1は、改良土の搬送打設システムの一例を示す概略平面図、図2は図1の2−2線に沿う拡大側面図、図3は、本発明の第1実施例に係る移送管を利用した打設船の要部破断拡大側面図(図2の3線矢視拡大図)、図4は、前記移送管の先部の拡大図(図3の4矢視部拡大図)、図5は、第2実施例に係る移送管の先部を示す縦断面図、図6は、第3実施例に係る移送管の先部を示す縦断面図である。   FIG. 1 is a schematic plan view showing an example of a system for transporting and setting improved soil, FIG. 2 is an enlarged side view along line 2-2 in FIG. 1, and FIG. 3 is a transfer pipe according to a first embodiment of the present invention. FIG. 4 is an enlarged view of a main part of the casting boat using the slab (an enlarged view as viewed in the direction of arrow 3 in FIG. 2). FIG. FIG. 5 is a longitudinal sectional view showing a leading end of the transfer pipe according to the second embodiment, and FIG. 6 is a longitudinal sectional view showing a leading end of the transfer pipe according to the third embodiment.

図1、2において、堤防Bは、処分地としての埋立地Grを有する埋立域A1 と、その周辺域A2 との間を仕切るように、海底に起立構築されており、その周辺域A2 には、浚渫土砂に固化材を添加し混練すると共にそれを風力搬送するための処理船SW(特開平7−76454号公報参照)が繋留される。その処理船SWの一側には、別の場所で浚渫された大量の土砂を、その周辺域A2 まで運搬してきた土運船SEが横付けされ、さらに処理船SWの他側には、固化材としてのセメントを水と混練したセメントスラリーを生成する固化材プラント船SPが横付けされる。 1 and 2, the embankment B includes a landfill area A 1 having a landfill Gr as disposal sites, to partition between the surrounding area A 2, which is erected building on the seabed, its surrounding area A the 2, it processes vessels SW (see Japanese Patent Laid-Open No. 7-76454) for wind transport are tethered together added by kneading hardening material dredged material. On one side of the processing vessel SW, a large amount of sediment that is dredged elsewhere, the peripheral area A soil luck Vessel SE which has been transported to 2 is alongside, in yet another side of the processing vessel SW is solidified A solidified material plant ship SP that produces a cement slurry in which cement as a material is kneaded with water is aboard.

土運船SE内の浚渫土砂は、処理船SW上に搭載されている揚土機(バックホー)33により、該処理船SWのホッパ34内に投入され、またこれと並行して固化材プラント船SPにより生成されたセメントスラリーを前記ホッパ34内に連続的に注入する。   The dredged sediment in the earth transport ship SE is put into the hopper 34 of the processing ship SW by the earth lift (backhoe) 33 mounted on the processing ship SW, and in parallel with this, the solidified material plant ship The cement slurry generated by the SP is continuously injected into the hopper 34.

処理船SWでは、ホッパ34下部の処理室において、前記浚渫土砂を粉砕するとともにセメントスラリーと攪拌混合し、該処理船SW内のロータの回転とコンプレッサの駆動により得られる加圧空気を利用して、粉砕された浚渫土砂とセメントスラリーの混合体すなわち改良土Sを、該処理室出口に接続される複数のフロート管8により浮遊している排送管6へと強制搬送する。排送管6は堤防Bを乗り越えて埋立域A1 へと延長されていて、その埋立域A1 に繋留されている打設船SSへと搬送される。 In the processing vessel SW, in the processing chamber below the hopper 34, the dredged soil is crushed and mixed with the cement slurry by stirring, and the compressed air obtained by rotating the rotor in the processing vessel SW and driving the compressor is used. Then, the crushed mixture of dredged soil and cement slurry, that is, the improved soil S, is forcibly transported to the floating discharge pipe 6 by a plurality of float pipes 8 connected to the processing chamber outlet. Haiokukan 6 have been extended to the landfill area A 1 overcame embankment B, it is conveyed to a punch設船SS that are tethered to the landfill area A 1.

打設船SSからは、後に詳述するように移送管12を通して、改良土Sの、浚渫土砂とセメントスラリーとが分離することなく連続的に処分地すなわち埋立地Grの水底Eに打設される。   From the casting vessel SS, the improved soil S is drowned continuously through the transfer pipe 12 into the disposal site, that is, the water bottom E of the landfill Gr, without separation of the dredged soil and cement slurry, as will be described in detail later. You.

次に主に図3、4を参照して、打設船SSに設置される改良土打設装置Dの具体的構造について説明する。   Next, with reference mainly to FIGS. 3 and 4, a specific structure of the improved soil casting device D installed on the casting boat SS will be described.

この打設船SSの船体1上には、サージタンク10と、該タンク10上に一体的に立設したサイクロン3とが固定支持される。サイクロン3は密閉円筒状のサイクロン本体3bを有し、その一側上部に流入口3iが、またその下部に流出口3oがそれぞれ開口され、またその上壁中央部にエア分離室3sが設けられる。エア分離室3sの上端部はエアダクト5に接続され、このエアダクト5の外端に、大気開放の排出口5oが開口している。サイクロン3の流入口3iには、処理船SWから延びる排送管6の出口6oが接続されている。   On the hull 1 of the casting boat SS, a surge tank 10 and a cyclone 3 erected integrally on the tank 10 are fixedly supported. The cyclone 3 has a closed-cylindrical cyclone main body 3b, an inlet 3i is opened at an upper portion on one side, an outlet 3o is opened at a lower portion thereof, and an air separation chamber 3s is provided at the center of the upper wall. . The upper end of the air separation chamber 3s is connected to the air duct 5, and a discharge port 5o that opens to the atmosphere is opened at the outer end of the air duct 5. An outlet 6o of a discharge pipe 6 extending from the processing boat SW is connected to an inlet 3i of the cyclone 3.

排送管6内を風力搬送される改良土Sは、サイクロン3内に入り、そこに混合されているエアが分離されたのち、サイクロン本体3b下方のサージタンク10内に向かう。   The improved soil S transported by wind in the discharge pipe 6 enters the cyclone 3, and after the air mixed therein is separated, flows toward the surge tank 10 below the cyclone body 3b.

前記サージタンク10の上壁には、サイクロン3の流出口3oと直接連通する入口10iが開口され、またその底壁10fは漏斗状に形成され、その最下部に出口10oが開口される。サイクロン3内でエアと分離された改良土Sはその自重でサージタンク10側に流動して同タンク10内に貯蔵され、その底部から更にタンク下方の移送管12内へ自重で流動する。   In the upper wall of the surge tank 10, an inlet 10i that directly communicates with the outlet 3o of the cyclone 3 is opened, and the bottom wall 10f is formed in a funnel shape, and the outlet 10o is opened at the lowermost portion. The improved soil S separated from the air in the cyclone 3 flows to the surge tank 10 by its own weight and is stored in the tank 10, and further flows from its bottom into the transfer pipe 12 below the tank by its own weight.

その移送管12は、それの上流端部に一体的に沿設した支持枠17を枢軸15を介して船体1に装着することにより、船体1に任意の傾斜角度に(例えば水面に対して0度〜90度の傾斜角範囲で)揺動できるように支持される。その移送管12内の上部と、サージタンク10の底部出口10oとの間は、前記枢軸15を中心とした円弧に沿って伸縮可能なテレスコピック型の接続筒部14を介して接続されており、その接続筒部14を経てサージタンク10内の改良土Sが自重で移送管12内に流下する。尚、サージタンク10の底部出口10oには、該タンク10内から移送管12側へ流動する改良土Sの量を任意に調整可能な開閉弁(図示せず)を設けてもよい。   The transfer pipe 12 is mounted on the hull 1 via a pivot 15 with a support frame 17 integrally provided along the upstream end of the transfer pipe 12, so that the hull 1 is at an arbitrary inclination angle (for example, 0 ° with respect to the water surface). (In a tilt angle range of degrees to 90 degrees). The upper part in the transfer pipe 12 and the bottom outlet 10o of the surge tank 10 are connected via a telescopic type connection cylinder part 14 which can expand and contract along an arc centered on the pivot 15; The improved soil S in the surge tank 10 flows down into the transfer pipe 12 by its own weight via the connection tube portion 14. In addition, an opening / closing valve (not shown) capable of arbitrarily adjusting the amount of the improved soil S flowing from the inside of the tank 10 toward the transfer pipe 12 may be provided at the bottom outlet 10o of the surge tank 10.

また移送管12の支持枠17と船体1との間には、油圧シリンダ等のアクチュエータ16が介装され、このアクチュエータ16により移送管12を枢軸15回りに強制揺動させることで、移送管12の水面に対する傾斜角度、従って移送管出口12oの高さ(水深)を任意に調整可能としている。前記移送管12は、水底Eに向かって斜め下方に略真っ直ぐに延びており、その下端出口12oから改良土Sが水底Eに直接打設されるようになっている。   An actuator 16 such as a hydraulic cylinder is interposed between the support frame 17 of the transfer pipe 12 and the hull 1, and the transfer pipe 12 is forcibly swung around the pivot 15 by the actuator 16. Of the transfer pipe outlet 12o can be arbitrarily adjusted. The transfer pipe 12 extends obliquely downward and substantially straight toward the water bottom E, and the improved soil S is directly poured into the water bottom E from a lower end outlet 12o thereof.

移送管12の先部には、その管12の出口12oを開閉し得る開閉弁Vが取付けられる。この開閉弁Vは、移送管12の出口12o近傍の上壁部外面に一体的に延設した支持ブラケット12bに枢軸Pを介して支持され、これにより、該弁Vは、移送管12の出口12o開口縁に着座して該出口12oを閉じる閉じ位置Vaと、同開口縁より離間して該出口12oを開く所定の開き位置Vbとの間を前記枢軸P回りに回動可能である。前記開き位置Vbは、開閉弁Vと移送管12との間に設けたストッパ機構(図示例では支持ブラケット12bに一体に連設したストッパ12s)により規制されており、これにより、開閉弁Vが所定開度以上、即ち前記開き位置Vb以上開かないようになっている。尚、この所定開度は、任意に設定可能であり、例えば90度前後に設定することもできる。   An on-off valve V that can open and close the outlet 12o of the transfer pipe 12 is attached to the front end of the transfer pipe 12. The opening / closing valve V is supported via a pivot P by a support bracket 12b integrally extending on the outer surface of the upper wall near the outlet 12o of the transfer pipe 12, whereby the valve V is connected to the outlet of the transfer pipe 12. It is rotatable around the pivot P between a closed position Va that sits on the opening edge of the opening 12o to close the outlet 12o and a predetermined opening position Vb that is separated from the opening edge and opens the outlet 12o. The opening position Vb is regulated by a stopper mechanism (a stopper 12s integrally connected to the support bracket 12b in the illustrated example) provided between the on-off valve V and the transfer pipe 12, whereby the on-off valve V is moved. It does not open more than a predetermined opening degree, that is, more than the opening position Vb. The predetermined opening can be set arbitrarily, for example, can be set to about 90 degrees.

また上記開閉弁Vは、該弁Vにそれ自体の重量及び浮力に基づき枢軸P回りに作用する開弁方向又は閉弁方向のモーメントが実質的に無視できるように、極力薄肉且つ軽量に構成される。   The on-off valve V is made as thin and light as possible so that the moment in the valve opening direction or the valve closing direction acting on the valve V about the pivot P based on its own weight and buoyancy can be substantially ignored. You.

また開閉弁Vには、これを閉弁方向に付勢する浮力を水中で受ける、付勢手段としてのフロートFが連結され、このフロートFは、図示例では開閉弁Vの自由端寄りの外面に一体的に結合されている。而して開閉弁Vは、移送管12を水中に沈めて水底に前記改良土Sを打設可能な状態で、該弁Vに加わる水圧と前記フロートFの浮力とに基づく閉弁力により通常は閉じ位置Vaに保持されるが、後述する打設工程で移送管12内の改良土Sの重量に基づいて該弁Vに加わる開弁力が前記閉弁力を上回ると開弁動作する。尚、開閉弁Vに対するフロートFの取付位置と、前記枢軸Pの位置とは、開閉弁Vが前記閉じ位置Vaと開き位置Vb間の何れの回動位置に在っても該フロートFの浮力が該弁Vに閉弁力として働くように設定されることが望ましい。   The on-off valve V is connected to a float F as an urging means for receiving a buoyancy for urging the same in the valve closing direction in the water, and the float F is an outer surface near the free end of the on-off valve V in the illustrated example. Are integrally connected to the body. The on-off valve V is normally operated by a closing force based on the water pressure applied to the valve V and the buoyancy of the float F in a state where the transfer pipe 12 can be submerged in the water and the improved soil S can be poured on the bottom of the water. Is held at the closed position Va, but the valve opening operation is performed when the valve opening force applied to the valve V exceeds the valve closing force based on the weight of the improved soil S in the transfer pipe 12 in the casting step described later. Note that the mounting position of the float F with respect to the on-off valve V and the position of the pivot P are determined by the buoyancy of the float F regardless of whether the on-off valve V is at any rotational position between the closed position Va and the open position Vb. Is desirably set to act as a valve closing force on the valve V.

更に開閉弁Vには、これを閉じ位置Vaに随時にロックし得る保持機構Hが接続される。この保持機構Hは、図示例では、打設船SS上に配設されたロック機構付きの操作レバー(図示せず)と、該レバー及び開閉弁V間を連動連結すべく移送管12の外面に沿って取り回される操作ワイヤ30とから構成される。従って打設船SS上の操作レバーを介して操作ワイヤ30を開閉弁Vの閉じ方向に牽引操作して、同レバーをその牽引位置にロックすることにより、開閉弁Vをその閉じ位置Vaにロックしておくことができる。   Further, the opening / closing valve V is connected to a holding mechanism H capable of locking the opening / closing valve V to the closed position Va at any time. In the illustrated example, the holding mechanism H is provided with an operation lever (not shown) having a lock mechanism disposed on the casting boat SS, and an outer surface of the transfer pipe 12 for interlocking connection between the lever and the on-off valve V. And an operation wire 30 routed along. Therefore, by pulling the operation wire 30 in the closing direction of the on-off valve V via the operation lever on the casting boat SS and locking the lever in its towing position, the on-off valve V is locked in its closing position Va. You can keep.

次にこの打設船SSの作用について説明する。打設作業に際しては、先ず、移送管12をアクチュエータ16により水中の使用位置までに水深に応じて適宜揺動傾斜させ、その出口12oを水底近くに臨ませる。そして、処理船SWにより排送管6を経て打設船SSまで改良土S(浚渫土砂にセメントスラリーを攪拌混合した混合体すなわち埋立材)を風力搬送する。このとき、改良土Sは高い脈動風圧を受け、脈動流となってサイクロン3内に間歇的に搬送されるが、サイクロン3内でエアを分離されて後、サイクロン本体3b内から自重によりサージタンク10内に流動落下し、そこに一旦貯蔵される。   Next, the operation of the casting ship SS will be described. At the time of the casting operation, first, the transfer pipe 12 is tilted by the actuator 16 to the use position underwater according to the water depth, and the outlet 12o is made to approach the bottom of the water. Then, the improved soil S (a mixture obtained by stirring and mixing the cement slurry with the dredged soil and sand, that is, a landfill material) is wind-transported to the casting boat SS via the discharge pipe 6 by the processing boat SW. At this time, the improved soil S receives a high pulsating wind pressure and is intermittently conveyed into the cyclone 3 as a pulsating flow. After the air is separated in the cyclone 3, the surge tank is separated from the cyclone body 3 b by its own weight. It falls into 10 and is temporarily stored there.

そしてサージタンク10内の貯蔵改良土Sは自重で移送管12内へ徐々に流動し、その移送管12の下端出口12oより略一定量ずつ概ね連続的に処分地Grの水底Eに埋立打設される。   Then, the storage-improved soil S in the surge tank 10 gradually flows into the transfer pipe 12 by its own weight, and is buried in the water bottom E of the disposal site Gr substantially continuously from the lower end outlet 12o of the transfer pipe 12 by a substantially constant amount. Is done.

ところでこのような改良土の打設工程において、移送管12を水中に沈めた状態でその管内に改良土Sが無い場合あるいは少量有る場合には、その管12の出口12o近くにある開閉弁Vが、これに加わる水圧とフロートFの浮力とに基づく閉弁力により閉じ位置Vaに保持されて、管内への水の逆流を阻止するので、その管内には水が溜まらない。この状態より打設工程が始まり、打設船SS上から移送管12の上流部に改良土Sが多量に供給され、それらが出口12o近くまで流下してくると、その重量が開閉弁Vに対し開弁力を及ぼし、その開弁力は、改良土の供給量増加に応じて漸増する。そしてこの改良土Sの重量に基づく開弁力が限界値を超えると、開閉弁Vが開弁動作して、移送管出口12oから改良土が徐々に吐き出されるようになる。その開弁後においても、開閉弁VにはフロートFの浮力に基づき適度な閉弁力が作用するため、改良土は移送管出口12oから適量ずつ吐き出されて水底Eに打設され、その際に移送管12内への水の逆流は殆ど起こらない。   By the way, in such an improved soil casting process, when the transfer pipe 12 is submerged in the water and there is no or a small amount of the improved soil S in the pipe, the on-off valve V near the outlet 12o of the pipe 12 is provided. Is held at the closed position Va by the valve closing force based on the water pressure applied thereto and the buoyancy of the float F to prevent backflow of water into the pipe, so that water does not accumulate in the pipe. From this state, the casting process starts, and a large amount of the improved soil S is supplied to the upstream portion of the transfer pipe 12 from the casting boat SS, and when the soil flows down to the vicinity of the outlet 12o, the weight is transferred to the on-off valve V. On the other hand, a valve opening force is exerted, and the valve opening force gradually increases as the supply amount of the improved soil increases. Then, when the valve opening force based on the weight of the improved soil S exceeds the limit value, the on-off valve V opens, and the improved soil is gradually discharged from the transfer pipe outlet 12o. Even after the valve is opened, an appropriate valve closing force acts on the on-off valve V based on the buoyancy of the float F. Therefore, the improved soil is discharged from the transfer pipe outlet 12o by an appropriate amount and is poured into the water bottom E. The backflow of water into the transfer pipe 12 hardly occurs.

斯かる打設工程中においては、打設船SS上から移送管12内への改良土の供給速度が非常に遅くなる場合や、その改良土の供給が間欠的になされて一時的に供給が中断する場合がある。このような場合には、移送管出口12oからの改良土流出に打設船SS上からの改良土補給が追いつかず、移送管12内の改良土の残量が徐々に少なくなっていくが、その残量が所定限界量(例えば、図示例では出口12oから上流側に1〜2m程度の残量)まで減少すると、開閉弁VはフロートFの浮力に基づき再び閉弁動作して移送管12の出口12oを遮断する。   During such a casting process, the supply speed of the improved soil from the casting ship SS into the transfer pipe 12 becomes extremely slow, or the supply of the improved soil is intermittently performed so that the supply is temporarily stopped. May be interrupted. In such a case, the improved soil supply from the casting vessel SS cannot catch up with the improved soil outflow from the transfer pipe outlet 12o, and the remaining amount of the improved soil in the transfer pipe 12 gradually decreases. When the remaining amount decreases to a predetermined limit amount (for example, a remaining amount of about 1 to 2 m upstream from the outlet 12o in the illustrated example), the on-off valve V closes again based on the buoyancy of the float F, and the transfer pipe 12 Is shut off at the outlet 12o.

このような開閉弁Vの閉弁状態で、移送管12の出口12o近傍(例えば出口12oから上流側に1〜2m程度の範囲)には多少の改良土が残留しており、この改良土の残留と開閉弁Vの閉弁作用とが相俟って、移送管12内への水の逆流が効果的に阻止される。   In such a closed state of the on-off valve V, some improved soil remains in the vicinity of the outlet 12o of the transfer pipe 12 (for example, in a range of about 1 to 2 m upstream from the outlet 12o). The residual flow and the valve closing action of the on-off valve V combine to effectively prevent the backflow of water into the transfer pipe 12.

かくして、打設工程中も、また待機中も、移送管12内へはその出口12oから多量の水が逆流上昇することはないため、打設船SS上から移送管12内を流下して水底に向かう改良土Sは、それが管出口12oに到達するまでの間に管内で水と混じり合う虞れが殆どなくなり、これにより、改良土S中の土砂が移送管12内で固化材等と分離するのを効果的に抑えることができるので、管出口12oからは、土砂が分離していない(即ち土砂と固化材とが十分に混合した)適正状態の改良土Sを水底Eに打設可能となる。従って、その打設された改良土Sを水底Eで迅速且つ強固に固まらせることができ、また、土砂からの固化材の遊離も極力少量に抑えられるから、固化材の拡散に因る打設処分地周辺の水域の汚濁防止にも有効である。   Thus, during the casting process and during standby, a large amount of water does not flow backward from the outlet 12o into the transfer pipe 12, so that the water flows down the transfer pipe 12 from above the casting vessel SS to reach the water bottom. The improved soil S heading toward the pipe has almost no risk of mixing with water in the pipe before it reaches the pipe outlet 12o, so that the soil in the improved soil S becomes solidified and the like in the transfer pipe 12. Since the separation can be effectively suppressed, the improved soil S in a proper state in which the soil is not separated (that is, the soil and the solidified material are sufficiently mixed) is poured into the water bottom E from the pipe outlet 12o. It becomes possible. Therefore, the improved soil S that has been cast can be quickly and firmly solidified on the water bottom E, and the liberation of the solidified material from the soil is suppressed to a minimum, so that the casting due to the diffusion of the solidified material is performed. It is also effective in preventing pollution of the water around the disposal site.

また打設工程作業が終了すると、移送管12を水面上に揚げるべく上方揺動させるが、そのときには、打設船SS上の図示しない操作レバーを牽引位置に保持して前記保持機構Hを作動させておくことにより、開閉弁Vを確実に閉じ位置Vaにロックしておくことができる。従って、移送管12が水面上又は水面近くまで上昇したことに伴いフロートFの浮力(従って閉弁力)が消滅又は大幅減少しても、開閉弁Vが妄りに開くことはない。また、この引き揚げ状態より移送管12を下方揺動させて水中に沈める場合にも、上記のように保持機構Hを作動させることで、開閉弁Vを確実に閉じ位置Vaにロックしておくことができる。このように移送管12をフロートFの浮力が十分でない水面近く又は水面上で上下動させるような場合には、上記保持機構Hを作動状態にして開閉弁Vを確実にロックしておくことで、移送管12内への水の逆流や管出口12oからの改良土排出を確実に防止できる。   When the casting process operation is completed, the transfer pipe 12 is swung upward to lift the water above the water surface. At this time, the operating mechanism (not shown) on the casting boat SS is held at the towing position to activate the holding mechanism H. By doing so, the on-off valve V can be reliably locked at the closed position Va. Accordingly, even if the buoyancy (and thus the valve closing force) of the float F disappears or greatly decreases due to the transfer pipe 12 rising to or near the water surface, the on-off valve V does not open unnecessarily. Further, even when the transfer pipe 12 is swung downward from the raised state and is submerged in water, the opening / closing valve V is securely locked at the closed position Va by operating the holding mechanism H as described above. Can be. In the case where the transfer pipe 12 is moved up and down near or on the water surface where the buoyancy of the float F is not sufficient, the holding mechanism H is operated and the on-off valve V is securely locked. In addition, backflow of water into the transfer pipe 12 and discharge of the improved soil from the pipe outlet 12o can be reliably prevented.

またこの実施例では、開閉弁VとフロートFを一体化することでそれらを単一部品として取り扱うことが可能となるため、装置の構造簡素化が図られ、また装置の組立作業性やメンテナンス作業性が良好となる。   In this embodiment, since the on-off valve V and the float F can be handled as a single part by integrating them, the structure of the apparatus can be simplified, and the assembling workability and maintenance work of the apparatus can be achieved. The property becomes good.

また図5には、本発明の第2実施例が示される。先の実施例では、開閉弁VとフロートFを一体化していたが、この第2実施例では、開閉弁VとフロートFを別体として相互に接離可能とし、その両者V、F間を可撓性の索条40で連結するようにしている。   FIG. 5 shows a second embodiment of the present invention. In the previous embodiment, the on-off valve V and the float F were integrated, but in the second embodiment, the on-off valve V and the float F were made separate from each other so as to be able to approach and separate from each other. The connection is made by a flexible cable 40.

さらに図6には、本発明の第3実施例が示される。先の実施例では、開閉弁Vを閉弁方向に付勢する付勢手段としてフロートFを使用していたが、この第3実では、開閉弁Vと移送管12との間に介装したスプリングSpを付勢手段として用いている。このスプリングSpは、それが移送管出口12oからの改良土の流出の妨げとならないように該出口12oの左右少なくとも一側方に配置されており、該スプリングSpの一端は開閉弁Vの左右少なくとも一側部に、またその他端は移送管12の左右少なくとも一方の外側壁にそれぞれ連結される。   FIG. 6 shows a third embodiment of the present invention. In the above embodiment, the float F is used as the urging means for urging the on-off valve V in the valve closing direction. In the third embodiment, however, the float F is interposed between the on-off valve V and the transfer pipe 12. The spring Sp is used as an urging means. The spring Sp is disposed at least on one side of the outlet 12o so as not to hinder the flow of the improved soil from the transfer pipe outlet 12o. One end of the spring Sp is at least at the left and right of the on-off valve V. One side and the other end are connected to at least one of the left and right outer walls of the transfer tube 12.

而してこの実施例でも、先の実施例と基本的に同様の作用効果が達成され、更にスプリングSpの付勢力を利用しているので、水深に関係なく安定した閉弁付勢力を開閉弁Vに付与できる利点がある。   In this embodiment, basically, the same operation and effect as those of the previous embodiment are achieved, and the biasing force of the spring Sp is used. There is an advantage that can be given to V.

以上、本発明の実施例について説明したが、本発明はその実施例に限定されることなく、本発明の範囲内で種々の実施例が可能である。たとえば前記実施例では、打設船SSは自航船でも非自航船でもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments, and various embodiments are possible within the scope of the present invention. For example, in the above embodiment, the casting vessel SS may be a self-propelled vessel or a non-self-propelled vessel.

また前記実施例では、開閉弁Vに該弁V自体の重量及び浮力に基づき枢軸P回りに作用する開弁方向又は閉弁方向のモーメントを無視できるように、開閉弁Vを極力薄肉且つ軽量に構成するようにしたが、そのモーメントが無視し得ない大きさの場合には、そのモーメントの大きさ、作用方向、変化等も考慮に入れて、開閉弁Vに所期の開弁力、閉弁力が働くように付勢手段(フロートF、スプリングSp)の付勢力を設定する。   Further, in the above embodiment, the on-off valve V is made as thin and light as possible so that the moment in the valve opening direction or the valve closing direction acting on the pivot P based on the weight and buoyancy of the valve V itself can be ignored. However, if the moment is of a magnitude that cannot be ignored, the desired opening force, closing The urging force of the urging means (float F, spring Sp) is set so that the valve force acts.

また前記実施例では、開閉弁Vの枢軸Pを移送管出口12oの上側に配置したものを示したが、この枢軸Pを移送管出口12oの左右一側、又は下側に配設してもよい。   In the above-described embodiment, the pivot P of the on-off valve V is disposed above the transfer pipe outlet 12o. However, the pivot P may be disposed on one side of the transfer pipe outlet 12o or on the lower side. Good.

また前記実施例では、移送管12は油圧シリンダ16により強制揺動させるようにしているが、その駆動手段として油圧シリンダに代えて他の駆動手段(例えばウインチ等)を採用してもよい。   Further, in the above embodiment, the transfer pipe 12 is forcibly swung by the hydraulic cylinder 16, but other drive means (for example, a winch) may be employed as the drive means instead of the hydraulic cylinder.

また前記実施例では、サージタンク10の底部出口10oと移送管12内との間を該管12の枢軸15回りの揺動角度に関係なく常に連通させるために、その間をテレスコピック式に伸縮可能な接続筒部14を介して接続するようにしたが、斯かる構造に代えて、接続筒部14を蛇腹状に構成して、それが移送管12の揺動に応じて撓みながら伸縮変形できるようにしてもよい。   Further, in the above embodiment, the bottom outlet 10o of the surge tank 10 and the inside of the transfer pipe 12 are always communicated irrespective of the swing angle of the pipe 12 around the pivot 15, so that the space between them can be telescopically expanded and contracted. Although the connection is made via the connection tube portion 14, instead of such a structure, the connection tube portion 14 is formed in a bellows shape so that the connection tube portion 14 can expand and contract while deforming according to the swing of the transfer pipe 12. It may be.

また前記実施例では、サージタンク10内の改良土Sをその自重だけで移送管12の上流側に補給移送するようにしたが、本発明では、スクリュー羽根を有するオーガ、その他の強制補給装置により、改良土Sを強制的に移送管12の上流側に送るようにしてもよい。   In the above embodiment, the improved soil S in the surge tank 10 is replenished and transferred to the upstream side of the transfer pipe 12 only by its own weight. However, in the present invention, an auger having screw blades and other forced replenishing devices are used. Alternatively, the improved soil S may be forcibly sent to the upstream side of the transfer pipe 12.

また前記実施例では、開閉弁Vを閉じ位置にロックし得る保持機構Hを、打設船SS上のロック機構付き操作レバーと、該レバー及び開閉弁V間を連動連結して移送管12の外面に沿って取り回される操作ワイヤ30とより構成したものを示したが、本発明では、保持機構Hを、移送管12と開閉弁V間に設けられてアクチュエータにより駆動されるロック機構と、そのアクチュエータを打設船SS上より遠隔操作するための遠隔操作機構とより構成してもよい。   Further, in the above embodiment, the holding mechanism H capable of locking the on-off valve V at the closed position is provided with the operating lever with the locking mechanism on the casting boat SS, and the lever and the on-off valve V interlockingly connected to the transfer pipe 12. In the present invention, the holding mechanism H is provided with a lock mechanism provided between the transfer pipe 12 and the on-off valve V and driven by an actuator. And a remote control mechanism for remotely controlling the actuator from the casting boat SS.

改良土の搬送打設システムの一例を示す概略平面図Schematic plan view showing an example of an improved soil transfer and casting system 図1の2−2線に沿う拡大側面図1. Enlarged side view along line 2-2 in FIG. 本発明の第1実施例に係る移送管を利用した打設船の要部破断拡大側面図(図2の3線矢視拡大図)FIG. 2 is an enlarged side view of an essential part of a casting boat using a transfer pipe according to a first embodiment of the present invention (an enlarged view taken along line 3 in FIG. 2). 前記移送管の先部の拡大図(図3の4矢視部拡大図)Enlarged view of the tip of the transfer pipe (enlarged view as viewed from arrow 4 in FIG. 3) 第2実施例に係る移送管の先部を示す縦断面図Longitudinal sectional view showing the tip of the transfer pipe according to the second embodiment. 第3実施例に係る移送管の先部を示す縦断面図The longitudinal section showing the tip of the transfer pipe according to the third embodiment. 従来の移送管の先部における水の逆流上昇メカニズムを簡略的に示す説明図Explanatory diagram simply showing the backflow rising mechanism of water at the tip of a conventional transfer pipe

符号の説明Explanation of reference numerals

D・・・・・改良土打設装置
F・・・・・フロート(付勢手段)
H・・・・・ロック機構
Sp・・・・スプリング(付勢手段)
SS・・・・打設船
V・・・・・開閉弁
1・・・・・船体
12・・・・移送管
12o・・・出口
D ···· Improved soil casting device F ····· Float (biasing means)
H: Lock mechanism Sp: Spring (biasing means)
SS: Casting vessel V: On-off valve 1: Hull 12: Transfer pipe 12o: Exit

Claims (2)

土砂に固化材を添加して混練した粘性のある流動性改良土(S)を、打設船(SS)上のサージタンク(10)に貯蔵し、そのサージタンク(10)の底部から流動性改良土(S)を、下端が水底(E)まで延びる移送管(12)の上部内に自重で徐々に流入させ、その移送管(12)内を自重で流動、降下する流動性改良土(S)を、移送管(12)下端の出口(12o)から水底(E)に連続的に打設できるようにした改良土打設方法であって、
前記移送管(12)には、その管(12)の出口(12o)を開閉し得る開閉弁(V)を取付けると共に、この開閉弁(V)には、これを閉じ位置(Va)に保持するための閉弁方向の付勢力を該弁(V)に付与する付勢手段(F,Sp)を連結しておき、
流動性改良土(S)の前記打設に当たっては、前記サージタンク(10)の底部から移送管(12)内に自重で徐々に流入してきた流動性改良土(S)の重量が前記開閉弁(V)に及ぼす開弁力により、前記付勢手段(F,Sp)の付勢力に抗して該開閉弁(V)を開弁することで、移送管(12)内への水の逆流を阻止しつつ流動性改良土(S)が移送管(12)の出口(12o)から連続的に吐き出されるようにし、
また前記サージタンク(10)から移送管(12)への流動性改良土(S)の補給が追いつかない場合には、該移送管(12)内に残留する流動性改良土(S)が所定限界量まで減少して該改良土(S)の重量に基づく前記開弁力が減少するのに応じて、前記開閉弁(V)が前記付勢力により再び閉弁動作して、該出口(12o)から移送管(12)内への水の逆流を阻止するようにしたことを特徴とする、改良土打設方法
The viscous fluidity-improved soil (S) obtained by adding the kneading material to the soil and sand is stored in a surge tank (10) on a casting vessel (SS), and the fluidity is improved from the bottom of the surge tank (10). The improved soil (S) gradually flows under its own weight into the upper part of the transfer pipe (12) whose lower end extends to the water bottom (E), and flows through the transfer pipe (12) under its own weight to descend. An improved soil casting method in which S) can be continuously poured from the outlet (12o) at the lower end of the transfer pipe (12) to the water bottom (E),
Wherein the transfer tube (12), Rutotomoni mounted an outlet on-off valve capable of opening and closing the (12o) (V) of the tube (12), to the on-off valve (V), this in a closed position (Va) The urging means (F, Sp) for applying the urging force in the valve closing direction for holding to the valve (V) is connected in advance,
At the time of placing the fluidity- improved soil (S), the weight of the fluidity- improved soil (S) gradually flowing by its own weight into the transfer pipe (12) from the bottom of the surge tank (10) is determined by the on-off valve By opening the on-off valve (V) against the urging force of the urging means (F, Sp) by the valve opening force exerted on (V) , the water flows back into the transfer pipe (12). So that the fluidity-improved soil (S) is continuously discharged from the outlet (12o) of the transfer pipe (12),
If the supply of the fluidity-improved soil (S) from the surge tank (10) to the transfer pipe (12) cannot keep up, the fluidity-improved soil (S) remaining in the transfer pipe (12) is reduced to a predetermined amount. As the valve opening force based on the weight of the improved soil (S) decreases to the limit amount and the valve opening force decreases based on the urging force, the on-off valve (V) closes again by the urging force and the outlet (12o). ) it is characterized in that so as to prevent backflow of water into the transfer tube (12) from the modified soil strokes set method.
前記開閉弁(V)には、これを閉じ位置(Va)に随時にロックし得る保持機構(H)が連結されることを特徴とする、請求項に記載の改良土打設方法。 Wherein the opening and closing valve (V) is located close it holding mechanism capable of locking at any time in (Va) (H) is characterized in that it is connected, improved soil strokes set method according to claim 1.
JP2003347355A 2003-10-06 2003-10-06 Feed pipe water backflow prevention device for treated soil placing device Pending JP2004092386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347355A JP2004092386A (en) 2003-10-06 2003-10-06 Feed pipe water backflow prevention device for treated soil placing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347355A JP2004092386A (en) 2003-10-06 2003-10-06 Feed pipe water backflow prevention device for treated soil placing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001058707A Division JP2002256531A (en) 2001-03-02 2001-03-02 Transfer pipe inside water backflow preventive device in improved earth placing device

Publications (2)

Publication Number Publication Date
JP2004092386A JP2004092386A (en) 2004-03-25
JP2004092386A5 true JP2004092386A5 (en) 2008-06-26

Family

ID=32064603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347355A Pending JP2004092386A (en) 2003-10-06 2003-10-06 Feed pipe water backflow prevention device for treated soil placing device

Country Status (1)

Country Link
JP (1) JP2004092386A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313208Y2 (en) * 1973-01-29 1978-04-10
JPS5313207Y2 (en) * 1973-01-29 1978-04-10
JPS6256875U (en) * 1985-09-30 1987-04-08
JPH113150A (en) * 1997-06-12 1999-01-06 Meidensha Corp Information processor
JP3070007B2 (en) * 1998-10-28 2000-07-24 株式会社小島組 Casting boat

Similar Documents

Publication Publication Date Title
CA1190096A (en) Suction anchor and method of installing a suction anchor
JP6209698B1 (en) Improvement method of underwater ground, work boat, pressure control system in bucket
US4266889A (en) System for placing freshly mixed concrete on the seafloor
CN1437541A (en) Temporary floatation stabilization device and method
JP6936456B1 (en) Underwater ground improvement method
US11959248B2 (en) Device for the removal of sludge and/or sand from the bottom of a wetland
CA2709124C (en) A collecting device and a method of using same
JP3070007B2 (en) Casting boat
WO2010143976A2 (en) A foundation, a method of manufacturing the foundation, and a method of installing the foundation on a seabed
ITTO20110551A1 (en) PROCEDURE FOR WATERPROOFING COLMATA BOXES
JP2004092386A5 (en)
JP2002256531A (en) Transfer pipe inside water backflow preventive device in improved earth placing device
JP2004092386A (en) Feed pipe water backflow prevention device for treated soil placing device
JP3330133B2 (en) Transfer pipe structure in improved soil casting equipment
GB2254890A (en) Raising liquids; dredging apparatus.
US4296706A (en) Anchor
JP3716311B2 (en) Bottom sediment removal method and bottom sediment removal equipment
JPS584133B2 (en) dredging equipment
JP2004036342A (en) Placing device for in-pipe mixing solidifying processing soil
JP2003055932A (en) Reinforcing method of embankment using river dredged sediment
JP7002735B1 (en) Underwater ground improvement equipment
JP4605730B2 (en) Underwater driving method and underwater driving tool
JP3008015U (en) Mud treatment equipment
WO2022210358A1 (en) Method for raising floating body for spar-type offshore wind power generation facility
JP4024048B2 (en) Water bottom improvement method using cover member