JP2004091414A - Method for recovering bisphenol fluorenes - Google Patents

Method for recovering bisphenol fluorenes Download PDF

Info

Publication number
JP2004091414A
JP2004091414A JP2002256589A JP2002256589A JP2004091414A JP 2004091414 A JP2004091414 A JP 2004091414A JP 2002256589 A JP2002256589 A JP 2002256589A JP 2002256589 A JP2002256589 A JP 2002256589A JP 2004091414 A JP2004091414 A JP 2004091414A
Authority
JP
Japan
Prior art keywords
guest
host
compound
crystals
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002256589A
Other languages
Japanese (ja)
Other versions
JP4219643B2 (en
Inventor
Tetsuo Yatani
八谷 哲男
Yoko Sugio
杉尾 容子
Mitsuaki Yamada
山田 光昭
Hiroaki Murase
村瀬 裕明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
JFE Chemical Corp
Original Assignee
Osaka Gas Co Ltd
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, JFE Chemical Corp filed Critical Osaka Gas Co Ltd
Priority to JP2002256589A priority Critical patent/JP4219643B2/en
Publication of JP2004091414A publication Critical patent/JP2004091414A/en
Application granted granted Critical
Publication of JP4219643B2 publication Critical patent/JP4219643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering bisphenol fluorenes with good quality by carrying out the removal of a guest compound from a host-guest complex of the bisphenol fluorenes by a simple means. <P>SOLUTION: When the bisphenol fluorenes are recovered by removing the guest compound included in the complex from the host-guest complex using the bisphenol fluorenes represented by formula 1 as the host compound, the decomposition or dissolution of the host-guest complex is carried out in a hydrocarbon solvent, and the released guest compound is distilled off. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂原料として有用なビスフェノールフルオレン類の回収方法に関し、さらに詳しくは、低分子ゲスト化合物との錯体形成を利用して回収されたビスフェノールフルオレン類ホストゲスト錯体からゲスト化合物を除去して、ビスフェノールフルオレン類を精製および回収する方法に関する。
【0002】
【従来の技術】
ビスフェノールフルオレン類は、有用な樹脂原料として知られており、通常、相当するフェノール類2分子と、相当するフルオレノン類とを、酸触媒存在下に脱水縮合して製造される。この際、反応混合物からのビスフェノールフルオレン類の回収あるいは回収されたビスフェノールフルオレン類の再結晶精製において、純度よく高い歩留まりで目的物を回収するために、ビスフェノールフルオレン類をホストとしてホストゲスト錯体を形成するゲスト化合物を添加し、ビスフェノールフルオレン類をホストゲスト錯体結晶として回収するという方法が知られている。
【0003】
上記の例としては種々の方法が提案されているが、この段階で得られるビスフェノールフルオレン類ホストゲスト錯体結晶は、まだゲスト化合物を含んでいるため、最終的にはこのホストゲスト錯体結晶を減圧下に加熱して分解し、ゲスト化合物を除去して、高純度なビスフェノールフルオレン類が得られる(特許文献1〜4参照)。
【0004】
【特許文献1】:特公平2−36578号公報
【特許文献2】:特開平6−145087号公報
【特許文献3】:特開平6−145088号公報
【特許文献4】:特開平8−253437号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記の方法では、最終的にビスフェノールフルオレン類を回収するには、固体であるホストゲスト錯体を、熱分解温度まで加熱し、蒸気として発生するゲスト化合物を除去する必要がある。このため、工業的に大量の処理を行う場合には、熱伝導性の悪い固体の加熱を行わねばならないため、処理に長時間を要して回収の効率が低下する、固体の撹拌が可能な特殊な装置を必要とする、局部過熱により製品の着色や純度低下などの品質劣化が発生する、といった問題がある。
従って本発明の目的は、ビスフェノールフルオレン類ホストゲスト錯体からのゲスト化合物の除去を、簡単な手段で行い、なおかつ良好な品質のビスフェノールフルオレン類を回収する方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究を行った結果、ビスフェノールフルオレン類ホストゲスト錯体の分解を、ビスフェノールフルオレン類とホストゲスト錯体を形成しない炭化水素溶媒中で行えば、通常の装置で撹拌可能なスラリー流体、あるいは加熱によりホストゲスト錯体が溶解する場合には溶液として取り扱うことができ、高い伝熱速度を得ることができることを見いだし、さらに、分解または溶解により放出されるゲスト化合物は、その蒸気が発生する温度以上で、容易に蒸留除去されることを見いだして本発明を成した。
【0007】
すなわち、本発明は、下記式1で示されるビスフェノールフルオレン類をホスト化合物としたホストゲスト錯体から、該錯体に含まれるゲスト化合物を除去して、ビスフェノールフルオレン類を回収する際に、炭化水素溶媒中で上記ホストゲスト錯体の分解または溶解を行い、放出されるゲスト化合物を蒸留除去することを特徴とするビスフェノールフルオレン類の回収方法を提供する。

Figure 2004091414
【0008】
【発明の実施の形態】
次に好ましい発明の形態を挙げて本発明をさらに詳細に説明する。
本発明を適用する対象となるビスフェノールフルオレン類は、前記式1で表される構造を持つ化合物である。前記式1において、R1〜R4は、それぞれ独立に、水素または炭素数4以下の炭化水素基であり、例としては、水素、メチル基、エチル基、プロピル基、i−プロピル基、ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基などを挙げることができる。このようなビスフェノールフルオレン類は、通常、相当するフェノール類と相当するフルオレノン類とを用いて、両者を酸触媒存在下に脱水縮合して得ることができる。また、これらの化合物の中でも特に、本発明方法は、ビスフェノールフルオレンまたはビスクレゾールフルオレンの回収方法として有用である。
【0009】
本発明方法において、ホストゲスト錯体に含まれるゲスト化合物は、ビスフェノールフルオレン類をホスト化合物としてホストゲスト錯体を形成する化合物であれば特に制限されない。好ましくは、ビスフェノールフルオレン類と良好なホストゲスト錯体を形成し、かつ後の蒸留除去が容易なものがよい。そのような化合物としては、低沸点で、酸素や窒素などのヘテロ原子あるいはハロゲン原子を構造中に含む低分子化合物が望ましい。
【0010】
上記例としては、アセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル類、メタノール、エタノール、プロパノール、2−プロパノール、ブタノールなどのアルコール類、フェノール、クレゾール、キシレノールなどのフェノール類、ピリジン、ピコリンなどのピリジン類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸エチル、酢酸ブチル、酢酸イソアミルなどのエステル類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類などを挙げることができる。これらの中でも、アセトニトリル、アセトンおよびメタノールは、ビスフェノールフルオレン類と良好なホストゲスト錯体を形成するために特に好ましい。
【0011】
本発明方法におけるホストゲスト錯体は、ホスト化合物となるビスフェノールフルオレン類と、ゲスト化合物とを接触させて得ることができる。この接触方法の例としては、他の何等かの工程でビスフェノールフルオレン類が生成した反応混合物と、ゲスト化合物あるいはゲスト化合物を含む溶媒とを混合する方法、何らかの方法で回収したビスフェノールフルオレン類またはその粗生成物を、ゲスト化合物あるいはゲスト化合物を含む溶媒とを混合する方法、ビスフェノールフルオレン類またはその粗生成物を、ゲスト化合物あるいはゲスト化合物を含む溶媒中で再結晶する方法などを挙げることができる。また、このようにして得られるビスフェノールフルオレン類のホストゲスト錯体は、通常、ビスフェノールフルオレン類1分子に対して、ゲスト分子1分子あるいはゲスト分子2分子などの単純な整数比率の組成を持つ。
【0012】
本発明方法において、上記錯体の熱分解または溶解時に使用する溶媒としては、ビスフェノールフルオレン類とホストゲスト錯体を形成しない化合物を使用する必要がある。このようなものとしては、炭化水素溶媒が適当である。この溶媒の使用により、前記錯体を含む系はスラリーまたは溶液として扱うことができ、良好な撹拌が可能となり、加熱または冷却時の伝熱も良好に行われるようになる。
【0013】
本発明方法で使用される炭化水素溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、デカン、ドデカンなどの脂肪族炭化水素、シクロヘキサン、メチルシクロヘキサン、デカリンなどの脂環式炭化水素、ベンゼン、アルキルベンゼン、アルキルナフタレン、アルキルビフェニルなどの芳香族炭化水素、あるいはこれらの混合物などを使用することができる。
【0014】
中でも、その沸点が、ビスフェノールフルオレン類ホストゲスト錯体が溶解または分解開始する温度およびゲスト化合物の蒸気が発生する温度よりも高く、かつ蒸留回収可能な範囲にあるものが好ましい。とりわけ、ベンゼン、トルエン、キシレン、ヘキサン、ヘプタン、オクタン、デカンは、適当な範囲の沸点を持ち、安定で入手も容易なことから特に好ましい。炭化水素溶媒の使用量は、撹拌や移送、濾過などの操作上問題がない範囲であれば特に制限されないが、一般的には、ビスフェノールフルオレン化合物1重量部当たり、0.5〜20重量部、好ましくは、1〜10重量部の範囲である。
【0015】
本発明方法におけるビスフェノールフルオレン類ホストゲスト錯体の分解または溶解、ならびにゲスト化合物の蒸留除去の温度は、ゲスト化合物の蒸気が発生する温度以上である必要があり、望ましくはゲスト化合物の沸点以上とする。また、目的物であるビスフェノールフルオレン類の品質劣化が発生する温度以下の温度とする必要がある。その温度は、通常常温〜200℃、好ましくは40〜160℃、特に好ましくは60〜130℃の範囲である。
【0016】
本発明方法におけるビスフェノールフルオレン類ホストゲスト錯体の分解または溶解ならびにゲスト化合物の蒸留除去時には、加熱により、ホストゲスト錯体からゲスト化合物が溶媒中に解離してくる温度に達すれば、ゲスト化合物は、逐次溶媒中に放出され、その蒸気が発生する温度以上で、容易に蒸留除去することができる。場合によっては、上記錯体を含む系は一旦均一な溶液となることもある。この場合には、溶液となった段階で包接されていたゲスト化合物は放出されるため、より容易にゲスト化合物を除去することができる。ゲスト化合物の除去を速やかに効率よく行うためには、錯体を含む系を沸騰状態とすることが好ましく、さらには、炭化水素溶媒の一部を、ゲスト化合物とともに蒸留除去することがより好ましい。また、ゲスト化合物の除去を促進する方法として、使用する炭化水素溶媒との共沸混合物としての蒸留除去や、不活性ガスの流通や吹き込みなども好ましい方法である。
【0017】
本発明方法におけるビスフェノールフルオレン類ホストゲスト錯体の分解または溶解ならびにゲスト化合物の蒸留除去時の圧力は、通常常圧でよいが、ゲスト化合物や炭化水素溶媒の沸点調整などのために、減圧あるいは加圧条件としてもさしつかえない。
【0018】
本発明方法において、ビスフェノールフルオレン類ホストゲスト錯体の熱分解または溶解ならびにゲスト化合物蒸留除去を行った後、ビスフェノールフルオレン類は炭化水素溶媒の溶液またはスラリーとして存在している。ここから目的物であるビスフェノールフルオレン類を回収するには、濃縮や晶析などの通常の分離方法によればよく、特に目的物が結晶化する場合には、晶析して得られた結晶を固液分離することで、容易に高純度の目的物を回収することができる。
【0019】
【実施例】
次に実施例および比較例を挙げて本発明をさらに具体的に説明する。
[実施例1]
メカニカルスターラー、還流冷却器、滴下漏斗および温度計を備えた2L四つ口フラスコに、フルオレノン180g、フェノール659gおよびβメルカプトプロピオン酸2gを仕込み、55℃で加熱撹拌して溶融した。反応温度を55℃に保ちながら、35%塩酸135gを、2時間かけて滴下し、さらに55℃で6時間撹拌し、縮合反応を行った。反応液に水135gを加えた後、フェノールの一部とともに塩酸水を減圧留去した。蒸留残分に、アセトニトリル500gを加え、撹拌しながら室温まで冷却して、ビスフェノールフルオレン・アセトニトリルホストゲスト錯体結晶を析出させた。得られた結晶を吸引ろ過し、アセトニトリルで十分に洗浄した後、室温で減圧乾燥して、ビスフェノールフルオレン・アセトニトリルホストゲスト錯体結晶269gを得た。この結晶をガスクロマトグラフで分析したところ、アセトニトリルの含有量は10.6重量%であり、ビスフェノールフルオレン1分子に対し、アセトニトリル1分子を含む錯体であった。
【0020】
得られたビスフェノールフルオレン・アセトニトリルホストゲスト錯体結晶のうち、10.0gを取り、ヘキサン150mlに懸濁させた後、撹拌しながら、常圧下に57〜69℃の温度に加熱して、溶媒分102mlを留去した。蒸留残分を室温まで冷却した後、吸引ろ過した。得られた結晶を、ヘキサンで洗浄した後、減圧乾燥してビスフェノールフルオレンの結晶8.7gを得た。この結晶をガスクロマトグラフで分析したところ、ゲスト化合物であるアセトニトリルは検出されなかった。
【0021】
[実施例2]
実施例1において得られたビスフェノールフルオレン・アセトニトリルホストゲスト錯体結晶のうち、100gを取り、ヘプタン250mlに懸濁させた後、撹拌しながら、常圧下に76〜99℃の温度に加熱して、溶媒分63mlを留去した。蒸留残分を室温まで冷却した後吸引ろ過した。得られた結晶をヘプタンで洗浄した後減圧乾燥して、ビスフェノールフルオレンの結晶88gを得た。この結晶をガスクロマトグラフで分析したところ、ゲスト化合物であるアセトニトリルは検出されなかった。
【0022】
[実施例3]
実施例1において得られたビスフェノールフルオレン・アセトニトリルホストゲスト錯体結晶のうち、10.1gを取り、ヘプタン30mlに懸濁させた後、撹拌しながら、常圧下に75〜98℃の温度に加熱して、溶媒分19mlを留去した。さらに、室温まで冷却した後減圧下で溶媒分を除去および乾固して、ビスフェノールフルオレンの結晶9.0gを得た。この結晶をガスクロマトグラフで分析したところ、ゲスト化合物であるアセトニトリルは検出されなかった。
【0023】
[実施例4]
実施例1において得られたビスフェノールフルオレン・アセトニトリルホストゲスト錯体結晶のうち、10.1gを取り、オクタン30mlに懸濁させた後、撹拌しながら、常圧下に79〜126℃の温度に加熱して、溶媒分14mlを留去した。蒸留残分を室温まで冷却した後吸引ろ過した。得られた結晶をヘキサンで洗浄した後減圧乾燥して、ビスフェノールフルオレンの結晶8.8gを得た。この結晶をガスクロマトグラフで分析したところ、ゲスト化合物であるアセトニトリルは検出されなかった。
【0024】
[実施例5]
実施例1において得られたビスフェノールフルオレン・アセトニトリルホストゲスト錯体結晶のうち、10.0gを取り、デカン30mlに懸濁させた後、撹拌しながら、常圧下に80〜173℃の温度に加熱して、溶媒分12mlを留去した。蒸留残分を室温まで冷却した後吸引ろ過した。得られた結晶をヘキサンで洗浄した後減圧乾燥して、ビスフェノールフルオレンの結晶8.7gを得た。この結晶をガスクロマトグラフで分析したところ、ゲスト化合物であるアセトニトリルは検出されなかった。
【0025】
[実施例6]
実施例1において得られたビスフェノールフルオレン・アセトニトリルホストゲスト錯体結晶のうち、10.0gを取り、トルエン30mlに懸濁させた後、撹拌しながら、常圧下に79〜111℃の温度に加熱して、溶媒分13mlを留去した。操作中、一旦結晶が溶解した後再び析出分が発生した。蒸留残分を室温まで冷却した後吸引ろ過した。得られた結晶をヘキサンで洗浄した後減圧乾燥して、ビスフェノールフルオレンの結晶8.3gを得た。この結晶をガスクロマトグラフで分析したところ、ゲスト化合物であるアセトニトリルは検出されなかった。
【0026】
[実施例7]
実施例1において得られたビスフェノールフルオレン・アセトニトリルホストゲスト錯体結晶のうち、10.1gを取り、混合キシレン30mlに懸濁させた後、撹拌しながら、常圧下に79〜139℃の温度に加熱して、溶媒分13mlを留去した。操作中、一旦結晶が溶解した後再び析出分が発生した。蒸留残分を室温まで冷却した後吸引ろ過した。得られた結晶をヘキサンで洗浄した後減圧乾燥して、ビスフェノールフルオレンの結晶8.2gを得た。この結晶をガスクロマトグラフで分析したところ、ゲスト化合物であるアセトニトリルは検出されなかった。
【0027】
[実施例8]
実施例1において得られたビスフェノールフルオレン・アセトニトリルホストゲスト錯体結晶のうち、10.0gを取り、ヘキサン150mlに懸濁させた後、400torrの減圧下に40〜49℃の温度で加熱撹拌して、溶媒分104mlを留去した。蒸留残分を室温まで冷却した後吸引ろ過した。得られた結晶をヘキサンで洗浄した後減圧乾燥して、ビスフェノールフルオレンの結晶8.7gを得た。この結晶をガスクロマトグラフで分析したところ、ゲスト化合物であるアセトニトリルは検出されなかった。
【0028】
[実施例9]
実施例1において得られたビスフェノールフルオレン・アセトニトリルホストゲスト錯体結晶のうち、10.0gを取り、トルエン30mlに懸濁させた後、100torrの減圧下に47〜56℃の温度で加熱撹拌して、溶媒分12mlを留去した。蒸留残分を室温まで冷却した後吸引ろ過した。得られた結晶をヘキサンで洗浄した後減圧乾燥して、ビスフェノールフルオレンの結晶8.2gを得た。この結晶をガスクロマトグラフで分析したところ、ゲスト化合物であるアセトニトリルは検出されなかった。
【0029】
[実施例10]
メカニカルスターラー、還流冷却器、滴下漏斗および温度計を備えた2L四つ口フラスコに、フルオレノン180g、o−クレゾール756gおよびβ−メルカプトプロピオン酸6gを仕込み、55℃で加熱撹拌して溶融した。反応温度を55℃に保ちながら、35%塩酸135gを、2時間かけて滴下し、さらに55℃で8時間撹拌し縮合反応を行った。反応液に水135gを加えた後、クレゾールの一部とともに、塩酸水を減圧留去した。蒸留残分にアセトン500gを加え、撹拌しながら室温まで冷却して、ビスクレゾールフルオレン・アセトンホストゲスト錯体結晶を析出させた。得られた結晶を吸引ろ過し、アセトンで十分に洗浄した後室温で減圧乾燥して、ビスクレゾールフルオレン・アセトンホストゲスト錯体結晶323gを得た。この結晶をガスクロマトグラフで分析したところ、アセトンの含有量は23.4重量%であり、ビスクレゾールフルオレン1分子に対し、アセトン2分子を含む錯体であった。
【0030】
得られたビスクレゾールフルオレン・アセトンホストゲスト錯体結晶のうち、10.1gを取り、ヘキサン30mlに懸濁させた後、撹拌しながら、常圧下に46〜68℃の温度に加熱して、溶媒分12mlを留去した。蒸留残分を室温まで冷却した後吸引ろ過した。得られた結晶をヘキサンで洗浄した後減圧乾燥して、ビスクレゾールフルオレンの結晶7.4gを得た。この結晶をガスクロマトグラフで分析したところ、ゲスト化合物であるアセトンは検出されなかった。
【0031】
[実施例11]
実施例10において得られたビスクレゾールフルオレン・アセトンホストゲスト錯体結晶のうち、10.0gを取り、トルエン30mlに懸濁させた後、撹拌しながら、常圧下に54〜111℃の温度に加熱して、溶媒分12mlを留去した。操作中、一旦結晶が溶解した後、再び析出分が発生した。蒸留残分を室温まで冷却した後吸引ろ過した。得られた結晶をヘキサンで洗浄した後減圧乾燥して、ビスクレゾールフルオレンの結晶7.0gを得た。この結晶をガスクロマトグラフで分析したところ、ゲスト化合物であるアセトンは検出されなかった。
【0032】
[実施例12]
実施例10において得られたビスクレゾールフルオレン・アセトンホストゲスト錯体結晶のうち、10.0gを取り、トルエン30mlに懸濁させた後、100torrの減圧下に45〜55℃で加熱撹拌して、溶媒分13mlを留去した。蒸留残分を室温まで冷却した後吸引ろ過した。得られた結晶をヘキサンで洗浄した後減圧乾燥して、ビスクレゾールフルオレンの結晶7.1gを得た。この結晶をガスクロマトグラフで分析したところ、ゲスト化合物であるアセトンは検出されなかった。
【0033】
[実施例13]
メカニカルスターラー、還流冷却器、滴下漏斗および温度計を備えた2L四つ口フラスコに、フルオレノン180g、o−クレゾール756gおよびβ−メルカプトプロピオン酸6gを仕込み、55℃で加熱撹拌して溶融した。反応温度を55℃に保ちながら、35%塩酸135gを2時間かけて滴下し、さらに55℃で8時間撹拌し縮合反応を行った。反応液に水135gを加えた後、クレゾールの一部とともに塩酸水を減圧留去した。蒸留残分にメタノール500gを加え、撹拌しながら室温まで冷却し、さらに10℃で1日晶析してビスクレゾールフルオレン・メタノールホストゲスト錯体結晶を析出させた。得られた結晶を吸引ろ過し、冷メタノールで洗浄した後室温で減圧乾燥して、ビスクレゾールフルオレン・メタノールホストゲスト錯体結晶232gを得た。この結晶をガスクロマトグラフで分析したところ、メタノールの含有量は14.5重量%であり、ビスクレゾールフルオレン1分子に対し、メタノール2分子を含む錯体であった。
【0034】
得られたビスクレゾールフルオレン・メタノールホストゲスト錯体結晶のうち、10.0gを取り、ヘキサン50mlに懸濁させた後、撹拌しながら、常圧下に47〜68℃の温度に加熱して、溶媒分32mlを留去した。蒸留残分を室温まで冷却した後吸引ろ過した。得られた結晶をヘキサンで洗浄した後減圧乾燥して、ビスクレゾールフルオレンの結晶8.4gを得た。この結晶をガスクロマトグラフで分析したところ、ゲスト化合物であるメタノールは検出されなかった。
【0035】
[比較例1]
実施例1と同様の操作によって、アセトニトリル10.6重量%を含有するビスフェノールフルオレン・アセトニトリルホストゲスト錯体結晶274gを得た。このホストゲスト錯体結晶200gを2Lセパラブルフラスコに取り、5torrの減圧下に、120℃のオイルバス上で6時間加熱して、ホストゲスト錯体結晶の分解および減圧乾燥を行った。この時点で結晶をガスクロマトグラフで分析したところ、アセトニトリル1.2重量%が含まれていた。同条件で引き続き12時間処理を行った後の結晶中のアセトニトリル含有量は、0.5重量%であった。
【0036】
【発明の効果】
本発明方法によれば、ビスフェノールフルオレン類をホスト化合物とするホストゲスト錯体からのビスフェノールフルオレン類の回収を、特殊な設備の必要なしに簡便に行うことができる。その結果として、良好な品質のビスフェノールフルオレン類を効率的に得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for recovering bisphenolfluorenes useful as a resin raw material, and more specifically, removing a guest compound from a bisphenolfluorenes host guest complex recovered using complex formation with a low-molecular-weight guest compound, The present invention relates to a method for purifying and recovering bisphenolfluorenes.
[0002]
[Prior art]
Bisphenolfluorenes are known as useful resin raw materials, and are usually produced by dehydrating and condensing two molecules of the corresponding phenols and the corresponding fluorenones in the presence of an acid catalyst. At this time, in the recovery of the bisphenolfluorenes from the reaction mixture or the recrystallization purification of the recovered bisphenolfluorenes, a host-guest complex is formed using the bisphenolfluorenes as a host in order to recover the target product with high purity and a high yield. There is known a method of adding a guest compound and recovering bisphenolfluorenes as host guest complex crystals.
[0003]
Various methods have been proposed as the above examples, but the bisphenolfluorenes host guest complex crystals obtained at this stage still contain a guest compound, and thus the host guest complex crystals are finally reduced under reduced pressure. To obtain a high-purity bisphenolfluorene by removing the guest compound (see Patent Documents 1 to 4).
[0004]
[Patent Document 1]: Japanese Patent Publication No. 2-36578 [Patent Document 2]: Japanese Patent Application Laid-Open No. 6-145087 [Patent Document 3]: Japanese Patent Application Laid-Open No. 6-145088 [Patent Document 4]: Japanese Patent Application Laid-Open No. 8-253337 No. [0005]
[Problems to be solved by the invention]
However, in the above method, in order to finally recover the bisphenolfluorenes, it is necessary to heat the solid host guest complex to a thermal decomposition temperature and remove the guest compound generated as a vapor. For this reason, when performing a large amount of processing industrially, it is necessary to perform heating of a solid having poor thermal conductivity. There is a problem that a special device is required, and quality deterioration such as coloration and purity reduction of the product occurs due to local overheating.
Accordingly, an object of the present invention is to provide a method for removing a guest compound from a bisphenolfluorene host guest complex by a simple means and recovering bisphenolfluorenes of good quality.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, when the decomposition of the bisphenolfluorenes host guest complex is performed in a hydrocarbon solvent that does not form a host guest complex with bisphenolfluorenes, ordinary It can be handled as a slurry fluid that can be stirred by the device or a solution when the host guest complex dissolves by heating, and it is possible to obtain a high heat transfer rate, and further, a guest compound released by decomposition or dissolution Made the present invention by finding that it is easily distilled off at a temperature higher than the temperature at which the vapor is generated.
[0007]
That is, the present invention provides a method for removing a bisphenolfluorene compound from a host guest complex containing a bisphenolfluorene compound represented by the following formula 1 as a host compound to recover the bisphenolfluorene compound. Wherein the host guest complex is decomposed or dissolved and the released guest compound is removed by distillation.
Figure 2004091414
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail by way of preferred embodiments.
Bisphenolfluorenes to which the present invention is applied are compounds having a structure represented by the above formula 1. In the formula 1, R1 to R4 are each independently hydrogen or a hydrocarbon group having 4 or less carbon atoms, and examples thereof include hydrogen, methyl, ethyl, propyl, i-propyl, butyl, Examples thereof include an i-butyl group, a sec-butyl group, and a t-butyl group. Such bisphenol fluorenes can be usually obtained by using a corresponding phenol and a corresponding fluorenone and dehydrating and condensing them in the presence of an acid catalyst. Further, among these compounds, the method of the present invention is particularly useful as a method for recovering bisphenolfluorene or biscresolfluorene.
[0009]
In the method of the present invention, the guest compound contained in the host guest complex is not particularly limited as long as the compound forms a host guest complex using bisphenolfluorenes as the host compound. Preferably, those which form a good host guest complex with bisphenolfluorenes and which are easily removed by distillation afterwards are preferred. As such a compound, a low molecular weight compound having a low boiling point and containing a hetero atom such as oxygen or nitrogen or a halogen atom in its structure is desirable.
[0010]
Examples of the above include nitriles such as acetonitrile, propionitrile and benzonitrile, alcohols such as methanol, ethanol, propanol, 2-propanol and butanol; phenols such as phenol, cresol and xylenol; pyridines such as pyridine and picoline. , Ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane; esters such as ethyl acetate, butyl acetate and isoamyl acetate; halogenated hydrocarbons such as dichloromethane and chloroform And the like. Among these, acetonitrile, acetone and methanol are particularly preferred for forming a good host guest complex with bisphenolfluorenes.
[0011]
The host guest complex in the method of the present invention can be obtained by bringing bisphenolfluorenes serving as a host compound into contact with the guest compound. Examples of this contacting method include a method of mixing a reaction mixture in which bisphenolfluorenes are generated in some other step with a guest compound or a solvent containing a guest compound, bisphenolfluorenes recovered by some method or crude thereof. Examples of the method include a method of mixing the product with a guest compound or a solvent containing a guest compound, and a method of recrystallizing bisphenolfluorenes or a crude product thereof in a guest compound or a solvent containing a guest compound. The host guest complex of bisphenolfluorenes thus obtained usually has a composition of a simple integer ratio of one guest molecule or two guest molecules to one bisphenolfluorene molecule.
[0012]
In the method of the present invention, it is necessary to use a compound that does not form a host guest complex with bisphenolfluorenes as a solvent used at the time of thermal decomposition or dissolution of the complex. As such, hydrocarbon solvents are suitable. By using this solvent, the system containing the complex can be handled as a slurry or a solution, good stirring can be performed, and heat transfer during heating or cooling can be performed well.
[0013]
As the hydrocarbon solvent used in the method of the present invention, for example, hexane, heptane, octane, decane, aliphatic hydrocarbons such as dodecane, cyclohexane, methylcyclohexane, alicyclic hydrocarbons such as decalin, benzene, alkylbenzene, alkyl Aromatic hydrocarbons such as naphthalene and alkylbiphenyl, and mixtures thereof can be used.
[0014]
Among them, those having a boiling point higher than the temperature at which the bisphenolfluorene host-guest complex starts dissolving or decomposing and the temperature at which the vapor of the guest compound is generated and within a range in which the compound can be recovered by distillation are preferable. In particular, benzene, toluene, xylene, hexane, heptane, octane, and decane are particularly preferable because they have a proper range of boiling point, are stable, and are easily available. The amount of the hydrocarbon solvent used is not particularly limited as long as there is no problem in operation such as stirring, transfer, and filtration, but generally, 0.5 to 20 parts by weight per 1 part by weight of the bisphenol fluorene compound, Preferably, it is in the range of 1 to 10 parts by weight.
[0015]
In the method of the present invention, the temperature of decomposition or dissolution of the bisphenolfluorene host guest complex and the removal of the guest compound by distillation must be higher than the temperature at which the vapor of the guest compound is generated, and preferably higher than the boiling point of the guest compound. Further, the temperature must be lower than the temperature at which the quality degradation of the target bisphenol fluorenes occurs. The temperature is usually in the range of room temperature to 200 ° C, preferably 40 to 160 ° C, particularly preferably 60 to 130 ° C.
[0016]
In the method of the present invention, when decomposing or dissolving the bisphenolfluorene host guest complex and distilling and removing the guest compound, the guest compound is successively dissolved in the solvent if the temperature reaches a temperature at which the guest compound is dissociated from the host guest complex into the solvent by heating. Above the temperature at which the vapors evolve and evolve, they can be easily distilled off. In some cases, the system containing the above complex may once be a homogeneous solution. In this case, the guest compound that has been included at the stage when the solution is formed is released, so that the guest compound can be more easily removed. In order to remove the guest compound quickly and efficiently, the system containing the complex is preferably brought into a boiling state, and more preferably, a part of the hydrocarbon solvent is removed by distillation together with the guest compound. Further, as a method for promoting the removal of the guest compound, distillation and removal as an azeotrope with the hydrocarbon solvent to be used, and flowing and blowing of an inert gas are also preferable methods.
[0017]
The pressure during the decomposition or dissolution of the bisphenolfluorene host-guest complex and the distillation removal of the guest compound in the method of the present invention may be usually normal pressure, but may be reduced or increased to adjust the boiling point of the guest compound or the hydrocarbon solvent. It can be a condition.
[0018]
In the method of the present invention, after the pyrolysis or dissolution of the bisphenolfluorene host guest complex and the removal of the guest compound by distillation, the bisphenolfluorenes are present as a solution or slurry in a hydrocarbon solvent. In order to recover the desired bisphenolfluorenes therefrom, a conventional separation method such as concentration or crystallization may be used.In particular, when the desired product is crystallized, the crystals obtained by crystallization may be used. By performing solid-liquid separation, a high-purity target substance can be easily recovered.
[0019]
【Example】
Next, the present invention will be described more specifically with reference to examples and comparative examples.
[Example 1]
In a 2 L four-necked flask equipped with a mechanical stirrer, a reflux condenser, a dropping funnel and a thermometer, 180 g of fluorenone, 659 g of phenol and 2 g of β-mercaptopropionic acid were charged and melted by heating and stirring at 55 ° C. While maintaining the reaction temperature at 55 ° C., 135 g of 35% hydrochloric acid was added dropwise over 2 hours, and the mixture was further stirred at 55 ° C. for 6 hours to perform a condensation reaction. After 135 g of water was added to the reaction solution, hydrochloric acid was distilled off under reduced pressure together with a part of phenol. Acetonitrile (500 g) was added to the distillation residue, and the mixture was cooled to room temperature with stirring to precipitate a bisphenolfluorene-acetonitrile host guest complex crystal. The obtained crystals were subjected to suction filtration, washed sufficiently with acetonitrile, and dried at room temperature under reduced pressure to obtain 269 g of bisphenolfluorene-acetonitrile host guest complex crystals. When the crystals were analyzed by gas chromatography, the content of acetonitrile was 10.6% by weight, and it was a complex containing one molecule of acetonitrile per one molecule of bisphenolfluorene.
[0020]
After taking 10.0 g of the obtained bisphenolfluorene-acetonitrile host guest complex crystal and suspending it in 150 ml of hexane, the mixture was heated to a temperature of 57 to 69 ° C. under normal pressure with stirring, and the solvent content was 102 ml. Was distilled off. After the distillation residue was cooled to room temperature, it was subjected to suction filtration. The obtained crystals were washed with hexane and dried under reduced pressure to obtain 8.7 g of bisphenolfluorene crystals. When the crystals were analyzed by gas chromatography, acetonitrile as a guest compound was not detected.
[0021]
[Example 2]
100 g of the bisphenolfluorene-acetonitrile host guest complex crystal obtained in Example 1 was taken, suspended in 250 ml of heptane, and then heated to a temperature of 76 to 99 ° C. under normal pressure while stirring to obtain a solvent. 63 ml were distilled off. After the distillation residue was cooled to room temperature, it was subjected to suction filtration. The obtained crystals were washed with heptane and then dried under reduced pressure to obtain 88 g of bisphenolfluorene crystals. When the crystals were analyzed by gas chromatography, acetonitrile as a guest compound was not detected.
[0022]
[Example 3]
10.1 g of the bisphenolfluorene-acetonitrile host guest complex crystal obtained in Example 1 was taken, suspended in 30 ml of heptane, and then heated to a temperature of 75 to 98 ° C. under normal pressure with stirring. Then, 19 ml of the solvent was distilled off. After cooling to room temperature, the solvent was removed under reduced pressure and the residue was dried to obtain 9.0 g of bisphenolfluorene crystals. When the crystals were analyzed by gas chromatography, acetonitrile as a guest compound was not detected.
[0023]
[Example 4]
10.1 g of the bisphenolfluorene-acetonitrile host guest complex crystal obtained in Example 1 was taken, suspended in 30 ml of octane, and then heated to a temperature of 79 to 126 ° C. under normal pressure while stirring. And 14 ml of the solvent was distilled off. After the distillation residue was cooled to room temperature, it was subjected to suction filtration. The obtained crystals were washed with hexane and then dried under reduced pressure to obtain 8.8 g of bisphenolfluorene crystals. When the crystals were analyzed by gas chromatography, acetonitrile as a guest compound was not detected.
[0024]
[Example 5]
10.0 g of the bisphenolfluorene-acetonitrile host guest complex crystal obtained in Example 1 was taken, suspended in 30 ml of decane, and then heated to a temperature of 80 to 173 ° C. under normal pressure with stirring. Then, 12 ml of the solvent was distilled off. After the distillation residue was cooled to room temperature, it was subjected to suction filtration. The obtained crystals were washed with hexane and then dried under reduced pressure to obtain 8.7 g of bisphenolfluorene crystals. When the crystals were analyzed by gas chromatography, acetonitrile as a guest compound was not detected.
[0025]
[Example 6]
10.0 g of the bisphenolfluorene-acetonitrile host guest complex crystal obtained in Example 1 was taken, suspended in 30 ml of toluene, and then heated to a temperature of 79 to 111 ° C. under normal pressure while stirring. And 13 ml of the solvent was distilled off. During the operation, a precipitate was generated again after the crystals were once dissolved. After the distillation residue was cooled to room temperature, it was subjected to suction filtration. The obtained crystals were washed with hexane and then dried under reduced pressure to obtain 8.3 g of bisphenolfluorene crystals. When the crystals were analyzed by gas chromatography, acetonitrile as a guest compound was not detected.
[0026]
[Example 7]
10.1 g of the bisphenolfluorene-acetonitrile host guest complex crystal obtained in Example 1 was taken, suspended in 30 ml of mixed xylene, and then heated to a temperature of 79 to 139 ° C. under normal pressure with stirring. Then, 13 ml of the solvent was distilled off. During the operation, a precipitate was generated again after the crystals were once dissolved. After the distillation residue was cooled to room temperature, it was subjected to suction filtration. The obtained crystals were washed with hexane and dried under reduced pressure to obtain 8.2 g of bisphenolfluorene crystals. When the crystals were analyzed by gas chromatography, acetonitrile as a guest compound was not detected.
[0027]
Example 8
Of the bisphenolfluorene-acetonitrile host guest complex crystals obtained in Example 1, 10.0 g was taken, suspended in 150 ml of hexane, and heated and stirred at a temperature of 40 to 49 ° C. under a reduced pressure of 400 torr, 104 ml of the solvent was distilled off. After the distillation residue was cooled to room temperature, it was subjected to suction filtration. The obtained crystals were washed with hexane and then dried under reduced pressure to obtain 8.7 g of bisphenolfluorene crystals. When the crystals were analyzed by gas chromatography, acetonitrile as a guest compound was not detected.
[0028]
[Example 9]
Of the bisphenolfluorene-acetonitrile host guest complex crystal obtained in Example 1, 10.0 g was taken, suspended in 30 ml of toluene, and heated and stirred at a temperature of 47 to 56 ° C. under a reduced pressure of 100 torr. 12 ml of the solvent was distilled off. After the distillation residue was cooled to room temperature, it was subjected to suction filtration. The obtained crystals were washed with hexane and dried under reduced pressure to obtain 8.2 g of bisphenolfluorene crystals. When the crystals were analyzed by gas chromatography, acetonitrile as a guest compound was not detected.
[0029]
[Example 10]
In a 2 L four-necked flask equipped with a mechanical stirrer, a reflux condenser, a dropping funnel and a thermometer, 180 g of fluorenone, 756 g of o-cresol and 6 g of β-mercaptopropionic acid were charged and melted by heating and stirring at 55 ° C. While maintaining the reaction temperature at 55 ° C., 135 g of 35% hydrochloric acid was added dropwise over 2 hours, and the mixture was further stirred at 55 ° C. for 8 hours to perform a condensation reaction. After 135 g of water was added to the reaction solution, hydrochloric acid was distilled off under reduced pressure together with a part of cresol. 500 g of acetone was added to the distillation residue, and the mixture was cooled to room temperature with stirring to precipitate crystals of a biscresol fluorene / acetone host guest complex. The obtained crystals were subjected to suction filtration, washed sufficiently with acetone, and then dried under reduced pressure at room temperature to obtain 323 g of biscresol fluorene / acetone host guest complex crystals. When the crystals were analyzed by gas chromatography, the content of acetone was 23.4% by weight, and it was a complex containing one molecule of biscresol fluorene and two molecules of acetone.
[0030]
10.1 g of the obtained biscresol fluorene-acetone host guest complex crystal was taken, suspended in 30 ml of hexane, and then heated to a temperature of 46 to 68 ° C. under normal pressure with stirring to remove the solvent. 12 ml were distilled off. After the distillation residue was cooled to room temperature, it was subjected to suction filtration. The obtained crystals were washed with hexane and dried under reduced pressure to obtain 7.4 g of biscresol fluorene crystals. When the crystals were analyzed by gas chromatography, acetone as a guest compound was not detected.
[0031]
[Example 11]
10.0 g of the biscresol fluorene-acetone host guest complex crystal obtained in Example 10 was taken, suspended in 30 ml of toluene, and then heated to a temperature of 54 to 111 ° C. under normal pressure with stirring. Then, 12 ml of the solvent was distilled off. During the operation, once the crystals were dissolved, a precipitate was generated again. After the distillation residue was cooled to room temperature, it was subjected to suction filtration. The obtained crystals were washed with hexane and then dried under reduced pressure to obtain 7.0 g of biscresol fluorene crystals. When the crystals were analyzed by gas chromatography, acetone as a guest compound was not detected.
[0032]
[Example 12]
10.0 g of the biscresol fluorene-acetone host guest complex crystal obtained in Example 10 was taken, suspended in 30 ml of toluene, and heated and stirred at 45 to 55 ° C. under a reduced pressure of 100 torr. 13 ml were distilled off. After the distillation residue was cooled to room temperature, it was subjected to suction filtration. The obtained crystals were washed with hexane and then dried under reduced pressure to obtain 7.1 g of biscresol fluorene crystals. When the crystals were analyzed by gas chromatography, acetone as a guest compound was not detected.
[0033]
Example 13
In a 2 L four-necked flask equipped with a mechanical stirrer, a reflux condenser, a dropping funnel and a thermometer, 180 g of fluorenone, 756 g of o-cresol and 6 g of β-mercaptopropionic acid were charged and melted by heating and stirring at 55 ° C. While maintaining the reaction temperature at 55 ° C., 135 g of 35% hydrochloric acid was added dropwise over 2 hours, and the mixture was further stirred at 55 ° C. for 8 hours to perform a condensation reaction. After 135 g of water was added to the reaction solution, hydrochloric acid was distilled off under reduced pressure together with a part of cresol. 500 g of methanol was added to the distillation residue, and the mixture was cooled to room temperature with stirring, and crystallized at 10 ° C. for one day to precipitate biscresol fluorene / methanol host guest complex crystals. The obtained crystals were subjected to suction filtration, washed with cold methanol, and dried at room temperature under reduced pressure to obtain 232 g of biscresol fluorene / methanol host guest complex crystals. When the crystals were analyzed by gas chromatography, the content of methanol was 14.5% by weight, and it was a complex containing one molecule of biscresol fluorene and two molecules of methanol.
[0034]
10.0 g of the obtained biscresol fluorene-methanol host guest complex crystal was taken, suspended in 50 ml of hexane, and then heated to a temperature of 47 to 68 ° C. under normal pressure while stirring to remove the solvent. 32 ml were distilled off. After the distillation residue was cooled to room temperature, it was subjected to suction filtration. The obtained crystals were washed with hexane and dried under reduced pressure to obtain 8.4 g of biscresol fluorene crystals. When the crystals were analyzed by gas chromatography, the guest compound, methanol, was not detected.
[0035]
[Comparative Example 1]
By the same operation as in Example 1, 274 g of bisphenolfluorene-acetonitrile host guest complex crystal containing 10.6% by weight of acetonitrile was obtained. 200 g of the host guest complex crystal was placed in a 2 L separable flask, and heated on an oil bath at 120 ° C. for 6 hours under a reduced pressure of 5 torr to decompose the host guest complex crystal and dry under reduced pressure. At this time, the crystals were analyzed by gas chromatography and found to contain 1.2% by weight of acetonitrile. The content of acetonitrile in the crystals after continuous treatment for 12 hours under the same conditions was 0.5% by weight.
[0036]
【The invention's effect】
According to the method of the present invention, bisphenolfluorenes can be easily recovered from a host guest complex having bisphenolfluorenes as a host compound without requiring special equipment. As a result, bisphenol fluorenes of good quality can be efficiently obtained.

Claims (7)

下記式1で示されるビスフェノールフルオレン類をホスト化合物としたホストゲスト錯体から、該錯体に含まれるゲスト化合物を除去して、ビスフェノールフルオレン類を回収する際に、炭化水素溶媒中で上記ホストゲスト錯体の分解または溶解を行い、放出されるゲスト化合物を蒸留除去することを特徴とするビスフェノールフルオレン類の回収方法。
Figure 2004091414
When removing the guest compound contained in the host guest complex using the bisphenol fluorenes represented by the following formula 1 as a host compound and recovering the bisphenol fluorenes, the host guest complex of the host guest complex is removed in a hydrocarbon solvent. A method for recovering bisphenolfluorenes, which comprises decomposing or dissolving and distilling out released guest compounds.
Figure 2004091414
ビスフェノールフルオレン類が、ビスフェノールフルオレンまたはビスクレゾールフルオレンである請求項1に記載のビスフェノールフルオレン類の回収方法。The method for recovering bisphenol fluorenes according to claim 1, wherein the bisphenol fluorene is bisphenol fluorene or biscresol fluorene. ゲスト化合物が、アセトニトリル、アセトンまたは炭素数1ないし4のアルコールである請求項1に記載のビスフェノールフルオレン類の回収方法。The method for recovering bisphenolfluorenes according to claim 1, wherein the guest compound is acetonitrile, acetone or an alcohol having 1 to 4 carbon atoms. 炭化水素溶媒が、ベンゼン、トルエン、キシレン、ヘキサン、ヘプタン、オクタンおよびデカンの中より選ばれる少なくとも1種である請求項1に記載のビスフェノールフルオレン類の回収方法。The method for recovering bisphenol fluorenes according to claim 1, wherein the hydrocarbon solvent is at least one selected from benzene, toluene, xylene, hexane, heptane, octane, and decane. ホストゲスト錯体の分解または溶解の温度が、常温ないし200℃の範囲である請求項1に記載のビスフェノールフルオレン類の回収方法。The method for recovering bisphenol fluorenes according to claim 1, wherein the temperature of decomposition or dissolution of the host guest complex is in the range of room temperature to 200 ° C. ホストゲスト錯体の分解または溶解、ならびにゲスト化合物の蒸留除去時の圧力が、常圧である請求項1に記載のビスフェノールフルオレン類の回収方法。The method for recovering bisphenol fluorenes according to claim 1, wherein the pressure at which the host guest complex is decomposed or dissolved and the guest compound is removed by distillation at normal pressure. ゲスト化合物の蒸留除去を、炭化水素溶媒の一部とともに行う請求項1に記載のビスフェノールフルオレン類の回収方法。The method for recovering bisphenolfluorenes according to claim 1, wherein the guest compound is removed by distillation together with a part of the hydrocarbon solvent.
JP2002256589A 2002-09-02 2002-09-02 Method for recovering bisphenolfluorenes Expired - Lifetime JP4219643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256589A JP4219643B2 (en) 2002-09-02 2002-09-02 Method for recovering bisphenolfluorenes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256589A JP4219643B2 (en) 2002-09-02 2002-09-02 Method for recovering bisphenolfluorenes

Publications (2)

Publication Number Publication Date
JP2004091414A true JP2004091414A (en) 2004-03-25
JP4219643B2 JP4219643B2 (en) 2009-02-04

Family

ID=32061771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256589A Expired - Lifetime JP4219643B2 (en) 2002-09-02 2002-09-02 Method for recovering bisphenolfluorenes

Country Status (1)

Country Link
JP (1) JP4219643B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149553A (en) * 2007-12-20 2009-07-09 Osaka Gas Co Ltd Method of preparing 9,9-bis(carboxyaryl)fluorene and its ester
JP2009234998A (en) * 2008-03-27 2009-10-15 Osaka Gas Co Ltd Clathrate compound that uses compound comprising fluorene skeleton
JP2010248176A (en) * 2009-03-23 2010-11-04 Honshu Chem Ind Co Ltd Method for producing 9,9-bis(4-hydroxyphenyl)fluorene
JP2015218220A (en) * 2014-05-15 2015-12-07 帝人株式会社 Polycarbonate resin and optical film
JP2016204271A (en) * 2015-04-16 2016-12-08 田岡化学工業株式会社 Method for recovering bisphenol fluorenes from resin including fluorene structure
JP2018009037A (en) * 2016-05-19 2018-01-18 田岡化学工業株式会社 Alcohol compound having fluorene skeleton
JP2018076245A (en) * 2016-11-08 2018-05-17 田岡化学工業株式会社 Purification method of dihydroxy compound having fluorene skeleton

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149553A (en) * 2007-12-20 2009-07-09 Osaka Gas Co Ltd Method of preparing 9,9-bis(carboxyaryl)fluorene and its ester
JP2009234998A (en) * 2008-03-27 2009-10-15 Osaka Gas Co Ltd Clathrate compound that uses compound comprising fluorene skeleton
JP2010248176A (en) * 2009-03-23 2010-11-04 Honshu Chem Ind Co Ltd Method for producing 9,9-bis(4-hydroxyphenyl)fluorene
JP2015218220A (en) * 2014-05-15 2015-12-07 帝人株式会社 Polycarbonate resin and optical film
JP2016204271A (en) * 2015-04-16 2016-12-08 田岡化学工業株式会社 Method for recovering bisphenol fluorenes from resin including fluorene structure
JP2018009037A (en) * 2016-05-19 2018-01-18 田岡化学工業株式会社 Alcohol compound having fluorene skeleton
JP2018076245A (en) * 2016-11-08 2018-05-17 田岡化学工業株式会社 Purification method of dihydroxy compound having fluorene skeleton

Also Published As

Publication number Publication date
JP4219643B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP4219643B2 (en) Method for recovering bisphenolfluorenes
JP2006143703A (en) Production method of 2,2&#39;-bis(trifluoromethyl)-4,4&#39;-diaminobiphenyl
JP2004137201A (en) Method for refining fluorenylidenediallylphenol
WO2009142206A1 (en) Process for producing laurolactam
JP3480825B2 (en) Purification method of 1,1,1,5,5,5-hexafluoroacetylacetone
JPH0248543A (en) Purification of p,p&#39;-biphenol
JPS5949217B2 (en) Method for producing substituted diphenyl ether
JP5188475B2 (en) Process for producing 2- (3-nitrobenzylidene) isopropyl acetoacetate
WO2023234158A1 (en) Crystal of 4,4&#39;-bis(1,1-bis(4-hydroxy-3-methylphenyl)ethyl)biphenyl and method for producing same
JP4008803B2 (en) Method for recovering acrylic acid
JP4034977B2 (en) Separation and purification method for alkylphenols
EP0943598B1 (en) Process for the separation and purification of xylenol isomers
JP3779087B2 (en) Separation and purification method of xylenol isomers
JP2003327554A (en) 3,3&#39;,5,5&#39;-tetramethyl-4,4&#39;-biphenol and method for producing the same
JP4127017B2 (en) Method for producing benzylcarbazate compound
JPH09124530A (en) Production of 9,9-bis(hydroxyaryl)fluorene
US20050165258A1 (en) Method of producing pure 1,1-bis-(4-hydroxyphenyl)-3,3,5- trimethylcyclohexane
US3842115A (en) Process for purifying diaminomaleonitrile
JP4017418B2 (en) Separation and purification method for alkylphenols
JPH08217713A (en) Production of bisphenols
JPH02172940A (en) Production of p-hydroxybenzaldehyde
JP2750761B2 (en) Separation method of substituted aromatic isomers using inclusion complex
JP2004002466A (en) Method for purification of 1, 1, 1, 5, 5, 5-hexafluoro acetylacetone dihydrate
JP3561372B2 (en) Method for recovering p-ethylphenol
JP2003238522A (en) Purification of crude sulfonic anhydride and sulfonic anhydride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4219643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term