JP2004087956A - Electric double layered capacitor and electrolyte therefor - Google Patents

Electric double layered capacitor and electrolyte therefor Download PDF

Info

Publication number
JP2004087956A
JP2004087956A JP2002249185A JP2002249185A JP2004087956A JP 2004087956 A JP2004087956 A JP 2004087956A JP 2002249185 A JP2002249185 A JP 2002249185A JP 2002249185 A JP2002249185 A JP 2002249185A JP 2004087956 A JP2004087956 A JP 2004087956A
Authority
JP
Japan
Prior art keywords
electric double
electrolyte
electrolytic solution
layer capacitor
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002249185A
Other languages
Japanese (ja)
Inventor
Teruichi Takeda
武田 照一
Hideo Yamamoto
山本 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2002249185A priority Critical patent/JP2004087956A/en
Publication of JP2004087956A publication Critical patent/JP2004087956A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte for a high conductivity electric double layered capacitor superior in low temperature stability without precipitating a crystal at a low temperature, and to provide the electric double layered capacitor using the electrolyte. <P>SOLUTION: The electrolyte for the electric double layered capacitor dissolves N, N diethylpyrrolidinium/borate tetrafluoride expressed in formula [1] to propylene carbonate that is a non-proton solvent and/or γ-butyrolactone in a range of more than 2 mol/l and 3 mol/l or less as the electrolyte. The electric double layer capacitor is manufactured by using the electrolyte. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電気二重層コンデンサ用電解液及び該電解液を用いた電気二重層コンデンサに関し、より詳しくは、低温安定性に優れた高電導度の電解液を用いてなる電気二重層コンデンサに関する。
【0002】
【従来の技術】
電気二重層コンデンサは、分極性電極と電解液との界面に形成される電気二重層を利用する電荷蓄積デバイスである。
【0003】
電気二重層コンデンサに用いられる電解液は、電導度が低いとコンデンサの内部抵抗が大きくなり、充放電時に電圧が降下する等の不都合が生ずるため、高電導度で、かつ長期間の耐久性が要求される。
【0004】
また、電解液中の電解質濃度が低く、イオン量が不足すると、大電流密度の充電時に内部抵抗が上昇するため、電解液中の電解質濃度はできるだけ高い方が望ましい。
【0005】
しかしながら、電解液中の電解質濃度を高くすると、低温下で、電解液中の電解質が析出し易くなり、電導度が低下し、充放電特性が低下する不都合が生ずるため、低温下でも結晶析出のない低温安定性が要求される。
【0006】
従来、電気二重層コンデンサ用電解液としては、γ−ブチロラクトン(以下、「GBL」と略記する。)、プロピレンカーボネート(以下、「PC」と略記する。)等の非プロトン性溶媒中に、テトラメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、トリエチルメチルアンモニウムカチオン等のテトラアルキルアンモニウムカチオンと、過塩素酸アニオン、六フッ化リン酸アニオン、四フッ化ホウ酸アニオン等の酸成分とからなる塩の電解質を溶解させたものが知られている。
【0007】
特公平3−58526号公報には、電解質としてテトラアルキルアンモニウム塩を用いた電解液が開示されており、該電解液は、内部抵抗が小さく、かつ耐久性に優れている。しかしながら、該電解液は、電解質濃度を高くすると、低温下で結晶が析出してしまうという解決すべき点が残っていた。
【0008】
【発明が解決しようとする課題】
本発明の目的は、低温下で結晶が析出しない低温安定性に優れた、高電導度の電気二重層コンデンサ用電解液を提供し、また、該電解液を用いた電気二重層コンデンサを提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、鋭意検討を行った結果、特定濃度のN,N−ジエチルピロリジニウム・四フッ化ホウ酸塩(以下、「DEP−BF」と記す。)を電解質として用いた電解液が、優れた低温安定性を有し、かつ高電導度であることを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明は、非プロトン性溶媒中、下式〔1〕で表されるDEP−BFが、電解質として2mol/l超、3mol/l以下の範囲で含有されてなることを特徴とする電気二重層コンデンサ用電解液であり、また、該電解液を用いて作製された電気二重層コンデンサである。
【0011】
【化2】

Figure 2004087956
【0012】
以下、本発明について、詳細に説明する。
【0013】
本発明の電解二重層コンデンサ用電解液は、非プロトン性溶媒中に、DEP−BFを電解質として溶解させたものである。
【0014】
上記DEP−BFの濃度は、2mol/l超、3mol/l以下である。2mol/l以下では、電導度が低く、また、3mol/l超では、電導度の向上が期待できず、経済的に劣り、不都合である。
【0015】
本発明の電気二重層コンデンサ用電解液は、低温下においても、DEP−BFの結晶が析出することなく、低温安定性に優れており、また、高い電導度を有している。
【0016】
一般に、N,N−ジアルキル置換ピロリジニウム塩のアルキル置換基としては、メチル基、エチル基、プロピル基、ブチル基等があげられるが、メチル基置換体では、反応収率が低く、工業的に不適であり、プロピル基以上の長鎖アルキル基置換体では、電解液の電導度が低くなるため、不都合である。また、N−エチル−N−メチルピロリジニウム塩のような異種アルキル基置換体では、合成が煩雑であり、高価なため、経済性に劣り、不都合である。本発明に用いられるエチル基置換体であるDEP−BFは、合成が容易で、安価であり、好ましい。
【0017】
本発明に用いられる非プロトン性溶媒としては、電気二重層コンデンサ用電解液に一般的に用いられているPC、GBL、アセトニトリル、ジメチルホルムアミド、スルホラン、1,2−ジメトキシエタン等があげられ、特に限定されないが、電解液の耐久性、電導度、温度特性、毒性を考慮すると、PC及び/またはGBLが好ましい。
【0018】
以下に、本発明に用いられるDEP−BFの製造方法の一例を、詳細に説明する。
【0019】
まず、ピロリジンとハロゲン化剤であるハロゲン化エチルとを反応させて、ハロゲン化N,N−ジエチルピロリジニウムを合成した後、イオン交換膜を用いた電気透析法により、水酸化N,N−ジエチルピロリジニウムの水溶液を得る。
【0020】
ついで、得られた水酸化N,N−ジエチルピロリジニウム水溶液に、四フッ化ホウ酸(HBF)を、等モル量添加して、中和反応させた後、減圧下で脱水させて、DEP−BFを得、非プロトン性溶媒中に、DEP−BFを2mol/l超、3mol/l以下の濃度となるよう溶解させて、本発明の電気二重層コンデンサ用電解液を得る。
【0021】
また、本発明の電気二重層コンデンサは、コンデンサの分極性電極に、コンデンサの駆動用電解液として上記電解液を含浸させて作製される。
【0022】
分極性電極としては、活性炭粉末、活性炭繊維等の多孔性炭素材料や貴金属酸化物材料、あるいは導電性高分子材料等が用いられるが、多孔性炭素材料が安価であり好ましい。
【0023】
分極性電極2枚を各々ステンレス外装ケース及びキャップの内面に導電性接着剤で接着し、該電極に、上記電解液を含浸させた後、両極間にセパレータを挟み込み、外装ケースとキャップを合わせて封口させて、本発明の電気二重層コンデンサを完成する。
【0024】
本発明の電気二重層コンデンサ用電解液は、温度−40℃の低温下においても結晶が析出することなく、低温安定性に優れており、高い電導度を示す。また、該電解液を用いて作製された電気二重層コンデンサは、優れた低温特性を有し、大電流密度での使用が可能である。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を、実施例及び比較例に基き、説明する。なお、本発明は、これらの実施例によりなんら限定されない。
【0026】
実施例1
溶媒であるPCに、電解質であるDEP−BFを溶解させて、2.1mol/lの電気二重層コンデンサ用電解液を調製した。該電解液の温度30℃における電導度の測定値及び−40℃における結晶析出の有無を表1に示す。
【0027】
別に、分極性電極として、活性炭粉末(粒径20μm、比表面積2,000m/g)90質量%とポリテトラフルオロエチレン粉末10質量%をロールで混練、圧延して厚さ0.4mmのシートを作製した。このシートを、直径13mmφに打ち抜いて、円板状電極を作製した。
【0028】
円板状電極2枚をそれぞれステンレス製外装ケース及びキャップの内面に導電性接着剤で接着し、この円板状電極に、先に調製した電解液を真空含浸させた。
【0029】
次に、2枚の円板状電極間にポリプロピレン製セパレータを挟み込み、外装ケースとキャップを合わせて封口して、定格電圧2.4V、静電容量1.5Fの電気二重層コンデンサを完成した。
【0030】
完成したコンデンサに、70℃、定格電圧2.4Vを1,000時間印加させて耐久性試験を行った。初期及び耐久性試験後の静電容量値と静電容量の変化率(%)を表2に示す。なお、コンデンサの静電容量は2.4Vで1時間充電後、1mAで放電したときの電圧勾配から求めた。
【0031】
実施例2
実施例1において、電解質であるDEP−BFを3.0mol/lとした以外は、実施例1と同様にして、電気二重層コンデンサ用電解液を調製した。電導度の測定値及び−40℃における結晶析出の有無を表1に示す。
【0032】
該電解液を用いて、実施例1に準じて、電気二重層コンデンサを作製して、耐久性試験を行った。得られた結果を表2に示す。
【0033】
実施例3
実施例1において、溶媒にGBLを用いた以外は、実施例1と同様にして、電気二重層コンデンサ用電解液を調製した。電導度の測定値及び−40℃における結晶析出の有無を表1に示す。
【0034】
実施例4
実施例3において、電解質であるDEP−BFの濃度を3.0mol/lとした以外は、実施例3と同様にして、電気二重層コンデンサ用電解液を調製した。電導度の測定値を表1に示す。
【0035】
比較例
電解質としてテトラエチルアンモニウム・四フッ化ホウ酸塩(以下、「TEA−BF」と略記する。)をPC溶媒中に溶解させて、1.1mol/lの電解液を調製した。表1に示すように、該電解液の温度30℃における電導度は14.1mS/cmと、同溶媒を用いた実施例1と比べて低く、また、温度−40℃に冷却すると結晶が析出し、低温安定性に乏しい結果となった。
【0036】
【表1】
Figure 2004087956
【0037】
【表2】
Figure 2004087956
【0038】
【発明の効果】
本発明の電気二重層コンデンサ用電解液は、低温下においてもDEP−BFの結晶が析出することなく、低温安定性に優れており、高い電導度を示す。また、該電解液を用いて作製された電気二重層コンデンサは、優れた低温特性を有し、大電流密度での使用が可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolytic solution for an electric double layer capacitor and an electric double layer capacitor using the electrolytic solution, and more particularly, to an electric double layer capacitor using an electrolytic solution having excellent low-temperature stability and high conductivity.
[0002]
[Prior art]
The electric double layer capacitor is a charge storage device using an electric double layer formed at the interface between the polarizable electrode and the electrolyte.
[0003]
The electrolyte used in electric double layer capacitors has a low conductivity, which increases the internal resistance of the capacitor and causes inconvenience such as a drop in voltage during charging and discharging. Required.
[0004]
If the electrolyte concentration in the electrolyte is low and the amount of ions is insufficient, the internal resistance increases during charging at a large current density. Therefore, it is desirable that the electrolyte concentration in the electrolyte be as high as possible.
[0005]
However, when the concentration of the electrolyte in the electrolyte is increased, the electrolyte in the electrolyte is more likely to be precipitated at a low temperature, the conductivity is lowered, and the inconvenience that the charge / discharge characteristics are lowered occurs. No low temperature stability is required.
[0006]
Conventionally, as an electrolyte for an electric double layer capacitor, tetra-aprotic solvents such as γ-butyrolactone (hereinafter abbreviated as “GBL”) and propylene carbonate (hereinafter abbreviated as “PC”) have been used. Dissolves electrolyte of salt consisting of tetraalkylammonium cation such as methylammonium cation, tetraethylammonium cation, triethylmethylammonium cation, and acid component such as perchlorate anion, hexafluorophosphate anion and tetrafluoroborate anion What has been known is.
[0007]
Japanese Patent Publication No. 3-58526 discloses an electrolytic solution using a tetraalkylammonium salt as an electrolyte. The electrolytic solution has low internal resistance and excellent durability. However, the electrolytic solution has a problem to be solved in that when the concentration of the electrolyte is increased, crystals are precipitated at a low temperature.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide an electrolytic solution for an electric double layer capacitor having excellent low-temperature stability in which no crystal is precipitated at a low temperature and having a high conductivity, and to provide an electric double layer capacitor using the electrolytic solution. That is.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and as a result, have found that a specific concentration of N, N-diethylpyrrolidinium tetrafluoroborate (hereinafter referred to as “DEP-BF 4 ”) is used as an electrolyte. The inventors have found that the liquid has excellent low-temperature stability and high conductivity, and completed the present invention.
[0010]
That is, the present invention is, in an aprotic solvent, is DEP-BF 4 represented by the following formula (1), characterized 2 mol / l greater than that formed by containing in the range of 3 mol / l as an electrolyte An electrolytic solution for an electric double layer capacitor, and an electric double layer capacitor produced using the electrolytic solution.
[0011]
Embedded image
Figure 2004087956
[0012]
Hereinafter, the present invention will be described in detail.
[0013]
Electrolytic double layer capacitor electrolytic solution of the present invention, the aprotic solvent is obtained by dissolving a DEP-BF 4 as the electrolyte.
[0014]
The concentration of the DEP-BF 4 has, 2 mol / l greater is 3 mol / l or less. If it is 2 mol / l or less, the electric conductivity is low, and if it exceeds 3 mol / l, no improvement in electric conductivity can be expected, which is economically inferior and inconvenient.
[0015]
Electric double-layer capacitor electrolytic solution of the present invention, even at low temperatures, without crystals of DEP-BF 4 is precipitated, has excellent low-temperature stability, also has a high conductivity.
[0016]
Generally, examples of the alkyl substituent of the N, N-dialkyl-substituted pyrrolidinium salt include a methyl group, an ethyl group, a propyl group, a butyl group and the like. However, a methyl group-substituted product has a low reaction yield and is industrially unsuitable. However, the use of a long-chain alkyl group-substituted product having a propyl group or more is inconvenient because the conductivity of the electrolytic solution is reduced. Further, in the case of a different alkyl group-substituted product such as N-ethyl-N-methylpyrrolidinium salt, the synthesis is complicated and expensive, so that it is inferior in economy and disadvantageous. DEP-BF 4 is ethyl substituted compound used in the present invention, synthesis is easy, inexpensive, preferred.
[0017]
Examples of the aprotic solvent used in the present invention include PC, GBL, acetonitrile, dimethylformamide, sulfolane, 1,2-dimethoxyethane, etc., which are generally used for an electrolytic solution for an electric double layer capacitor. Although not limited, PC and / or GBL are preferable in consideration of the durability, conductivity, temperature characteristics, and toxicity of the electrolytic solution.
[0018]
Hereinafter, an example of a method of manufacturing the DEP-BF 4 for use in the present invention will be described in detail.
[0019]
First, N, N-diethylpyrrolidinium halide is synthesized by reacting pyrrolidine with ethyl halide as a halogenating agent, and then N, N-hydroxylated by electrodialysis using an ion exchange membrane. An aqueous solution of diethylpyrrolidinium is obtained.
[0020]
Then, an equimolar amount of tetrafluoroboric acid (HBF 4 ) was added to the obtained aqueous N, N-diethylpyrrolidinium hydroxide solution to cause a neutralization reaction, followed by dehydration under reduced pressure. give DEP-BF 4, obtained in an aprotic solvent, a 2 mol / l greater DEP-BF 4, it is dissolved so that the following concentrations 3 mol / l, the electric double layer capacitor electrolytic solution of the present invention.
[0021]
Further, the electric double layer capacitor of the present invention is manufactured by impregnating the polarizable electrode of the capacitor with the above-mentioned electrolytic solution as the electrolytic solution for driving the capacitor.
[0022]
As the polarizable electrode, a porous carbon material such as activated carbon powder or activated carbon fiber, a noble metal oxide material, a conductive polymer material, or the like is used. However, a porous carbon material is preferable because it is inexpensive.
[0023]
Two polarizable electrodes are adhered to the inner surfaces of the stainless steel outer case and the cap with a conductive adhesive, and the electrodes are impregnated with the electrolytic solution. Then, a separator is sandwiched between both electrodes, and the outer case and the cap are combined. The electric double layer capacitor of the present invention is completed by sealing.
[0024]
The electrolytic solution for an electric double-layer capacitor of the present invention has excellent low-temperature stability without showing crystals even at a low temperature of −40 ° C., and shows high conductivity. Further, the electric double layer capacitor manufactured by using the electrolytic solution has excellent low-temperature characteristics and can be used at a large current density.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples and comparative examples. Note that the present invention is not limited at all by these examples.
[0026]
Example 1
In PC as the solvent, dissolving the DEP-BF 4 an electrolyte, to prepare an electric double layer capacitor electrolytic solution for 2.1 mol / l. Table 1 shows the measured values of the conductivity of the electrolyte at a temperature of 30 ° C. and the presence or absence of crystal precipitation at −40 ° C.
[0027]
Separately, as a polarizable electrode, 90% by mass of activated carbon powder (particle size: 20 μm, specific surface area: 2,000 m 2 / g) and 10% by mass of polytetrafluoroethylene powder are kneaded and rolled to obtain a sheet having a thickness of 0.4 mm. Was prepared. This sheet was punched out to a diameter of 13 mm to produce a disc-shaped electrode.
[0028]
Two disc-shaped electrodes were respectively adhered to the inner surfaces of a stainless steel outer case and a cap with a conductive adhesive, and the disc-shaped electrodes were impregnated with the previously prepared electrolytic solution under vacuum.
[0029]
Next, a polypropylene separator was sandwiched between the two disk-shaped electrodes, and the outer case and the cap were fitted together and sealed to complete an electric double layer capacitor having a rated voltage of 2.4 V and a capacitance of 1.5 F.
[0030]
A durability test was performed by applying a rated voltage of 2.4 V to the completed capacitor at a rated voltage of 2.4 V for 1,000 hours. Table 2 shows the capacitance value at the initial stage and after the durability test and the rate of change (%) of the capacitance. The capacitance of the capacitor was determined from the voltage gradient when the battery was charged at 2.4 V for 1 hour and then discharged at 1 mA.
[0031]
Example 2
In Example 1, except that the DEP-BF 4 an electrolyte and 3.0 mol / l, in the same manner as in Example 1, an electric double-layer capacitor electrolytic solution was prepared. Table 1 shows the measured values of the conductivity and the presence or absence of crystal precipitation at -40 ° C.
[0032]
Using the electrolytic solution, an electric double layer capacitor was manufactured according to Example 1, and a durability test was performed. Table 2 shows the obtained results.
[0033]
Example 3
In Example 1, an electrolytic solution for an electric double layer capacitor was prepared in the same manner as in Example 1 except that GBL was used as a solvent. Table 1 shows the measured values of the conductivity and the presence or absence of crystal precipitation at -40 ° C.
[0034]
Example 4
In Example 3, except that the concentration of DEP-BF 4 an electrolyte and 3.0 mol / l, in the same manner as in Example 3, the electric double-layer capacitor electrolytic solution was prepared. Table 1 shows the measured values of the electric conductivity.
[0035]
As a comparative example electrolyte, tetraethylammonium tetrafluoroborate (hereinafter abbreviated as “TEA-BF 4 ”) was dissolved in a PC solvent to prepare a 1.1 mol / l electrolytic solution. As shown in Table 1, the conductivity of the electrolytic solution at a temperature of 30 ° C. was 14.1 mS / cm, which was lower than that of Example 1 using the same solvent, and crystals were precipitated when cooled to a temperature of −40 ° C. However, the result was poor low-temperature stability.
[0036]
[Table 1]
Figure 2004087956
[0037]
[Table 2]
Figure 2004087956
[0038]
【The invention's effect】
Electric double-layer capacitor electrolytic solution of the present invention, without the crystal of the DEP-BF 4 at a low temperature to precipitate, and excellent low-temperature stability, exhibits high conductivity. Further, the electric double layer capacitor manufactured by using the electrolytic solution has excellent low-temperature characteristics and can be used at a large current density.

Claims (3)

非プロトン性溶媒中、下式〔1〕で表されるN,N−ジエチルピロリジニウム・四フッ化ホウ酸塩が、電解質として2mol/l超、3mol/l以下の範囲で含有されてなることを特徴とする電気二重層コンデンサ用電解液。
Figure 2004087956
In an aprotic solvent, N, N-diethylpyrrolidinium tetrafluoroborate represented by the following formula [1] is contained as an electrolyte in a range of more than 2 mol / l and 3 mol / l or less. An electrolytic solution for an electric double layer capacitor, characterized in that:
Figure 2004087956
非プロトン性溶媒が、プロピレンカーボネート及び/またはγ−ブチロラクトンであることを特徴とする請求項1に記載の電気二重層コンデンサ用電解液。The electrolyte for an electric double layer capacitor according to claim 1, wherein the aprotic solvent is propylene carbonate and / or γ-butyrolactone. 請求項1または請求項2に記載の電気二重層コンデンサ用電解液を用いて作製されてなることを特徴とする電気二重層コンデンサ。An electric double layer capacitor produced by using the electrolytic solution for an electric double layer capacitor according to claim 1 or 2.
JP2002249185A 2002-08-28 2002-08-28 Electric double layered capacitor and electrolyte therefor Pending JP2004087956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249185A JP2004087956A (en) 2002-08-28 2002-08-28 Electric double layered capacitor and electrolyte therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249185A JP2004087956A (en) 2002-08-28 2002-08-28 Electric double layered capacitor and electrolyte therefor

Publications (1)

Publication Number Publication Date
JP2004087956A true JP2004087956A (en) 2004-03-18

Family

ID=32056374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249185A Pending JP2004087956A (en) 2002-08-28 2002-08-28 Electric double layered capacitor and electrolyte therefor

Country Status (1)

Country Link
JP (1) JP2004087956A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286177A (en) * 2004-03-30 2005-10-13 株式会社パワーシステム Solvent for organic electrolyte of electric double-layer capacitor
JP2006332625A (en) * 2005-04-25 2006-12-07 Power System:Kk Positive electrode for electric double layer capacitor and manufacturing method thereof
US7256981B2 (en) 2005-05-27 2007-08-14 Tdk Corporation Electric double layer capacitor
US7286334B2 (en) 2004-03-30 2007-10-23 Power Systems Co., Ltd. Electric double layer capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286177A (en) * 2004-03-30 2005-10-13 株式会社パワーシステム Solvent for organic electrolyte of electric double-layer capacitor
US7286334B2 (en) 2004-03-30 2007-10-23 Power Systems Co., Ltd. Electric double layer capacitor
JP2006332625A (en) * 2005-04-25 2006-12-07 Power System:Kk Positive electrode for electric double layer capacitor and manufacturing method thereof
US7256981B2 (en) 2005-05-27 2007-08-14 Tdk Corporation Electric double layer capacitor

Similar Documents

Publication Publication Date Title
CN101578675B (en) Electric double layer capacitor
TWI441804B (en) Ionic compounds
JPWO2005022571A1 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor
JPWO2003091198A1 (en) Ionic liquid and dehydration method, electric double layer capacitor and secondary battery
JP4548592B2 (en) Electric double layer capacitor
TWI381406B (en) Electrolyte and electric double layer capacitors for electric double layer capacitors
WO2016103905A1 (en) Electrolyte solution for secondary batteries, and secondary battery
JP7035579B2 (en) Additives for electrolytes
JP4371882B2 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
JPH09251861A (en) Organic solvent for electrolyte, lithium secondary battery, and electric double layer capacitor
WO2016068022A1 (en) Electrolyte solution and electrochemical device
JP2004087956A (en) Electric double layered capacitor and electrolyte therefor
JPH08306591A (en) Electric double-layer capacitor
JP6532157B2 (en) Ionic liquid, method for producing the same and use thereof
US11114695B2 (en) Electrolyte for electrochemical device, electrolytic solution, and electrochemical device
JP2005175513A (en) Electric double-layer capacitor and electrolyte thereof
JP4904950B2 (en) Electric double layer capacitor
JP4858107B2 (en) Electrolyte
JP2007088359A (en) Electrolyte for electrochemistry device, and electrochemistry device using the same
JP2005175239A (en) Electric double-layer capacitor and electrolyte thereof
JP2005175239A5 (en)
JP2002222740A (en) Nonaqueous electrolyte for capacitor
WO2024111310A1 (en) Electrolytic solution, and power storage element using same
JPH08222485A (en) Electric double-layered capacitor
WO2021176920A1 (en) Electrolyte solution for power storage device, and ionic liquid