JP2004090368A - Mold for molding foaming resin - Google Patents
Mold for molding foaming resin Download PDFInfo
- Publication number
- JP2004090368A JP2004090368A JP2002253936A JP2002253936A JP2004090368A JP 2004090368 A JP2004090368 A JP 2004090368A JP 2002253936 A JP2002253936 A JP 2002253936A JP 2002253936 A JP2002253936 A JP 2002253936A JP 2004090368 A JP2004090368 A JP 2004090368A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- back plate
- insulating material
- heat insulating
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は一対の成形型内で発泡性樹脂粒子を蒸気と接触させて発泡樹脂成形品を製造するための発泡樹脂成形型に関し、特に使用蒸気量を削減し得る発泡樹脂成形型の改良に関する。
【0002】
【従来の技術】
発泡性樹脂粒子(発泡ビーズ、ビーズなどとも称される)を用いる型内成形法の成形工程は、第1の成形型と第2の成形型とを合わせて形成される成形型の空間部分(キャビティ)に原料の発泡性樹脂粒子を充填し、水蒸気を蒸気室(フレームとバックプレートと成形型で囲まれた空間)内及び成形型に設けられた蒸気穴などを通して発泡粒子に供給して加熱し、その後冷却水を蒸気室に供給し成形型を冷却し、その後、蒸気室内を減圧状態にして成形型やフレーム、バックプレートに付着している蒸気ドレン水や冷却水を蒸発させ、その気化熱で更に成形型を冷却し、その後成形された製品を成形型から取り出す、各工程を備えている。この成形時に使用される蒸気のうち80〜90%は、成形型、フレーム、バックプレート及びその他部品を加熱することに消費されている。そこで、この成形型などの加熱に消費される蒸気を削減する技術が従来から研究され、いくつかの提案もなされている。
発泡性樹脂粒子の型内成形で使用する成形型は、構造上大きく2つに分けられる。1つは製品の形を形成する成形型、1つはその成形型を固定し蒸気室を構成するフレーム、バックプレートである。加熱負荷=材料の比熱×材料の重量×最高、最低の温度差で求められるため、加熱用蒸気を削減する方法は(1)成形型、フレーム、バックプレートの重量を軽くし加熱負荷を小さくする(2)フレーム、バックプレートを蒸気室側で断熱しそれらの最高、最低の温度差を極力小さくする。(3)成形型の最低温度すなわち製品を成形型から取り出すときの温度を極力高くすることが考えられる。
【0003】
発泡樹脂成形型において使用蒸気量の削減を図った従来技術として、例えば次の提案がある。
▲1▼実公昭61−7073号公報には、バックプレートの前方に間隔を設けてステンレス薄板よりなる遮蔽板を設け、バックプレートと成形型との空間(蒸気室)を仕切った構造を有する発泡成形機における蒸気室が開示されている。同公報には、該構造によってバックプレートが冷却水により冷却されなくなり、加熱時の蒸気量を節約できる旨が記載されている。
▲2▼特開昭57−68322号公報には、断熱遮蔽板を上方側では型部材と密着固定し、下方側では型部材との間に隙間を設け、該隙間内に侵入した水を下方へ流出させるように設けて構成した発泡成形用型が開示されている。この断熱遮蔽板としてはFRP板、ゴム板またはフッ素樹脂板等が用いられる。
▲3▼実開昭58−15024号公報には、蒸気室内にバックプレート内面との間に若干の隙間を残して遮蔽板を設けた発泡樹脂成形機が開示されている。
▲4▼特開平5−212810号公報には、成形型とフレームを取り付ける面に断熱接続板を挿入して、フレームからの伝熱を防ぎ、成形型の冷却及び加熱を促進する型内発泡成形機の金型断熱構造が開示されている。また同公報の段落番号0033には、金型内側にゴムライニングなどの防熱加工することは公知技術である旨が記載されている。
▲5▼特開平8−142091号公報には、前記▲1▼と同様にバックプレートの前方に間隔をおいて飛散防止プレートを設けた合成樹脂の発泡成形用金型が開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来技術には次のような問題があった。
▲1▼の従来技術は、バックプレートと遮蔽板との間は空間があるため、バックプレートに対して断熱にはならない。又、バックプレートには加熱時、原料の発泡性樹脂粒子が更に膨張しようとするため成形型がバックプレート側に膨らむのを防ぐため、成形型からバックプレートに対しサポートを当てる必要がある。つまり、バックプレートと成形型の間に空間を遮蔽するように置かれた遮蔽板には必ずこのサポートが通過するための貫通穴が必要となる。しかし、成形しようとする形状は千差万別であり、サポートの位置、数量も千差万別となり、その結果成形型毎に遮蔽板が必要となって、コストアップにつながる。また、成形型組み替え作業の工数が増加することになる。なお、通常フレームとコア側バックプレートは共通で使用する。
▲2▼の従来技術は、フレームの下部側は隙間をあける点では▲1▼と同じである。上部側はバックプレートに密着させるが、断熱遮蔽板がFRP板、ゴム板又はフッ素樹脂板等、軟質の物であるため、上記のサポートを直接これらに当てることができず、開口加工が必要な点も▲1▼と同じである。
▲3▼の従来技術は▲1▼と同じく、バックプレートと遮蔽板との間は空間があるため、十分な断熱効果は得られず、また成形型毎に遮蔽板が必要であり、コストアップ及び作業工数の増加を生じる問題がある。
▲4▼の従来技術は、フレームなどの熱を成形型に伝熱させないための方策であり、それによって削減される蒸気量は僅かである。また▲4▼には金型内側にゴムライニングなどの防熱加工することは公知技術である旨が記載されているが、後述する実施例に比較例2として記載した如く、成形型内面にゴムライニングを施しても十分な蒸気量削減効果は得られない。
▲5▼の従来技術は▲1▼と同じく、バックプレートと遮蔽板との間は空間があるため、十分な断熱効果は得られず、また成形型毎に遮蔽板が必要であり、コストアップ及び作業工数の増加を生じる問題がある。
さらに、上述した従来技術▲1▼〜▲5▼に共通する問題として、成形型はバックプレートに対し支持部材である複数のサポートを介して固定されており、該サポートを通じてバックプレートに伝熱されることにより、遮蔽板等のそれぞれの断熱効果が減少されてしまう問題がある。
【0005】
本発明は前記事情に鑑みてなされたもので、成形に必要な蒸気を削減できる発泡樹脂成形型の提供を目的とする。
【0006】
【課題を解決するための手段】
前記目的を達成するために、本発明は、複数の蒸気穴が設けられた第1の成形型と第2の成形型とを備え、これら第1と第2の成形型を合わせて形成されるキャビティに発泡性樹脂粒子を充填し、前記複数の蒸気穴を介して該発泡性樹脂粒子に蒸気を接触させ、発泡樹脂成形品を作製する発泡樹脂成形型において、成形型のサポートとバックプレートとの間に、耐湿性の硬質材料からなる保護材と耐圧縮性断熱材料からなる断熱材とを積層したことを特徴とする発泡樹脂成形型を提供する。
本発明の発泡樹脂成形型において、前記断熱材は、断熱材の圧縮歪み量をt’(mm)、発泡樹脂成形品の底部分の肉厚をT(mm)としたとき、t’/T≦0.05の関係を満たすものが好ましい。
また前記保護材と断熱材とが、その周囲をバックプレートに密着固定し、かつサポート当接部分でサポートとバックプレート間に挟まれた状態で取り付けることが好ましい。
【0007】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
図1は本発明の発泡樹脂成形型の一実施形態を示すものであり、図中符号1は発泡樹脂成形型である。
この発泡樹脂成形型1は、複数の蒸気穴(図示略)が設けられた第1の成形型2と第2の成形型3とを備え、これら第1と第2の成形型2,3を合わせて形成されるキャビティ4に発泡性樹脂粒子を充填し、前記複数の蒸気穴を介して該発泡性樹脂粒子に蒸気を接触させ、発泡樹脂成形品を作製するためのものであり、第1と第2の成形型2,3のサポート5とバックプレート6との間に、耐湿性の硬質材料からなる保護材7と断熱材8とを積層した構成になっている。
【0008】
第1の成形型2および第2の成形型3は、それぞれの端部をフレーム12,13の端部に固定用ボルト14を締結することによって接合されている。またこれらのフレーム12,13の他端側には、第1の成形型2および第2の成形型3の外面側を覆うバックプレート6の端部が固定用ボルト14を締結することによって接合されている。第1の成形型2とその外側のバックプレート6との間、および第2の成形型3とその外側のバックプレート6との間には、複数のサポート5を設け、第1の成形型2および第2の成形型3とを支持している。
【0009】
第2の成形型3には、バックプレート6と第2の成形型3を貫通して発泡性樹脂粒子をキャビティ4内に供給するフィーダー10の供給路が接続されている。また第2の成形型3にはエジェクトピン11が接合されている。
第1の成形型2とバックプレート6との間の空間、および第2の成形型3とバックプレート6との間の空間は、成形時に蒸気が供給される蒸気室9になっている。
【0010】
バックプレート6とサポート5の間に積層された保護材7と断熱材8のうち、保護材7は、耐水性があり、吸水性のない硬質材料で、好ましくは撥水性を有する板状材料が好ましく、例えば金属板、セラミック板、ポリイミドフィルムなどの耐熱性硬質プラスチックフィルムなどが用いられ、特にステンレス鋼板、アルミニウム板またはアルミニウム合金、銅板または銅合金板などの金属板が好ましい。使用する保護材7の厚みは、サポート5に接する部分で変形を起こさないような強度が得られる程度とされる。
【0011】
また前記断熱材8は耐圧縮性断熱材料からなり、断熱材の圧縮歪み量をt’(mm)、発泡樹脂成形品の底部分の肉厚をT(mm)としたとき、t’/T≦0.05の関係を満たすものが好ましく、具体的にはアスベストシート、ガラス繊維強化プラスチック、ロックウールなどを挙げることができる。この断熱材8として好適な市販品を例示すれば、日本バルカー社製の商品No.#1500、アスベスト製ジョイントシート(板厚1mm)などである。また、t’は応力255kgf/cm2における断熱材の歪み量(mm)である。t’/Tが0.05を越えると、サポート5による第1,第2の成形型2,3の成形型の位置調整が困難になり、成形型が歪んで目的の形状や寸法の成形品が得られなくなるおそれがある。さらに好ましくは、t’/T≦0.025である。
【0012】
これらの保護材7および断熱材8は、フレーム12,13とバックプレート6とを接合するために元々使用している固定用ボルト14を使って両者間に挟み込むようにして取り付けることが望ましい。このように既存の固定用ボルト14を用いて保護材7および断熱材8を取り付けることによって、特別な取付構造や固定部材が不要となり、既存の発泡樹脂成形型に簡単に取り付けることができる。
【0013】
本実施形態の発泡樹脂成形型1は、第1の成形型2と第2の成形型3とを合わせて形成されるキャビティ4に原料の発泡性樹脂粒子を充填し、水蒸気を蒸気室9内及び第1、第2の成形型2,3に設けられた蒸気穴などを通して発泡性樹脂粒子に供給して加熱し、その後冷却水を蒸気室9に供給し第1、第2の成形型2,3を冷却し、その後、蒸気室9内を減圧状態にして第1、第2の成形型2,3やフレーム12,13、バックプレート6に付着している蒸気ドレン水や冷却水を蒸発させ、その気化熱で更に第1、第2の成形型2,3を冷却し、その後成形された製品を取り出す各工程を経て、発泡樹脂成形品を製造することができる。
【0014】
発泡性樹脂粒子は、発泡剤を含有させた合成樹脂粒子を予備発泡させて得られるものであり、この合成樹脂粒子を構成する合成樹脂としては、従来から発泡樹脂成形品製造のために用いられている樹脂材料の中から適宜選択して用いることができ、特に限定されず、例えば、ポリスチレン、ハイインパクトポリスチレン、スチレン−無水マレイン酸共重合体、スチレン−アクリロニトリル共重合体等のポリスチレン系樹脂、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体等のポリオレフィン系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂等を挙げることができ、強度と成形性の良さからポリスチレン系樹脂が好ましい。
【0015】
また、上記発泡剤としては、沸点が合成樹脂の軟化点以下であって、常圧でガス状もしくは液状の有機化合物が適しており、例えば、プロパン、ブタン、ペンタン、シクロペンタン、シクロペンタジエン、ヘキサン、石油エーテル等の炭化水素、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテル等の低沸点のエーテル化合物、炭酸ガス、窒素等の無機ガス等が用いられる。これらの発泡剤は、一種のみを使用してもよく、また、二種以上を併用してもよい。
発泡剤の含有率としては、合成樹脂粒子重量に対して1〜20重量%、好ましくは2〜10重量%である。発泡剤の含有量が上記範囲を下回ると、発泡成形品の発泡倍率が不十分で軽量発泡体が得られない。一方、発泡剤の含有量が上記範囲を超えても、発泡倍率の更なる上昇は実質的に見込めず、また発泡が不安定になり好ましくない。
【0016】
本実施形態の発泡樹脂成形型は、サポート5とバックプレート6との間に保護材7と断熱材8とを積層して配置したものなので、バックプレート6を断熱でき、さらにサポート5が直接バックプレート6に当たらないため、サポート5からバックプレート6への伝熱が遮断され、蒸気室9の断熱性が高くなり、成形時の使用蒸気量を削減できる。
また、保護材7の表面は平滑であり、蒸気ドレンおよび冷却水が該表面から落ち易く、真空放冷時に付着水の蒸発潜熱が小さくなり無駄な冷却が抑えられる。さらに、保護材7がサポート5当接時に断熱材8を破れ、傷付きなどから保護するので、断熱材8の長寿命化を図ることができる。
また、バックプレート6の表面に断熱材8と保護材7を積層し、該保護材7に直接サポートを当てることができるため、これらを一度取り付ければ、第1、第2の成形型2,3を交換する際に、この断熱材8と保護材7を取り付けたバックプレート6は共通使用でき、無駄な交換作業が不要となる。また従来技術において用いているような遮蔽板は不要となり、第1、第2の成形型2,3交換時に遮蔽板をつけ替える余分な操作が不要となる。
さらに、サポート5とバックプレート6との間に保護材7と断熱材8とを挟み込んで取り付ける場合、保護材7と断熱材8との周囲のみ密着固定するため、これらの中央部分では、バックプレート6と断熱材8の間および断熱材8と保護材7との間に若干の空気層が形成されるため、断熱材8のみの断熱効果を上回る断熱効果が得られる。
以下、実施例により本発明の効果を実証する。
【0017】
【実施例】
(実施例)
本発明に係る発泡樹脂成形型の実施例として、図1に示すように、各フレーム12,13とバックプレート6,6との間に、厚さ1mmのステンレス鋼板からなる保護板7と、厚さ1mmのアスベスト製のジョイントプレート(日本バルカー社製の商品No.#1500)からなる断熱材8を積層したものを挟み込んで、各フレーム12,13とバックプレート6,6を固定用ボルト14で固定することによって取り付けた発泡樹脂成形型1を用いた。サポート5は保護材に直接当てて取り付けた。
【0018】
(比較例1)
図2に示すように、保護材と断熱材を用いることなく、バックプレート6,6にサポート5を直接当てて取り付けた発泡樹脂成形型A(従来のバックプレート)を用いた。
【0019】
(比較例2)
図3に示すように、バックプレート6,6の内面に厚さ4mmのゴムライニング15を設けた発泡樹脂成形型Bを用いた。ただし、サポート5が当接する部分はゴムライニング15を設けず、バックプレート6,6にサポート5を直接当てて取り付けた。
【0020】
これらの実施例および比較例1〜2の各発泡樹脂成形型を用い、ポリスチレン樹脂からなる発泡樹脂成形品を製造し、バックプレート6の温度(℃)、使用した蒸気量(kg/shot)、断熱材の歪み量t’(mm)、成形品の底部分の肉厚T(mm)を測定し、比較評価した。その結果を表1にまとめて記す。
【0021】
【表1】
【0022】
表1から、本発明に係る実施例の発泡樹脂成形型は、比較例1〜2の発泡樹脂成形型に比べて優れた断熱効果が得られ、使用蒸気量が削減できることが確認された。
【0023】
(断熱材圧縮試験)
汎用のポリスチレン製発泡樹脂成形品の製造に使用している通常の発泡樹脂成形機において、サポートの本数は20から30本程度であり、またφ25のサポートであれば、一本当たり255kg/cm2〜170kg/cm2程度の圧縮力を受けることになる。荷重を受けているのは、1サイクル120秒のうち、約80秒程度であり、残る40秒は開放状態となる。本発明の発泡樹脂成形型のように、バックプレートとサポートの間に断熱材と保護材を積層して設けた構造では、断熱材に耐圧縮性が無いと、サポートに当たる部分の断熱材が容易に変形してしまい、サポートによる第1,第2の成形型の位置調整ができなくなり、成形型が歪んで目的の形状や寸法の成形品が得られなくなる。したがって、本発明では耐圧縮性を有する断熱材を用いる必要がある。
本発明において断熱材として用いるアスベストと、比較のために従来技術において断熱材として用いられるゴム板との圧縮応力と歪み量の測定を行った。測定にはオリエンテック社製テンシロンUCT−5Tを用い、ロードセルはオリエンテック社製TYPE UF−5 Cap.5tf SER.NO.049539を用いた。試験環境は温度25℃、湿度50RH%である。
【0024】
▲1▼アスベスト製のジョイントシート、板厚1mm(日本バルカー社製の商品No.#1500)(表2中「アスベストシート」と記す):板厚12mm、20cm角のアルミニウム板(バックプレートに使用するものと同じ材質A5052)に上記アスベストシートを載せ、サポート材に使用する直径25mm、長さ37mmのアルミニウム製丸棒(材質A5052)をロードセルとシートの間に挟み、圧縮試験を行った。
【0025】
▲2▼ゴム板、板厚4mm:
上記▲1▼と同じアルミニウム板に、成形型のバックプレートに施すゴムライニング(ゴムの板厚4mm)と同じ施工を施したものを、上記▲1▼と同じ要領で圧縮試験を行った。
上記▲1▼、▲2▼について、応力255kgf/cm2における断熱材の歪み量(mm)を測定し、その結果を次の表2に記す。また、▲1▼、▲2▼の断熱材の熱伝導率λ(W/m・k)も表2に記す。
【0026】
【表2】
【0027】
表2の結果より、アスベストシートは従来のゴムライニングと比べて圧縮時の歪みが小さく、本発明の断熱材として好適であることが判る。一方、ゴム板は歪み量が大きく、本発明のようにバックプレートとサポートとの間に断熱材と保護材を積層して設ける構造では、圧縮付加時に変形量が大きく、成形品の変形や寸法変化を生じる可能性があることから、本発明に用いる断熱材として不適であった。
【0028】
【発明の効果】
本発明の発泡樹脂成形型は、サポートとバックプレートとの間に保護材と断熱材とを積層して配置したものなので、バックプレートを断熱でき、さらにサポートが直接バックプレートに当たらないため、サポートからバックプレートへの伝熱が遮断され、蒸気室の断熱性が高くなり、成形時の使用蒸気量を削減できる。また、保護材の表面は平滑であり、蒸気ドレンおよび冷却水が該表面から落ち易く、真空放冷時に付着水の蒸発潜熱が小さくなり無駄な冷却が抑えられる。
さらに、保護材がサポート当接時に断熱材を破れ、傷付きなどから保護するので、断熱材の長寿命化を図ることができる。
また、バックプレートの表面に断熱材と保護材を積層し、該保護材に直接サポートを当てることができるため、これらを一度取り付ければ、第1、第2の成形型を交換する際に、この断熱材と保護材を取り付けたバックプレートは共通使用でき、無駄な交換作業が不要となる。また従来技術において用いているような遮蔽板は不要となり、第1、第2の成形型交換時に遮蔽板をつけ替える余分な操作が不要となる。
さらに、サポートとバックプレートとの間に保護材と断熱材とを挟み込んで取り付ける場合、保護材と断熱材との周囲のみ密着固定するため、これらの中央部分では、バックプレートと断熱材の間および断熱材と保護材との間に若干の空気層が形成されるため、断熱材のみの断熱効果を上回る断熱効果が得られる。
【図面の簡単な説明】
【図1】本発明の発泡樹脂成形型の一実施形態を示す要部断面図である。
【図2】実施例において比較のために用いた比較例1の発泡樹脂成形型の構造を示す要部断面図である。
【図3】実施例において比較のために用いた比較例2の発泡樹脂成形型の構造を示す要部断面図である。
【符号の説明】
1 発泡樹脂成形型
2 第1の成形型
3 第2の成形型
4 キャビティ
5 サポート
6 バックプレート
7 保護材
8 断熱材
9 蒸気室
12,13 フレーム
14 固定用ボルト[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a foamed resin mold for producing foamed resin molded articles by bringing foamable resin particles into contact with steam in a pair of molds, and more particularly to an improvement in a foamed resin mold capable of reducing the amount of steam used.
[0002]
[Prior art]
In the molding step of the in-mold molding method using the expandable resin particles (also referred to as expanded beads, beads, or the like), a molding process is performed by combining a first molding die and a second molding die together with a space portion ( Cavity) is filled with foamable resin particles as a raw material, and steam is supplied to the foamed particles through a steam chamber (a space surrounded by a frame, a back plate, and a mold) and steam holes provided in the mold to be heated. After that, cooling water is supplied to the steam chamber to cool the mold, and then the steam chamber is depressurized to evaporate steam drain water and cooling water adhering to the mold, frame, and back plate, and vaporize the steam. The method further comprises the steps of further cooling the mold with heat and then removing the molded product from the mold. 80-90% of the steam used during the molding is consumed for heating the mold, frame, back plate and other parts. Therefore, techniques for reducing the steam consumed for heating the mold and the like have been conventionally studied, and some proposals have been made.
The mold used for in-mold molding of the expandable resin particles is roughly divided into two structurally. One is a mold for forming the shape of a product, and the other is a frame and a back plate that fix the mold and constitute a steam chamber. Heating load = Specific heat of material × Weight of material × Maximum and minimum temperature difference. Therefore, the method for reducing the heating steam is as follows: (1) Reduce the weight of the mold, frame, and back plate to reduce the heating load (2) Insulate the frame and back plate on the steam chamber side to minimize the maximum and minimum temperature difference between them. (3) It is conceivable to raise the minimum temperature of the mold, that is, the temperature at which the product is taken out of the mold as much as possible.
[0003]
As a conventional technique for reducing the amount of steam used in a foamed resin mold, for example, there is the following proposal.
(1) Japanese Utility Model Publication No. Sho 61-7073 discloses a foam having a structure in which a shielding plate made of a stainless steel thin plate is provided at an interval in front of a back plate to separate a space (steam chamber) between the back plate and a molding die. A steam chamber in a molding machine is disclosed. The publication discloses that the back plate is not cooled by the cooling water due to the structure, and the amount of steam during heating can be saved.
(2) JP-A-57-68322 discloses that a heat insulating shielding plate is fixed in close contact with a mold member on the upper side, a gap is provided between the mold member on the lower side, and water that has entered the gap is lowered. There is disclosed a foaming mold that is provided so as to flow out. An FRP plate, a rubber plate, a fluororesin plate, or the like is used as the heat insulation shielding plate.
(3) JP-A-58-15024 discloses a foamed resin molding machine in which a shielding plate is provided in a steam chamber with a slight gap left between the inner surface of a back plate and the steam chamber.
(4) JP-A-5-212810 discloses an in-mold foam molding in which a heat-insulating connecting plate is inserted into a surface where a molding die and a frame are attached to prevent heat transfer from the frame and promote cooling and heating of the molding die. A mold insulation structure for a machine is disclosed. Paragraph No. 0033 of the publication discloses that it is a known technique to heat-insulate the inside of a mold with a rubber lining or the like.
{Circle around (5)} Japanese Patent Application Laid-Open No. 8-142091 discloses a foaming mold for synthetic resin in which a scattering prevention plate is provided in front of a back plate at an interval in the same manner as in the above <1>.
[0004]
[Problems to be solved by the invention]
However, the above-described prior art has the following problems.
In the prior art (1), since there is a space between the back plate and the shielding plate, the back plate is not insulated. In addition, it is necessary to apply a support from the mold to the back plate in order to prevent the mold from expanding toward the back plate because the foamable resin particles of the raw material further expand on the back plate during heating. That is, the shielding plate placed so as to shield the space between the back plate and the mold always needs a through hole for the support to pass through. However, the shapes to be molded vary widely, and the positions and quantities of the supports vary widely. As a result, a shielding plate is required for each molding die, leading to an increase in cost. In addition, the man-hour for the work of changing the mold is increased. The frame and the core-side back plate are commonly used.
The prior art (2) is the same as (1) in that a gap is provided on the lower side of the frame. The upper side is closely attached to the back plate, but since the heat insulating shielding plate is a soft material such as an FRP plate, a rubber plate or a fluororesin plate, the above support cannot be directly applied to these, and an opening process is required. The points are the same as (1).
In the conventional technology of (3), as in (1), there is a space between the back plate and the shielding plate, so that a sufficient heat insulating effect cannot be obtained, and a shielding plate is required for each molding die, thereby increasing costs. In addition, there is a problem that the number of work steps increases.
The prior art of (4) is a measure for preventing the heat of the frame or the like from being transferred to the mold, and the amount of steam reduced by this is small. Also, (4) describes that it is a known technique to heat-insulate the inside of the mold with rubber lining or the like. However, as described in Comparative Example 2 in Examples described later, rubber lining is applied to the inner surface of the mold. Does not provide a sufficient effect of reducing the amount of steam.
In the conventional technology of (5), as in (1), there is a space between the back plate and the shielding plate, so that a sufficient heat insulating effect cannot be obtained, and a shielding plate is required for each molding die, thereby increasing costs. In addition, there is a problem that the number of work steps increases.
Further, as a problem common to the above-described prior arts (1) to (5), the molding die is fixed to the back plate via a plurality of supports serving as support members, and heat is transferred to the back plate through the supports. As a result, there is a problem that the heat insulation effect of each of the shielding plates and the like is reduced.
[0005]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a foamed resin mold capable of reducing steam required for molding.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention includes a first mold and a second mold provided with a plurality of steam holes, and is formed by combining the first and second molds. Filling the cavity with expandable resin particles, contacting the expandable resin particles with steam through the plurality of steam holes, and forming a foamed resin molded product in a foamed resin mold, a support for the mold and a back plate. The present invention provides a foamed resin mold characterized by laminating a protective material made of a moisture-resistant hard material and a heat-insulating material made of a compression-resistant heat-insulating material.
In the foamed resin molding die of the present invention, the heat insulating material is represented by t ′ / T, where t ′ (mm) is the amount of compressive strain of the heat insulating material, and T (mm) is the thickness of the bottom portion of the foamed resin molded product. Those satisfying the relationship of ≦ 0.05 are preferred.
Further, it is preferable that the protective material and the heat insulating material are fixed in a state in which the periphery thereof is tightly fixed to the back plate, and is attached with the support abutting portion sandwiched between the support and the back plate.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of a foamed resin mold according to the present invention. In the figure,
This foamed resin molding die 1 includes a first molding die 2 and a second molding die 3 provided with a plurality of steam holes (not shown), and these first and second molding dies 2 and 3 are provided. The cavity 4 formed together is filled with foamable resin particles, and steam is brought into contact with the foamable resin particles through the plurality of steam holes to produce a foamed resin molded product. A
[0008]
The first molding die 2 and the second molding die 3 are joined by fastening fixing
[0009]
The second molding die 3 is connected to a supply path of a
The space between the
[0010]
Among the
[0011]
The
[0012]
The
[0013]
In the foamed resin molding die 1 of the present embodiment, a cavity 4 formed by combining the first molding die 2 and the second molding die 3 is filled with foamable resin particles as a raw material, and steam is supplied into the
[0014]
Expandable resin particles are obtained by pre-expanding synthetic resin particles containing a foaming agent.The synthetic resin constituting the synthetic resin particles has been conventionally used for the production of foamed resin molded products. It can be appropriately selected from among the resin materials that are used, is not particularly limited, for example, polystyrene resins such as polystyrene, high impact polystyrene, styrene-maleic anhydride copolymer, styrene-acrylonitrile copolymer, Examples thereof include polyolefin resins such as polyethylene, polypropylene, and ethylene-vinyl acetate copolymer, and polyester resins such as polyethylene terephthalate. Polystyrene resins are preferable from the viewpoint of strength and moldability.
[0015]
Further, as the foaming agent, a gaseous or liquid organic compound having a boiling point equal to or lower than the softening point of the synthetic resin at normal pressure is suitable, for example, propane, butane, pentane, cyclopentane, cyclopentadiene, and hexane. For example, hydrocarbons such as petroleum ether, low-boiling ether compounds such as dimethyl ether, diethyl ether, dipropyl ether and methyl ethyl ether, and inorganic gases such as carbon dioxide and nitrogen are used. These foaming agents may be used alone or in combination of two or more.
The content of the foaming agent is 1 to 20% by weight, preferably 2 to 10% by weight, based on the weight of the synthetic resin particles. When the content of the foaming agent is less than the above range, the foaming ratio of the foamed molded product is insufficient and a lightweight foam cannot be obtained. On the other hand, if the content of the foaming agent exceeds the above range, further increase in the foaming ratio cannot be substantially expected, and foaming becomes unstable, which is not preferable.
[0016]
In the foamed resin mold of the present embodiment, the
Further, the surface of the
In addition, since the
Furthermore, when the
Hereinafter, the effects of the present invention will be demonstrated by examples.
[0017]
【Example】
(Example)
As an embodiment of the foamed resin mold according to the present invention, as shown in FIG. 1, a
[0018]
(Comparative Example 1)
As shown in FIG. 2, a foamed resin molding die A (conventional back plate) in which the
[0019]
(Comparative Example 2)
As shown in FIG. 3, a foamed resin molding die B provided with a
[0020]
Using each of the foamed resin molds of these Examples and Comparative Examples 1 and 2, a foamed resin molded product made of a polystyrene resin was produced, and the temperature of the back plate 6 (° C.), the amount of steam used (kg / shot), The distortion amount t '(mm) of the heat insulating material and the thickness T (mm) of the bottom part of the molded product were measured and comparatively evaluated. The results are summarized in Table 1.
[0021]
[Table 1]
[0022]
From Table 1, it was confirmed that the foamed resin molds of the examples according to the present invention had better heat insulation effects than the foamed resin molds of Comparative Examples 1 and 2, and the amount of steam used could be reduced.
[0023]
(Insulation material compression test)
In a general foamed resin molding machine used for the production of a general-purpose polystyrene foamed resin molded product, the number of supports is about 20 to 30. For a φ25 support, 255 kg / cm 2 per support is used. It receives a compressive force of about 170 kg / cm 2 . The load is applied for about 80 seconds in one cycle of 120 seconds, and the remaining 40 seconds are open. In a structure in which a heat insulating material and a protective material are laminated between a back plate and a support as in the foamed resin mold of the present invention, if the heat insulating material does not have compression resistance, the heat insulating material in a portion corresponding to the support can be easily formed. As a result, the positions of the first and second molds cannot be adjusted by the support, and the molds are distorted, so that a molded article having a desired shape and dimensions cannot be obtained. Therefore, in the present invention, it is necessary to use a heat insulating material having compression resistance.
The compressive stress and strain of the asbestos used as the heat insulating material in the present invention and the rubber plate used as the heat insulating material in the prior art were measured for comparison. For the measurement, Tensilon UCT-5T manufactured by Orientec Co., Ltd. was used, and the load cell was TYPE UF-5 Cap. 5tf SER. NO. 049539 was used. The test environment was a temperature of 25 ° C. and a humidity of 50 RH%.
[0024]
{Circle around (1)} Asbestos-made joint sheet,
[0025]
(2) Rubber plate, plate thickness 4 mm:
A compression test was performed on the same aluminum plate as in the above (1), which had been subjected to the same construction as the rubber lining (rubber plate thickness: 4 mm) applied to the back plate of the molding die, in the same manner as in the above (1).
With respect to the above (1) and ( 2 ), the amount of distortion (mm) of the heat insulating material at a stress of 255 kgf / cm 2 was measured, and the results are shown in Table 2 below. Table 2 also shows the thermal conductivity λ (W / m · k) of the heat insulating materials of (1) and (2).
[0026]
[Table 2]
[0027]
From the results in Table 2, it can be seen that the asbestos sheet has less distortion when compressed than the conventional rubber lining, and is suitable as the heat insulating material of the present invention. On the other hand, the rubber plate has a large amount of distortion, and in the structure in which the heat insulating material and the protective material are provided between the back plate and the support as in the present invention, the deformation amount is large when compression is applied, and the deformation and size of the molded product are large. Because of the possibility of change, it was not suitable as a heat insulating material used in the present invention.
[0028]
【The invention's effect】
Since the foamed resin mold of the present invention has a protective material and a heat insulating material laminated and arranged between the support and the back plate, the back plate can be insulated, and the support does not directly hit the back plate. The heat transfer to the back plate is blocked, the heat insulation of the steam chamber is increased, and the amount of steam used during molding can be reduced. In addition, the surface of the protective material is smooth, so that the steam drain and the cooling water easily fall off the surface, and the latent heat of evaporation of the adhering water during cooling in a vacuum is reduced, thereby suppressing unnecessary cooling.
Further, since the protective material protects the heat insulating material from being broken at the time of contact with the support and from being damaged, the life of the heat insulating material can be extended.
In addition, since the heat insulating material and the protective material can be laminated on the surface of the back plate and the support can be directly applied to the protective material, once these are attached, when replacing the first and second molding dies, this is used. The back plate to which the heat insulating material and the protective material are attached can be used in common, and unnecessary replacement work is not required. Further, the shield plate used in the prior art is not required, and an extra operation of replacing the shield plate at the time of replacing the first and second molds is not required.
Furthermore, when the protective material and the heat insulating material are sandwiched between the support and the back plate and attached, only the periphery of the protective material and the heat insulating material are tightly fixed. Since a slight air layer is formed between the heat insulating material and the protective material, a heat insulating effect exceeding the heat insulating effect of only the heat insulating material can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part showing an embodiment of a foamed resin mold of the present invention.
FIG. 2 is a cross-sectional view of a main part showing a structure of a foamed resin mold of Comparative Example 1 used for comparison in Examples.
FIG. 3 is a sectional view of a main part showing a structure of a foamed resin molding die of Comparative Example 2 used for comparison in Examples.
[Explanation of symbols]
DESCRIPTION OF
Claims (3)
成形型のサポートとバックプレートとの間に、耐湿性の硬質材料からなる保護材と耐圧縮性断熱材料からなる断熱材とを積層したことを特徴とする発泡樹脂成形型。A first mold and a second mold provided with a plurality of steam holes, and a cavity formed by combining the first and second molds is filled with expandable resin particles; In the foamed resin mold for producing a foamed resin molded product, the steam is brought into contact with the foamable resin particles through the steam hole of
A foamed resin mold comprising a protective member made of a moisture-resistant hard material and a heat insulator made of a compression-resistant heat-insulating material laminated between a support of the mold and a back plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002253936A JP3874708B2 (en) | 2002-08-30 | 2002-08-30 | Foamed resin mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002253936A JP3874708B2 (en) | 2002-08-30 | 2002-08-30 | Foamed resin mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004090368A true JP2004090368A (en) | 2004-03-25 |
JP3874708B2 JP3874708B2 (en) | 2007-01-31 |
Family
ID=32059803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002253936A Expired - Fee Related JP3874708B2 (en) | 2002-08-30 | 2002-08-30 | Foamed resin mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3874708B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008194967A (en) * | 2007-02-14 | 2008-08-28 | Kaneka Corp | In-mold foam molding device of thermoplastic resin prefoaming particle |
WO2009025013A1 (en) * | 2007-08-20 | 2009-02-26 | Daisen Co., Ltd. | Steam chamber in resin foam molding machine, resin foam molding machine, and resin foam molding method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4344846A1 (en) | 2022-09-27 | 2024-04-03 | Knauf Industries Gestion | Chamber for the vapour moulding of foamed or foamed materials |
FR3140009A1 (en) | 2022-09-27 | 2024-03-29 | Knauf Industries Gestion | Chamber for steam molding of expanded or cellular materials or foams. |
-
2002
- 2002-08-30 JP JP2002253936A patent/JP3874708B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008194967A (en) * | 2007-02-14 | 2008-08-28 | Kaneka Corp | In-mold foam molding device of thermoplastic resin prefoaming particle |
WO2009025013A1 (en) * | 2007-08-20 | 2009-02-26 | Daisen Co., Ltd. | Steam chamber in resin foam molding machine, resin foam molding machine, and resin foam molding method |
Also Published As
Publication number | Publication date |
---|---|
JP3874708B2 (en) | 2007-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100295719B1 (en) | Molding apparatus and molding process using it | |
JP3781598B2 (en) | Deformation method of vacuum heat insulating material, fixing method of vacuum heat insulating material, freezer / refrigerated container and heat insulating box | |
CN107323878A (en) | A kind of manufacture method of cold chain heat insulation box and cold chain heat insulation box | |
JPH10300331A (en) | Vacuum heat insulating panel, its manufacture and refrigerator using the same | |
KR20100044679A (en) | Steam room of foamed resin molding machine, foamed resin molding machine, and method for molding foamed resin | |
US20070275229A1 (en) | Molded article with foam-encased adhesion-resistant reinforcing member and method | |
EP2889136B1 (en) | Method and apparatus for manufacturing foamed resin metal laminated sheet | |
JP2004090368A (en) | Mold for molding foaming resin | |
JP3817805B2 (en) | Mold for molding | |
JP2003042652A (en) | Heat insulation box, and refrigerator equipped therewith | |
CN110565825A (en) | Composite insulation board and preparation method thereof | |
JPH0740482A (en) | Expanded polypropylene resin laminate and manufacture thereof | |
US20230167260A1 (en) | Vehicle seat core material | |
JP2005344832A (en) | Vacuum heat insulating material | |
CN209738451U (en) | heat insulation structure | |
JP4336440B2 (en) | Polyolefin resin composite molded body | |
CN109849475B (en) | Heat insulation composite structure and forming method thereof | |
JP2012030477A (en) | Method of manufacturing hollow body | |
JP2008194967A (en) | In-mold foam molding device of thermoplastic resin prefoaming particle | |
JP2002292669A (en) | Method for producing foamed resin molding with skin | |
JPH05212810A (en) | Die heat insulation structure of intra-die foam molding machine | |
JP2001181365A (en) | Method for manufacturing open-cell rigid polyurethane foam for vacuum heat insulating panel-filler material | |
JP2013174406A (en) | Heat insulating box and method for manufacturing the same | |
JP4227683B2 (en) | Plastic foam composite | |
JP3823507B2 (en) | Vacuum insulation panel, manufacturing method thereof and refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060725 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061010 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061024 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3874708 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131102 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |