JP2004089826A - Immobilized microorganism carrier and manufacturing method therefor - Google Patents

Immobilized microorganism carrier and manufacturing method therefor Download PDF

Info

Publication number
JP2004089826A
JP2004089826A JP2002253252A JP2002253252A JP2004089826A JP 2004089826 A JP2004089826 A JP 2004089826A JP 2002253252 A JP2002253252 A JP 2002253252A JP 2002253252 A JP2002253252 A JP 2002253252A JP 2004089826 A JP2004089826 A JP 2004089826A
Authority
JP
Japan
Prior art keywords
carrier
immobilized microorganism
present
water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002253252A
Other languages
Japanese (ja)
Other versions
JP4000593B2 (en
Inventor
Takako Ogasawara
小笠原 多佳子
Tatsuo Sumino
角野 立夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2002253252A priority Critical patent/JP4000593B2/en
Publication of JP2004089826A publication Critical patent/JP2004089826A/en
Application granted granted Critical
Publication of JP4000593B2 publication Critical patent/JP4000593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an immobilized microorganism carrier having a large carrier size and capable of developing a high treatment capacity regardless of a fluidized or fixed bed type of a biological reactor. <P>SOLUTION: The carrier 10 has an outer surface shape formed from a single planar part 12 and a single curved part 14 or a plurality of curved parts 14A and 14B, for example, like a semispherical body. Specific gravity difference is formed in the interior 16 of the carrier and a single or one or more recessed sump parts 18 are formed to the planar part 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固定化微生物担体及びその製造方法に係り、特に河川や湖沼等の水域の窒素、BOD成分、及び藍藻類を生物学的に処理するための固定化微生物担体及びその製造方法に関する。
【0002】
【従来技術】
地球環境規模で水質汚濁防止策が問われている昨今、河川や湖沼等の水域の窒素、BOD成分(有機物)、及び藍藻類(アオコ)等の浮遊性物質を処理する方法について、物理化学的処理法、生物学的処理法、物理化学的処理と生物学的処理を組み合わせた方法など様々な手法が検討されている。従来、生物学的な反応装置としては、その適用対象により固定床式と流動床式の反応装置に分かれる。例えば、被処理水処理や下水処理の場合には、曝気又は攪拌等によって固定化微生物担体を処理槽内で流動させながら被処理水と固定化微生物担体とを接触させて処理する流動床式の反応装置が主として使用される。一方、海洋、湖沼、河川等の水域を処理する場合には、固定化微生物担体を密に充填して形成した固定床と被処理水とを接触させて処理する固定床式の反応装置が主として使用される。これらの装置は、固定床内又は流動床内に被処理水を取り込んで固定化微生物担体に接触させることにより生物学的に処理し、処理水を装置外に放流するものであり、固定化微生物担体は被処理水との接触効率が大きくなるように、比表面積の大きな形状、例えば立方体、球形等の形状にするのが一般的である。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の固定化微生物担体は、担体サイズが10mm以下の例えば3mm程度のサイズ条件で流動床式の反応装置に適用した場合には優れた性能を発揮するが、担体サイズが10mmを超えるサイズ条件で、しかも固定床式の反応装置に適用した場合には、固定床を形成する固定化微生物担体同士の間に空隙部を保持しにくく、被処理水との接触効率が低下して処理性能の悪化を招く問題がある。
【0004】
本発明はこのような事情に鑑みてなされたもので、担体サイズを大きくでき、しかも流動床式や固定床式の生物学的反応装置に関係なく高い処理性能を発揮することのできる固定化微生物担体及びその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の請求項1は前記目的を達成するために、微生物を包括固定又は付着固定する担体であって、該担体の外面形状が平面部分と曲面部分とで形成されていることを特徴とする。ここで微生物とは、分離された純粋な微生物に限らず、下水処理場の活性汚泥、湖沼、河川や海の底泥、土壌などの各種の微生物を含むものとする。
【0006】
本発明の請求項1によれば、固定化微生物担体の外面形状が、平面部分と曲面部分とで形成されているので、担体の平面部分と別の担体の曲面部分が接触した部分には、大きな空隙部が形成される。従って、この固定化微生物担体で固定床を構成すれば、立方体のように平面のみで形成されている従来の固定化微生物担体や球のように曲面のみで形成されている従来の固定化微生物担体に比べて固定床の空隙率を大きくできる。これにより、固定化微生物担体と被処理水との接触効率が向上するので、反応速度が速くなり生物学的な処理性能を向上できる。
【0007】
また、固定化微生物担体の外面形状を、平面部分と曲面部分とで形成して担体の平面部分と別の担体の曲面部分とを接触させることで、担体同士が密接状態で充填されにくいと共に、担体サイズが大きくなった分、担体同士の空隙部も大きくなる。これにより、担体サイズを大きくしても、担体の充填量に対する間隙部の割合が小さくなりにくいので、固定床の空隙率が低減しにくい。この結果、担体と被処理水との接触効率が低下しないので、担体サイズを大きくすることができる。
【0008】
ちなみに、従来の立方体や球体のように平面のみ又は曲面のみの担体で固定床を形成した場合、担体同士が密接状態で充填され、担体同士の間隙部が小さくなる。特にサイズの大きな担体ほど、担体の充填量に対する間隙部の割合が小さくなるので、固定床の空隙率が低減する。
【0009】
本発明の請求項2は、請求項1において、担体を被処理水中に複数投入したときに、全ての担体の前記平面部分が同じ方向を向くように前記担体の部分において比重差を設けたことを特徴とする。これにより、固定床内の担体同士は同じ方向を向き、必ず平面と曲面とが接触するので、固定床の空隙率を一層大きくすることができる。
【0010】
本発明の請求項3は、請求項1又は2において、前記平面部分には単一又は複数の凹部が形成されていることを特徴とする。これにより、水面に浮遊するアオコ等の浮遊性物質を担体の凹部に沈着させることができるので、固定化微生物担体で浮遊性物質も除去できる。
【0011】
本発明の請求項4は、型枠形状が平面部分と曲面部分とで成る型枠内の底部に、予め比重調整剤を投入しておき、その型枠内に固定化材料を重合することを特徴とする。
【0012】
本発明の請求項4によれば、担体の外面形状が平面部分と曲面部分とで成り、しかも担体を被処理水中に投入したときに、担体の平面部分が同じ方向を向くように担体部分に比重差を有する付着固定型の固定化微生物担体を製造することができる。
【0013】
本発明の請求項5は、請求項4において、前記固定化材料に微生物を混在させることを特徴とする。これにより、担体の外面形状が平面部分と曲面部分とで成り、しかも担体を被処理水中に投入したときに、担体の平面部分が同じ方向を向くように担体部分に比重差を有する包括固定型の固定化微生物担体を製造することができる。
【0014】
【発明の実施の形態】以下添付図面に従って、本発明に係る固定化微生物担体及びその製造方法の好ましい実施の形態について詳説する。
【0015】
本発明の固定化微生物担体は、微生物を包括固定又は付着固定する担体であって、該担体の外面形状が平面部分と曲面部分とで形成されている。以下、本発明の固定化微生物担体を単に担体と称して説明する。
【0016】
図1は、担体10の外面形状が単一の平面部分12と単一の曲面部分14とで形成された一例で、球体を半分に切断した半球体の場合である。この場合、半球体に限定されず、球体を1/5と4/5の比率で切断した1/5球体、4/5球体でもよく、他の比率で切断して形成してもよい。図2は、担体10の外面形状が単一の平面部分12と複数の曲面部分14A,14Bとで形成された一例で、図1の半球体に小さな半球体を重ねた形状である。また、図3は図1の半球体に円柱形状の部分を重ねたものである。尚、これらは一例であり、担体10の外面形状が平面部分12と曲面部分14とで形成されている担体の全てが含まれる。曲面部分14は凹状の曲面よりも凸状の曲面であることが好ましい。
【0017】
担体10の直径Dは、1μmから数百mmまで幅広く作成することができ、好ましくは10mm〜100mmの範囲がよい。また、担体10の担体内部には比重差が設けられ、担体10を被処理水中に複数投入したときに、全ての担体10の平面が同じ方向を向くように形成される。例えば、図1では担体10の担体厚みWのうちの平面部分12に近い担体部分(以後「軽量部分」と称す)の比重よりも、平面部分12から遠い担体部分(以後「重量部分」と称す)の比重の方が大きくなるように担体の部分において比重差が設けられている。軽量部分の比重は1.002〜1.010の範囲が好ましく、重量部分の比重は1.050〜1.100の範囲が好ましい。これにより、複数の担体10を被処理水中に投入したときに、全ての担体10は平面部分12が上を向くようになる。担体10が半球体の場合の担体厚みWにおける軽量部分と重量部分との好ましい比率は、軽量部分が2/3、重量部分が1/3である。これにより、担体10の被処理水中での姿勢が安定する。図2の例では、大きな半球体の部分を軽量部分とし、小さな半球体の部分を重量部分とした場合である。尚、担体10は、常に平面部分12が上を向く必要はなく、下向きでも横向きでも問題ない。要は、全ての担体10が同じ方向を向いて整列されればよい。
【0018】
図4及び図5は、担体10の平面部分12び担体内部16を説明するもので、図1の縦断面図であり、担体内部16は包括固定型の担体10に関する説明である。
【0019】
担体10の平面部分12には、単一な凹状又は複数の凹状から成る溜部18が形成され、この溜部18に、被処理水中に浮遊する藍藻類例えばアオコ等の浮遊性物質20が捕捉される。この溜部18は包括固定型の担体10の場合、捕捉した浮遊性物質20の有機性の分解物が脱窒の際の水素供与体として利用される。即ち、包括固定型の担体10を河川や湖等の水域で使用した場合、包括固定された各種の微生物のうち、好気性細菌、例えば硝化細菌は被処理水中に溶存する酸素により好気性状態が形成され易い曲面部分14寄りに優先繁殖する。一方、嫌気性細菌、例えば脱窒細菌は好気性状態が形成されにくく、且つ前記した溜部18に捕捉されたアオコ等の分解物であるBOD成分を脱窒の際の水素供与体として利用し易い担体内部16の平面部分12寄りに優先繁殖する。これにより、担体内部16に好気性細菌棲息部22と嫌気性細菌棲息部24が形成され、担体10内で硝化・脱窒反応が行われる。
【0020】
次に、本発明の担体10の製造方法を説明する。
【0021】
型枠形状が、平面部分と曲面部分とで形成されるように作られた型枠内に、成形される担体10の担体重量に対して10重量%の比重調整剤を予め投入しておく。そして、固定化材料として例えばプレポリマーを15重量%及び重合促進剤を0.2重量%含有した水溶液に微生物を必要量懸濁してから、重合開始剤を0.25重量%になるように添加した混合液を調製し、この混合液を前記した型枠内に流し込んでプレポリマーを重合してゲル化する。これにより、包括固定化型の担体10が製造される。付着固定化型の担体10を製造する場合には、前記した水溶液に微生物を必要量懸濁する工程を省略すればよい。
【0022】
比重調整剤としては、金属粉、生分解性プラスチック類等のように、ゲル化される固定化材料との親和性高いものが良く、また担体10に固定化され易く担体10中の微生物に悪影響を及ぼさないものであれば、特に制限はない。例えば、金属ではマグネタイト、生分解性プラスチック類ではポリ乳酸系、カプロラクタム系、高級脂肪酸系のプラスチック類を好適に使用することができる。また、金属粉や生分解性プラスチック類を使用せずに、前記した担体10の軽量部分と重量部分とで固定化材料に濃度差をつける方法も可能である。即ち、軽量部分よりも重量部分の固定化材料濃度を濃くすることで担体内部16に比重差をつけるようにしてもよい。
【0023】
また、固定化材料としては、ポリエチレングリコール系のプレポリマとしてはモノメタクリレート類、モノアクリレート類、ジメタクリレート類、ジアクリレート類、トリメタクリレート類、トリアクリレート類、テトラアクリレート類などを使用することができる。また、ウレタンアクリレート類、エポキシアクリレート類、その他、ポリビニルアルコール、アクリルアミド、光硬化性ポリビニルアルコール、光硬化性ポリエチレングリコール、光硬化性ポリエチレングリコールポリプロピレングリコールプレポリマ等を使用することができる。
【0024】
次に、本発明の担体10を使用した流動床式、固定床式、及び充填物式の反応装置の構成例を説明する。
【0025】
図6は流動床式の反応装置30であり、原水配管32から被処理水が流入される反応槽34内に本発明の多数の担体10が投入され、反応槽34内の底部に配置された散気板36から反応槽34内にエアが散気される。散気体36にはブロア38から圧縮エアが供給される。これにより、担体10の微生物にエアが供給されると共に散気されるエアにより担体10が反応槽34内で流動し、被処理水と担体10とが接触する。従って、被処理水中の窒素、BOD成分(有機物)等が生物学的に処理される。また、反応槽34内に浮遊する藍藻類(アオコ)は担体10の平面部分12に形成された溜部18に沈着する。反応槽34で処理された処理水は担体流出防止用のスクリーン40を通って処理水配管42から装置外に排出される。この流動床式の反応装置30において、担体10は、外面形状が平面部分12と曲面部分14とで形成されていると共に、担体内部16には比重差が設けられている。従って、散気されたエアの気泡が担体10の平面部分12に当たるか曲面部分14に当たるかによって担体10の流動の仕方が変化し、これに担体内部16の比重差が加わるので、担体同士が一様な流動ではなく個々に複雑な流動を行う。これにより、本発明の担体10は、立方体又は球体のように、平面のみ又は曲面のみで形成され、担体部分に比重差のない従来の担体に比べて反応槽34内を複雑な動きを伴って流動する。この結果、本発明の担体を流動床式の反応装置30に使用すれば、担体10と被処理水との接触効率が促進されるので、処理性能が向上する。
【0026】
図7は固定床式の反応装置50であり、反応槽52内には上部スクリーン54と下部スクリーン56とが設けられ、この2つのスクリーン54、56の間に本発明の多数の担体10が密に充填され、固定床55が形成される。そして、原水配管57から被処理水が流入し、固定床55を上向流で流れて処理水配管59を介して装置外に排出される。この固定床式の反応装置50において、担体10は、外面形状が平面部分12と曲面部分14とで形成されていると共に、担体内部16には比重差が設けられている。これにより、固定床55の全ての担体10の平面部分12が上を向くように配列され、担体同士の平面部分12と曲面部分14とが接触する。従って、多数の担体10を密に充填して形成された固定床55の場合でも、担体同士の間に大きな空隙部58を形成できるので、固定床55の空隙率を大きくできる。
【0027】
図8は、充填物式の反応装置60で、河川等の比較的水深の浅い水域61の被処理水を処理するのに適している。充填物式の反応装置60は、本発明の多数の担体10を網状容器62内に密に充填して成る充填物64と、この充填物64を被処理水中に支持するスタンド66とで構成される。この充填物式の反応装置60を、河川や湖沼等の水域61に多数沈めることで、水域を処理して浄化する。この場合にも、本発明の担体10を使用することで、多数の担体10を密に充填した場合でも、担体同士の間に大きな空隙部68を形成できるので、充填物64の空隙率を大きくできる。
【0028】
【実施例】外面形状が半球体の担体の平面部分に凹部を形成した本発明の包括固定型の担体を固定床式の反応装置に適用した場合である。
【0029】
尚、表1の本発明1(包括)は担体の部分において比重差を設けない包括固定型の担体であり、本発明1(付着)は担体の部分において比重差を設けない付着固定型の担体である。また、本発明2(包括)は担体の部分において比重差を設けた包括固定型の担体であり、本発明2(付着)は担体の部分において比重差を設けた付着固定型の担体ある。
【0030】
本発明1(包括)の担体は、直径Dが40mmの半球状の型枠に、ポリエチレングリコール系樹脂(ポリエチレングリコールジアクリレート等の混合プレポリマ)15重量%及びN,N,N ’ , N ’ − テトラメチルエチレンジアミン(重合促進剤)0.2重量%を含む水溶液を調製し、この水溶液に窒素処理能力やBOD処理能力を有する菌体を必要量懸濁し、これに過硫酸カリウム(重合開始剤)を0.25重量%になるように添加した混合液を作り、この混合液を前記した型枠に流し込んで重合してゲル化した。本発明1(付着)の担体は、菌体を懸濁しなかった以外は本発明1(包括)と同様に製造した。
【0031】
また、本発明2(包括)の担体は、直径Dが40mmの半球状の型枠に、予め担体重量に対して10重量%のマグネタイト(比重調整剤)を投入しておき、その型枠に本発明1(包括)で説明した混合液を流し込んで重合してゲル化した。本発明2(付着)の担体は、菌体を懸濁しなかった以外は本発明2(包括)と同様に製造した。
【0032】
一方、従来法の担体は、担体外形が一辺40mmの立方体又は直径が40mmの球型である点、及び溜部がない点以外は、本発明1(包括)と同様に製造した。
【0033】
このように製造した本発明1(包括)、本発明1(付着)、本発明2(包括)、本発明2(付着)、及び従来法(包括)の6種類の担体をそれぞれの固定床式反応装置に1m3 ( かさ体積)になるように充填してそれぞれ固定床を形成した。これらの6台の固定床式の反応装置を某所の湖(容積3000m3 )の湖面に浮かべ、装置下部から導入した湖水を固定床で処理した後た装置上部から装置外に放流した。そして、5台の固定床式の反応装置について、導入水及び放流水を採取して全窒素除去率、BOD除去率及びアオコの細胞数の変化を調べた。
【0034】
結果を表1に示す。
【0035】
【表1】

Figure 2004089826
【0036】
表1に示すように、従来法では、固定床内の担体が相互に密接した状態で充填され担体同士の空隙部が小さいために、担体と被処理水との接触効率が低くなる。この結果、T−N(総窒素)除去率は30%〜40%と悪かった。また、固定床の空隙率が小さいために固定床内で汚泥閉塞を生じ易く、運転不良が頻発した。この為、固定床の清掃を頻繁に行う必要があり安定した運転ができなかった。
【0037】
これに対し、本発明1(包括)では、担体の外面形状が半球であるため、従来法よりも固定床内での空隙率を大きくでき、被処理水との接触効率が高いので、T−N(総窒素)除去率は70%と良好であった。また、固定床における汚泥の閉塞も認められず、安定した連続運転を行うことができた。更に、担体内部に比重差を設けた本発明2(包括)では、T−N除去率は90%と極めて良好な結果を得ることができた。この理由は、担体内部に比重差を設けることで固定床内の担体は全て平面が上を向いた状態で配列されるので、担体の平面部分と他の担体の曲面部分とが必ず接触するようになり、固定床の空隙率を一層高くできるためである。
【0038】
また、本発明1(包括)及び本発明2(包括)共に固定化微生物担体の平面に形成した溜部には、アオコ等の浮遊性物質が沈着し捕捉でき、この分解物が脱窒の水素供与体として消費されたので、水域のアオコ処理とBOD処理にも効果があった。具体的には、従来法でのBOD除去率が40%であったのに対し本発明1(包括)でのBOD除去率が80%であり、本発明2(包括)でのBOD除去率が90%であった。アオコ処理についてみると、従来法では、処理前のアオコ細胞数104 以上を1オーダー低減できたが、本発明1(包括)及び本発明2(包括)では3オーダーまで低減できた。
【0039】
また、本発明1(付着)及び本発明2(付着)の付着固定型の担体の場合には、本発明1(包括)及び本発明2(包括)の包括固定型の担体に比べて、T−N除去率、BOD除去率、アオコ細胞数ともに多少劣るものの、従来法に比べると良い結果となった。
【0040】
【発明の効果】
以上説明したように、本発明によれば、担体サイズを大きくでき、しかも流動床式や固定床式の生物学的反応装置に関係なく高い処理性能を発揮することができる。
【図面の簡単な説明】
【図1】本発明の固定化微生物担体の外観図
【図2】本発明の固定化微生物担体の別の外観図
【図3】本発明の固定化微生物担体の更に別の外観図
【図4】本発明の固定化微生物担体の平面部分と担体内部を説明する図1の縦断面図
【図5】本発明の固定化微生物担体の別の平面部分と担体内部を説明する図1の縦断面図
【図6】本発明の固定化微生物担体を流動床式の反応装置に適用した概念図
【図7】本発明の固定化微生物担体を固定床式の反応装置に適用した概念図
【図8】本発明の固定化微生物担体を充填物式の反応装置に適用した概念図
【符号の説明】
10…本発明の担体、12…担体の平面部分、14…担体の曲面部分、16…担体内部、18…溜部、20…浮遊性物質、22…好気性細菌棲息部、24…嫌気性細菌棲息部、30…流動床式の反応装置、32…原水配管、34…反応槽、36…散気板、38…ブロア、40…スクリーン、42…処理水配管、50…固定床式の反応装置、52…反応槽、54…上部スクリーン、55…固定床、56…下部スクリーン、57…原水配管、58…空隙部、60…充填物式の反応装置、61…水域、62…網状容器、64…充填物、66…スタンド、68…空隙部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an immobilized microorganism carrier and a method for producing the same, and more particularly to an immobilized microorganism carrier for biologically treating nitrogen, BOD components, and cyanobacteria in water bodies such as rivers and lakes, and a method for producing the same.
[0002]
[Prior art]
In recent years, water pollution prevention measures have been asked on a global environmental scale. In recent years, methods for treating suspended substances such as nitrogen, BOD components (organic matter), and blue-green algae (blue-green algae) in water bodies such as rivers and lakes have been studied. Various methods such as a treatment method, a biological treatment method, and a method combining physicochemical treatment and biological treatment are being studied. 2. Description of the Related Art Conventionally, biological reactors are classified into fixed-bed type reactors and fluidized-bed type reactors depending on the application target. For example, in the case of treated water treatment or sewage treatment, a fluidized bed type in which the treated water is brought into contact with the immobilized microorganism carrier while the immobilized microorganism carrier is fluidized in the treatment tank by aeration or stirring or the like, is treated. A reactor is mainly used. On the other hand, when treating water bodies such as oceans, lakes, and rivers, fixed-bed reactors that mainly treat a fixed bed formed by densely filling immobilized microorganism carriers with water to be treated are mainly used. used. These devices biologically treat the water to be treated by taking the water to be treated into a fixed bed or a fluidized bed and contacting it with an immobilized microorganism carrier, and discharge the treated water out of the device. In general, the carrier is formed in a shape having a large specific surface area, for example, a cubic shape, a spherical shape, or the like so as to increase the contact efficiency with the water to be treated.
[0003]
[Problems to be solved by the invention]
However, the conventional immobilized microorganism carrier exhibits excellent performance when applied to a fluidized bed reactor under the size condition of, for example, about 3 mm having a carrier size of 10 mm or less, but the carrier size exceeds 10 mm. When applied to a fixed-bed type reactor under conditions, it is difficult to maintain a gap between the immobilized microorganism carriers that form the fixed bed, and the contact efficiency with the water to be treated is reduced, thereby reducing the processing performance. There is a problem that leads to worsening.
[0004]
The present invention has been made in view of such circumstances, and an immobilized microorganism capable of increasing a carrier size and exhibiting high treatment performance regardless of a fluidized bed type or a fixed bed type biological reactor. It is an object to provide a carrier and a method for producing the same.
[0005]
[Means for Solving the Problems]
Claim 1 of the present invention, in order to achieve the above object, is a carrier for entrapping or adhering and fixing microorganisms, wherein the outer surface of the carrier is formed of a flat portion and a curved portion. . Here, the microorganisms are not limited to the isolated pure microorganisms, but include various microorganisms such as activated sludge of sewage treatment plants, lakes and marshes, river and sea bottom mud, and soil.
[0006]
According to claim 1 of the present invention, since the outer surface shape of the immobilized microorganism carrier is formed by a flat portion and a curved portion, the portion where the flat portion of the carrier and the curved portion of another carrier are in contact with each other, Large voids are formed. Therefore, if a fixed bed is constituted by this immobilized microorganism carrier, a conventional immobilized microorganism carrier formed only of a plane such as a cube or a conventional immobilized microorganism carrier formed of only a curved surface such as a sphere can be used. The porosity of the fixed bed can be made larger than that of the fixed bed. Thereby, the contact efficiency between the immobilized microorganism carrier and the water to be treated is improved, so that the reaction speed is increased and the biological treatment performance can be improved.
[0007]
In addition, by forming the outer surface shape of the immobilized microorganism carrier with a flat portion and a curved portion and bringing the flat portion of the carrier into contact with the curved portion of another carrier, the carriers are less likely to be filled in close contact with each other, As the carrier size increases, the voids between the carriers also increase. As a result, even if the size of the carrier is increased, the ratio of the gap to the amount of the carrier to be filled is not likely to be small, so that the porosity of the fixed bed is not easily reduced. As a result, since the contact efficiency between the carrier and the water to be treated does not decrease, the size of the carrier can be increased.
[0008]
By the way, when a fixed bed is formed by a carrier having only a flat surface or only a curved surface like a conventional cube or sphere, the carriers are packed in a close state, and the gap between the carriers is reduced. In particular, the larger the size of the carrier, the smaller the ratio of the gap to the amount of the carrier to be filled, so that the porosity of the fixed bed is reduced.
[0009]
According to a second aspect of the present invention, in the first aspect, when a plurality of carriers are put into the water to be treated, a specific gravity difference is provided in the portions of the carriers so that the plane portions of all the carriers face the same direction. It is characterized by. Thereby, the carriers in the fixed bed face in the same direction, and the plane and the curved surface always come into contact with each other, so that the porosity of the fixed bed can be further increased.
[0010]
A third aspect of the present invention is characterized in that, in the first or second aspect, a single or a plurality of recesses are formed in the plane portion. Thereby, a floating substance such as a blue cocoon floating on the water surface can be deposited in the concave portion of the carrier, so that the floating substance can also be removed by the immobilized microorganism carrier.
[0011]
According to a fourth aspect of the present invention, a specific gravity adjusting agent is previously charged into a bottom portion of a mold having a mold shape having a flat portion and a curved portion, and the fixing material is polymerized in the mold. Features.
[0012]
According to claim 4 of the present invention, the outer surface of the carrier is composed of a flat portion and a curved portion, and when the carrier is put into the water to be treated, the carrier portion is oriented so that the flat portion faces in the same direction. An immobilized microorganism carrier of an attachment-fixed type having a specific gravity difference can be produced.
[0013]
According to a fifth aspect of the present invention, in the fourth aspect, a microorganism is mixed with the immobilized material. Thereby, the outer surface shape of the carrier is composed of a flat portion and a curved surface portion, and furthermore, when the carrier is put into the water to be treated, the comprehensive fixed type having a specific gravity difference in the carrier portion so that the flat portion of the carrier faces the same direction. Can be produced.
[0014]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of an immobilized microorganism carrier and a method for producing the same according to the present invention will be described below in detail with reference to the accompanying drawings.
[0015]
The immobilized microorganism carrier of the present invention is a carrier for entrapping or adhering and fixing microorganisms, and the outer surface of the carrier is formed of a flat portion and a curved portion. Hereinafter, the immobilized microorganism carrier of the present invention will be described simply as a carrier.
[0016]
FIG. 1 shows an example in which the outer surface of a carrier 10 is formed by a single plane portion 12 and a single curved surface portion 14, and is a case where a sphere is cut in half. In this case, the sphere is not limited to a hemisphere, and may be a 5 sphere or a 4/5 sphere obtained by cutting a sphere at a ratio of 5 and /, or may be formed by cutting at another ratio. FIG. 2 is an example in which the outer surface of the carrier 10 is formed by a single plane portion 12 and a plurality of curved surface portions 14A and 14B, and has a shape in which a small hemisphere is superimposed on the hemisphere of FIG. FIG. 3 is a view in which a columnar portion is overlapped on the hemisphere in FIG. Note that these are merely examples, and include all carriers in which the outer shape of the carrier 10 is formed by the flat portion 12 and the curved portion 14. The curved surface portion 14 is preferably a convex curved surface rather than a concave curved surface.
[0017]
The diameter D of the carrier 10 can be made widely from 1 μm to several hundred mm, and preferably in the range of 10 mm to 100 mm. Further, a specific gravity difference is provided inside the carrier of the carrier 10, and when the plurality of carriers 10 are put into the water to be treated, the planes of all the carriers 10 are formed so as to face the same direction. For example, in FIG. 1, the carrier portion farther from the plane portion 12 (hereinafter referred to as “weight portion”) than the specific gravity of the carrier portion (hereinafter referred to as “light portion”) close to the plane portion 12 in the carrier thickness W of the carrier 10. The specific gravity difference is provided in the portion of the carrier so that the specific gravity of ()) becomes larger. The specific gravity of the light part is preferably in the range of 1.002 to 1.010, and the specific gravity of the heavy part is preferably in the range of 1.050 to 1.100. Thereby, when the plurality of carriers 10 are put into the water to be treated, all the carriers 10 have the plane portions 12 facing upward. When the carrier 10 is a hemisphere, the preferable ratio of the lightweight portion to the weight portion in the carrier thickness W is 2/3 for the lightweight portion and 1/3 for the weight portion. Thereby, the posture of the carrier 10 in the water to be treated is stabilized. In the example of FIG. 2, a large hemisphere portion is a lightweight portion, and a small hemisphere portion is a heavy portion. The carrier 10 does not always need to have the flat portion 12 facing upward, and there is no problem if the carrier 10 faces downward or sideways. In short, all the carriers 10 need only be aligned in the same direction.
[0018]
4 and 5 illustrate the planar portion 12 and the carrier interior 16 of the carrier 10 and are longitudinal sectional views of FIG. 1, and the carrier interior 16 is a description of the inclusively fixed carrier 10.
[0019]
A reservoir portion 18 having a single concave shape or a plurality of concave shapes is formed in the flat portion 12 of the carrier 10, and a trapping material 20 such as blue-green algae floating in the water to be treated is trapped in the reservoir portion 18. Is done. In the case of the entrapping fixed type carrier 10, the reservoir 18 is used as a hydrogen donor at the time of denitrification of an organic decomposition product of the trapped floating substance 20. That is, when the entrapping and fixing type carrier 10 is used in a water area such as a river or a lake, among various entrapping and fixing microorganisms, aerobic bacteria, for example, nitrifying bacteria, have an aerobic state due to oxygen dissolved in the water to be treated. Preferentially propagate near the curved surface portion 14 that is easily formed. On the other hand, anaerobic bacteria, for example, denitrifying bacteria, are unlikely to form an aerobic state, and utilize the BOD component, which is a decomposition product such as blue-green algae, captured in the reservoir 18 as a hydrogen donor during denitrification. It propagates preferentially near the planar portion 12 of the carrier interior 16 which is easy to carry out. Thereby, the aerobic bacteria inhabiting part 22 and the anaerobic bacteria inhabiting part 24 are formed in the inside 16 of the carrier, and the nitrification / denitrification reaction is performed in the carrier 10.
[0020]
Next, a method for producing the carrier 10 of the present invention will be described.
[0021]
A specific gravity adjuster of 10% by weight with respect to the carrier weight of the carrier 10 to be molded is previously charged into a mold formed such that the shape of the mold is formed by a flat portion and a curved portion. Then, a required amount of microorganisms is suspended in an aqueous solution containing, for example, 15% by weight of a prepolymer and 0.2% by weight of a polymerization accelerator as an immobilizing material, and then a polymerization initiator is added to 0.25% by weight. A mixed solution is prepared, and the mixed solution is poured into the above-described mold to polymerize the prepolymer and gel. Thereby, the entrapping and immobilizing type carrier 10 is manufactured. In the case where the carrier 10 of the attachment and immobilization type is produced, the step of suspending the required amount of the microorganism in the aqueous solution may be omitted.
[0022]
As the specific gravity adjusting agent, those having a high affinity for the immobilized material to be gelled, such as metal powder and biodegradable plastics, are preferable, and are easily immobilized on the carrier 10 and adversely affect microorganisms in the carrier 10. There is no particular limitation as long as it does not affect. For example, magnetite can be suitably used for metals, and polylactic acid-based, caprolactam-based, and higher fatty acid-based plastics can be suitably used for biodegradable plastics. Further, it is also possible to use a method in which the concentration of the immobilizing material is different between the light and heavy portions of the carrier 10 without using metal powder or biodegradable plastics. That is, the specific gravity difference may be provided in the carrier interior 16 by making the concentration of the immobilizing material higher in the heavy part than in the light part.
[0023]
As the immobilizing material, monomethacrylates, monoacrylates, dimethacrylates, diacrylates, trimethacrylates, triacrylates, tetraacrylates, and the like can be used as the polyethylene glycol prepolymer. Also, urethane acrylates, epoxy acrylates, polyvinyl alcohol, acrylamide, photocurable polyvinyl alcohol, photocurable polyethylene glycol, photocurable polyethylene glycol polypropylene glycol prepolymer, and the like can be used.
[0024]
Next, a configuration example of a fluidized bed type, fixed bed type, and packed type reactor using the carrier 10 of the present invention will be described.
[0025]
FIG. 6 shows a fluidized bed type reaction apparatus 30 in which a large number of carriers 10 of the present invention are charged into a reaction tank 34 into which water to be treated flows from a raw water pipe 32 and is disposed at the bottom of the reaction tank 34. Air is diffused from the diffusion plate 36 into the reaction tank 34. Compressed air is supplied to the scattered gas 36 from a blower 38. As a result, air is supplied to the microorganisms of the carrier 10 and the air is diffused, so that the carrier 10 flows in the reaction tank 34 and the water to be treated and the carrier 10 come into contact with each other. Therefore, nitrogen, BOD components (organic substances) and the like in the water to be treated are biologically treated. In addition, the cyanobacteria (blue-green algae) floating in the reaction tank 34 are deposited in the reservoir 18 formed in the plane portion 12 of the carrier 10. The treated water treated in the reaction tank 34 is discharged from the treated water pipe 42 to the outside of the apparatus through a screen 40 for preventing carrier outflow. In the fluidized bed reactor 30, the carrier 10 has an outer surface shape formed by a flat portion 12 and a curved portion 14, and a specific gravity difference is provided inside the carrier 16. Therefore, the flow of the carrier 10 changes depending on whether the gas bubbles of the diffused air hit the flat portion 12 or the curved portion 14 of the carrier 10, and a difference in specific gravity of the inside 16 of the carrier is added. Performs complicated flows individually instead of various flows. Thereby, the carrier 10 of the present invention is formed of only a flat surface or a curved surface, such as a cube or a sphere, and involves a complicated movement in the reaction tank 34 as compared with a conventional carrier having no specific gravity difference in the carrier portion. Flow. As a result, when the carrier of the present invention is used for the fluidized bed type reaction apparatus 30, the contact efficiency between the carrier 10 and the water to be treated is promoted, so that the treatment performance is improved.
[0026]
FIG. 7 shows a fixed bed type reaction apparatus 50 in which an upper screen 54 and a lower screen 56 are provided in a reaction tank 52, and a large number of carriers 10 of the present invention are densely provided between the two screens 54, 56. And the fixed bed 55 is formed. Then, the water to be treated flows in from the raw water pipe 57, flows upward through the fixed bed 55, and is discharged out of the apparatus via the treated water pipe 59. In the fixed bed type reaction apparatus 50, the carrier 10 has an outer surface formed by a flat portion 12 and a curved portion 14, and a specific gravity difference is provided in the carrier interior 16. Thereby, the flat portions 12 of all the carriers 10 of the fixed bed 55 are arranged so as to face upward, and the flat portions 12 and the curved surface portions 14 of the carriers come into contact with each other. Accordingly, even in the case of the fixed bed 55 formed by densely filling a large number of carriers 10, a large void portion 58 can be formed between the carriers, so that the porosity of the fixed bed 55 can be increased.
[0027]
FIG. 8 shows a packed reactor 60 suitable for treating water to be treated in a relatively shallow water area 61 such as a river. A packed-type reaction apparatus 60 is composed of a packed body 64 in which a large number of carriers 10 of the present invention are densely packed in a mesh container 62, and a stand 66 for supporting the packed body 64 in the water to be treated. You. By submerging a large number of the packed reactors 60 in a water area 61 such as a river or a lake, the water area is treated and purified. Also in this case, by using the carrier 10 of the present invention, even when many carriers 10 are densely packed, a large void 68 can be formed between the carriers, so that the porosity of the filler 64 is increased. it can.
[0028]
EXAMPLE This is a case in which the inclusive fixed type carrier of the present invention in which a concave portion is formed in a plane portion of a hemispherical carrier having an outer surface shape is applied to a fixed bed type reaction apparatus.
[0029]
In addition, the present invention 1 (inclusive) in Table 1 is an inclusive fixed type carrier in which a specific gravity difference is not provided in a carrier portion, and the present invention 1 (adhesion) is an attached fixed type carrier in which no specific gravity difference is provided in a carrier portion. It is. Also, the present invention 2 (inclusive) is an inclusive fixed type carrier in which a difference in specific gravity is provided in a carrier portion, and the present invention 2 (adhesion) is an attached fixed type carrier in which a specific gravity difference is provided in a carrier portion.
[0030]
Carrier of the present invention 1 (inclusive) is a hemispherical mold having a diameter D of 40 mm, (mixed prepolymer and polyethylene glycol diacrylate) polyethylene glycol resin 15 wt% and N, N, N ', N ' - An aqueous solution containing 0.2% by weight of tetramethylethylenediamine (polymerization accelerator) is prepared, and a required amount of cells having nitrogen treatment ability and BOD treatment ability are suspended in the aqueous solution, and potassium persulfate (polymerization initiator) is added thereto. Was added to a concentration of 0.25% by weight, and the mixture was poured into the above-described mold to polymerize and gel. The carrier of the present invention 1 (adhesion) was produced in the same manner as the present invention 1 (inclusive) except that the cells were not suspended.
[0031]
The carrier of the present invention 2 (inclusive) is prepared by previously charging 10% by weight of magnetite (specific gravity adjusting agent) with respect to the carrier weight into a hemispherical mold having a diameter D of 40 mm. The mixture described in the invention 1 (inclusive) was poured and polymerized to form a gel. The carrier of the present invention 2 (adhesion) was produced in the same manner as the present invention 2 (inclusive) except that the cells were not suspended.
[0032]
On the other hand, the carrier according to the conventional method was produced in the same manner as in the present invention 1 (inclusive) except that the outer shape of the carrier was a cube having a side of 40 mm or a sphere having a diameter of 40 mm, and there was no reservoir.
[0033]
The six kinds of carriers of the present invention 1 (inclusive), present invention 1 (adhered), present invention 2 (inclusive), present invention 2 (adhered), and the conventional method (inclusive) thus produced are each fixed bed type. The reactor was packed to 1 m 3 (bulk volume) to form fixed beds. These six fixed-bed reactors were floated on the surface of a lake (3000 m 3 ) in a certain place, and the lake water introduced from the lower part of the apparatus was discharged from the upper part of the apparatus after treatment with the fixed bed. With respect to the five fixed-bed reactors, the introduced water and the effluent were collected, and the total nitrogen removal rate, the BOD removal rate, and the change in the number of blue-green algae cells were examined.
[0034]
Table 1 shows the results.
[0035]
[Table 1]
Figure 2004089826
[0036]
As shown in Table 1, in the conventional method, the carriers in the fixed bed are packed in close contact with each other and the gap between the carriers is small, so that the contact efficiency between the carriers and the water to be treated is low. As a result, the TN (total nitrogen) removal rate was as poor as 30% to 40%. In addition, sludge clogging was liable to occur in the fixed bed due to the small porosity of the fixed bed, resulting in frequent operation failures. For this reason, the fixed floor must be cleaned frequently, and stable operation cannot be performed.
[0037]
On the other hand, in the present invention 1 (inclusive), since the outer surface of the carrier is hemispherical, the porosity in the fixed bed can be increased and the contact efficiency with the water to be treated is higher than in the conventional method. The N (total nitrogen) removal rate was as good as 70%. In addition, no obstruction of the sludge was observed in the fixed bed, and stable continuous operation could be performed. Further, in the present invention 2 (inclusive) in which a specific gravity difference was provided inside the carrier, the TN removal rate was 90%, which was an extremely good result. The reason for this is that by providing a specific gravity difference inside the carrier, the carriers in the fixed bed are all arranged in a state where the plane faces upward, so that the flat portion of the carrier and the curved surface portion of the other carrier always contact. This is because the porosity of the fixed bed can be further increased.
[0038]
In addition, in both the present invention 1 (inclusive) and the present invention 2 (inclusive), a floating substance such as blue-green algae can be deposited and trapped in the reservoir formed on the plane of the immobilized microorganism carrier. Since it was consumed as a donor, it was also effective in treating blue-green algae and BOD in water bodies. Specifically, while the BOD removal rate of the conventional method was 40%, the BOD removal rate of the present invention 1 (inclusive) was 80%, and the BOD removal rate of the present invention 2 (inclusive) was not. 90%. As for blue-green algae processing, in the conventional method, the pretreatment of the blue-green algae cell number of 10 4 or more was one order reduction, was reduced to the present invention 1 (inclusive) and three orders in the present invention 2 (inclusive).
[0039]
In addition, in the case of the fixed carrier of the present invention 1 (adhered) and the present invention 2 (adhered), the carrier of the fixed immobilized type of the present invention 1 (inclusive) and the present invention 2 (inclusive) has a higher T value. Although the -N removal rate, the BOD removal rate, and the number of blue-green algae cells were somewhat inferior, the results were better than those of the conventional method.
[0040]
【The invention's effect】
As described above, according to the present invention, the carrier size can be increased, and high processing performance can be exhibited irrespective of a fluidized bed type or fixed bed type biological reactor.
[Brief description of the drawings]
FIG. 1 is an external view of the immobilized microorganism carrier of the present invention. FIG. 2 is another external view of the immobilized microorganism carrier of the present invention. FIG. 3 is another external view of the immobilized microorganism carrier of the present invention. 1 is a longitudinal sectional view of FIG. 1 illustrating a planar portion of the immobilized microorganism carrier of the present invention and the inside of the carrier. FIG. 5 is a longitudinal cross-sectional view of FIG. 1 illustrating another planar portion of the immobilized microorganism carrier of the present invention and the inside of the carrier. FIG. 6 is a conceptual diagram in which the immobilized microorganism carrier of the present invention is applied to a fluidized bed type reactor. FIG. 7 is a conceptual diagram in which the immobilized microorganism carrier of the present invention is applied to a fixed bed type reactor. A conceptual diagram in which the immobilized microorganism carrier of the present invention is applied to a packed reactor.
DESCRIPTION OF SYMBOLS 10 ... Carrier of this invention, 12 ... Flat part of a carrier, 14 ... Curved part of a carrier, 16 ... Carrier interior, 18 ... Reservoir, 20 ... Floating substance, 22 ... Aerobic bacteria inhabiting part, 24 ... Anaerobic bacteria Habitat, 30: fluidized bed reactor, 32: raw water piping, 34: reaction tank, 36: diffuser plate, 38: blower, 40: screen, 42: treated water piping, 50: fixed bed reactor 52, a reaction tank, 54, an upper screen, 55, a fixed bed, 56, a lower screen, 57, a raw water pipe, 58, a void, 60, a packed reactor, 61, a water area, 62, a mesh vessel, 64 ... filled material, 66 ... stand, 68 ... void

Claims (5)

微生物を包括固定又は付着固定する担体であって、該担体の外面形状が平面部分と曲面部分とで形成されていることを特徴とする固定化微生物担体。An immobilized microorganism carrier, which is a carrier for entrapping or adhering and fixing microorganisms, wherein the outer surface of the carrier is formed of a flat portion and a curved portion. 前記担体を前記平面部分に近い担体部分と前記曲面部分に近い担体部分において比重差を設けたことを特徴とする請求項1の固定化微生物担体。2. The immobilized microorganism carrier according to claim 1, wherein the carrier has a specific gravity difference between a carrier portion near the plane portion and a carrier portion near the curved surface portion. 前記平面部分には単一又は複数の凹部が形成されていることを特徴とする請求項1又は2の固定化微生物担体。The immobilized microorganism carrier according to claim 1, wherein a single or a plurality of concave portions are formed in the plane portion. 型枠形状が平面部分と曲面部分とから成る型枠内の底部に予め比重調整剤を投入しておき、その型枠内に固定化材料を投入して重合することを特徴とする固定化微生物担体の製造方法。An immobilized microorganism characterized in that a specific gravity adjusting agent is previously charged into the bottom of a mold whose mold shape is composed of a flat portion and a curved portion, and an immobilizing material is charged into the mold and polymerized. A method for producing a carrier. 前記固定化材料に微生物を混在させることを特徴とする請求項4の固定化微生物担体の製造方法。5. The method for producing an immobilized microorganism carrier according to claim 4, wherein microorganisms are mixed in the immobilized material.
JP2002253252A 2002-08-30 2002-08-30 Immobilized microorganism carrier and method for producing the same Expired - Fee Related JP4000593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253252A JP4000593B2 (en) 2002-08-30 2002-08-30 Immobilized microorganism carrier and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253252A JP4000593B2 (en) 2002-08-30 2002-08-30 Immobilized microorganism carrier and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004089826A true JP2004089826A (en) 2004-03-25
JP4000593B2 JP4000593B2 (en) 2007-10-31

Family

ID=32059306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253252A Expired - Fee Related JP4000593B2 (en) 2002-08-30 2002-08-30 Immobilized microorganism carrier and method for producing the same

Country Status (1)

Country Link
JP (1) JP4000593B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1884282A2 (en) * 2006-08-03 2008-02-06 KVT Klävertec GmbH Carrier element for a sewage treatment plant
CN114162962A (en) * 2021-11-04 2022-03-11 凌志环保股份有限公司 Biological bed with spring steel wire net frame combined packing
CN114314827A (en) * 2021-12-31 2022-04-12 申能环境科技有限公司 Plant fiber meson economical efficient denitrification biological bed reactor and method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214394A (en) * 1987-03-02 1988-09-07 Meidensha Electric Mfg Co Ltd Carrier for immobilizing microorganism used for water treatment
JPH03262598A (en) * 1990-03-13 1991-11-22 Onoda Cement Co Ltd Block for purifying water channel and purifying method of water channel
JPH06226282A (en) * 1993-02-09 1994-08-16 Hitachi Chem Co Ltd Microorganism depositing carrier
JPH09275981A (en) * 1996-04-16 1997-10-28 Hitachi Plant Eng & Constr Co Ltd Included immobilized carrier and its formation
JP2001089574A (en) * 1999-07-15 2001-04-03 Kuraray Co Ltd Polyvinyl alcohol-based water-containing gel, its production and drainage treating device
JP2001104976A (en) * 1999-10-07 2001-04-17 Daikichi Suematsu Lump for water purification and block for water cleaning
JP2001292765A (en) * 2000-04-13 2001-10-23 Kansai Paint Co Ltd Immobilization support mixture for enzyme or microorganism and method of water treatment using the same
JP2003024061A (en) * 2001-07-17 2003-01-28 Toyo Constr Co Ltd Microorganism-carrying unit and underwater structure using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214394A (en) * 1987-03-02 1988-09-07 Meidensha Electric Mfg Co Ltd Carrier for immobilizing microorganism used for water treatment
JPH03262598A (en) * 1990-03-13 1991-11-22 Onoda Cement Co Ltd Block for purifying water channel and purifying method of water channel
JPH06226282A (en) * 1993-02-09 1994-08-16 Hitachi Chem Co Ltd Microorganism depositing carrier
JPH09275981A (en) * 1996-04-16 1997-10-28 Hitachi Plant Eng & Constr Co Ltd Included immobilized carrier and its formation
JP2001089574A (en) * 1999-07-15 2001-04-03 Kuraray Co Ltd Polyvinyl alcohol-based water-containing gel, its production and drainage treating device
JP2001104976A (en) * 1999-10-07 2001-04-17 Daikichi Suematsu Lump for water purification and block for water cleaning
JP2001292765A (en) * 2000-04-13 2001-10-23 Kansai Paint Co Ltd Immobilization support mixture for enzyme or microorganism and method of water treatment using the same
JP2003024061A (en) * 2001-07-17 2003-01-28 Toyo Constr Co Ltd Microorganism-carrying unit and underwater structure using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1884282A2 (en) * 2006-08-03 2008-02-06 KVT Klävertec GmbH Carrier element for a sewage treatment plant
EP1884282A3 (en) * 2006-08-03 2008-05-14 KVT Klävertec GmbH Carrier element for a sewage treatment plant
CN114162962A (en) * 2021-11-04 2022-03-11 凌志环保股份有限公司 Biological bed with spring steel wire net frame combined packing
CN114162962B (en) * 2021-11-04 2023-05-23 凌志环保股份有限公司 Biological bed with spring steel wire net rack combined packing
CN114314827A (en) * 2021-12-31 2022-04-12 申能环境科技有限公司 Plant fiber meson economical efficient denitrification biological bed reactor and method thereof
CN114314827B (en) * 2021-12-31 2023-03-17 申能环境科技有限公司 Plant fiber meson economical efficient denitrification biological bed reactor and method thereof

Also Published As

Publication number Publication date
JP4000593B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
Kawan et al. A review on sewage treatment and polishing using moving bed bioreactor (MBBR)
CN105712478A (en) Double-ball type suspension filler
Burghate et al. Fluidized bed biofilm reactor–a novel wastewater treatment reactor
Deena et al. Efficiency of various biofilm carriers and microbial interactions with substrate in moving bed-biofilm reactor for environmental wastewater treatment
JP5641548B1 (en) Microorganism immobilization carrier
JP3835314B2 (en) Carrier packing and water treatment method using the same
EP0864540B1 (en) Method for carrying out a biocatalyst reaction
JPH10136980A (en) Support for bioreactor and its production
JP2008068233A (en) Nitrogen elimination measure and nitrogen removing apparatus
JP4000593B2 (en) Immobilized microorganism carrier and method for producing the same
CN209143828U (en) A kind of particle strengthening water purifying device being placed in river or lake
JP2003000238A (en) Pva-inclusively immobilized microbe carrier, method for manufacturing the same and method for purifying environment by using the carrier
JPH0210717B2 (en)
JP2006061879A (en) Waste water treatment method and device
JPH02203993A (en) Anaerobic waste water treating method
JPS60197295A (en) &#34;tater-bed&#34; biological treatment apparatus
JPH07313990A (en) Treatment of sewage
JP2000246272A (en) Method for removing nitrogen of sewage
JP2002143889A (en) Waste water treatment equipment
JP3925362B2 (en) Water purification device
JP3838113B2 (en) Hydrosphere purification device and hydrosphere purification method using the same
JP2002191361A (en) String-like carrier for immobilizing microorganism
JP2008012383A (en) Apparatus for treating wastewater and method for wastewater treatment using comprehensive immobilization support and comprehensive immobilization support
JPH0210716B2 (en)
JPS63209788A (en) Microorganism carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees