JP2004089925A - Separation apparatus for granular body and filter mechanism used for the same - Google Patents

Separation apparatus for granular body and filter mechanism used for the same Download PDF

Info

Publication number
JP2004089925A
JP2004089925A JP2002257208A JP2002257208A JP2004089925A JP 2004089925 A JP2004089925 A JP 2004089925A JP 2002257208 A JP2002257208 A JP 2002257208A JP 2002257208 A JP2002257208 A JP 2002257208A JP 2004089925 A JP2004089925 A JP 2004089925A
Authority
JP
Japan
Prior art keywords
spring seat
movable spring
granular material
filter
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002257208A
Other languages
Japanese (ja)
Other versions
JP4111781B2 (en
Inventor
Isamu Tadokoro
田所 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinsei Kagaku Kogyo Co Ltd
Original Assignee
Shinsei Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinsei Kagaku Kogyo Co Ltd filed Critical Shinsei Kagaku Kogyo Co Ltd
Priority to JP2002257208A priority Critical patent/JP4111781B2/en
Publication of JP2004089925A publication Critical patent/JP2004089925A/en
Application granted granted Critical
Publication of JP4111781B2 publication Critical patent/JP4111781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Transport Of Granular Materials (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separation apparatus for a granular body in which a mesh like filter such as a punching metal is made needless and which is capable of easily coping with the change of the diameter of the particle to be separated and a filter mechanism used for the same. <P>SOLUTION: The separation apparatus is provided with a pneumatic source 60 for pneumatically transporting the granular body, a separation cylinder 1 having an opening 2 at the bottom and having a granular body introducing port 3 provided in the lower part and a discharge port 4 in the upper part, a damper 10 for opening and closing the bottom opening 2 of the separation cylinder 1, a spindle shaped movable spring seat 20 internally mounted in the separation cylinder 1 and a coil filter 30 attached to the movable spring seat 20, a connection rod 21 connected to the movable spring seat 20, a vertically moving means 40 connected to the connection rod 21 and a lock nut 51 screwed to the screw part 22 formed on the upper end part of the connection rod 21 and the granular body to be separated by the pneumatic force of the pneumatic source 60 is introduced from the granular body introducing port 3 and separated into the granular body and dust passing the gaps 32 between the adjacent rings of the screw part 31 of the coil filter 30 and the granular body which does not pass through the gaps 32. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
本発明は、プラスチック成形工程や、プラスチック成形工程において派生するスプル・ランナーなどの不要成型物を粉砕して再利用する工程、又は粉粒体の空 気輸送装置などにおいて、プラスチックや加工食品などの原材料、又は前記不要 成型物を粉砕して再利用する際に発生する粉砕材中の細かになりすぎた粒体等の 粉粒体を、ある程度以上の大きさの粒体とそれより細かな粒体や粉体とに分離し たり、粉粒体と粉塵とを分離したりする場合等に使用できる粉粒体の分離装置と 、その粉粒体の分離装置に用いるフィルター機構に関する。
【0002】
【従来の技術】
従来、この種の粉粒体の分離装置としては、種々のものが知られている。例えば図示しないが、次に示す如きものが知られている。
【0003】
(イ) ホッパー状容器の上部開口を蓋体で被蓋し、該蓋体の中央部に、プラスチック原材料等の粉粒体をブロア等の空気源の気力により投入する粉粒体投入 管を蓋体内部まで垂設するとともに、容器の下部に粉粒体出口を形成し、該容器 の外周側壁の上部に排気口を設ける一方、容器内の粉粒体投入管下部と排気口と の間にはパンチングメタル等の網目状のフィルターを張設し、このフィルターに よりその下方に網目より大きな粉粒体を、上方に網目より小さな粉粒体及び粉塵 やガスを分離するようにしたものが知られている。
【0004】
(ロ) また、逆円錐形状ホッパーの容器の上部開口を蓋体で被蓋し、該蓋体の中央部に粉粒体投入管を蓋体内部まで垂設するとともに、容器の下部には小径 の円筒部を接続し、この円筒部の下部を材料出口としている。そして、前記円筒 部の下部には加圧ガス吹上げ手段を設けるとともに、前記容器の上部側壁には排 気管を設けており、加圧ガス吹上げ手段により円筒部内の材料を浮遊させて、固 形物材料より分離した粉塵を前記排気管より自然排出させるようにしたものも知 られている(特開平9−254190号公報参照)。
【0005】
【発明が解決しようとする課題】
しかるに、上記従来例(イ)の分離装置では、網目状のフィルターに粉粒体や粉塵等が目詰りを生じ易く、場合によっては付着残留する。そのため、フィルタ ーに目詰り又は付着残留した粉粒体や粉塵等の除去作業に手間がかかり面倒であ った。また、その粉粒体や粉塵等の除去が不充分であると、材料替え時に後の材 料に前の材料が混入してしまうという問題点があった。さらに、分離する粒子径 を変更する場合には、その粒子径の大きさに見合った網目のフィルターを、その 都度交換する必要があった。
【0006】
従来例(ロ)の分離装置では、加圧ガス吹上げ手段による加圧気流に浮遊させて排気管より自然排出するものであるため、粉粒体の表面積に対する重量が極端 に小さな粉塵しか分離できない。また、例えば、プラスチック射出成形工程にお いて発生するスプル・ランナーなどの不要な成型物を砕いて再利用しようとする とき、その粉砕材中の細かになりすぎた粒(破片)を効率的に分離することはで きなかった。さらに、分離する粒子径を変更する場合の工夫は何ら採用されてい ないという問題点があった。
【0007】
本発明は、上記従来例(イ)、(ロ)の分離装置の有する問題点を解決したものであり、パンチングメタル等の網目状フィルターを不要とするとともに、スプ ル・ランナーなどの不要な成型物を砕いて再利用する工程で発生する細かになり すぎた粒(破片)でも分離でき、さらに分離する粒子径を変更する場合に簡単に 対応することができる粉粒体の分離装置及びそれに用いるフィルター機構を提供 することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の請求項1の粉粒体の分離装置は、粉粒体を気力輸送するための気力源と、底部を開口するとともに下部に粉粒体導入口を上 部に排出口を設けた分離筒と、分離筒の前記底部開口を開閉するダンパーと、分 離筒に内装されて、隙間調整機構により螺旋部の隣接輪間の隙間寸法を調節でき るようにしたコイルフィルターとを設けてなり、前記気力源の気力により分離す べき粉粒体を前記粉粒体導入口より導入して、前記コイルフィルターの前記隙間 を通過する粉粒体や粉塵と通過しない粉粒体とに分離するようにしたことを特徴 とする。
【0009】
ここで、コイルフィルターとは、金属線材を螺旋状に巻回してコイルばねとし、該コイルばねの螺施部の隣接輪間に、空気や不活性窒素ガス等の気体を貫流さ せるための隙間を形成し、この隙間に気流と粉粒体(材料)を流通させることに より、粉粒体と粉塵や輸送用気体とを分離するものである。
【0010】
また、粉体と粒体とを区別するための粒子径の大きさ等の基準について、粉体工学分野おいても、確定した定義は認められていないと言えるので、本明細書で は、コイルフィルターの螺旋部の隣接輪間の隙間を通過する粉粒体と、通過しな い粉粒体との区別は、前記コイルフィルターの螺旋部の隣接輪間の隙間の大きさ に依拠するものである。従って、概略的に言えば、前者は前記隙間より小径の粒 子径を有する粉粒体の意味であり、後者は前記隙間より大径の粒子径を有する粉 粒体の意味である。
【0011】
コイルフィルターの螺施部の隣接輪間の隙間寸法を調節するための隙間調整機構の具体的手段としては、例えば、後述する実施形態で示すように、可動ばね座 に連結した連結棒と、該連結棒に接続したエアシリンダー等の上下動手段と、ロ ックナットとで構成するとよい。
なお、コイルフィルターの螺施部の隣接輪間の隙間に詰まった粉粒体を払い落すための払い落し機構としては、後述する実施形態で示すように、可動ばね座と 連結棒と上下動手段による方式に限らず、その他適宜設計変更できる。
【0012】
請求項2に記載の粉粒体の分離装置は、粉粒体を気力輸送するための気力源と、底部を開口するとともに下部に粉粒体導入口を上部に排出口を設けた分離筒と 、分離筒の前記底部開口を開閉するダンパーと、分離筒に内装された、紡錘形の 可動ばね座及び可動ばね座上に取り付けたコイルフィルターと、前記可動ばね座 に連結した連結棒と、この連結棒に接続した上下動手段と、前記連結棒の上端部 に形成したねじ部に螺着したロックナットとを設けてなり、前記気力源の気力に より分離すべき粉粒体を前記粉粒体導入口より導入して、前記コイルフィルター の螺旋部の隣接輪間の隙間を通過する粉粒体や粉塵と通過しない粉粒体とに分離 するようにしたことを特徴とする。
【0013】
ここで、上下動手段としては、後述する実施形態で示すようなエアシリンダーを用いてもよいし、ソレノイドなどのアクチュエータなどもよく、適宜設計変更 できる。
また、ダンパーには可動ばね座と対向する位置に突起を形成し、この突起は、ダンパーにより分離筒の底部開口を閉塞している時には可動ばね座に当接せず、 該可動ばね座の下動により前記突起を押してダンパーを開放するように構成する こともできる(請求項3参照)。
【0014】
本発明の作用例を以下に説明する。
本発明の請求項1の発明によれば、前述したような、気力源や分離筒やダンパーやコイルフィルターを設けているから、先ず、コイルフィルターの螺施部の隣 接輪間の隙間寸法を、連結棒や上下動手段の作動軸及びロックナット等の隙間調 整機構により所望寸法だけ調整する。次に、分離筒の底部開口をダンパーで閉じ て、ブロアやコンプレッサなどの気力源によって吸引又は圧送の気力(気流)を 生じさせ、その気力により分離すべき粉粒体を、分離筒の下部に形成した粉粒体 導入口から導入する。導入された粉粒体中の破片など細かな粒体や粉体や粉塵は 、コイルフィルターの螺施部の隣接輪間の隙間からコイルフィルターの内部に入 り込んでから、上部の排出口を経て集塵器で捕集される。
【0015】
一方、コイルフィルターの隙間から内部に入り込めない粒子径の大きな粉粒体は、該コイルフィルターの外周と分離筒の内周間に残り、前記ダンパーを開放す ることにより、自然落下などにより貯槽や次工程に送られる。
【0016】
請求項2の発明によれば、請求項1の発明の作用と概略的には同様であるが、次の点で顕著に異なる。すなわち、請求項2の発明では、コイルフィルターは紡 錘形の可動ばね座上に取り付けてあることから、粉粒体導入口から導入された粉 粒体は、可動ばね座の円錐面に案内されてコイルフィルターの外周部へ上昇され るため、該コイルフィルターの螺施部の隙間により粉粒体の分離が促進される。
【0017】
また、請求項2の発明では、コイルフィルターの螺施部の隣接輪間の隙間に詰まった破片などの粉粒体を払い落すための払い落し機構として、可動ばね座に連 結した連結棒と、この連結棒に接続した上下動手段とを採用している。
そこで、粉粒体導入口から導入した粉粒体を気流に乗せてコイルフィルターへ送ることによって粉粒体を分離している間において、前記上下動手段を下動する と、連結棒及び可動ばね座を介してコイルフィルターが伸張して、コイルフィル ターの螺施部の隙間が拡がり、分離中に螺施部の隙間に詰まった破片などの粉粒 体が解放される。このとき、その破片等の粉粒体は、気流を止めないうちに解放 すると排出口側へ、また、気流を止めてから解放すると分離済み粉粒体の貯槽側 へ送られる。このように前記螺旋部の隙間に詰まった破片などの粉粒体を払い落 とす操作を経てから、上下動手段を上動して前記隙間を当初の状態に戻して再び 粉粒体の分離操作を行なう。このような操作を何回も繰り返す。この払い落とし 操作は、例えば、粉粒体の分離中において、例えば数秒間にわたって何回も断続 的に行なうとよい。
【0018】
以上のように、コイルフィルターの螺施部の隙間の調整は、コイルフィルター及び連結棒の上下動とロックナット等のねじ調整などによって簡単にできる。ま た、コイルフィルターを伸縮させる機構はエアシリンダーやソレノイドなどの上 下動手段で簡単に得られる。このように、本発明は、簡単な機構により、空気輸 送する各種粉粒体に含まれる破片や粉塵を、目詰りなく、材料替え時の異種混合 などのトラブルがなく、分離し捕集することができる。
【0019】
また、本発明の請求項4の粉粒体の分離装置用のフィルター機構は、紡錘形の可動ばね座と、この可動ばね座上に取り付けたコイルフィルターと、前記可動ば ね座に立設した連結棒と、連結棒の上端部に接続した上下動手段とを備えてなる ものである。
この場合、前記連結棒の上端部にはねじ部を形成し、このねじ部にロックナットと上下動手段の作動軸とを螺着するのが好ましい。
【0020】
【発明の実施の形態1】
本発明の実施の形態の第1例を図1〜図5に基づいて以下に説明する。
本発明の粉粒体の分離装置は、図1に示すように、底部を開口2するとともに下部に粉粒体導入口3を上部に排出口4を設けた分離筒1と、分離筒1の底部開 口2を開閉するダンパー10と、分離筒1に内装された、紡錘形の可動ばね座2 0及び可動ばね座20上に取り付けたばね状のコイルフィルター30と、前記可 動ばね座20に連結した連結棒21と、この連結棒21に接続した上下動手段4 0と、前記連結棒21の上端部に形成したねじ部22に螺着したロックナット5 1と、粉粒体を気力輸送するための気力源(気流発生手段)60とを設けている 。そして、前記気力源60の気力(気流)により分離すべき粉粒体を前記粉粒体 導入口3より導入して、前記コイルフィルター30の螺施部の隙間32を通過す る粉粒体や粉塵と、通過しない粉粒体とに分離するようにしたものである。
なお、前記連結棒21と上下動手段40の作動軸(ピストンロッド)42とロックナット51とは、隙間調整機構50を構成する。
【0021】
分離筒1の底部開口2は、粉粒体導入口3側の下端部から反対側の下端部に向けて上り勾配の傾斜切り口とし、その傾斜切り口の傾斜角Θ(つまり粉粒体導入 口3側の下端部と、該傾斜切り口を閉塞した状態のダンパー10とのなす角度) は、略45度としてある。上記傾斜角Θは上記数値に限定されるものではな く適宜選定できる。そして、前記傾斜切り口(つまり底部開口2)はダンパー1 0で開閉される。粉粒体導入口3は、分離筒1の最下部近くで、かつ閉塞した状 態のダンパー10と対向する位置に設けており、これにより粉粒体導入口3から 導入された粉粒体は、前記ダンパー10の傾斜面に当り気流と共にコイルフィル ター30の外周に効率よく送られるようにしてあるため、分離効率が向上される。
【0022】
粉粒体導入口3は粉粒体導入管3Aにより形成され、該粉粒体導入管3Aの一端を分離筒1の下部に形成した連通孔3Bに溶接などで接続してある。
分離筒1の上部に設けた排出口4は、図1に示すように、エルボ状の排出管4Aにより形成され、該排出管4Aの垂直管部4aの下端部は、分離筒1の天板部に形成した嵌挿孔1Aに嵌挿されるとともに分離筒1の天板部に溶接などで固定 してある。前記排出口4は、図1に示すように、配管66を介して気力源(気流 発生手段)60と集塵器65に接続されている。前記気力源(気流発生手段)60としては、本実施形態では、コンプレッサなどの空気源61と、その空気源6 1からの圧縮空気を導入する公知のエアエジェクター62を用いて、粉粒体導入 口3から粉粒体を気流とともに分離筒1及び排出口4へ吸引輸送するようにしている。
【0023】
コイルフィルター30は、コイルばね状のものであり、螺施部の隣接輪間の隙間で粉粒体を分離するものである。このコイルフィルター30は、前記排出管4 Aの垂直管部4a下端に嵌合したリング状の固定ばね座5と、紡錘形の可動ばね 座20との間に挟着してある。つまり、コイルフィルター30の上端螺施部を固 定ばね座5のばね受部5aに嵌装し、下端螺施部を可動ばね座20のばね受部20aに嵌装してある。
【0024】
コイルフィルター30の螺施部の形状は、本発明では特に限定しないのであるが、螺施部31、31同士間の隙間32により、粉粒体や異物等の付着物(以下 材料Mという)が分離されるということから、その隙間32に材料Mが詰まらな い方が良い。この隙間32への材料の詰まりを防止するという観点からすると、 図5のAに示した螺施部31断面が円形のものより、Bの矩形の方が良く、Bよ りCの台形の方が最適である。すなわち、螺施部31、31同士間の隙間32は 、図5のAに示すように、隙間の外周部が広くなると、そこに最初に届いた材料 が付着し深く挟まって移動しにくく該隙間32を閉塞するから、図5のAの断面 円形よりも、Bの断面矩形のもの、更にはCの断面台形の線材を使用するとよく 、これで隙間32に付着した材料が後から来た材料の衝突などで容易に移動でき 材料の詰まりが防止できる。
【0025】
可動ばね座20は、下部錐形部20bと上部錐形部20cとからなる紡錘形(本発明では真正な紡錘形に限らず概略的に錐形を有する広義のものも含む。)と しているが、このような形状とした理由を以下に説明する。すなわち、下部錐形 部20bは、粉粒体導入口3から気力により導入された材料が、気流と共にコイ ルフィルター30の外周に向かうように整流され上昇するとともに、隙間32・ ・・32に隈なく行きわたるように働く。また、上部錐形部20cは、コイルフ ィルター30の隙間32から入った粉体などの材料が滞留することなく排出口4 へ整流して上昇させることや、空気源(気流発生手段)60を休止させてから上 下動手段40であるエアシリンダーの圧縮空気を抜いた場合に、コイルフィルタ ー30内部にこぼれた破片などの材料をコイルフィルター30外に滑落させるためである。
【0026】
前記可動ばね座20は、図3の形状に限らず適宜設計変更できるものであるが、例えば図4の如き形状の如く、下部錐形部20b及び上部錐形部20cを円弧 面としたものでもよい。
【0027】
また、可動ばね座20には、連結棒21が連結してあるとともに、この連結棒21は排出管4Aの垂直管部4aの天板部に形成した挿通孔4bに挿入し、その 上端部を上下動手段40であるエアシリンダー41の作動軸(ピストンロッド) 42に連結してある。すなわち、連結棒21の上端部にはねじ部22を形成し、 このねじ部22には、隙間調整機構50であるロックナット51を螺合してから 、そのロックナット51の上方に前記エアシリンダー41の作動軸(ピストンロ ッド)42に形成した雌ねじ43を螺合してある。
【0028】
エアシリンダー41の外筒44の下部に形成した空気導入口45から圧縮空気を供給して、作動軸(ピストンロッド)42を上昇させると、図1に示すように 、連結棒21を介して可動ばね座20が連動して上昇しコイルフィルター30が 圧縮され、該コイルフィルター30の螺施部31、31間の隙間32が狭くなる 。
この狭くなった螺施部31・・・31の隙間32・・・32で材料を分離するものであるが、分離しようとする材料によって最適な螺施部の隙間32を得るに は、連結棒21に螺着したロックナット51を緩め、作動軸(ピストンロッド) 42に螺合している連結棒21を回動して、ねじ部を抜き差しすることにより、 連結棒21のストローク長さを調節すれば簡単にできる。
【0029】
なお、図1及び図2で、47は上下動手段40であるエアシリンダー41を分離筒1上に固定する支柱、70は分離筒1を取り付けるカバーであって、このカ バー70の天板71は開口72され、この開口72部に分離筒1を嵌め込んで、 該天板71の開口縁部上に、シール73を介して分離筒1のフランジ部1Bを、 ネジや溶接等の締結部材74で固定してある。75は粉粒体導入管3Aとカバー 70の側壁に形成した挿通孔76との隙間を塞ぐシール材、77はダンパー10 の回転軸11を取り付けたダンパー取付板、78はダンパー10の先端に設けた おもり、79はダンパー10が分離筒1の底部開口2を密閉した状態を検知する センサーである。80はコイルフィルター30で分離された粉粒体等の材料を収 容するタンクや容器などの貯槽であり、前記カバー70の下端部に形成したフラ ンジ部70aを、貯槽80の天板部に形成した開口82の開口縁部に締結部材8 3で固定してある。
図1で90は分離すべき粉粒体(材料)の材料供給源であり、92は材料供給源90と粉粒体導入管3Aとを接続した輸送管である。
【0030】
前記ダンパー10は、回転軸11を回転中心として回動されるものであるが、材料の分離稼動中には同ダンパー10は分離筒1の底部開口2を密閉して行なわ れる。このダンパー10には可動ばね座20と対向する位置に突起12を形成し 、この突起12は、ダンパー10により分離筒1の底部開口2を閉塞している時 には可動ばね座20に当接せず、該可動ばね座20の下動により前記突起12を 押してダンパー10を開放するようにしてある。
【0031】
すなわち、図1及び図2で、可動ばね座20が実線に示すように上動位置にあってコイルフィルター30の螺施部31の隙間32が狭く、ダンパー10が底部 開口2を閉塞している場合には、前記突起12は可動ばね座20には当接せず離 間している。そこで、気力源60の気力(気流)により分離すべき材料を粉粒体 導入口3から分離筒1内へ導入すると、導入された材料は可動ばね座20を経て コイルフィルター30の隙間32により分離が開始される。また、螺施部31の 隙間32に詰まった材料を払い落とす場合には、上記上下動手段40を作動して 連結棒21を介して可動ばね座20を、図1及び図2で仮想線で示す位置まで下 動すると、コイルフィルター30はその復元力によって伸び、螺施部31の隙間 32が拡がって、挟まっていた材料は隙間32から解放される。それとともに、 前記可動ばね座20の下部錐形部20bがダンパー10の突起12を開放方向に 押すので、ダンパー10は、図1及び図2で仮想線で示すように、その回転軸1 1を支点に垂直に近づく方向に回転されるため、分離筒1の底部開口2が開放さ れるとともに、密閉状態でセンサー79を押していたおもり78は、仮想線で示 すようにセンサー79から離間して上動する。
【0032】
ダンパー10を、上述の如く分離筒1の底部開口2を開放している状態から図 1及び図2の実線で示す如く閉塞状態とする場合に、底部開口2等に材料が付着 するなどしてダンパー10が密閉しない場合には、センサー79は働かないので 、エアシリンダー41を作動して、連結棒21を介して可動ばね座20を間欠的 に複数回にわたり上下動することによって、底部開口2等に付着している材料を 払い落すことでダンパー10を閉塞状態にすることができる。
【0033】
以上の構成からなる実施の形態1の作用例を以下に説明する。
先ず、エアシリンダー41の作動軸(ピストンロッド)42のストローク長さを考慮に容れて、連結棒21と前記作動軸42の連結位置をロックナット51で 調整して、コイルフィルター30の螺施部31の隙間32の間隔(長さ)を決定 する。
次に、分離筒1の底部開口2をダンパー10で閉塞する。
【0034】
そして、気力源(気流発生手段)60によって吸引又は圧送の気力(気流)を生じさせ、その気力により分離すべき材料を粉粒体導入口3から分離筒1内へ導 入する。
導入された材料は可動ばね座20に衝突したり離れたりする等の作用によりコイルフィルター30へ隈なく気送され、螺施部31の隙間32により分離が開始 される。ここで、材料中の前記隙間32より小径の粒体や粉体や粉塵は、前記隙 間32からコイルフィルター30の内部に入り込んでから、図1及び図2で矢印 方向へ通り排出口4を経て集塵器65で捕集される。このとき、材料がコイルフ ィルター30の外周を浮遊している間に、混入している小径の破片などの異物な どの付着物も粉塵と一緒に集塵器65で捕集される。
【0035】
一方、コイルフィルター30の隙間32から内部に入り込めない粒子径の大きな材料は、コイルフィルター30の外周と分離筒1の内周間に残り、前記ダンパ ー10を開放することにより、自然落下などにより貯槽80や図示していないが 次工程に送られる。ここまでの処理操作を便宜的に1サイクルの分離工程という ものとする。従って、分離すべき材料の量に影響されるが、通常は多数回のサイ クルの分離工程を経ることによって所望量の分離操作が終了する。
【0036】
また、粒子径の大きな材料の一部は、前記コイルフィルター30の螺施部31の隙間32に挟まり詰まることがある。このような場合の材料の詰まりの防止方 法として、本実施形態では、制御装置(図示せず)に基づいて、例えば、前述し たように、毎回の分離工程終了後ごとに、払い落とし機構(上下動手段40及び 連結棒21)を用いて、前記螺旋部31の隙間32を拡げることにより該隙間3 2に詰まった破片などの材料を払い落とす操作(払い落とし工程)を例えば3〜 5秒間位づつ毎回行なっている。すなわち、払い落とし機構(40、21)が上 動している場合には分離工程、払い落とし機構(40、21)が下動している場 合には払い落とし工程、という2つの工程を何回も繰り返す。つまり払い落とし 工程を断続的に行なうことにより、前記螺旋部31の隙間32に詰まった材料を 払い落とすものである。
【0037】
すなわち、上下動手段40であるエアシリンダー41内の圧縮空気を抜けば(つまり空気導入孔45より外筒44内の圧縮空気を大気に放出すること。場合に よっては外筒44の上部側の排気口46より低圧の圧縮空気を入れて作動軸(ピ ストンロッド)42を押し下げることもある。)、可動ばね座20は連結棒21 及び作動軸(ピストンロッド)42との合計自重で落下し始め、コイルフィルタ ー30はその復元力によって伸び、螺施部31の隙間32が拡がって、隙間32 に挟まっていた破片などの材料は、気力源60の気流の稼動中に解放すると、前 記気流により集塵器65側へ排出される。そして、次の瞬間、可動ばね座20は 分離筒1の底部開口2を密閉していたダンパー10の突起12を押すので、ダン パー10は回転軸11を支点にして垂直に近づく方向に回転するため(図1、図 2の仮想線で示す10参照)、分離筒1の底部開口2が開放されるとともに、分 離筒1に密着させるためダンパー10に取り付けたおもり78がセンサー79か ら離間する。上記センサー79の信号変化により気力源(気流発生装置)60を 一時休止すると、コイルフィルター30に向かって上昇する気流が停止するので 、
集塵器65側へ供給されなかった分離済みの材料は自然落下して貯槽80へ供 給される。また、コイルフィルター30の螺施部31の隙間32に挟まった材料を貯槽側へ供給してもよい場合には、気力源60を休止させてからエアシリンダ ー41の圧縮空気を抜けばよい。
【0038】
上記のような操作を繰り返すことにより、材料の空気輸送中において分離が連続的に実施できる。
【0039】
【発明の実施の形態2】
図6は本発明の実施の形態の第2例を示すものである。この実施の形態のものは、気力源(気流発生手段)60としてリングブロア等を吸引式に用いるととも に、集塵器65を気力源60より上流側にして排出管4Aと接続した点において 、前記実施の形態の第1例のものと異なり、その他の構成はそれと同一のもので ある。従って、詳しくは実施の形態の第1例の説明を参照するとよい。
【0040】
【発明の実施の形態3】
図7は本発明の実施の形態の第3例を示すものである。この実施の形態のものは、気力源(気流発生手段)60として圧送式のもの用いるとともに、排出口4には集塵器65のみを接続した点に特徴を有し、その他の構成は実施の形態の第 1例と同一であるので、それを参照するとよい。
この場合の気力源(気流発生手段)60は、図1のものと同様なコンプレッサーなどの空気源61と、エアエジェクター62とを採用し、エアエジェクター6 2で発生した加圧空気を粉粒体導入口3側へ供給するようにしたものである。そ の他の構成の詳細は実施の形態の第1例の説明を参照するとよい。
【0041】
【発明の実施の形態4】
図8は本発明の実施の形態の第4例を示すものである。この実施の形態のものは、粉粒体導入口3から分離筒1内へ導入する気流を、ヒータ91で加熱した乾燥空気または適当なガスとすることにより、粉粒体(材料)の乾燥と分離とがで きる分離装置である点に特徴を有する。
この場合のガスの加熱手段は、公知のホッパードライヤーを採用したものでもよい。また、気力源(気流発生手段)60は、図1のものと同一としている。その他の構成は実施の形態の第1例と同一であるので、詳しくはそれを参照すると よい。
【0042】
【発明の実施の形態5】
本発明は粉粒体の分離装置用のフィルター機構も提供するものである。このフィルター機構は、図1及び図2に沿って説明すると、紡錘形の可動ばね座20と 、この可動ばね座20上に取り付けたコイルフィルター30と、前記可動ばね座 20に立設した連結棒21と、連結棒21の上端部に接続した上下動手段40と を備えてなるものである。
【0043】
また、前記連結棒21の上端部にはねじ部22を形成し、このねじ部22にロックナット51と上下動手段40の作動軸42とを螺着してなる粉粒体の分離装 置用のフィルター機構も実施できる。
【0044】
【変形例等】
上記各実施形態において、隙間調整機構50としては、連結棒21と上下動手段40の作動軸42とロックナット51を挙げたが、エアシリンダー41などの 上下動手段40も隙間調整機構50として採用することができるし、その他の構成のものでもよい。
なお、払い落とし機構(40、21)による材料の払い落 し操作は、前述の実 施形態で説明した方法に限定されるものではなく、例えば、 コイルフィルター30の螺旋部31の隙間32に材料が詰まった場合に分離筒1 内の内圧が上昇するのを圧力センサー(図示せず)で検知して、その検知の都度 上記払い落し操作を行なうこともできる。
【0045】
本発明の粉粒体の分離装置とそれに用いるフィルター機構は、プラスチック成形工程に限らず、空気輸送装置などにおいて、粉粒体、異物などの付着物、スプ ル・ランナーなど不要成型物の粉砕機などを輸送空気等のガスの気力により分離 することができる。
また、本発明は、各実施形態例とは逆に、貯槽80に分離捕集するのが異物などの不要物で、排出口4(集塵器65)側へ捕集するのが粉末状成分などの製品 となる場合にも利用できる。
【0046】
さらに、PPSなどのプラスチック成形材料は、一般のプラスチック成形材料より微細な破片の混入に敏感に影響されるため、ペレットを生産するときやその 後の輸送中に欠けて生じた粉末状破片も完全に除去することが望ましい。このよ うな場合、材料を成形機に自動供給する空気輸送装置の中に本発明に係る粉粒体 の分離装置を設ければ、余分な工数を省き、コスト削減と成型品の品質安定の効 果が得られる。
【0047】
【発明の効果】
請求項1に記載の粉粒体の分離装置によれば、分離筒に内装されて、隙間調整機構により螺旋部の隣接輪間の隙間寸法を調節できるようにしたコイルフィルタ ーを設けているから、コイルフィルターの螺施部の隙間寸法を分離すべき粉粒体 の粒子径に対応して簡単にかつ素早く調節できる。そのため、本請求項1によれ ば、従来例のパンチングメタル等の網目状のフィルターは不要であるため、粉粒 体等の目詰りや、材料替え時の材料の混入という問題が回避できる。
【0048】
請求項2に記載の粉粒体の分離装置によれば、上記請求項1の効果に加え、コイルフィルターは紡錘形の可動ばね座上に取り付けてあることから、材料導入口 から導入された粉粒体は、可動ばね座の円錐面に案内されてコイルフィルターの 外周部へ上昇されるため、該コイルフィルターの螺施部の隙間により粉粒体の分 離が促進される。なお、この請求項2の連結棒と上下動手段とロックナットとは 前記隙間調整機構を構成するものであって前記効果を達成する。
また、コイルフィルターの螺施部の隣接輪間の隙間に詰まった破片などの粉粒体を払い落すための払い落し機構として、可動ばね座に連結した連結棒と、この 連結棒に接続した上下動手段とを採用しているから、前記上下動手段を下動する と、連結棒及び可動ばね座を介してコイルフィルターが伸張して、コイルフィル ターの螺施部の隙間が拡がり、分離中に螺施部の隙間に詰まった破片などの粉粒 体が解放される。
【0049】
請求項3に記載の粉粒体の分離装置によれば、上記請求項2の効果に加え、分離 筒の底部開口をダンパーにより自動的に開閉できる。
【0050】
請求項4に記載の粉粒体の分離装置用のフィルター機構によれば、簡単な構成であり、請求項2に記載の粉粒体の分離装置に組み込むことにより、請求項2に 記載の如き効果を達成できる。
【0051】
請求項5に記載の粉粒体の分離装置用のフィルター機構によれば、ロックナットによりコイルフィルターの螺施部の隙間を任意に調節できる。
【図面の簡単な説明】
【図1】本発明の実施形態1の縦断面図である。
【図2】図1の要部拡大断面図である。
【図3】可動ばね座と連結棒の一部断面正面図である。
【図4】可動ばね座と連結棒の変形例の一部正面図である。
【図5】コイルフィルターのコイル線材の異なる形状のものの一部縦断面図を示す。
Aはコイル線材が断面円形状のものである。
Bはコイル線材が断面矩形状のものである。
Cはコイル線材が断面台形状のものである。
【図6】本発明の実施形態2の縦断面図である。
【図7】本発明の実施形態3の縦断面図である。
【図8】本発明の実施形態4の縦断面図である。
【符号の説明】
1     分離筒
2     底部開口
3     粉粒体導入口
4     排出口
5     固定ばね座
10    ダンパー
12    突起
20    可動ばね座
20b   下部錐形部
20c   上部錐形部
30    コイルフィルター
31    螺施部
32    隙間
40    上下動手段
41    エアシリンダー
42    作動軸(ピストンロッド)
50    隙間調整機構
51    ロックナット
60    気力源(気流発生手段)
61    空気源
62    エアエジェクター
65    集塵器
80    貯槽
90    材料供給源
91    ヒータ
[0001]
The present invention relates to a plastic molding process, a process of pulverizing and reusing unnecessary molded products such as sprues and runners derived from the plastic molding process, or a pneumatic transportation device for powder and granular materials, such as plastics and processed foods. Granules, such as raw materials or the above-mentioned unnecessary molded products, which are generated when crushing and reusing the excessively shaped materials, such as excessively fine particles, are converted into granules having a certain size or more and finer granules. The present invention relates to an apparatus for separating a granular material that can be used in a case where the granular material is separated into a body and a powder, and a case where a granular material and a dust are separated, and a filter mechanism used in the granular material separating apparatus.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, various apparatuses have been known as this type of granular material separation apparatus. For example, although not shown, the following is known.
[0003]
(B) The upper opening of the hopper-shaped container is covered with a lid, and a powder / granule input pipe into which the powder / granules such as plastic raw materials are charged by the air force of a blower or the like into the center of the lid. In addition to hanging vertically into the body, a powder outlet is formed at the lower part of the container, and an exhaust port is provided at the upper part of the outer peripheral side wall of the container, and between the lower part of the powder inlet pipe and the exhaust port in the container. Is known to have a mesh-shaped filter made of punched metal or the like, which separates powder particles larger than the mesh below, and powder particles smaller than the mesh, dust, and gas below. Have been.
[0004]
(B) In addition, the upper opening of the container of the inverted conical hopper is covered with a lid, and a powder supply pipe is vertically provided at the center of the lid to the inside of the lid, and a small diameter is provided at the lower part of the container. Are connected, and a lower portion of the cylindrical portion is used as a material outlet. Further, a pressurized gas blowing means is provided at a lower portion of the cylindrical portion, and an exhaust pipe is provided at an upper side wall of the container. The material in the cylindrical portion is floated by the pressurized gas blowing means and solidified. There is also known a device in which dust separated from a shaped material is naturally discharged from the exhaust pipe (see Japanese Patent Application Laid-Open No. 9-254190).
[0005]
[Problems to be solved by the invention]
However, in the separation device of the above-mentioned conventional example (a), the granular material, dust and the like are liable to be clogged on the mesh filter, and may adhere and remain in some cases. For this reason, the work of removing the particulates or dust clogged or adhered to the filter is troublesome and troublesome. Further, if the removal of the granular material and dust is insufficient, there is a problem that the previous material is mixed into the later material at the time of material replacement. Furthermore, when the particle size to be separated was changed, it was necessary to replace the mesh filter corresponding to the size of the particle size each time.
[0006]
In the separation device of the conventional example (b), since the powder is floated in the pressurized gas stream by the pressurized gas blowing means and is naturally discharged from the exhaust pipe, only dust having an extremely small weight with respect to the surface area of the granular material can be separated. . Also, for example, when crushing and reusing unnecessary molded products such as sprue runners generated in the plastic injection molding process, the excessively fine particles (debris) in the crushed material can be efficiently removed. It could not be separated. Furthermore, there was a problem that no device for changing the particle size to be separated was adopted.
[0007]
The present invention solves the problems of the separation devices of the above-mentioned conventional examples (a) and (b). The present invention eliminates the need for a mesh filter such as punched metal and unnecessary molding such as a sprue runner. Separation device for powders and granules that can separate too fine particles (fragments) generated in the process of crushing and reusing materials and can easily respond to changing the particle size to be separated, and used for it The purpose is to provide a filter mechanism.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an apparatus for separating granular material according to claim 1, comprising a pneumatic source for pneumatically transporting the granular material, an opening at the bottom and an introduction port at the lower part. A separation cylinder provided with a discharge port, a damper for opening and closing the bottom opening of the separation cylinder, and a separation cylinder are provided inside the separation cylinder so that the gap between adjacent wheels of the spiral portion can be adjusted by a gap adjustment mechanism. A powder to be separated by virtue of the pneumatic source through the powder inlet, and a powder that passes through the gap of the coil filter and a powder that does not pass through. It is characterized in that it is separated into granules.
[0009]
Here, the coil filter is a gap formed by spirally winding a metal wire into a coil spring, and allowing a gas such as air or an inert nitrogen gas to flow between adjacent rings of the threaded portion of the coil spring. Is formed, and the airflow and the granular material (material) are circulated through the gap to separate the granular material from the dust and the transport gas.
[0010]
In the field of powder engineering, it can be said that there is no definitive definition for the size of the particle diameter and the like for distinguishing between powder and granules. The distinction between the granular material passing through the gap between the adjacent rings of the spiral portion of the filter and the granular material not passing therethrough depends on the size of the gap between the adjacent rings of the spiral portion of the coil filter. is there. Therefore, roughly speaking, the former means a powder having a particle diameter smaller than the gap, and the latter means a powder having a particle diameter larger than the gap.
[0011]
Specific examples of the gap adjusting mechanism for adjusting the gap dimension between the adjacent wheels of the threaded portion of the coil filter include, for example, a connecting rod connected to a movable spring seat as shown in an embodiment described later, It is preferable that the lock rod includes a vertical movement means such as an air cylinder connected to the connecting rod and a lock nut.
In addition, as a sweeping mechanism for sweeping out the powdery material clogged in the gap between the adjacent wheels of the threaded portion of the coil filter, a movable spring seat, a connecting rod, a vertical moving means, as shown in an embodiment described later. The design can be changed as appropriate without being limited to the above method.
[0012]
An apparatus for separating granular material according to claim 2 comprises a pneumatic source for pneumatically transporting the granular material, a separation cylinder having an opening at the bottom and a discharge opening at an upper portion and an inlet at a lower portion. A damper for opening and closing the bottom opening of the separation cylinder, a spindle-shaped movable spring seat, a coil filter mounted on the movable spring seat, and a connecting rod connected to the movable spring seat. Up and down movement means connected to a rod, and a lock nut screwed into a thread formed at an upper end of the connecting rod are provided, and the powder and granular material to be separated by the pneumatic force of the pneumatic source is It is characterized in that it is introduced through an inlet, and is separated into powder and granular material passing through a gap between adjacent rings of the spiral portion of the coil filter, and dust and particulate material that does not pass.
[0013]
Here, as the vertical movement means, an air cylinder as shown in an embodiment to be described later may be used, or an actuator such as a solenoid may be used, and the design can be changed as appropriate.
Further, a projection is formed on the damper at a position facing the movable spring seat, and the projection does not come into contact with the movable spring seat when the bottom opening of the separation cylinder is closed by the damper. The damper may be opened by pushing the projection by movement (see claim 3).
[0014]
An operation example of the present invention will be described below.
According to the invention of claim 1 of the present invention, since the pneumatic source, the separation cylinder, the damper, and the coil filter are provided as described above, first, the gap size between the adjacent rings of the threaded portion of the coil filter is determined. The gap is adjusted to a desired size by a gap adjusting mechanism such as a connecting rod, an operating shaft of a vertical moving means, and a lock nut. Next, the bottom opening of the separation tube is closed with a damper, and a suction or pumping force (air flow) is generated by a power source such as a blower or a compressor. Formed granules are introduced through the inlet. Fine particles, such as debris in the introduced granular material, powder and dust, enter the inside of the coil filter from the gap between the adjacent wheels of the threaded portion of the coil filter, and then pass through the upper outlet. After passing through the dust collector.
[0015]
On the other hand, a powder having a large particle size that cannot enter the inside of the coil filter from the gap remains between the outer circumference of the coil filter and the inner circumference of the separation cylinder. And sent to the next process.
[0016]
According to the second aspect of the invention, the operation is roughly the same as that of the first aspect of the invention, but is significantly different in the following point. That is, in the invention of claim 2, since the coil filter is mounted on the spindle-shaped movable spring seat, the granular material introduced from the granular material introduction port is guided by the conical surface of the movable spring seat. As a result, the powder is lifted to the outer peripheral portion of the coil filter, so that the separation of the granular material is promoted by the gap between the threaded portions of the coil filter.
[0017]
Further, according to the invention of claim 2, a connecting rod connected to a movable spring seat is used as a removing mechanism for removing particles such as debris clogged in a gap between adjacent rings of the threaded portion of the coil filter. And vertical moving means connected to the connecting rod.
Therefore, while the powder and granular material introduced from the powder and granular material introduction port is put in the airflow and sent to the coil filter to separate the powder and granular material, when the vertical movement means is moved down, the connecting rod and the movable spring are moved. The coil filter extends through the seat, the gap in the threaded portion of the coil filter is widened, and powder particles such as debris clogging the gap in the threaded portion during separation are released. At this time, the particles such as debris are sent to the discharge port when released without stopping the airflow, and are sent to the storage tank side of the separated particles when the airflow is stopped and released. In this way, after the operation of removing the particles such as debris clogged in the gap of the spiral part, the vertical movement means is moved up to return the gap to the initial state, and the separation of the powder and granules is performed again. Perform the operation. Such an operation is repeated many times. This removing operation may be performed intermittently, for example, for several seconds, for example, during the separation of the granular material.
[0018]
As described above, the adjustment of the gap between the threaded portions of the coil filter can be easily performed by the vertical movement of the coil filter and the connecting rod, the screw adjustment of the lock nut, and the like. The mechanism for extending and retracting the coil filter can be easily obtained by means of up / down movement such as an air cylinder or solenoid. As described above, the present invention separates and collects debris and dust contained in various types of granular material to be transported by a simple mechanism without clogging and without trouble such as heterogeneous mixing at the time of material change. be able to.
[0019]
A filter mechanism for a granular material separating apparatus according to a fourth aspect of the present invention includes a spindle-shaped movable spring seat, a coil filter mounted on the movable spring seat, and a connection standing upright on the movable spring seat. It is provided with a rod and up and down moving means connected to the upper end of the connecting rod.
In this case, it is preferable that a screw portion is formed at the upper end of the connecting rod, and the lock nut and the operating shaft of the vertical movement means are screwed to the screw portion.
[0020]
Embodiment 1 of the present invention
A first example of an embodiment of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, a separation apparatus for separating a granular material having an opening 2 at the bottom, a granular material introduction port 3 at a lower part, and a discharge port 4 at an upper part, as shown in FIG. A damper 10 that opens and closes the bottom opening 2, a spindle-shaped movable spring seat 20 and a spring-shaped coil filter 30 mounted on the movable spring seat 20, which are installed in the separation cylinder 1, and is connected to the movable spring seat 20. Connecting rod 21, up-and-down moving means 40 connected to connecting rod 21, lock nut 51 screwed to screw portion 22 formed at the upper end of connecting rod 21, and pneumatically transporting the granular material. Power source (air flow generating means) 60 is provided. Then, a powdery material to be separated by virtue of the power (airflow) of the power source 60 is introduced from the powdery material introduction port 3, and a powdery material passing through the gap 32 of the threaded portion of the coil filter 30 or the like. The dust is separated from the dust that does not pass through.
The connection rod 21, the operating shaft (piston rod) 42 of the vertical movement means 40, and the lock nut 51 constitute a gap adjusting mechanism 50.
[0021]
The bottom opening 2 of the separation cylinder 1 is formed as a slope with an upward slope from the lower end on the side of the granular material inlet 3 toward the lower end on the opposite side, and the inclined angle Θ of the inclined cut (that is, the granular material inlet 3 The angle between the lower end on the side and the damper 10 in a state where the inclined cut end is closed is set to approximately 45 degrees. The inclination angle Θ is not limited to the above numerical value and can be appropriately selected. The inclined cut (that is, the bottom opening 2) is opened and closed by the damper 10. The granular material inlet 3 is provided near the lowermost part of the separation cylinder 1 and at a position facing the damper 10 in a closed state, whereby the granular material introduced from the granular material inlet 3 is Further, since the inclined surface of the damper 10 is efficiently sent to the outer periphery of the coil filter 30 together with the airflow, the separation efficiency is improved.
[0022]
The granular material introduction port 3 is formed by a granular material introduction tube 3A, and one end of the granular material introduction tube 3A is connected to a communication hole 3B formed in a lower portion of the separation cylinder 1 by welding or the like.
As shown in FIG. 1, the discharge port 4 provided at the upper part of the separation tube 1 is formed by an elbow-shaped discharge tube 4A, and the lower end of the vertical tube portion 4a of the discharge tube 4A is It is fitted into the fitting insertion hole 1A formed in the portion and is fixed to the top plate portion of the separation cylinder 1 by welding or the like. As shown in FIG. 1, the outlet 4 is connected to a pneumatic power source (airflow generating means) 60 and a dust collector 65 via a pipe 66. In the present embodiment, as the pneumatic power source (air flow generating means) 60, a powdery or granular material is introduced by using an air source 61 such as a compressor and a known air ejector 62 for introducing compressed air from the air source 61. The granular material is sucked and transported from the port 3 to the separation cylinder 1 and the discharge port 4 together with the airflow.
[0023]
The coil filter 30 is in the form of a coil spring, and separates the granular material at a gap between adjacent rings of the threaded portion. The coil filter 30 is sandwiched between the ring-shaped fixed spring seat 5 fitted to the lower end of the vertical pipe portion 4a of the discharge pipe 4A and the spindle-shaped movable spring seat 20. That is, the upper threaded portion of the coil filter 30 is fitted in the spring receiving portion 5 a of the fixed spring seat 5, and the lower threaded portion is fitted in the spring receiving portion 20 a of the movable spring seat 20.
[0024]
The shape of the threaded portion of the coil filter 30 is not particularly limited in the present invention. However, due to the gap 32 between the threaded portions 31, adhered matter (hereinafter, referred to as material M) such as powders and foreign materials is formed. It is preferable that the material M is not clogged in the gap 32 because the material M is separated. From the viewpoint of preventing the material from clogging in the gap 32, the rectangular section of B is better than the circular section of the threaded portion 31 shown in FIG. Is optimal. That is, as shown in FIG. 5A, when the outer peripheral portion of the gap is widened, the material that has arrived first adheres to the gap 32 between the threaded portions 31, and the gap 32 is difficult to move because it is deeply pinched. Since the block 32 is closed, it is better to use a wire having a rectangular cross section B and a trapezoidal cross section C rather than the circular cross section shown in FIG. 5A. It can be easily moved by collisions of materials, etc., and material clogging can be prevented.
[0025]
The movable spring seat 20 has a spindle shape including a lower conical portion 20b and an upper conical portion 20c (in the present invention, not only a true spindle shape but also a broadly-defined one having a generally conical shape). The reason for such a shape will be described below. That is, the lower conical portion 20b is formed such that the material introduced by the pneumatic force from the granular material introduction port 3 is rectified and rises together with the airflow toward the outer periphery of the coil filter 30, and the gaps 32,. It works as if it were all around. Further, the upper conical portion 20c can rectify the material such as powder entering from the gap 32 of the coil filter 30 to the discharge port 4 without stagnation, and raise the air source (airflow generating means) 60. This is because, when the compressed air of the air cylinder, which is the up-and-down moving means 40, is released after that, materials such as debris spilled inside the coil filter 30 slide down to the outside of the coil filter 30.
[0026]
The movable spring seat 20 is not limited to the shape shown in FIG. 3 and can be appropriately changed in design. For example, as shown in FIG. 4, a shape in which the lower conical portion 20b and the upper conical portion 20c are arc-shaped may be used. Good.
[0027]
A connecting rod 21 is connected to the movable spring seat 20. The connecting rod 21 is inserted into an insertion hole 4b formed in a top plate of the vertical pipe 4a of the discharge pipe 4A. It is connected to an operating shaft (piston rod) 42 of an air cylinder 41 which is a vertical moving means 40. That is, a screw portion 22 is formed at an upper end portion of the connecting rod 21, and a lock nut 51 serving as a gap adjusting mechanism 50 is screwed into the screw portion 22, and then the air cylinder is provided above the lock nut 51. A female screw 43 formed on an operating shaft (piston rod) 42 of 41 is screwed.
[0028]
When compressed air is supplied from an air inlet 45 formed below the outer cylinder 44 of the air cylinder 41 and the operating shaft (piston rod) 42 is raised, as shown in FIG. The coil seat 30 is compressed by the interlocking movement of the spring seat 20, and the gap 32 between the threaded portions 31, 31 of the coil filter 30 is reduced.
The material is separated by the narrowed gaps 32... 32 of the threaded portions 31... 31. The stroke length of the connecting rod 21 is adjusted by loosening the lock nut 51 screwed on the connecting rod 21, rotating the connecting rod 21 screwed to the operating shaft (piston rod) 42, and inserting and removing a screw portion. You can do it easily.
[0029]
In FIGS. 1 and 2, reference numeral 47 denotes a column for fixing the air cylinder 41, which is the vertical movement means 40, on the separation cylinder 1, and reference numeral 70 denotes a cover for mounting the separation cylinder 1, and a top plate 71 of the cover 70. Is provided with an opening 72. The separation tube 1 is fitted into the opening 72, and the flange 1B of the separation tube 1 is mounted on the opening edge of the top plate 71 via a seal 73 with a fastening member such as a screw or welding. It is fixed at 74. Reference numeral 75 denotes a sealing material for closing a gap between the powder introduction pipe 3A and the insertion hole 76 formed in the side wall of the cover 70, 77 denotes a damper mounting plate to which the rotating shaft 11 of the damper 10 is mounted, and 78 denotes a tip of the damper 10. A sensor 79 detects a state in which the damper 10 seals the bottom opening 2 of the separation cylinder 1. Numeral 80 denotes a storage tank such as a tank or a container for storing the material such as the granular material separated by the coil filter 30. The flange 70 a formed at the lower end of the cover 70 is attached to the top plate of the storage tank 80. It is fixed to the opening edge of the formed opening 82 by a fastening member 83.
In FIG. 1, reference numeral 90 denotes a material supply source of the granular material (material) to be separated, and reference numeral 92 denotes a transport pipe connecting the material supply source 90 and the granular material introduction pipe 3A.
[0030]
The damper 10 is rotated about a rotation shaft 11, and the damper 10 is closed by closing the bottom opening 2 of the separation cylinder 1 during the separation operation of the material. A projection 12 is formed on the damper 10 at a position facing the movable spring seat 20. The projection 12 comes into contact with the movable spring seat 20 when the bottom opening 2 of the separation cylinder 1 is closed by the damper 10. Instead, the protrusion 12 is pushed by the downward movement of the movable spring seat 20 to open the damper 10.
[0031]
That is, in FIGS. 1 and 2, the movable spring seat 20 is in the upward movement position as shown by the solid line, the gap 32 between the threaded portions 31 of the coil filter 30 is narrow, and the damper 10 closes the bottom opening 2. In this case, the protrusion 12 is separated from the movable spring seat 20 without contacting the same. Then, when the material to be separated by the power (airflow) of the power source 60 is introduced into the separation cylinder 1 from the granular material introduction port 3, the introduced material is separated by the gap 32 of the coil filter 30 through the movable spring seat 20. Is started. When the material clogged in the gap 32 of the threaded portion 31 is to be removed, the movable spring seat 20 is moved via the connecting rod 21 by operating the above-mentioned vertical movement means 40, and is indicated by a virtual line in FIGS. When the coil filter 30 moves down to the position shown, the coil filter 30 expands due to its restoring force, the gap 32 of the threaded portion 31 expands, and the sandwiched material is released from the gap 32. At the same time, since the lower conical portion 20b of the movable spring seat 20 pushes the projection 12 of the damper 10 in the opening direction, the damper 10 moves its rotating shaft 11 as shown by the phantom line in FIGS. Since it is rotated in a direction approaching the fulcrum perpendicularly, the bottom opening 2 of the separation cylinder 1 is opened, and the weight 78, which pressed the sensor 79 in a sealed state, separates from the sensor 79 as shown by a virtual line. Move up.
[0032]
When the damper 10 is closed from the state in which the bottom opening 2 of the separation tube 1 is opened as described above to the state shown by the solid line in FIGS. 1 and 2, the material adheres to the bottom opening 2 and the like. If the damper 10 is not sealed, the sensor 79 does not work. Therefore, the air cylinder 41 is operated, and the movable spring seat 20 is intermittently moved up and down a plurality of times via the connecting rod 21 so that the bottom opening 2 can be moved. The damper 10 can be brought into a closed state by removing the material adhering to the like.
[0033]
An operation example of the first embodiment having the above configuration will be described below.
First, taking into consideration the stroke length of the operating shaft (piston rod) 42 of the air cylinder 41, the connecting position of the connecting rod 21 and the operating shaft 42 is adjusted with the lock nut 51, and the threaded portion of the coil filter 30 is adjusted. The interval (length) of the gap 32 of the base 31 is determined.
Next, the bottom opening 2 of the separation cylinder 1 is closed by the damper 10.
[0034]
Then, an aspiration (airflow generating means) 60 generates an aspiration (airflow) of suction or pressure, and the material to be separated is introduced into the separation cylinder 1 from the powder material inlet 3 by the aspiration.
The introduced material is pneumatically fed to the coil filter 30 by an action such as colliding with or separating from the movable spring seat 20, and separation is started by the gap 32 of the threaded portion 31. Here, particles, powders and dust having a smaller diameter than the gap 32 in the material enter the inside of the coil filter 30 from the gap 32 and then pass through the outlet 4 in the direction of the arrow in FIGS. 1 and 2. After that, it is collected by the dust collector 65. At this time, while the material is floating on the outer periphery of the coil filter 30, attached matter such as foreign matter such as small-diameter debris mixed therein is also collected by the dust collector 65 together with the dust.
[0035]
On the other hand, the material having a large particle diameter that cannot enter the inside through the gap 32 of the coil filter 30 remains between the outer circumference of the coil filter 30 and the inner circumference of the separation cylinder 1. Is sent to the storage tank 80 or the next step, not shown. The processing operation so far is referred to as a one-cycle separation step for convenience. Therefore, although it is affected by the amount of the material to be separated, the separation operation of a desired amount is usually completed by going through a number of cycles of separation steps.
[0036]
Further, a part of the material having a large particle diameter may be clogged in the gap 32 of the threaded portion 31 of the coil filter 30. In this embodiment, as a method of preventing material clogging in such a case, in the present embodiment, as described above, for example, as described above, after each separation process is completed, a wiping mechanism is provided. The operation of removing material such as debris clogged in the gap 32 by expanding the gap 32 of the spiral part 31 by using the (vertical moving means 40 and the connecting rod 21) (for example, 3-5). It is performed every second for every second. In other words, what is the two steps, the separation step when the pay-off mechanism (40, 21) is moving up, and the pay-off step when the pay-off mechanism (40, 21) is moving down? Repeat many times. In other words, the material clogged in the gap 32 of the spiral portion 31 is removed by intermittently performing the removing process.
[0037]
That is, if the compressed air in the air cylinder 41 serving as the vertical movement means 40 is released (that is, the compressed air in the outer cylinder 44 is discharged to the atmosphere through the air introduction hole 45. In some cases, the upper side of the outer cylinder 44 The operating shaft (piston rod) 42 may be pushed down by injecting low-pressure compressed air from the exhaust port 46.), and the movable spring seat 20 falls under the total weight of the connecting rod 21 and the operating shaft (piston rod) 42. At first, the coil filter 30 is extended by the restoring force, the gap 32 of the threaded portion 31 is expanded, and the material such as the debris trapped in the gap 32 is released during the operation of the airflow of the pneumatic source 60. The air is discharged to the dust collector 65 side. Then, at the next moment, the movable spring seat 20 pushes the projection 12 of the damper 10 which has sealed the bottom opening 2 of the separation cylinder 1, so that the damper 10 rotates in a direction approaching vertically with the rotation shaft 11 as a fulcrum. Therefore, the bottom opening 2 of the separation tube 1 is opened, and the weight 78 attached to the damper 10 is separated from the sensor 79 so as to be in close contact with the separation tube 1 (see 10 shown by phantom lines in FIGS. 1 and 2). I do. When the power source (air flow generation device) 60 is temporarily stopped by the signal change of the sensor 79, the air flow rising toward the coil filter 30 is stopped.
The separated material that has not been supplied to the dust collector 65 falls naturally and is supplied to the storage tank 80. When the material sandwiched between the gaps 32 of the threaded portions 31 of the coil filter 30 may be supplied to the storage tank side, the compressed air of the air cylinder 41 may be released after the power source 60 is stopped.
[0038]
By repeating the above operations, the separation can be continuously performed during the pneumatic transportation of the material.
[0039]
Embodiment 2 of the present invention
FIG. 6 shows a second example of the embodiment of the present invention. This embodiment is characterized in that a ring blower or the like is used as a pneumatic power source (air flow generating means) 60 in a suction manner, and the dust collector 65 is connected to the discharge pipe 4A with the precipitator 65 being upstream of the pneumatic power source 60. Unlike the first example of the embodiment, the other configuration is the same. Therefore, it is better to refer to the description of the first example of the embodiment in detail.
[0040]
Third Embodiment of the Invention
FIG. 7 shows a third example of the embodiment of the present invention. This embodiment is characterized in that a pressure feed type is used as a pneumatic power source (air flow generating means) 60, and only a dust collector 65 is connected to an outlet 4; Since it is the same as the first example of the form, it is better to refer to it.
In this case, an air source (air flow generating means) 60 employs an air source 61 such as a compressor similar to that shown in FIG. 1 and an air ejector 62, and compresses the pressurized air generated by the air ejector 62 into powder and granular material. It is supplied to the inlet 3 side. For details of other structures, refer to the description of the first example of the embodiment.
[0041]
Embodiment 4 of the present invention
FIG. 8 shows a fourth example of the embodiment of the present invention. In this embodiment, the airflow introduced from the granular material introduction port 3 into the separation cylinder 1 is dried air heated by a heater 91 or an appropriate gas to dry the granular material (material). It is characterized in that it is a separation device that can perform separation.
In this case, the means for heating the gas may employ a known hopper dryer. The power source (air flow generating means) 60 is the same as that in FIG. The other configuration is the same as that of the first embodiment, and therefore, it is better to refer to it.
[0042]
Embodiment 5 of the present invention
The present invention also provides a filter mechanism for a granular material separation device. The filter mechanism will be described with reference to FIGS. 1 and 2. A spindle-shaped movable spring seat 20, a coil filter 30 mounted on the movable spring seat 20, and a connecting rod 21 erected on the movable spring seat 20 And vertical movement means 40 connected to the upper end of the connecting rod 21.
[0043]
A thread 22 is formed at the upper end of the connecting rod 21, and a lock nut 51 and an operating shaft 42 of the vertical moving means 40 are screwed to the thread 22 for separating the granular material. Filter mechanism can also be implemented.
[0044]
[Modifications]
In the above embodiments, the connecting rod 21, the operating shaft 42 of the vertical moving means 40, and the lock nut 51 are described as the gap adjusting mechanism 50, but the vertical moving means 40 such as the air cylinder 41 is also used as the gap adjusting mechanism 50. Or other configurations.
The operation of removing the material by the removing mechanism (40, 21) is not limited to the method described in the above-described embodiment. For example, the material may be removed in the gap 32 of the spiral portion 31 of the coil filter 30. It is also possible to detect an increase in the internal pressure in the separation tube 1 with a pressure sensor (not shown) when the clogging occurs, and perform the above-described flushing operation each time the detection is performed.
[0045]
The apparatus for separating powder and granules of the present invention and the filter mechanism used therefor are not limited to the plastic molding process, and pulverizers for pulverized particles, foreign matter-attached matter, and unnecessary molded articles such as sprues and runners in pneumatic transportation equipment and the like. Can be separated by the force of gas such as transport air.
Also, in the present invention, contrary to the above embodiments, unnecessary substances such as foreign matter are collected and collected in the storage tank 80, and powdery components are collected on the discharge port 4 (dust collector 65) side. It can also be used for products such as
[0046]
In addition, plastic molding materials such as PPS are more sensitive to the inclusion of fine debris than general plastic molding materials, so powder debris generated during the production of pellets and subsequent transportation is also completely eliminated. It is desirable to remove it. In such a case, if the apparatus for separating powdery and granular materials according to the present invention is provided in the pneumatic transportation device for automatically supplying the material to the molding machine, the extra man-hours can be saved, and the cost reduction and the quality stabilization of the molded product can be achieved. Fruit is obtained.
[0047]
【The invention's effect】
According to the granular material separation device of the first aspect, the coil filter is provided inside the separation tube, and the gap filter between the adjacent wheels of the spiral portion can be adjusted by the gap adjustment mechanism. In addition, the gap size of the threaded portion of the coil filter can be easily and quickly adjusted in accordance with the particle diameter of the granular material to be separated. Therefore, according to the first aspect of the present invention, since a mesh-like filter such as a conventional punching metal is not required, it is possible to avoid problems such as clogging of powder or the like and mixing of materials at the time of material change.
[0048]
According to the apparatus for separating granular material according to the second aspect, in addition to the effect of the first aspect, since the coil filter is mounted on the spindle-shaped movable spring seat, the granular material introduced from the material introduction port is provided. Since the body is guided by the conical surface of the movable spring seat and is raised to the outer periphery of the coil filter, separation of the granular material is promoted by the clearance of the threaded portion of the coil filter. The connecting rod, the up-and-down moving means, and the lock nut according to the second aspect constitute the clearance adjusting mechanism, and achieve the above-mentioned effect.
In addition, a connecting rod connected to the movable spring seat and an upper and lower connected to this connecting rod are used as a sweeping-off mechanism for sweeping out particles such as debris clogging the gap between adjacent rings of the threaded part of the coil filter. When the vertical movement means is moved downward, the coil filter is extended through the connecting rod and the movable spring seat, and the gap of the threaded portion of the coil filter is expanded, so that the separation is performed. At the same time, powder particles such as debris clogged in the gap of the threaded portion are released.
[0049]
According to the apparatus for separating granular material according to the third aspect, in addition to the effect of the second aspect, the bottom opening of the separation cylinder can be automatically opened and closed by the damper.
[0050]
According to the filter mechanism for a granular material separation device according to the fourth aspect, the filter mechanism has a simple configuration. The effect can be achieved.
[0051]
According to the filter mechanism for the granular material separation device according to the fifth aspect, the gap between the threaded portions of the coil filter can be arbitrarily adjusted by the lock nut.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of Embodiment 1 of the present invention.
FIG. 2 is an enlarged sectional view of a main part of FIG.
FIG. 3 is a partially sectional front view of a movable spring seat and a connecting rod.
FIG. 4 is a partial front view of a modified example of a movable spring seat and a connecting rod.
FIG. 5 shows a partial longitudinal sectional view of a coil filter having a different shape of a coil wire.
In A, the coil wire has a circular cross section.
B is a coil wire having a rectangular cross section.
C is a coil wire having a trapezoidal section.
FIG. 6 is a longitudinal sectional view of Embodiment 2 of the present invention.
FIG. 7 is a longitudinal sectional view of Embodiment 3 of the present invention.
FIG. 8 is a longitudinal sectional view of Embodiment 4 of the present invention.
[Explanation of symbols]
1 Separation tube
2 Bottom opening
3 Granule inlet
4 outlet
5 Fixed spring seat
10 Damper
12 protrusions
20 Movable spring seat
20b Lower cone
20c upper cone
30 Coil filter
31 Screw part
32 gap
40 Vertical movement means
41 Air cylinder
42 Working shaft (piston rod)
50 Clearance adjustment mechanism
51 Lock nut
60 energy source (airflow generation means)
61 Air source
62 air ejector
65 dust collector
80 storage tanks
90 Material Source
91 heater

Claims (5)

粉粒体を気力輸送するための気力源と、底部を開口するととも に下部に粉粒体導入口を上部に排出口を設けた分離筒と、分離筒の前記底部開口 を開閉するダンパーと、分離筒に内装されて、隙間調整機構により螺旋部の隣接 輪間の隙間寸法を調節できるようにしたコイルフィルターとを設けてなり、前記 気力源の気力により分離すべき粉粒体を前記粉粒体導入口より導入して、前記コ イルフィルターの前記隙間を通過する粉粒体や粉塵と通過しない粉粒体とに分離 するようにしたことを特徴とする粉粒体の分離装置。A pneumatic source for pneumatically transporting the granular material, a separation cylinder having a bottom opened and a granular material introduction port provided at the bottom and a discharge port provided at the top, and a damper for opening and closing the bottom opening の of the separation cylinder, A coil filter which is provided inside the separation cylinder and is capable of adjusting a gap dimension between adjacent wheels of the spiral portion by a gap adjusting mechanism; and A powder / granule separating apparatus, wherein the powder / granular material is introduced through a body introduction port and is separated into powder and granules that pass through the gap of the coil filter and dust and particles that do not pass. 粉粒体を気力輸送するための気力源と、底部を開口するとともに下部に粉粒体導入口を上部に排出口を設けた分離筒と、分離筒の前記底部開 口を開閉するダンパーと、分離筒に内装された、紡錘形の可動ばね座及び可動ば ね座上に取り付けたコイルフィルターと、前記可動ばね座に連結した連結棒と、 この連結棒に接続した上下動手段と、前記連結棒の上端部に形成したねじ部に螺 着したロックナットとを設けてなり、前記気力源の気力により分離すべき粉粒体 を前記粉粒体導入口より導入して、前記コイルフィルターの螺旋部の隣接輪間の 隙間を通過する粉粒体や粉塵と通過しない粉粒体とに分離するようにしたことを 特徴とする粉粒体の分離装置。A pneumatic source for pneumatically transporting the granular material, a separation cylinder having an opening at the bottom and a discharge port at the top with a powder introduction port at the bottom, and a damper for opening and closing the bottom opening of the separation cylinder, A spindle-shaped movable spring seat and a coil filter mounted on a movable spring seat, and a connecting rod connected to the movable spring seat; and a vertical moving means connected to the connecting rod; And a lock nut screwed onto a threaded portion formed at the upper end of the coil filter. The powdery material to be separated by the pneumatic force of the pneumatic source is introduced from the powdery material introduction port, and the spiral portion of the coil filter is formed. A granular material separating device, wherein the granular material is separated into a granular material passing through a gap or dust and a granular material not passing through. ダンパーには可動ばね座と対向する位置に突起を形成し、この突起は、ダンパーにより分離筒の底部開口を閉塞している時には可動ばね座に 当接せず、該可動ばね座の下動により前記突起を押してダンパーを開放するよう にしてある請求項2に記載の粉粒体の分離装置。A projection is formed on the damper at a position opposed to the movable spring seat. When the bottom opening of the separation cylinder is closed by the damper, the projection does not abut on the movable spring seat. 3. The apparatus according to claim 2, wherein the projection is pressed to open the damper. 紡錘形の可動ばね座と、この可動ばね座上に取り付けたコイルフィルターと、前記可動ばね座に立設した連結棒と、連結棒の上端部に接続し た上下動手段とを備えてなる粉粒体の分離装置用のフィルター機構。A powder particle comprising a spindle-shaped movable spring seat, a coil filter mounted on the movable spring seat, a connecting rod erected on the movable spring seat, and a vertically moving means connected to an upper end of the connecting rod. Filter mechanism for body separation device. 前記連結棒の上端部にはねじ部を形成し、このねじ部にロックナットと上下動手段の作動軸とを螺着してなる請求項4に記載の粉粒体の分離 装置用のフィルター機構。The filter mechanism according to claim 4, wherein a screw portion is formed at an upper end portion of the connecting rod, and a lock nut and an operating shaft of a vertically moving means are screwed to the screw portion. .
JP2002257208A 2002-09-02 2002-09-02 Powder separation device and filter mechanism used therefor Expired - Fee Related JP4111781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257208A JP4111781B2 (en) 2002-09-02 2002-09-02 Powder separation device and filter mechanism used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257208A JP4111781B2 (en) 2002-09-02 2002-09-02 Powder separation device and filter mechanism used therefor

Publications (2)

Publication Number Publication Date
JP2004089925A true JP2004089925A (en) 2004-03-25
JP4111781B2 JP4111781B2 (en) 2008-07-02

Family

ID=32062160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257208A Expired - Fee Related JP4111781B2 (en) 2002-09-02 2002-09-02 Powder separation device and filter mechanism used therefor

Country Status (1)

Country Link
JP (1) JP4111781B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107029995A (en) * 2017-06-01 2017-08-11 深圳市中科智诚科技有限公司 The working pulverized limestone material screen material equipment of one kind automation building
CN113028556A (en) * 2021-03-25 2021-06-25 孙海龙 Air purification circulation system
CN114160407A (en) * 2021-08-30 2022-03-11 蓝心鹏 Quick sieving mechanism of granular material of building energy saving material production

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718467U (en) * 1993-09-03 1995-03-31 株式会社ピーエフユー Printed wiring board
CN101767091B (en) * 2009-12-21 2012-03-21 新疆农业大学 Nut shell and kernel separating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107029995A (en) * 2017-06-01 2017-08-11 深圳市中科智诚科技有限公司 The working pulverized limestone material screen material equipment of one kind automation building
CN113028556A (en) * 2021-03-25 2021-06-25 孙海龙 Air purification circulation system
CN114160407A (en) * 2021-08-30 2022-03-11 蓝心鹏 Quick sieving mechanism of granular material of building energy saving material production

Also Published As

Publication number Publication date
JP4111781B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP5358457B2 (en) Continuous dry pulverization operation method of vertical pulverizer and vertical pulverizer
US11925959B2 (en) Apparatus and method for de-dusting bulk materials
JP2007050354A (en) Powder extraction apparatus
JP2004089925A (en) Separation apparatus for granular body and filter mechanism used for the same
KR20090117976A (en) Powder removing device and granule object separation system
JP2006326463A (en) Pneumatic separator, resin recycling method and recycled resin product
KR102320965B1 (en) Pvc powder sorting device
US10646902B2 (en) Half round cylindrical configuration for dedusting apparatus
US6394708B1 (en) Receiver for pneumatic conveyor
TWI766302B (en) Closure unit and kit for treatment of bulk materials
JP4383073B2 (en) Cyclone type air flow separation device
JP4509086B2 (en) Solid-gas separation device for powder
CN215140729U (en) Organic matter separation device and organic matter separation system capable of efficiently separating
CN205613543U (en) Novel fluid energy mill structure
KR102451577B1 (en) Dust removal device for recycled plastic pellets
CN111776599B (en) Stone paper production is with dustless dosing unit
JP4309513B2 (en) Powder collector
JP3126023B2 (en) Continuous granulation and coating equipment
JPS624479A (en) Sorter
CN219233112U (en) Steam powder machine for crushing granular materials
JP2003010787A (en) Classifying equipment for powder and granular material and the like
CN213349104U (en) Unloading buffer device of ball mill
CN209699827U (en) A kind of feeding device of blow moulding machine
JP7389990B2 (en) Powder material collection device
CN209006132U (en) A kind of particle bulk cargo vibration screening plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Effective date: 20080212

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080311

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080408

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees