JP2004087324A - Nonaqueous electrolyte battery and method for manufacturing the same - Google Patents

Nonaqueous electrolyte battery and method for manufacturing the same Download PDF

Info

Publication number
JP2004087324A
JP2004087324A JP2002247435A JP2002247435A JP2004087324A JP 2004087324 A JP2004087324 A JP 2004087324A JP 2002247435 A JP2002247435 A JP 2002247435A JP 2002247435 A JP2002247435 A JP 2002247435A JP 2004087324 A JP2004087324 A JP 2004087324A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
current collector
battery
battery element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002247435A
Other languages
Japanese (ja)
Other versions
JP4333103B2 (en
JP2004087324A5 (en
Inventor
Takehiko Tanaka
田中 健彦
Yoshikatsu Yamamoto
山本 佳克
Toshihide Kashimura
樫村 利英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002247435A priority Critical patent/JP4333103B2/en
Publication of JP2004087324A publication Critical patent/JP2004087324A/en
Publication of JP2004087324A5 publication Critical patent/JP2004087324A5/ja
Application granted granted Critical
Publication of JP4333103B2 publication Critical patent/JP4333103B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To suppress reduction in battery properties and enhance manufacturing yield. <P>SOLUTION: A nonaqueous electrolyte battery has a battery element 2 in which a positive electrode 5 and a negative electrode 6 are wound in a length direction via a separator 7 and has a positive electrode collector exposing portion 11 and a negative electrode collector exposing portion 15 exposed, respectively, in a winding direction within a range from 10 mm to 100 mm near a winding center of the battery element 2. Consequently, the exposing portion 15 diffuses Joule heat caused when a current is flown out and suppresses the reduction in the battery properties. A positive electrode terminal 10 and a negative electrode terminal 14 are drawn out from positions at which center angles, which the electrode terminals 10, 14 form mutually with the winding center of the battery element 2, become about 120° or 240° in a winding axis direction of the battery element 2. Accordingly, roundness of an outer diameter of the battery element 2 is enhanced and the battery manufacturing yield is enhanced by inserting smoothly the battery element 2 into an exterior can 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、正極と負極とがセパレータを介して捲回された電池素子を備え、電池特性が大幅に改良された非水電解質電池及びその製造方法に関する。
【0002】
【従来の技術】
近年においては、例えばノート型パーソナルコンピュータ、携帯型電話機、カメラ一体型VTR(video tape recorder)、PDA(Personal Digital Assistants)等の電子機器の電源として、軽量で高エネルギー密度な二次電池の開発が進められている。この高いエネルギー密度を有する二次電池としては、例えば鉛電池、ニッケルカドミウム電池、ニッケル水素電池等といった水系電解液電池よりも大きなエネルギー密度を有するリチウムイオン二次電池がある。
【0003】
このリチウムイオン二次電池は、水系電解液電池等に比べて3V以上と高い電圧を有し、高い起電力が得られることから、上述した電子機器の他に、大電流で出力することが必要な例えば携帯型電話機の中継基地局用予備電源等にも用いられる。
【0004】
具体的に、図5に示すリチウムイオン二次電池100は、例えば帯状の正極101と帯状の負極102とが帯状のセパレータ103を介した状態で捲回された電池素子104を発電要素として有し、この電池素子104が電池缶105に非水電解液106と一緒に封入されている。
【0005】
リチウムイオン二次電池100において、正極101は、例えばアルミニウム等の導電性金属からなる正極集電体107上にリチウム複合酸化物等からなる正極活物質を含有する正極合剤層108が形成され、正極集電体107と電気的に接続される短冊状の正極端子109が正極101の短手方向と略平行に取り付けられた構成となっている。一方負極102は、例えば銅等の導電性金属からなる負極集電体110上に炭素質材料等からなる負極活物質を含有する負極合剤層111が形成され、負極集電体110と電気的に接続される短冊状の負極端子112が負極102の短手方向と略平行に取り付けられた構成となっている。
【0006】
このような構成のリチウムイオン二次電池100では、正極活物質と負極活物質とにおける設計容量を最適化することにより、例えば電極にリチウム金属を用いた場合に起こっていたリチウムデンドライトの発生が無く、自己放電による電圧の低下が防止されて優れた電池特性が得られる。
【0007】
【発明が解決しようとする課題】
しかしながら、上述したリチウムイオン二次電池100では、正極端子109及び負極端子112に厚みが0.1mm程度の導電性金属等を用いており、例えば正極端子109と負極端子112とが重なるような位置で配置された電池素子104の場合、電池素子104の外径の真円度が低くなってしまう。
【0008】
このため、リチウムイオン二次電池100では、例えば電池素子104が電池缶105に挿入することが困難となり、電池製造時に歩留まりが低下してしまう。このリチウムイオン二次電池100では、電池素子104を電池缶105に挿入した際の空隙が大きくなり、エネルギー密度が小さくなってしまう。したがって、リチウムイオン二次電池100では、正極端子109と負極端子112との位置関係が、電池製造時の歩留まりやエネルギー密度を向上させる上で大変重要となってくる。
【0009】
また、このリチウムイオン二次電池100では、大電流が流れた際に、正極102の捲回中心付近で発生するジュール熱が電池内部に蓄熱されて温度が上昇し、電池特性が劣化するといった問題もある。特に、捲回構造の電池素子104を有する場合、大電流が流れた際に、正極102の捲回中心付近で発生したジュール熱により電極の劣化は捲回中心付近で顕著になる。
【0010】
具体的に、リチウムイオン二次電池100では、大電流が流れた場合、電池素子104の捲回中心付近の電流密度が大きいことから、捲回中心付近の正極102側で発生したジュール熱による熱集中が起こる。また、電池素子104の捲回中心付近は、外周付近に比べて発熱した熱を外部に放熱することが困難であることから、更なる熱集中が起こる。したがって、リチウムイオン二次電池100では、大電流が流れた場合、捲回中心付近に起こる熱集中により電極が劣化して電池特性が低下してしまう。
【0011】
このような問題を解決する方法としては、例えば特開平9−306545号公報等に、電池素子の捲芯空間部分に熱拡散を目的とした短絡用部品を備えることで、捲回軸付近に蓄熱した熱を拡散させることが提案されている。さらに、特開平9−306545号公報では、電池が圧壊した際に、短絡用部品で意図的に短絡させて大きなジュール熱が発生しないようにさせることも提案されている。
【0012】
しかしながら、このような方法では、上述した問題を解決するために、短絡用部品が必要となり、リチウムイオン二次電池のコストが高くなってしまう。また、短絡用部品といった余分な部品を用いることから、リチウムイオン二次電池を製造する際の製造歩留まりも低下してしまう。
【0013】
そこで、本発明は、このような従来の実情に鑑みて提案されたものであり、電極の劣化が無く電池特性に優れ、低コスト化、歩留まりの向上が図られた非水電解質電池及びその製造方法を提供することを目的としている。
【0014】
【課題を解決するための手段】
上述した目的を達成する本発明に係る非水電解質電池は、帯状の正極集電体上に正極活物質層が形成され、正極集電体に正極端子が正極集電体の短手方向と略平行に接続された正極と、帯状の負極集電体上に負極活物質層が形成され、負極集電体に負極端子が負極集電体の短手方向と略平行に接続された負極とが、セパレータを介して長手方向に捲回された電池素子を有し、正極及び負極が、電池素子内周側の端部において、それぞれ長手方向に10mm以上、100mm以下の範囲で正極集電体及び負極集電体が露出する正極集電体露出部及び負極集電体露出部を有しており、正極端子及び負極端子が、電池素子の捲回中心に対して互いになす中心角が略120°又は略240°となる位置から電池素子の捲回軸方向に引き出されていることを特徴としている。
【0015】
この非水電解質電池では、正極及び負極が、電池素子内周側の端部において、それぞれ長手方向に所定の範囲で正極集電体露出部及び負極集電体露出部を有していることにより、大電流が流れた際に、捲回中心付近の正極集電体で発生するジュール熱を、電池素子内周側の負極集電体露出部が伝播して電池素子の外部に拡散させる。
【0016】
これにより、この非水電解質電池では、大電流が流れた際に、電池素子の捲回中心付近にジュール熱が蓄熱されることを抑制できる。
【0017】
また、この非水電解質電池では、正極端子及び負極端子が、電池素子の捲回中心に対して互いになす中心角が略120°又は略240°となる位置から電池素子の捲回軸方向に引き出されていることにより、電池素子の外径の真円度を高めることができる。
【0018】
上述した目的を達成する本発明に係る非水電解質電池の製造方法は、帯状の正極集電体上に正極活物質を含有した正極合剤層が形成された正極と、帯状の負極集電体上に負極活物質を含有した負極合剤層が形成された負極とを作製する電極作製工程と、正極端子を正極集電体に、正極集電体の短手方向と略平行に接続させることで正極に取り付け、負極端子を負極集電体に、負極集電体の短手方向と略平行に接続させることで負極に取り付ける端子取付工程と、正極と、負極とを、セパレータを介して長手方向に捲回させることで電池素子を作製する素子作製工程とを有し、電極作製工程において、電池素子内周側の端部でそれぞれ長手方向に10mm以上、100mm以下の範囲で正極集電体及び負極集電体が露出された正極集電体露出部及び負極集電体露出部を有する正極及び負極を作製し、端子取付工程において、正極端子及び負極端子を、電池素子の捲回中心に対して互いになす中心角が略120°又は略240°となる位置から電池素子の軸方向に引き出されるように、正極及び負極にそれぞれ取り付けることを特徴としている。
【0019】
この非水電解質電池の製造方法では、電極作製工程において、電池素子内周側の端部で正極集電体及び負極集電体がそれぞれ長手方向に所定の範囲で露出された正極誘電体露出部及び負極集電体露出部を有する正極及び負極を作製させることにより、大電流が流れた際に捲回中心付近の正極集電体で発生するジュール熱を、電池素子内周側の端部の負極集電体露出部が伝播して電池素子の外部に拡散させることから、電池素子の捲回中心付近でジュール熱が蓄熱することのない非水電解質電池を製造できる。
【0020】
また、この非水電解質電池の製造方法では、端子取付工程において、正極端子及び負極端子を、電池素子の捲回中心に対して互いになす中心角が略120°又は略240°となる位置から電池素子の軸方向に引き出されるように、正極及び負極にそれぞれ取り付けることにより、電池素子の外径の真円度が高められた非水電解質電池を製造できる。
【0021】
【発明の実施の形態】
以下、本発明を適用した非水電解質電池について、図1に示す円筒形のリチウムイオン二次電池(以下、電池と記す。)1を参照にして説明する。この電池1は、発電要素となる電池素子2が外装缶3内部に非水電解液4と一緒に封入された構造となっている。
【0022】
電池素子2は、図2に示すように、帯状の正極5と、帯状の負極6とが、帯状のセパレータ7を介して密着状態で長手方向に巻回された構成となっている。
【0023】
正極5は、正極活物質と結着剤とを含有する正極合剤塗液を正極集電体8の両主面に塗布、乾燥、加圧することにより、正極集電体8の両主面上に正極合剤層9が圧縮形成された構造となっている。正極4には、正極端子10が正極集電体8の所定の位置に接続されている。この正極端子10には、例えばアルミニウム等の導電性金属からなる短冊状金属片等を用いる。
【0024】
この正極5は、長手方向の両端部に、正極集電体8の両主面とも正極合剤層9が形成されずに正極集電体8が露出している正極集電体露出部11が設けられている。
【0025】
この正極集電体露出部11は、正極5が捲回されて電池素子2となったときに、外周側になった方が電池素子2の外周を少なくとも一周以上覆うような長さになっている。すなわち、正極5の長手方向の両端部に設けられた正極集電体露出部11のうちの電池素子2の外周側になった方の捲回方向の長さをL1とし、電池素子2の外径をdとしたとき、L1≧dπとなる。
【0026】
一方、正極集電体露出部11において、電池素子2の内周側になった方には、正極端子10が電池素子2の捲回軸方向に沿うように所定の位置に取り付けられる。そして、正極集電体露出部11における電池素子2の内周側になった方は、電池素子2の捲回中心で複数回捲回されることになる。
【0027】
正極5において、正極合剤層9に含有される正極活物質には、リチウムイオンをドープ/脱ドープすることが可能な材料を用いる。具体的には、例えばLiMxO2(式中MはCo、Ni、Mn、Fe、Al、V、Ti等による一種以上の遷移金属を示し、xは0.5以上、1.10以下の範囲である。)で示されるリチウム複合酸化物等を使用する。このリチウム複合酸化物を構成する遷移金属Mとしては、電池容量を大きくでき、安定した結晶構造が得られるCo、Ni、Mn等が好ましい。このようなリチウム複合酸化物の具体例としては、LiCoO2、LiNiO2、LiNiyCo1−yO2(式中、0<y<1である。)、LiMn2O4、LiNixMnyCozO2(式中、0≦x≦1、0≦y≦1、0≦z≦1である。)等を挙げることができる。
【0028】
また、正極活物質としては、安価で結晶構造が安定している例えばLixFe1−yMyPO4(式中MはMn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nbのうちの何れか一種以上であり、0.05≦x≦1.2であり、0≦y<0.8である)で示される化合物等が挙げられ、具体的にLiFePO4等を用いる。さらに、正極活物質としては、例えばTiS2、MoS2、NbSe2、V2O5等の金属硫化物あるいは酸化物も使用することができる。
【0029】
正極5では、正極合剤層9の結着剤として、非水電解質電池の正極合剤に用いられる例えばポリフッ化ビニリデンやポリテトラフルオロエチレン等といった結着剤を用いることができる他に、正極合剤層9に例えば導電材として炭素質材料等を添加したり、公知の添加剤等を添加したりすることができる。正極5では、正極集電体8に、例えばアルミニウム等、導電性金属からなる箔状金属や網状金属等を用いる。
【0030】
負極6は、負極活物質と結着剤とを含有する負極合剤塗液を負極集電体12の両主面に塗布、乾燥、加圧することにより、負極集電体12の両主面上に負極合剤層13が圧縮形成された構造となっている。負極6には、負極端子14が負極集電体12の所定の位置に接続されている。この負極端子14には、例えば銅、ニッケル等の導電性金属からなる短冊状金属片等を用いる。
【0031】
この負極6は、長手方向の両端部のうちの一端部に、縁端から順に、負極集電体12の両主面とも負極合剤層13が形成されずに負極集電体12が露出している負極集電体露出部15と、負極集電体12の一主面だけに負極合剤層13が形成された負極片面合剤部16とが設けられている。また、負極6は、長手方向の両端部のうちの他端部に、負極集電体露出部15だけが設けられている。
【0032】
負極6の長手方向の両端部のうち、一端部側の負極集電体露出部15は、負極6が捲回されて電池素子2となったときに、外周側に配置されて電池素子2の外周を少なくとも一周以上覆うような長さになっている。すなわち、負極6の一端部側に設けられた負極集電体露出部15の捲回方向の長さをL2とし、電池素子2の外径をdとしたとき、L2≧dπとなる。一端部側の負極集電体露出部15には、負極端子14が電池素子2の捲回軸方向に沿うように所定の位置に取り付けられている。
【0033】
また、負極6の長手方向の両端部のうち、一端部側の負極片面合剤部16は、正極合剤層9と対向する側の負極集電体12の一主面に負極合剤層13が形成され、正極合剤層9と対向しない側の負極集電体12の他主面が露出している。また、負極片面合剤部16は、正極合剤層9と負極合剤層13とを適切に対向させるために、電池素子2の外周を一周以上覆うような長さになっている。
【0034】
一方、負極6の長手方向の両端部のうち、他端部側の負極集電体露出部15は、電池素子2の捲回中心で、上述した正極集電体露出部11とセパレータ7を介した状態で対向し、複数回捲回されることになる。
【0035】
負極6において、負極合剤層13に含有される負極活物質には、リチウム、リチウム合金、又はリチウムイオンをドープ/脱ドープできる炭素質材料等が用いられる。リチウムイオンをドープ/脱ドープできる炭素質材料としては、例えば2000℃以下の比較的低い温度で焼成して得られる低結晶性炭素材料、結晶化しやすい原材料を3000℃付近の高温で焼成した人造黒鉛等の高結晶性炭素材料等を用いることが可能である。具体的には、熱分解炭素類、コークス類、黒鉛類、ガラス状炭素繊維、有機高分子化合物焼成体、炭素繊維、活性炭等の炭素質材料を用いることが可能である。コークス類としては、例えばピッチコークス、ニードルコークス、石油コークス等がある。なお、有機高分子化合物焼成体とは、フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したものである。これらの炭素質材料は、電池1を充放電した際に、負極6側にリチウムが析出することを抑制させることが可能である。また、上述した炭素質材料のほか、リチウムイオンをドープ/脱ドープできる材料として、ポリアセチレン、ポリピロール等の高分子やSnO2等の酸化物を使用することもできる。また、リチウム合金としては、例えばリチウム−アルミニウム合金等を用いる。
【0036】
負極6では、負極合剤層13の結着剤として、非水電解質電池の負極合剤に用いられる例えばポリフッ化ビニリデンやポリテトラフルオロエチレン等といった結着剤を用いることができる。負極6では、負極集電体12に、例えば銅等といった導電性金属からなる箔状金属や網状金属等を用いる。
【0037】
セパレータ7は、正極5と負極6とを離間させるものであり、この種の非水電解質電池の絶縁性多孔質膜として通常用いられている公知の材料を用いることができる。具体的には、例えばポリプロピレン、ポリエチレン等の高分子フィルムが用いられる。また、リチウムイオン伝導度とエネルギー密度との関係から、セパレータ7の厚みはできるだけ薄い方が好ましく、その厚みを30μm以下にして用いる。
【0038】
以上のような構成の電池素子2は、内周側の正極5及び負極6の端部、すなわち捲回中心付近において、正極集電体露出部11及び負極集電体露出部15が、長手方向に所定の長さでセパレータ7を介して対向している。
【0039】
これにより、電池素子2では、電池1に大電流が流れた際に、捲回中心付近の正極5で発生したるジュール熱が、捲回中心付近で対向する正極集電体露出部11から負極集電体露出部15に伝播され、負極6側に伝播されたジュール熱を外部に拡散させるように作用する。
【0040】
したがって、この電池素子2では、電池1に大電流が流れた際に、捲回中心付近にジュール熱が蓄熱されることを抑制でき、正極5及び負極6が熱により劣化することを防いで電池1の電池特性の低下を抑えることができる。
【0041】
この電池素子2は、内周側の正極5及び負極6の端部にいて、正極集電体露出部11及び負極集電体露出部15の長さが、それぞれ長手方向に10mm以上、100mm以下の範囲となっている。
【0042】
電池素子2の捲回中心付近における正極集電体露出部11及び負極集電体露出部15の長手方向の長さが、それぞれ10mmより短い場合、電池1に大電流が流れた際に発生するジュール熱を外部に拡散させることが困難になる。一方、電池素子2の捲回中心付近における正極集電体露出部11及び負極集電体露出部15の長手方向の長さが、それぞれ100mmより長い場合、正極5及び負極6における集電体の露出部が多すぎて、活物質が少なくなることから電池容量が小さくなってしまう。
【0043】
したがって、電池素子2では、内周側の正極5及び負極6の端部において、正極集電体露出部11及び負極集電体露出部15の長さを、それぞれ長手方向に10mm以上、100mm以下の範囲することにより、電池1に大電流が流れた際に発生するジュール熱を適切に拡散させ、電池容量の低下を抑制させることできる。
【0044】
また、この電池素子2では、捲回中心付近で対向する正極集電体露出部11及び負極集電体露出部15が、例えば電池1が押し潰される等の異常事態に陥った場合でも、正極5と負極6とが短絡して発生した熱を、適切に拡散させるように作用する。
【0045】
さらに、この電池素子2では、負極片面合剤部16が設けられていることで、電池内部で正極合剤層9と対向しない負極合剤層13が低減され、その分互いに対向する正極合剤層9及び負極合剤層13を増加させることができ、電池1のエネルギー密度を向上させる。
【0046】
さらにまた、この電池素子2では、図3(a)及び図3(b)に示すように、正極端子10及び負極端子14が、捲回中心に対して互いになす中心角が略120°又は略240°となる位置から捲回軸方向に引き出されている。
【0047】
これにより、電池素子2では、外径の真円度を高めることができ、外装缶3等への挿入を円滑に行うことができる。なお、電池素子2においては、正極端子11及び負極端子14が、捲回中心に対して互いになす中心角が115°〜125°の範囲、又は235°〜245°の範囲となる位置から引き出されても、外径の真円度を高めることができる。
【0048】
外装缶3は、例えば有底筒状容器であり、底面が円状等の形状を有している。外装缶3は、図1において底面が円状となっているが、このことに限定されることはなく、例えば矩形状、扁平円状等の底面を有する有底筒状容器も適用可能である。また、外装缶3は、負極6と導通する場合、例えば鉄、ステンレス、ニッケル等といった導電性金属で形成される。外装缶3は、例えば鉄等で形成された場合、その表面にはニッケルめっき等が施される。
【0049】
非水電解液4は、例えば非水溶媒に電解質塩を溶解させた非水溶液である。非水電解液4において、非水溶媒としては、例えば環状の炭酸エステル化合物、水素をハロゲン基やハロゲン化アクリル基で置換した環状炭酸エステル化合物や鎖状炭酸エステル化合物等を用いる。具体的には、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4メチル1,3ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、アニソール、酢酸エステル、酪酸エステル、プロピオン酸エステル等が挙げられ、これらのうちの一種以上を用いる。特に、非水溶媒としては、電圧安定性の点からプロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートを使用することが好ましい。
【0050】
また、電解質塩としては、例えばLiPF6、LiClO4、LiAsF6、LiBF4、LiB(C6H5)4、LiCH3SO3、LiCF3SO3、LiCl、LiBr等が挙げられ、これらのうちの一種以上を用いる。
【0051】
以上のような構成の電池1は、次のようにして製造される。先ず、正極5を作製する。正極5を作製する際は、正極活物質と、導電材と、結着剤とを含有する正極合剤塗液を調製する。そして、この正極合剤塗液を正極集電体8の両主面に未塗工部を設けながら均一に塗布し、乾燥した後に、圧縮することで正極合剤層9を形成し、帯状に裁断して所定の位置に正極端子10を例えば超音波溶接等で取り付ける。このようにして、長手方向の両端部に、正極集電体8が露出している正極集電体露出部11が設けられた正極5が作製される。
【0052】
次に、負極6を作製する。負極6を作製する際は、負極活物質と、結着剤とを含有する負極合剤塗液を調製する。そして、この負極合剤塗液を負極集電体12の両主面に未塗工部や片面塗工部を設けながら均一に塗布し、乾燥した後に、圧縮することで負極合剤層13を形成し、帯状に裁断して所定の位置に負極端子14を例えば超音波溶接等で取り付ける。このようにして、長手方向の一端部に、負極集電体12が露出している負極集電体露出部15と、片面だけ負極集電体12が露出している負極片面合剤部16とが設けられ、長手方向の他端部に、負極集電体露出部15だけが設けられた負極6が作製される。
【0053】
次に、正極5と負極6とを、帯状のセパレータ7を介して積層し、多数回捲回することにより電池素子2を作製する。
【0054】
このとき、電池素子2は、正極集電体露出部11及び負極集電体露出部15が、電池素子2の内周側の端部で電池素子2の捲回方向に所定の範囲の長さで対向するように捲回されている。
【0055】
また、電池素子2は、正極端子10が内周側の正極集電体露出部11に取り付けられ、負極端子14が外周側の負極集電体露出部15に取り付けられている。そして電池素子2では、正極端子10及び負極端子14が、捲回中心に対して互いになす中心角を略120°又は略240°とする位置から捲回軸方向に引き出されるように捲回されている。
【0056】
次に、図1に示すように、電池素子2の両端面に絶縁板17a、17bを設置し、さらに電池素子2を外装缶3に収納する。そして、負極6の集電をとるために、負極端子14の電池素子2より突出している部分を外装缶3の底部等に溶接する。これにより、外装缶3は、負極6と導通することとなり、電池1の外部負極となる。また、正極5の集電をとるために、正極端子10の電池素子2より突出している部分を電流遮断用薄板18に溶接することでこの電流遮断用薄板18を介して電池蓋19と電気的に接続する。この電流遮断用薄板18は、電池内圧に応じて電流を遮断するものである。これにより、電池蓋19は、正極5と導通することとなり、電池1の外部正極となる。
【0057】
次に、電池素子2が収納されている外装缶3の中に非水電解液4を注入する。この非水電解液4は、電解質塩を、非水溶媒に溶解させて調製される。次に、アスファルト等からなるシール剤を塗布したガスケット20を介して外装缶3の開口部をかしめることにより電池蓋19が固定され、電池1が作製される。
【0058】
なお、この電池1においては、電池内部の圧力が所定値よりも高くなったときに内部の気体を抜くための安全弁21、電池内部の温度上昇を防止するためのPTC(positive temperature coefficient)素子22等が設けられている。
【0059】
このようにして製造される電池1では、正極集電体露出部11及び負極集電体露出部15が、電池素子2の捲回中心付近で電極の長手方向に所定の長さで対向されており、大電流が流れた際に捲回中心付近の正極5で発生するジュール熱を、捲回中心で対向する正極集電体露出部11から負極集電体露出部15に伝播させることから、負極6側に伝播されたジュール熱を容易に外部に拡散できる。
【0060】
したがって、この電池1では、大電流が流れた際に、捲回中心付近でジュール熱が蓄熱されることを抑制でき、ジュール熱による正極5及び負極6の劣化が防止されることから電池特性の低下を抑えることができる。
【0061】
また、この電池1では、正極集電体露出部11及び負極集電体露出部15を、電池素子2の捲回中心付近で電極の長手方向に所定の長さで対向させることにより、大電流が流れた際に発生するジュール熱を適切に外部に拡散できることから、従来の用いていた熱拡散を目的とした短絡用部品等を減らして低コスト化が図れる。
【0062】
さらに、この電池1では、例えば押し潰される等の異常事態に陥った場合でも、正極5と負極6とが短絡して発生する熱を、正極集電体露出部11及び負極集電体露出部15が電池素子2の捲回中心付近で対向されていることにより適切に拡散できることから、高温になることが抑制されて安全性を向上できる。
【0063】
さらにまた、この電池1では、負極6に負極片面合剤部16が設けられていることで、電池内部で正極合剤層9と対向しない負極合剤層13が低減され、その分互いに対向する正極合剤層9及び負極合剤層13を増加させることができることから、電池容量やエネルギー密度を向上できる。
【0064】
さらにまた、電池1では、正極端子10及び負極端子14が、電池素子2の捲回中心に対して互いになす中心角が略120°又は略240°となる位置から電池素子2の捲回軸方向に引き出されており、電池素子2の外径の真円度を高めることができる。これにより、電池1では、電池作製する際に、電池素子2を外装缶3へ円滑に挿入することが可能となり、電池素子2を外装缶3に挿入する際に発生する不具合が抑制されることから、電池製造時の歩留まりを向上できる。
【0065】
以上の例では、非水電解液4を用いた電池1について説明しているが、このことに限定されることはなく、非水電解液4の代わりに例えば無機固体電解質、高分子固体電解質、ゲル状電解質等を用いた場合も適用可能である。無機固体電解質としては、例えば窒化リチウム、ヨウ化リチウム等が挙げられる。
【0066】
高分子固体電解質は、例えば上述した電解質塩と、電解質塩を含有することでイオン導電性が賦与される高分子化合物とからなる。高分子固体電解質に用いる高分子化合物としては、例えばシリコン、ポリエーテル変性シロキサン、ポリアクリル、ポリアクリロニトリル、ポリフォスファゼン、ポリエチレンオキサイド、ポリプロピレンオキサイド、及びこれらの複合ポリマー、架橋ポリマー、変性ポリマー等、アクリロニトリル−ブタジエンゴム、ポリアクリロニトリル−ブタジエンスチレンゴム、アクリロニトリル−塩化ポリエチレン−プロピレン−ジエン−スチレン樹脂、アクリロニトリル−塩化ビニル樹脂、アクリロニトリル−メタアクリレート樹脂、アクリロニトリル−アクリレート樹脂、ポリエチレンオキサイドの架橋体といったエーテル系高分子等が挙げられ、これのうち何れか一種又は複数種を混合して用いる。
【0067】
また、高分子固体電解質に用いる高分子化合物としては、例えばアクリロニトリルと、酢酸ビニル、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸ブチル、イタコン酸、水酸化メチルアクリレート、水酸化エチルアクリレート、アクリルアミド、塩化ビニル、フッ化ビニリデン等のうちの何れか一種以上とを共重合させた共重合体、ポリ(ビニリデンフルオロライド)、ポリ(ビニリデンフルオロライド−co−ヘキサフルオロプロピレン)、ポリ(ビニリデンフルオロライド−co−テトラフルオロエチレン)、ポリ(ビニリデンフルオロライド−co−トリフルオロエチレン)といったフッ素系ポリマー等も挙げられ、これらのうち何れか一種又は複数種を混合して用いる。
【0068】
ゲル状電解質は、上述した非水電解液4と、非水電解液4を吸収してゲル化するマトリックス高分子とからなる。ゲル状電解質に用いるマトリックス高分子としては、例えば上述した高分子化合物のうちで非水電解液4を吸収してゲル化するものであれば用いることが可能である。具体的に、マトリックス高分子としては、例えばポリ(ビニリデンフルオロライド)やポリ(ビニリデンフルオロライド−co−ヘキサフルオロプロピレン)等のフッ素系高分子、ポリ(エチレンオキサイド)やこれの架橋体等のエーテル系高分子、ポリ(アクリロニトリル)等が挙げられ、これらのうち何れか一種又は複数種を混合して用いる。特に、マトリックス高分子には、酸化還元安定性が良好なフッ素系高分子を用いることが好ましい。
【0069】
また、上述した実施の形態においては、円筒形の電池1を例に挙げて説明しているが、このことに限定されることはなく、捲回構造の電池素子を備えていれば、例えば角型等、外装材に金属製容器等を用いた電池、薄型等、外装材にラミネートフィルム等を用いた電池等、様々な大きさ、形状の非水電解質電池に適用可能である。
【0070】
【実施例】
以下、本発明を適用した非水電解質電池としてリチウムイオン二次電池を実際に作製したサンプルについて説明する。
【0071】
〈サンプル1〉
サンプル1では、先ず、正極を作製した。正極を作製する際は、正極活物質としてLiMn2O4を91重量部と、導電材としてグラファイトを6重量部と、結着剤としてポリフッ化ビニリデン(PVdF)3重量部と、溶媒としてN−メチル−2−ピロリドン(NMP)とを加えてプラネタリーミキサーによって混練して分散を行い、正極合剤塗液を作製した。次に、正極合剤塗液を正極集電体となる厚みが20μmのアルミニウム箔の両主面に未塗工部を設けながら均一に塗布し、乾燥した後に、ローラプレス機で圧縮することで正極合剤層を形成し、帯状に裁断した。このようにして、長手方向の両端部に、正極集電体が露出している正極集電体露出部が設けられた正極を作製した。具体的に、厚み160μm、幅55mm、正極合剤層の長さ500mm、正極集電体露出部の長さがそれぞれ70mmの正極を作製した。
【0072】
次に、正極集電体露出部の所定の位置に、正極の短手方向と略平行となるように正極端子を取り付けた。
【0073】
次に、負極を作製した。負極を作製する際は、負極活物質として炭素質材料を90重量部と、結着剤としてPVdFを10重量部と、溶媒としてNMPとを加えてプラネタリーミキサーによって混練して分散を行い、負極合剤塗液を作製した。次に、この負極合剤塗液を負極集電体となる厚みが15μmの銅箔の両主面に未塗工部や片面塗工部を設けながら均一に塗布し、乾燥した後に、ローラプレス機で圧縮することで負極合剤層を形成し、帯状に裁断した。このようにして、長手方向の一端部に、負極集電体が露出している負極集電体露出部と、片面だけ負極集電体が露出している負極片面合剤部とが設けられ、長手方向の他端部に、負極集電体露出部だけが設けられた負極を作製した。具体的に、厚み160μm、幅57mm、負極合剤層の長さ500mm、一端側の負極集電体露出部の長さ80mm、負極片面合剤部の長さ50mm、他端側の負極集電体露出部の長さ40mmの負極を作製した。
【0074】
次に、負極の長手方向の一端部側の負極集電体露出部に、負極の短手方向と略平行となるように負極端子を取り付けた。
【0075】
次に、正極と負極とを、ポリプロピレン製の多孔質フィルムからなる帯状のセパレータを介して積層し、電極の長手方向に多数回捲回することにより電池素子を作製した。
【0076】
このとき、電池素子においては、負極の一端側が内周側になるように捲回させ、正極集電体露出部及び負極集電体露出部が、正極及び負極における内周側の端部でセパレータを介して対向するようにした。また、電池素子において、正極端子は、内周側の正極集電体露出部に配置され、負極端子は、外周側の負極集電体露出部に配置されるようにした。さらに、電池素子においては、正極端子及び負極端子が、捲回中心に対して互いになす中心角が120°となる位置から捲回軸方向に引き出されるように捲回させた。
【0077】
次に、以上のようにして作製した電池素子から導出している正極端子を電池蓋に、負極端子を鉄にニッケルメッキを施した外装缶にそれぞれ溶接すると共に、電池素子を外装缶に収納した。
【0078】
次に、プロピレンカーボネートとジエチルカーボネートとの体積混合比が1対1の混合溶媒に対してLiPF6が1モル/リットルとなるように溶解させた非水電解液を作製した。次に、この非水電解液を外装缶内に注入し、アスファルトを塗布したガスケットを介して外装缶の開口部に電池蓋を圧入して外装缶の開口部をかしめることによりで電池蓋を強固に固定した。
【0079】
以上のようにしてφ18mm、高さ65mmの円筒形のリチウムイオン二次池を作製した。なお、以下の説明では、便宜上、リチウムイオン二次電池のことを単に電池を称する。
【0080】
〈サンプル2〉
サンプル2では、電池素子を作製する際に、正極端子及び負極端子が、捲回中心に対して互いになす中心角が240°となる位置から捲回軸方向に引き出されるように捲回させた。そして、この電池素子を用いたこと以外は、サンプル1と同様にして電池を作製した。
【0081】
〈サンプル3〉
サンプル3では、正極を作製する際に、一端側の正極集電体露出部の長さを40mmにしたこと以外は、サンプル1と同様にして正極を作製した。また、負極を作製する際に、一端側の負極集電体露出部の長さを5mmにしたこと以外は、サンプ1と同様にして負極を作製した。次に、以上のようにして作製した正極及び負極を用いて電池素子を作製した。このとき、長さが40mmの正極集電体露出部が設けられた正極の端部及び長さが5mmの負極集電体露出部が設けられた負極の端部が、内周側になるように電池素子を捲回させた。そして、このようにして作製した電池素子を用いたこと以外は、サンプル1と同様にして電池を作製した。
【0082】
〈サンプル4〉
サンプル4では、電池素子を作製する際に、正極端子及び負極端子が、捲回中心に対して互いになす中心角が0°となる位置から捲回軸方向に引き出されるように捲回させた。そして、この電池素子を用いたこと以外は、サンプル1と同様にして電池を作製した。
【0083】
〈サンプル5〉
サンプル5では、電池素子を作製する際に、正極端子及び負極端子が、捲回中心に対して互いになす中心角が30°となる位置から捲回軸方向に引き出されるように捲回させた。そして、この電池素子を用いたこと以外は、サンプル1と同様にして電池を作製した。
【0084】
〈サンプル6〉
サンプル6では、電池素子を作製する際に、正極端子及び負極端子が、捲回中心に対して互いになす中心角が60°となる位置から捲回軸方向に引き出されるように捲回させた。そして、この電池素子を用いたこと以外は、サンプル1と同様にして電池を作製した。
【0085】
〈サンプル7〉
サンプル7では、電池素子を作製する際に、正極端子及び負極端子が、捲回中心に対して互いになす中心角が90°となる位置から捲回軸方向に引き出されるように捲回させた。そして、この電池素子を用いたこと以外は、サンプル1と同様にして電池を作製した。
【0086】
〈サンプル8〉
サンプル8では、電池素子を作製する際に、正極端子及び負極端子が、捲回中心に対して互いになす中心角が150°となる位置から捲回軸方向に引き出されるように捲回させた。そして、この電池素子を用いたこと以外は、サンプル1と同様にして電池を作製した。
【0087】
〈サンプル9〉
サンプル9では、電池素子を作製する際に、正極端子及び負極端子が、捲回中心に対して互いになす中心角が180°となる位置から捲回軸方向に引き出されるように捲回させた。そして、この電池素子を用いたこと以外は、サンプル1と同様にして電池を作製した。
【0088】
〈サンプル10〉
サンプル10では、電池素子を作製する際に、正極端子及び負極端子が、捲回中心に対して互いになす中心角が210°となる位置から捲回軸方向に引き出されるように捲回させた。そして、この電池素子を用いたこと以外は、サンプル1と同様にして電池を作製した。
【0089】
〈サンプル11〉
サンプル11では、電池素子を作製する際に、正極端子及び負極端子が、捲回中心に対して互いになす中心角が270°となる位置から捲回軸方向に引き出されるように捲回させた。そして、この電池素子を用いたこと以外は、サンプル1と同様にして電池を作製した。
【0090】
〈サンプル12〉
サンプル12では、電池素子を作製する際に、正極端子及び負極端子が、捲回中心に対して互いになす中心角が300°となる位置から捲回軸方向に引き出されるように捲回させた。そして、この電池素子を用いたこと以外は、サンプル1と同様にして電池を作製した。
【0091】
〈サンプル13〉
サンプル13では、電池素子を作製する際に、正極端子及び負極端子が、捲回中心に対して互いになす中心角が330°となる位置から捲回軸方向に引き出されるように捲回させた。そして、この電池素子を用いたこと以外は、サンプル1と同様にして電池を作製した。
【0092】
そして、以上のように作製したサンプル1〜サンプル13のうち、サンプル1及びサンプル3の電池について、大電流で充放電を行った際の充放電サイクル特性を測定した。
【0093】
以下、サンプル1及びサンプル3における、重負荷充放電による200サイクル目の放電容量維持率の評価結果を表1に示す。
【0094】
【表1】

Figure 2004087324
【0095】
なお、サンプル1及びサンプル3においては、充放電を以下のようにして行った。充電する際は、電池に対し、充電電流値3A、上限電圧4.2Vの定電流定電圧充電を3時間行った。一方、放電する際は、6Aの電流値で3Vまでの定電流放電を行った。そして、このような充放電条件で充放電を200回繰り返し、200サイクル目の放電容量維持率、すなわち初回放電容量に対する200回目の放電容量の比率を測定した。
【0096】
表1に示す評価結果から、電池素子の内周側において、長さが70mmの正極集電体露出部と、長さが40mmの負極集電体露出部とを対向させたサンプル1では、電池素子の内周側において、長さが40mmの正極集電体露出部と、長さが5mmの負極集電体露出部とを対向させたサンプル3に比べ、重負荷充放電による200サイクル目の放電容量維持率が大きくなっていることがわかる。
【0097】
サンプル3では、特に電池素子の内周側の負極集電体露出部の長さが5mmと短く、大電流が流れた際に正極側で発生するジュール熱を負極集電体露出部に適切に伝播させることできず、電池内部の熱を外部に拡散させることが困難となる。このため、サンプル3では、電流密度が大きな電池素子の捲回中心付近で大きなジュール熱を発生し、蓄熱されることから、特に電池素子の捲回中心付近で熱集中による電極の劣化が起こり電池特性も低下していってしまう。
【0098】
一方、サンプル1では、電池素子の内周側の正極集電体露出部及び負極集電体露出部が適宜な長さであり、特に負極集電体露出部が40mmとなっていることから、大電流が流れた際に正極側で発生するジュール熱が負極集電体露出部に適切に伝播され、電池内部の熱を外部に容易に拡散させることができる。したがって、サンプル1では、大電流により発生したジュール熱が電池内部に蓄熱されることが抑えられ、熱による電極の劣化も抑制されることから、サンプル3に比べて優れた電池特性が得られる。
【0099】
ここで、サンプル1及びサンプル3において、上述した放電条件で放電した際の電池素子中心及び電池外周面の温度変化を測定した。そして、サンプル1及びサンプル3における大電流で放電した際の温度変化の測定結果を図4に示す。なお、図4は、サンプル1及びサンプル3における放電時間と温度変化との関係を示す特性図である。
【0100】
図4に示す評価結果から、サンプル1では、電池素子中心で温度が低く、電池外周面で温度が高くなっている。これに対し、サンプル3では、電池素子中心で温度が高く、電池外周面で温度が低くなっている。
【0101】
このことからも、サンプル1が電池内部にジュール熱が蓄熱されることを抑え、外部に熱を拡散させ易い構造であり、サンプル3が電池内部にジュール熱を蓄熱させ、外部に熱を拡散させることが困難な構造であることがわかる。
【0102】
以上のことから、電池を作製する際に、長さが70mmの正極集電体露出部と、長さが40mmの負極集電体露出部とを電池素子の捲回中心付近で対向させることは、重負荷充放電による200サイクル目の放電容量維持率が優れた電池を作製する上で大変有効であることがわかる。
【0103】
次に、サンプル1及びサンプル2、サンプル4〜サンプル13の電池について、電池素子の最大直径を測定し、電池素子を外装缶に収納する際の素子挿入不良率を調査した。
【0104】
以下、サンプル1及びサンプル2、サンプル4〜サンプル13における、電池素子の最大直径と、電池素子挿入不良率とを表2に示す。
【0105】
【表2】
Figure 2004087324
【0106】
表2に示す評価結果から、正極端子及び負極端子が、電池素子において、捲回中心に対して互いになす中心角が120°又は240°となる位置から捲回軸方向に引き出されているサンプル1及びサンプル2では、正極端子及び負極端子が、でんちそしにおいて、捲回中心に対して互いになす中心角が120°又は240°以外となる位置から捲回軸方向に引き出されているサンプル4〜サンプル13に比べ、電池素子の最大直径が小さく、電池素子挿入不良率が低いことがわかる。
【0107】
サンプル4〜サンプル13では、正極端子及び負極端子が、電池素子の捲回中心に対して互いになす中心角が120°又は240°以外となる位置から引き出されており、電池素子の外径の真円度が低くなって電池素子の最大直径が大きくなってしまう。このため、サンプル4〜サンプル13では、外装缶に電池素子を挿入しにくくなり、外装缶の開口部の周縁部等に電池素子が当たってセパレータ等が破れるといった不良がたくさん生じる。
【0108】
一方、サンプル1及びサンプル2では、正極端子及び負極端子が、電池素子の捲回中心に対して互いになす中心角が120°又は240°となる位置から引き出されており、電池素子の外径の真円度が高くなって電池素子の最大直径が小さくなる。このため、サンプル1及びサンプル2では、外装缶に電池素子を円滑に挿入できることから、サンプル4〜サンプル13よりも電池素子挿入不良の発生が抑制され、製造歩留まりの向上を図れる。
【0109】
以上のことから、電池を作製する際に、正極端子及び負極端子を、電池素子の捲回中心に対して互いになす中心角が120°又は240°となる位置から捲回軸方向に引き出すことは、電池素子の最大直径が小さくなって電池素子を外装缶に挿入する際の挿入不良率が低くなり、電池作製時の歩留まりを向上させる上で大変有効であることがわかる。
【0110】
【発明の効果】
以上の説明から明らかなように、本発明によれば、捲回構造の電池素子内周側の正極端部及び負極端部に、所定の範囲で正極集電体露出部及び負極集電体露出部を設けることにより、大電流により発生するジュール熱が電池素子の捲回中心付近に熱集中して起こる電極の劣化が抑制されることから、電池特性の低下が抑制された非水電解質電池が得られる。
【0111】
また、本発明によれば、正極端子及び負極端子が、電池素子の捲回中心に対して互いになす中心角が略120°又は略240°となる位置から電池素子の捲回軸方向に引き出されることにより、電池素子の外径の真円度が高まり、外装缶に電池素子を円滑に挿入できることから、電池作製時の歩留まりを向上させることができる。
【図面の簡単な説明】
【図1】本発明を適用したリチウムイオン二次電池の内部構造を示す縦断面図である。
【図2】同リチウムイオン二次電池の内部構造を横断面から示す模式図である。
【図3】同リチウムイオン二次電池における正極端子及び負極端子の取り付け位置を示す電池素子を捲回軸方向から見た概略側面図であり、同図(a)は電池素子の捲回中心に対して正極端子と負極端子とがなす中心角が120°である状態を示し、同図(b)は電池素子の捲回中心に対して正極端子と負極端子とがなす中心角が240°である状態を示している。
【図4】サンプル1及びサンプル3における放電時間と電池温度との関係を示す特性図である。
【図5】従来のリチウムイオン二次電池の内部構造を横断面から示す模式図である。
【符号の説明】
1 リチウムイオン二次電池、2 電池素子、3 外装缶、4 非水電解液、5 正極、6 負極、7 セパレータ、8 正極集電体、9 正極合剤層、10正極端子、11 正極集電体露出部、12 負極集電体、13 負極合剤層、14 負極端子、15 負極集電体露出部、16 負極片面合剤部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nonaqueous electrolyte battery including a battery element in which a positive electrode and a negative electrode are wound with a separator interposed therebetween, and having significantly improved battery characteristics, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, the development of lightweight, high energy density secondary batteries has been developed as a power source for electronic devices such as notebook personal computers, portable telephones, camera-integrated VTRs (video tape recorders), and PDAs (Personal Digital Assistants). Is underway. As a secondary battery having a high energy density, there is a lithium ion secondary battery having a higher energy density than an aqueous electrolyte battery such as a lead battery, a nickel cadmium battery, a nickel hydride battery, or the like.
[0003]
Since this lithium ion secondary battery has a higher voltage of 3 V or more than a water-based electrolyte battery or the like and can obtain a high electromotive force, it is necessary to output a large current in addition to the above-described electronic devices. For example, it is also used as a backup power supply for a relay base station of a portable telephone.
[0004]
Specifically, the lithium ion secondary battery 100 illustrated in FIG. 5 includes, as a power generation element, a battery element 104 in which, for example, a band-shaped positive electrode 101 and a band-shaped negative electrode 102 are wound with a band-shaped separator 103 interposed therebetween. The battery element 104 is sealed in a battery can 105 together with a non-aqueous electrolyte 106.
[0005]
In the lithium ion secondary battery 100, the positive electrode 101 has a positive electrode mixture layer 108 containing a positive electrode active material made of a lithium composite oxide or the like formed on a positive electrode current collector 107 made of a conductive metal such as aluminum, for example. A strip-shaped positive electrode terminal 109 electrically connected to the positive electrode current collector 107 is mounted substantially parallel to the short direction of the positive electrode 101. On the other hand, in the negative electrode 102, a negative electrode mixture layer 111 containing a negative electrode active material made of a carbonaceous material or the like is formed on a negative electrode current collector 110 made of a conductive metal such as copper, for example. The negative electrode terminal 112 in the form of a strip connected to the negative electrode 102 is attached substantially parallel to the short direction of the negative electrode 102.
[0006]
In the lithium ion secondary battery 100 having such a configuration, by optimizing the design capacity of the positive electrode active material and the negative electrode active material, for example, the generation of lithium dendrite, which occurs when lithium metal is used for the electrode, is eliminated. In addition, a decrease in voltage due to self-discharge is prevented, and excellent battery characteristics are obtained.
[0007]
[Problems to be solved by the invention]
However, in the above-described lithium ion secondary battery 100, a conductive metal or the like having a thickness of about 0.1 mm is used for the positive electrode terminal 109 and the negative electrode terminal 112, for example, in a position where the positive electrode terminal 109 and the negative electrode terminal 112 overlap. In the case of the battery element 104 arranged in the above, the roundness of the outer diameter of the battery element 104 is reduced.
[0008]
For this reason, in the lithium ion secondary battery 100, for example, it becomes difficult to insert the battery element 104 into the battery can 105, and the yield decreases during battery manufacturing. In this lithium ion secondary battery 100, the gap when the battery element 104 is inserted into the battery can 105 increases, and the energy density decreases. Therefore, in the lithium ion secondary battery 100, the positional relationship between the positive electrode terminal 109 and the negative electrode terminal 112 is very important for improving the yield and energy density during battery manufacturing.
[0009]
In addition, in this lithium ion secondary battery 100, when a large current flows, Joule heat generated near the center of the winding of the positive electrode 102 is stored inside the battery, the temperature rises, and the battery characteristics deteriorate. There is also. In particular, when the battery element 104 has a wound structure, when a large current flows, deterioration of the electrode becomes remarkable near the center of the winding due to Joule heat generated near the center of the winding of the positive electrode 102.
[0010]
Specifically, in the lithium ion secondary battery 100, when a large current flows, the current density near the winding center of the battery element 104 is large, so that the heat generated by Joule heat generated on the side of the positive electrode 102 near the winding center. Concentration occurs. Further, it is more difficult to radiate the generated heat to the outside in the vicinity of the winding center of the battery element 104 than in the vicinity of the outer periphery, so that further heat concentration occurs. Therefore, in the lithium ion secondary battery 100, when a large current flows, the electrodes are deteriorated due to heat concentration occurring near the center of the winding, and the battery characteristics are deteriorated.
[0011]
As a method for solving such a problem, for example, Japanese Patent Application Laid-Open No. 9-306545 discloses a method of providing a short-circuit component for the purpose of heat diffusion in a winding space of a battery element so that heat is stored near a winding axis. It has been proposed to diffuse the heat generated. Further, Japanese Patent Application Laid-Open No. 9-306545 proposes that when a battery is crushed, a short-circuit component is intentionally short-circuited so that large Joule heat is not generated.
[0012]
However, in such a method, in order to solve the above-mentioned problem, a short-circuit component is required, and the cost of the lithium ion secondary battery is increased. In addition, since an extra component such as a short-circuit component is used, the production yield when producing a lithium ion secondary battery also decreases.
[0013]
Therefore, the present invention has been proposed in view of such a conventional situation, and has non-aqueous electrolyte batteries in which electrodes are not deteriorated, battery characteristics are excellent, cost is reduced, and the yield is improved. It is intended to provide a way.
[0014]
[Means for Solving the Problems]
The non-aqueous electrolyte battery according to the present invention that achieves the above-described object has a positive electrode active material layer formed on a belt-shaped positive electrode current collector, and the positive electrode terminal of the positive electrode current collector is substantially in the lateral direction of the positive electrode current collector. The positive electrode connected in parallel and the negative electrode in which a negative electrode active material layer is formed on a strip-shaped negative electrode current collector, and the negative electrode terminal of the negative electrode current collector is connected substantially in parallel with the short direction of the negative electrode current collector. Having a battery element wound in the longitudinal direction via a separator, the positive electrode and the negative electrode have a positive electrode current collector in a range of 10 mm or more and 100 mm or less in the longitudinal direction at the ends on the inner peripheral side of the battery element, respectively. It has a positive electrode current collector exposed portion and a negative electrode current collector exposed portion where the negative electrode current collector is exposed, and a center angle between the positive electrode terminal and the negative electrode terminal with respect to a winding center of the battery element is approximately 120 °. Or, it is pulled out from the position where it is approximately 240 ° in the winding axis direction of the battery element It is characterized by.
[0015]
In this nonaqueous electrolyte battery, the positive electrode and the negative electrode have a positive electrode current collector exposed portion and a negative electrode current collector exposed portion in a predetermined range in the longitudinal direction at the inner peripheral end of the battery element. When a large current flows, Joule heat generated in the positive electrode current collector near the center of the winding propagates through the exposed portion of the negative electrode current collector on the inner peripheral side of the battery element and diffuses to the outside of the battery element.
[0016]
Thereby, in this nonaqueous electrolyte battery, when a large current flows, it is possible to suppress the storage of Joule heat near the center of the winding of the battery element.
[0017]
Further, in this nonaqueous electrolyte battery, the positive electrode terminal and the negative electrode terminal are pulled out in the winding axis direction of the battery element from a position where the center angle between each other with respect to the winding center of the battery element is approximately 120 ° or approximately 240 °. As a result, the roundness of the outer diameter of the battery element can be increased.
[0018]
A method for producing a nonaqueous electrolyte battery according to the present invention that achieves the above-described object includes a positive electrode in which a positive electrode mixture layer containing a positive electrode active material is formed on a band-shaped positive electrode current collector, and a band-shaped negative electrode current collector An electrode preparation step of preparing a negative electrode on which a negative electrode mixture layer containing a negative electrode active material is formed, and connecting a positive electrode terminal to the positive electrode current collector in a direction substantially parallel to the short direction of the positive electrode current collector; Attach to the positive electrode, connect the negative electrode terminal to the negative electrode current collector, and connect the negative electrode current collector substantially parallel to the short direction of the negative electrode current collector. An element manufacturing step of manufacturing a battery element by winding in the direction. In the electrode manufacturing step, the positive electrode current collector has a range of 10 mm or more and 100 mm or less in the longitudinal direction at the inner peripheral end of the battery element. And the positive electrode current collector exposed portion where the negative electrode current collector is exposed Produce a positive electrode and a negative electrode having a negative electrode current collector exposed portion, in the terminal mounting step, the center angle between the positive terminal and the negative terminal with respect to the winding center of the battery element is approximately 120 ° or approximately 240 °. It is characterized in that it is attached to the positive electrode and the negative electrode, respectively, so as to be drawn out from a certain position in the axial direction of the battery element.
[0019]
In the method of manufacturing a nonaqueous electrolyte battery, in the electrode manufacturing step, the positive electrode dielectric exposed portion in which the positive electrode current collector and the negative electrode current collector are exposed in a predetermined range in the longitudinal direction at the inner peripheral end of the battery element, respectively. And by producing a negative electrode and a negative electrode having a negative electrode current collector exposed portion, Joule heat generated in the positive electrode current collector near the center of the winding when a large current flows, the end of the battery element inner peripheral side Since the exposed portion of the negative electrode current collector propagates and diffuses outside the battery element, it is possible to manufacture a nonaqueous electrolyte battery in which Joule heat is not stored near the winding center of the battery element.
[0020]
In the method of manufacturing a nonaqueous electrolyte battery, in the terminal mounting step, the positive electrode terminal and the negative electrode terminal are positioned at a position where the center angle between the winding center of the battery element and each other is about 120 ° or about 240 °. By attaching the battery element to the positive electrode and the negative electrode so as to be drawn out in the axial direction of the element, a nonaqueous electrolyte battery in which the roundness of the outer diameter of the battery element is increased can be manufactured.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a nonaqueous electrolyte battery to which the present invention is applied will be described with reference to a cylindrical lithium ion secondary battery (hereinafter, referred to as a battery) 1 shown in FIG. The battery 1 has a structure in which a battery element 2 serving as a power generation element is sealed inside a casing 3 together with a nonaqueous electrolyte 4.
[0022]
As shown in FIG. 2, the battery element 2 has a configuration in which a band-shaped positive electrode 5 and a band-shaped negative electrode 6 are wound in a longitudinal direction in a state of close contact with a band-shaped separator 7 interposed therebetween.
[0023]
The positive electrode 5 is coated on both main surfaces of the positive electrode current collector 8 with a positive electrode mixture coating solution containing a positive electrode active material and a binder, dried, and pressurized, so that the two main surfaces of the positive electrode current collector 8 are formed. The positive electrode mixture layer 9 is formed by compression. A positive electrode terminal 10 is connected to the positive electrode 4 at a predetermined position on the positive electrode current collector 8. For the positive electrode terminal 10, for example, a strip-shaped metal piece made of a conductive metal such as aluminum is used.
[0024]
In the positive electrode 5, a positive electrode current collector exposed portion 11 in which the positive electrode current collector 8 is exposed without forming the positive electrode mixture layer 9 on both main surfaces of the positive electrode current collector 8 is formed at both ends in the longitudinal direction. Is provided.
[0025]
When the positive electrode 5 is wound to form the battery element 2, the positive electrode current collector exposed portion 11 has such a length that the outermost side covers at least one circumference of the outer circumference of the battery element 2. I have. That is, in the positive electrode current collector exposed portions 11 provided at both ends in the longitudinal direction of the positive electrode 5, the length in the winding direction on the outer peripheral side of the battery element 2 is defined as L1, and the length outside the battery element 2 is defined. When the diameter is d, L1 ≧ dπ.
[0026]
On the other hand, in the positive electrode current collector exposed part 11, the positive electrode terminal 10 is attached to a predetermined position on the inner peripheral side of the battery element 2 so as to be along the winding axis direction of the battery element 2. The part of the positive electrode current collector exposed portion 11 that is on the inner peripheral side of the battery element 2 is wound a plurality of times at the center of the winding of the battery element 2.
[0027]
In the positive electrode 5, as the positive electrode active material contained in the positive electrode mixture layer 9, a material capable of doping / dedoping lithium ions is used. Specifically, for example, LiMxO2 (where M represents one or more transition metals of Co, Ni, Mn, Fe, Al, V, Ti, etc., and x is in a range of 0.5 or more and 1.10 or less. ) Is used. As the transition metal M constituting the lithium composite oxide, Co, Ni, Mn, or the like that can increase the battery capacity and obtain a stable crystal structure is preferable. Specific examples of such a lithium composite oxide include LiCoO2, LiNiO2, LiNiyCo1-yO2 (where 0 <y <1), LiMn2O4, and LiNixMnyCozO2 (where 0≤x≤1, 0≤y). ≦ 1, 0 ≦ z ≦ 1) and the like.
[0028]
As the positive electrode active material, for example, LixFe1-yMyPO4 (where M is Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, A compound represented by the formula: 0.05 ≦ x ≦ 1.2, and 0 ≦ y <0.8). Specific examples thereof include LiFePO4 and the like. Used. Further, as the positive electrode active material, for example, metal sulfides or oxides such as TiS2, MoS2, NbSe2, and V2O5 can be used.
[0029]
In the positive electrode 5, as a binder for the positive electrode mixture layer 9, for example, a binder such as polyvinylidene fluoride or polytetrafluoroethylene used for the positive electrode mixture of a nonaqueous electrolyte battery can be used. For example, a carbonaceous material or the like as a conductive material or a known additive or the like can be added to the agent layer 9. In the positive electrode 5, for the positive electrode current collector 8, a foil-like metal or a net-like metal made of a conductive metal such as aluminum is used.
[0030]
The negative electrode 6 is coated on both main surfaces of the negative electrode current collector 12 with a negative electrode mixture coating solution containing a negative electrode active material and a binder, dried, and pressurized, so that the negative electrode current collector 12 is coated on both main surfaces. The negative electrode mixture layer 13 is formed by compression. A negative electrode terminal 14 is connected to the negative electrode 6 at a predetermined position on the negative electrode current collector 12. For the negative electrode terminal 14, for example, a strip-shaped metal piece made of a conductive metal such as copper or nickel is used.
[0031]
In the negative electrode 6, the negative electrode current collector 12 is exposed without forming the negative electrode mixture layer 13 on both main surfaces of the negative electrode current collector 12 in order from the edge at one end of both ends in the longitudinal direction. The negative electrode current collector exposed portion 15 and the negative electrode single-sided mixture portion 16 in which the negative electrode mixture layer 13 is formed only on one main surface of the negative electrode current collector 12 are provided. In the negative electrode 6, only the negative electrode current collector exposed portion 15 is provided at the other end of both ends in the longitudinal direction.
[0032]
Of the two ends in the longitudinal direction of the negative electrode 6, the negative electrode current collector exposed portion 15 at one end is disposed on the outer peripheral side when the negative electrode 6 is wound and becomes the battery element 2, and The length is set so as to cover at least one circumference of the outer circumference. That is, when the length in the winding direction of the negative electrode current collector exposed portion 15 provided on one end side of the negative electrode 6 is L2 and the outer diameter of the battery element 2 is d, L2 ≧ dπ. A negative electrode terminal 14 is attached to a predetermined position of the negative electrode current collector exposed portion 15 on one end side so as to be along the winding axis direction of the battery element 2.
[0033]
The negative electrode single-sided mixture portion 16 on one end side of the longitudinal end portions of the negative electrode 6 is provided on one main surface of the negative electrode current collector 12 on the side facing the positive electrode mixture layer 9. Is formed, and the other main surface of the negative electrode current collector 12 on the side not facing the positive electrode mixture layer 9 is exposed. Further, the negative electrode single-sided mixture portion 16 has a length that covers at least one circumference of the outer periphery of the battery element 2 so that the positive electrode mixture layer 9 and the negative electrode mixture layer 13 appropriately face each other.
[0034]
On the other hand, of the two ends in the longitudinal direction of the negative electrode 6, the negative electrode current collector exposed portion 15 on the other end side is at the winding center of the battery element 2 with the above-described positive electrode current collector exposed portion 11 and the separator 7 interposed therebetween. In this state, the coils are opposed and wound a plurality of times.
[0035]
In the negative electrode 6, as the negative electrode active material contained in the negative electrode mixture layer 13, lithium, a lithium alloy, or a carbonaceous material capable of doping / dedoping lithium ions is used. Examples of the carbonaceous material that can be doped / dedoped with lithium ions include a low-crystalline carbon material obtained by firing at a relatively low temperature of 2000 ° C. or less, and artificial graphite obtained by firing a raw material that easily crystallizes at a high temperature of about 3000 ° C. It is possible to use a highly crystalline carbon material or the like. Specifically, it is possible to use carbonaceous materials such as pyrolytic carbons, cokes, graphites, glassy carbon fibers, fired organic polymer compounds, carbon fibers, and activated carbon. Examples of cokes include pitch coke, needle coke, petroleum coke, and the like. The fired organic polymer compound is obtained by firing a phenol resin, a furan resin, or the like at an appropriate temperature and carbonizing the resin. These carbonaceous materials can suppress the deposition of lithium on the negative electrode 6 side when the battery 1 is charged and discharged. In addition to the above-mentioned carbonaceous materials, polymers such as polyacetylene and polypyrrole and oxides such as SnO2 can be used as materials capable of doping / dedoping lithium ions. As the lithium alloy, for example, a lithium-aluminum alloy or the like is used.
[0036]
In the negative electrode 6, as the binder of the negative electrode mixture layer 13, for example, a binder such as polyvinylidene fluoride or polytetrafluoroethylene used for the negative electrode mixture of the nonaqueous electrolyte battery can be used. In the negative electrode 6, for the negative electrode current collector 12, a foil-like metal or a net-like metal made of a conductive metal such as copper is used.
[0037]
The separator 7 separates the positive electrode 5 and the negative electrode 6 from each other, and may use a known material that is generally used as an insulating porous film of this type of nonaqueous electrolyte battery. Specifically, for example, a polymer film such as polypropylene or polyethylene is used. Further, from the relationship between lithium ion conductivity and energy density, it is preferable that the thickness of the separator 7 is as thin as possible, and the separator 7 is used with the thickness being 30 μm or less.
[0038]
In the battery element 2 having the above-described configuration, the positive electrode current collector exposed portion 11 and the negative electrode current collector exposed portion 15 are arranged in the longitudinal direction near the inner ends of the positive electrode 5 and the negative electrode 6, that is, near the center of the winding. At a predetermined length with a separator 7 interposed therebetween.
[0039]
Thereby, in the battery element 2, when a large current flows through the battery 1, Joule heat generated in the positive electrode 5 near the center of the winding is transferred from the exposed positive electrode current collector 11 near the center of the winding to the negative electrode. The Joule heat propagated to the current collector exposed portion 15 and propagated to the negative electrode 6 side acts to diffuse outside.
[0040]
Therefore, in the battery element 2, when a large current flows through the battery 1, Joule heat can be suppressed from being stored near the center of the winding, and the positive electrode 5 and the negative electrode 6 are prevented from being deteriorated by heat, and the battery 1 can suppress a decrease in battery characteristics.
[0041]
In the battery element 2, the length of the positive electrode current collector exposed portion 11 and the length of the negative electrode current collector exposed portion 15 are 10 mm or more and 100 mm or less in the longitudinal direction at the ends of the positive electrode 5 and the negative electrode 6 on the inner peripheral side. It is in the range.
[0042]
When the longitudinal lengths of the positive electrode current collector exposed portion 11 and the negative electrode current collector exposed portion 15 near the winding center of the battery element 2 are each shorter than 10 mm, this occurs when a large current flows through the battery 1. It becomes difficult to diffuse Joule heat to the outside. On the other hand, when the longitudinal lengths of the positive electrode current collector exposed portion 11 and the negative electrode current collector exposed portion 15 near the winding center of the battery element 2 are each longer than 100 mm, the current collectors of the positive electrode 5 and the negative electrode 6 Since there are too many exposed parts and the active material is reduced, the battery capacity is reduced.
[0043]
Therefore, in the battery element 2, the lengths of the positive electrode current collector exposed portion 11 and the negative electrode current collector exposed portion 15 at the inner peripheral side end portions of the positive electrode 5 and the negative electrode 6 are respectively set to 10 mm or more and 100 mm or less in the longitudinal direction. With this range, Joule heat generated when a large current flows through the battery 1 can be appropriately diffused, and a decrease in battery capacity can be suppressed.
[0044]
Further, in the battery element 2, even when the positive electrode current collector exposed portion 11 and the negative electrode current collector exposed portion 15 facing each other near the center of the winding fall into an abnormal state such as the battery 1 being crushed, for example, The heat generated by short-circuit between the negative electrode 5 and the negative electrode 6 acts so as to be appropriately diffused.
[0045]
Further, in the battery element 2, since the negative electrode single-sided mixture portion 16 is provided, the amount of the negative electrode mixture layer 13 not facing the positive electrode mixture layer 9 inside the battery is reduced, and the amount of the positive electrode mixture layer 13 facing each other is reduced accordingly. The layer 9 and the negative electrode mixture layer 13 can be increased, and the energy density of the battery 1 is improved.
[0046]
Furthermore, in this battery element 2, as shown in FIGS. 3A and 3B, the center angle between the positive electrode terminal 10 and the negative electrode terminal 14 with respect to the center of winding is approximately 120 ° or approximately. It is pulled out from the position of 240 ° in the winding axis direction.
[0047]
Thereby, in the battery element 2, the roundness of the outer diameter can be increased, and the battery element 2 can be smoothly inserted into the outer can 3 or the like. In the battery element 2, the positive electrode terminal 11 and the negative electrode terminal 14 are pulled out from a position where the center angle between them with respect to the winding center is in the range of 115 ° to 125 ° or in the range of 235 ° to 245 °. However, the roundness of the outer diameter can be increased.
[0048]
The outer can 3 is, for example, a cylindrical container with a bottom, and has a bottom surface having a circular shape or the like. The outer can 3 has a circular bottom in FIG. 1, but the present invention is not limited to this. For example, a bottomed cylindrical container having a rectangular or flat circular bottom can be applied. . When the outer can 3 is electrically connected to the negative electrode 6, the outer can 3 is formed of a conductive metal such as iron, stainless steel, and nickel. When the outer can 3 is made of, for example, iron or the like, its surface is plated with nickel or the like.
[0049]
The non-aqueous electrolyte 4 is, for example, a non-aqueous solution in which an electrolyte salt is dissolved in a non-aqueous solvent. In the non-aqueous electrolyte 4, as the non-aqueous solvent, for example, a cyclic carbonate compound, a cyclic carbonate compound in which hydrogen is substituted with a halogen group or a halogenated acryl group, a chain carbonate compound, or the like is used. Specifically, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, Examples thereof include methyl 1,3 dioxolan, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, anisole, acetate, butyrate, and propionate, and one or more of these are used. In particular, propylene carbonate, dimethyl carbonate, and diethyl carbonate are preferably used as the non-aqueous solvent from the viewpoint of voltage stability.
[0050]
Examples of the electrolyte salt include LiPF6, LiClO4, LiAsF6, LiBF4, LiB (C6H5) 4, LiCH3SO3, LiCF3SO3, LiCl, and LiBr. One or more of these are used.
[0051]
The battery 1 configured as described above is manufactured as follows. First, the positive electrode 5 is manufactured. When producing the positive electrode 5, a positive electrode mixture coating liquid containing a positive electrode active material, a conductive material, and a binder is prepared. Then, the positive electrode mixture coating liquid is uniformly applied to both main surfaces of the positive electrode current collector 8 while providing uncoated portions, dried, and then compressed to form the positive electrode mixture layer 9 to form a belt-like shape. The positive electrode terminal 10 is cut and attached to a predetermined position by, for example, ultrasonic welding. In this way, the positive electrode 5 having the positive electrode current collector exposed portion 11 in which the positive electrode current collector 8 is exposed at both ends in the longitudinal direction is manufactured.
[0052]
Next, the negative electrode 6 is manufactured. When producing the negative electrode 6, a negative electrode mixture coating liquid containing a negative electrode active material and a binder is prepared. Then, the negative electrode mixture coating liquid is uniformly applied to both main surfaces of the negative electrode current collector 12 while providing an uncoated portion or a single-sided coated portion, dried, and then compressed to form the negative electrode mixture layer 13. The negative electrode terminal 14 is formed, cut into a band shape, and the negative electrode terminal 14 is attached to a predetermined position by, for example, ultrasonic welding. In this manner, at one end in the longitudinal direction, the negative electrode current collector exposed portion 15 where the negative electrode current collector 12 is exposed, and the negative electrode single-sided mixture portion 16 where the negative electrode current collector 12 is exposed on only one side. Is provided, and the negative electrode 6 in which only the negative electrode current collector exposed portion 15 is provided at the other end in the longitudinal direction is manufactured.
[0053]
Next, the positive electrode 5 and the negative electrode 6 are laminated with a band-shaped separator 7 interposed therebetween, and are wound many times to produce the battery element 2.
[0054]
At this time, in the battery element 2, the positive electrode current collector exposed portion 11 and the negative electrode current collector exposed portion 15 have a length within a predetermined range in the winding direction of the battery element 2 at the inner peripheral end of the battery element 2. And are wound so as to face each other.
[0055]
In the battery element 2, the positive electrode terminal 10 is attached to the inner peripheral side positive electrode current collector exposed portion 11, and the negative electrode terminal 14 is attached to the outer peripheral side negative electrode current collector exposed portion 15. In the battery element 2, the positive electrode terminal 10 and the negative electrode terminal 14 are wound so as to be pulled out in a winding axis direction from a position where a center angle between the winding center and each other is approximately 120 ° or approximately 240 °. I have.
[0056]
Next, as shown in FIG. 1, insulating plates 17 a and 17 b are provided on both end surfaces of the battery element 2, and the battery element 2 is housed in the outer can 3. Then, in order to collect the current of the negative electrode 6, the portion of the negative electrode terminal 14 protruding from the battery element 2 is welded to the bottom of the outer can 3 or the like. Thus, the outer can 3 is electrically connected to the negative electrode 6 and serves as an external negative electrode of the battery 1. Further, in order to collect the current of the positive electrode 5, a portion of the positive electrode terminal 10 protruding from the battery element 2 is welded to the current interrupting thin plate 18 to electrically connect with the battery lid 19 via the current interrupting thin plate 18. Connect to The current interrupting thin plate 18 interrupts the current according to the internal pressure of the battery. As a result, the battery lid 19 is electrically connected to the positive electrode 5 and serves as an external positive electrode of the battery 1.
[0057]
Next, the nonaqueous electrolyte 4 is injected into the outer can 3 in which the battery element 2 is stored. The non-aqueous electrolyte 4 is prepared by dissolving an electrolyte salt in a non-aqueous solvent. Next, the battery lid 19 is fixed by caulking the opening of the outer can 3 via a gasket 20 coated with a sealing agent made of asphalt or the like, and the battery 1 is manufactured.
[0058]
In this battery 1, when the pressure inside the battery becomes higher than a predetermined value, a safety valve 21 for bleeding out the gas inside the battery 1 and a positive temperature coefficient (PTC) element 22 for preventing a rise in temperature inside the battery. Etc. are provided.
[0059]
In the battery 1 manufactured as described above, the positive electrode current collector exposed portion 11 and the negative electrode current collector exposed portion 15 are opposed to each other at a predetermined length in the longitudinal direction of the electrode near the center of the winding of the battery element 2. Since the Joule heat generated in the positive electrode 5 near the center of the winding when a large current flows is propagated from the exposed part of the positive electrode current collector 11 facing the center of the wound to the exposed part of the negative electrode current collector 15, Joule heat propagated to the negative electrode 6 can be easily diffused to the outside.
[0060]
Therefore, in the battery 1, when a large current flows, the storage of Joule heat near the center of the winding can be suppressed, and the deterioration of the positive electrode 5 and the negative electrode 6 due to the Joule heat is prevented. Reduction can be suppressed.
[0061]
Also, in this battery 1, a large current is exposed by causing the positive electrode current collector exposed portion 11 and the negative electrode current collector exposed portion 15 to face each other at a predetermined length in the longitudinal direction of the electrode near the winding center of the battery element 2. Since the Joule heat generated when the gas flows can be appropriately diffused to the outside, it is possible to reduce the cost by reducing the conventionally used short-circuiting parts for the purpose of thermal diffusion.
[0062]
Further, in the battery 1, even when an abnormal situation such as crushing occurs, the heat generated by short-circuiting the positive electrode 5 and the negative electrode 6 is transferred to the positive electrode current collector exposed portion 11 and the negative electrode current collector exposed portion. 15 can be appropriately diffused by being opposed in the vicinity of the center of the winding of the battery element 2, so that the temperature can be suppressed from being high and safety can be improved.
[0063]
Furthermore, in the battery 1, since the negative electrode 6 is provided with the negative electrode single-sided mixture portion 16, the amount of the negative electrode mixture layer 13 that does not face the positive electrode mixture layer 9 inside the battery is reduced, and the battery mixture layers 13 face each other accordingly. Since the positive electrode mixture layer 9 and the negative electrode mixture layer 13 can be increased, the battery capacity and the energy density can be improved.
[0064]
Furthermore, in the battery 1, the positive electrode terminal 10 and the negative electrode terminal 14 are arranged such that the center angle between the positive electrode terminal 10 and the negative electrode terminal 14 with respect to the winding center of the battery element 2 is approximately 120 ° or approximately 240 ° in the winding axis direction of the battery element 2 And the roundness of the outer diameter of the battery element 2 can be increased. Thereby, in the battery 1, when the battery is manufactured, the battery element 2 can be smoothly inserted into the outer can 3, and the trouble that occurs when the battery element 2 is inserted into the outer can 3 is suppressed. Therefore, the yield during battery production can be improved.
[0065]
In the above example, the battery 1 using the non-aqueous electrolyte 4 has been described. However, the present invention is not limited to this. For example, an inorganic solid electrolyte, a polymer solid electrolyte, It is also applicable when a gel electrolyte or the like is used. Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide.
[0066]
The polymer solid electrolyte is composed of, for example, the above-described electrolyte salt and a polymer compound which is imparted with ionic conductivity by containing the electrolyte salt. As the polymer compound used for the polymer solid electrolyte, for example, silicon, polyether-modified siloxane, polyacryl, polyacrylonitrile, polyphosphazene, polyethylene oxide, polypropylene oxide, and their composite polymers, crosslinked polymers, modified polymers, such as acrylonitrile Ether polymers such as butadiene rubber, polyacrylonitrile-butadiene styrene rubber, acrylonitrile-polyethylene chloride-propylene-diene-styrene resin, acrylonitrile-vinyl chloride resin, acrylonitrile-methacrylate resin, acrylonitrile-acrylate resin, and crosslinked products of polyethylene oxide And any one of them or a mixture of a plurality of them.
[0067]
Further, as the polymer compound used for the polymer solid electrolyte, for example, acrylonitrile, vinyl acetate, methyl methacrylate, butyl methacrylate, methyl acrylate, butyl acrylate, itaconic acid, methyl acrylate hydroxide, ethyl acrylate hydroxide, Copolymers obtained by copolymerizing any one or more of acrylamide, vinyl chloride, vinylidene fluoride, etc., poly (vinylidene fluoride), poly (vinylidene fluoride-co-hexafluoropropylene), poly (vinylidene fluoride) Also, a fluorine-based polymer such as ride-co-tetrafluoroethylene) and poly (vinylidenefluorolide-co-trifluoroethylene) may be mentioned, and any one or a mixture of these may be used.
[0068]
The gel electrolyte is composed of the above-described non-aqueous electrolyte 4 and a matrix polymer that absorbs the non-aqueous electrolyte 4 and gels. As the matrix polymer used for the gel electrolyte, for example, among the above-described polymer compounds, any of the above-described polymer compounds that absorb the non-aqueous electrolyte 4 and gelate can be used. Specifically, examples of the matrix polymer include fluorine-based polymers such as poly (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene), and ethers such as poly (ethylene oxide) and cross-linked products thereof. And high-molecular-weight polymers, poly (acrylonitrile) and the like, and any one or a mixture of these may be used. In particular, it is preferable to use a fluoropolymer having good oxidation-reduction stability as the matrix polymer.
[0069]
In the above-described embodiment, the cylindrical battery 1 has been described as an example. However, the present invention is not limited to this, and if a battery element having a wound structure is provided, for example, The present invention can be applied to nonaqueous electrolyte batteries of various sizes and shapes, such as a battery using a metal container or the like as an exterior material, a battery using a laminate film or the like as an exterior material, or a thin type.
[0070]
【Example】
Hereinafter, a sample in which a lithium ion secondary battery is actually manufactured as a nonaqueous electrolyte battery to which the present invention is applied will be described.
[0071]
<Sample 1>
In sample 1, first, a positive electrode was manufactured. When producing a positive electrode, 91 parts by weight of LiMn2O4 as a positive electrode active material, 6 parts by weight of graphite as a conductive material, 3 parts by weight of polyvinylidene fluoride (PVdF) as a binder, and N-methyl-2 as a solvent -Pyrrolidone (NMP) was added, and the mixture was kneaded and dispersed by a planetary mixer to prepare a positive electrode mixture coating liquid. Next, the positive electrode mixture coating liquid is uniformly applied while providing uncoated portions on both main surfaces of a 20 μm-thick aluminum foil serving as a positive electrode current collector, dried, and then compressed by a roller press. A positive electrode mixture layer was formed and cut into a band. In this manner, a positive electrode having a positive electrode current collector exposed portion where the positive electrode current collector was exposed at both ends in the longitudinal direction was produced. Specifically, a positive electrode having a thickness of 160 μm, a width of 55 mm, a length of the positive electrode mixture layer of 500 mm, and a length of the exposed portion of the positive electrode current collector of 70 mm was produced.
[0072]
Next, a positive electrode terminal was attached to a predetermined position of the exposed portion of the positive electrode current collector so as to be substantially parallel to the short direction of the positive electrode.
[0073]
Next, a negative electrode was manufactured. When preparing the negative electrode, 90 parts by weight of a carbonaceous material as a negative electrode active material, 10 parts by weight of PVdF as a binder, and NMP as a solvent were added and kneaded with a planetary mixer to perform dispersion. A mixture coating liquid was prepared. Next, the negative electrode mixture coating liquid was uniformly applied to both main surfaces of a 15 μm thick copper foil serving as a negative electrode current collector while providing an uncoated portion or a single-sided coated portion, followed by drying. A negative electrode mixture layer was formed by compressing with a machine, and cut into a band shape. In this manner, at one end in the longitudinal direction, a negative electrode current collector exposed portion where the negative electrode current collector is exposed, and a negative electrode single-sided mixture portion where the negative electrode current collector is exposed on only one side are provided, A negative electrode provided with only the negative electrode current collector exposed portion at the other end in the longitudinal direction was manufactured. Specifically, the thickness is 160 μm, the width is 57 mm, the length of the negative electrode mixture layer is 500 mm, the length of the exposed portion of the negative electrode current collector at one end is 80 mm, the length of the one-sided negative electrode mixture portion is 50 mm, and the current is collected at the other end. A negative electrode having a body exposed portion with a length of 40 mm was prepared.
[0074]
Next, a negative electrode terminal was attached to the negative electrode current collector exposed portion on one end side in the longitudinal direction of the negative electrode so as to be substantially parallel to the short direction of the negative electrode.
[0075]
Next, the positive electrode and the negative electrode were laminated via a belt-shaped separator made of a porous film made of polypropylene, and were wound many times in the longitudinal direction of the electrode to produce a battery element.
[0076]
At this time, in the battery element, the negative electrode is wound so that one end side of the negative electrode is on the inner peripheral side, and the exposed portions of the positive electrode current collector and the negative electrode current collector are separated from each other by the inner peripheral end of the positive electrode and the negative electrode. To face each other. Further, in the battery element, the positive electrode terminal was arranged on the inner peripheral side exposed portion of the positive electrode current collector, and the negative electrode terminal was arranged on the outer peripheral side exposed portion of the negative electrode current collector. Further, in the battery element, the positive electrode terminal and the negative electrode terminal were wound so as to be pulled out in the winding axis direction from a position where the center angle between each other with respect to the winding center was 120 °.
[0077]
Next, the positive electrode terminal derived from the battery element prepared as described above was welded to a battery lid, the negative electrode terminal was welded to an outer can that was nickel-plated with iron, and the battery element was housed in the outer can. .
[0078]
Next, a non-aqueous electrolyte was prepared in which LiPF6 was dissolved in a mixed solvent of propylene carbonate and diethyl carbonate at a volume mixing ratio of 1: 1 so that LiPF6 was 1 mol / L. Next, the non-aqueous electrolyte was poured into the outer can, and the battery lid was pressed into the opening of the outer can via a gasket coated with asphalt, and the opening of the outer can was swaged to close the battery lid. Firmly fixed.
[0079]
As described above, a cylindrical lithium ion secondary pond having a diameter of 18 mm and a height of 65 mm was produced. In the following description, a lithium ion secondary battery is simply referred to as a battery for convenience.
[0080]
<Sample 2>
In Sample 2, when the battery element was manufactured, the positive electrode terminal and the negative electrode terminal were wound so as to be pulled out in the winding axis direction from a position where the center angle between each other with respect to the winding center was 240 °. Then, a battery was fabricated in the same manner as in Sample 1, except that this battery element was used.
[0081]
<Sample 3>
In sample 3, a positive electrode was prepared in the same manner as in sample 1, except that the length of the exposed portion of the positive electrode current collector at one end was 40 mm when the positive electrode was prepared. Further, a negative electrode was prepared in the same manner as in Sump 1 except that the length of the exposed portion of the negative electrode current collector at one end was 5 mm when the negative electrode was prepared. Next, a battery element was manufactured using the positive electrode and the negative electrode manufactured as described above. At this time, the end of the positive electrode provided with the exposed portion of the positive electrode current collector having a length of 40 mm and the end of the negative electrode provided with the exposed portion of the negative electrode current collector having a length of 5 mm are on the inner peripheral side. The battery element was wound. Then, a battery was fabricated in the same manner as in Sample 1, except that the battery element fabricated in this manner was used.
[0082]
<Sample 4>
In Sample 4, when the battery element was manufactured, the positive electrode terminal and the negative electrode terminal were wound so as to be drawn out in the winding axis direction from a position where the center angle between each other with respect to the winding center was 0 °. Then, a battery was fabricated in the same manner as in Sample 1, except that this battery element was used.
[0083]
<Sample 5>
In the case of Sample 5, the battery element was wound so that the positive electrode terminal and the negative electrode terminal were pulled out in the winding axis direction from a position where the central angle between each other with respect to the winding center was 30 °. Then, a battery was fabricated in the same manner as in Sample 1, except that this battery element was used.
[0084]
<Sample 6>
In the case of Sample 6, when the battery element was manufactured, the positive electrode terminal and the negative electrode terminal were wound so as to be drawn out in the winding axis direction from a position where the central angle between each other with respect to the winding center was 60 °. Then, a battery was fabricated in the same manner as in Sample 1, except that this battery element was used.
[0085]
<Sample 7>
In the case of Sample 7, when producing the battery element, the positive electrode terminal and the negative electrode terminal were wound so as to be pulled out in the direction of the winding axis from a position where the central angle between each other with respect to the winding center was 90 °. Then, a battery was fabricated in the same manner as in Sample 1, except that this battery element was used.
[0086]
<Sample 8>
In the case of Sample 8, the battery element was wound so that the positive electrode terminal and the negative electrode terminal were pulled out in the direction of the winding axis from a position where the center angle between each other with respect to the winding center was 150 °. Then, a battery was fabricated in the same manner as in Sample 1, except that this battery element was used.
[0087]
<Sample 9>
In the case of Sample 9, the battery element was wound so that the positive electrode terminal and the negative electrode terminal were pulled out in the direction of the winding axis from a position where the center angle between each other with respect to the winding center was 180 °. Then, a battery was fabricated in the same manner as in Sample 1, except that this battery element was used.
[0088]
<Sample 10>
In Sample 10, when the battery element was manufactured, the positive electrode terminal and the negative electrode terminal were wound so as to be pulled out in the winding axis direction from a position where the center angle between each other with respect to the winding center was 210 °. Then, a battery was fabricated in the same manner as in Sample 1, except that this battery element was used.
[0089]
<Sample 11>
In Sample 11, when the battery element was manufactured, the positive electrode terminal and the negative electrode terminal were wound so as to be drawn in the winding axis direction from a position where the center angle between each other with respect to the winding center was 270 °. Then, a battery was fabricated in the same manner as in Sample 1, except that this battery element was used.
[0090]
<Sample 12>
In the case of Sample 12, when the battery element was manufactured, the positive electrode terminal and the negative electrode terminal were wound so as to be drawn out in the winding axis direction from a position where the center angle between each other with respect to the winding center was 300 °. Then, a battery was fabricated in the same manner as in Sample 1, except that this battery element was used.
[0091]
<Sample 13>
In the case of Sample 13, when the battery element was manufactured, the positive electrode terminal and the negative electrode terminal were wound so as to be drawn out in the winding axis direction from a position at which the central angle with respect to the winding center was 330 °. Then, a battery was fabricated in the same manner as in Sample 1, except that this battery element was used.
[0092]
Then, among the samples 1 to 13 prepared as described above, the charge and discharge cycle characteristics of the batteries of sample 1 and sample 3 when charging and discharging were performed at a large current were measured.
[0093]
Table 1 below shows the evaluation results of the discharge capacity maintenance ratio at the 200th cycle due to heavy load charging and discharging in Samples 1 and 3.
[0094]
[Table 1]
Figure 2004087324
[0095]
In samples 1 and 3, charging and discharging were performed as follows. At the time of charging, the battery was charged at a constant current and a constant voltage with a charging current value of 3 A and an upper limit voltage of 4.2 V for 3 hours. On the other hand, when discharging, a constant current discharge up to 3 V at a current value of 6 A was performed. The charge / discharge was repeated 200 times under such charge / discharge conditions, and the discharge capacity maintenance ratio at the 200th cycle, that is, the ratio of the 200th discharge capacity to the initial discharge capacity was measured.
[0096]
From the evaluation results shown in Table 1, in the sample 1 in which the positive electrode current collector exposed portion having a length of 70 mm and the negative electrode current collector exposed portion having a length of 40 mm were opposed on the inner peripheral side of the battery element, On the inner peripheral side of the element, compared to Sample 3 in which the exposed portion of the positive electrode current collector having a length of 40 mm and the exposed portion of the negative electrode current collector having a length of 5 mm were opposed to each other, the 200th cycle due to heavy load charging and discharging was performed. It can be seen that the discharge capacity retention ratio has increased.
[0097]
In Sample 3, particularly, the length of the negative electrode current collector exposed portion on the inner peripheral side of the battery element is as short as 5 mm, and Joule heat generated on the positive electrode side when a large current flows is appropriately applied to the negative electrode current collector exposed portion. It cannot be propagated, making it difficult to diffuse the heat inside the battery to the outside. For this reason, in Sample 3, since large Joule heat is generated near the center of the winding of the battery element having a large current density and is stored, the electrode is deteriorated due to heat concentration particularly near the center of the winding of the battery element. The characteristics also deteriorate.
[0098]
On the other hand, in Sample 1, the exposed portion of the positive electrode current collector and the exposed portion of the negative electrode current collector on the inner peripheral side of the battery element have an appropriate length, and in particular, the exposed portion of the negative electrode current collector is 40 mm. Joule heat generated on the positive electrode side when a large current flows is appropriately transmitted to the exposed portion of the negative electrode current collector, and the heat inside the battery can be easily diffused to the outside. Therefore, in the sample 1, since the Joule heat generated by the large current is suppressed from being stored in the battery and the deterioration of the electrode due to the heat is also suppressed, the battery characteristics superior to the sample 3 can be obtained.
[0099]
Here, in Sample 1 and Sample 3, the temperature changes at the center of the battery element and the outer peripheral surface of the battery when the battery was discharged under the above-described discharge conditions were measured. FIG. 4 shows the measurement results of the temperature change in Sample 1 and Sample 3 when discharging with a large current. FIG. 4 is a characteristic diagram showing the relationship between the discharge time and the temperature change in Sample 1 and Sample 3.
[0100]
From the evaluation results shown in FIG. 4, in Sample 1, the temperature is low at the center of the battery element and is high at the outer peripheral surface of the battery. On the other hand, in sample 3, the temperature is high at the center of the battery element and is low at the outer peripheral surface of the battery.
[0101]
Therefore, the sample 1 has a structure in which the Joule heat is stored in the battery and the heat is easily diffused to the outside. The sample 3 stores the Joule heat in the battery and diffuses the heat to the outside. It can be seen that the structure is difficult.
[0102]
From the above, when manufacturing a battery, it is possible to make the exposed portion of the positive electrode current collector having a length of 70 mm and the exposed portion of the negative electrode current collector having a length of 40 mm face each other near the winding center of the battery element. It can be seen that this is very effective in producing a battery having an excellent discharge capacity retention ratio at the 200th cycle due to heavy load charging and discharging.
[0103]
Next, for the batteries of Sample 1, Sample 2, and Samples 4 to 13, the maximum diameter of the battery element was measured, and the element insertion failure rate when the battery element was housed in the outer can was investigated.
[0104]
Table 2 below shows the maximum diameter of the battery element and the battery element insertion failure rate in Samples 1 and 2, and Samples 4 to 13.
[0105]
[Table 2]
Figure 2004087324
[0106]
From the evaluation results shown in Table 2, Sample 1 in which the positive electrode terminal and the negative electrode terminal were drawn in the winding axis direction from the position where the central angle between each other with respect to the winding center was 120 ° or 240 ° in the battery element. In Sample 2, the positive electrode terminal and the negative electrode terminal are drawn in the direction of the winding axis from a position where the center angle of each other with respect to the center of the winding is other than 120 ° or 240 °. ~ It can be seen that the maximum diameter of the battery element is smaller and the battery element insertion failure rate is lower than that of Sample 13.
[0107]
In Samples 4 to 13, the positive electrode terminal and the negative electrode terminal were drawn out of positions where the center angle between them with respect to the winding center of the battery element was other than 120 ° or 240 °, and the outer diameter of the battery element was true. The roundness is reduced and the maximum diameter of the battery element is increased. For this reason, in Samples 4 to 13, it becomes difficult to insert the battery element into the outer can, and the battery element hits the periphery of the opening of the outer can and the like, and the separator and the like are often broken.
[0108]
On the other hand, in Sample 1 and Sample 2, the positive electrode terminal and the negative electrode terminal are pulled out from the position where the center angle between them with respect to the winding center of the battery element is 120 ° or 240 °, and the outer diameter of the battery element is The roundness increases and the maximum diameter of the battery element decreases. For this reason, in the sample 1 and the sample 2, since the battery element can be smoothly inserted into the outer can, the occurrence of the battery element insertion failure is suppressed as compared with the samples 4 to 13, and the production yield can be improved.
[0109]
From the above, when manufacturing a battery, it is possible to pull out the positive electrode terminal and the negative electrode terminal in the winding axis direction from a position where the central angle between each other with respect to the winding center of the battery element is 120 ° or 240 °. In addition, it can be seen that the maximum diameter of the battery element is reduced and the defective insertion rate when the battery element is inserted into the outer can is reduced, which is very effective in improving the yield at the time of manufacturing the battery.
[0110]
【The invention's effect】
As is clear from the above description, according to the present invention, the positive electrode current collector exposed portion and the negative electrode current collector exposed portion in a predetermined range are provided at the positive electrode end and the negative electrode end on the inner peripheral side of the wound battery element. By providing the portion, the deterioration of the electrode caused by Joule heat generated by the large current is concentrated on the vicinity of the winding center of the battery element is suppressed, so that the non-aqueous electrolyte battery in which the deterioration of the battery characteristics is suppressed is provided. can get.
[0111]
Further, according to the present invention, the positive electrode terminal and the negative electrode terminal are pulled out in the winding axis direction of the battery element from a position where the center angle between each other with respect to the winding center of the battery element is approximately 120 ° or approximately 240 °. As a result, the roundness of the outer diameter of the battery element is increased, and the battery element can be smoothly inserted into the outer can, so that the yield during battery fabrication can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an internal structure of a lithium ion secondary battery to which the present invention is applied.
FIG. 2 is a schematic diagram showing an internal structure of the lithium ion secondary battery from a cross section.
FIG. 3 is a schematic side view of a battery element showing the mounting positions of a positive electrode terminal and a negative electrode terminal in the lithium ion secondary battery as viewed from the winding axis direction, and FIG. On the other hand, FIG. 11B shows a state in which the center angle formed by the positive terminal and the negative terminal is 120 ° with respect to the center of the winding of the battery element. This shows a certain state.
FIG. 4 is a characteristic diagram showing a relationship between a discharge time and a battery temperature in Samples 1 and 3.
FIG. 5 is a schematic view showing an internal structure of a conventional lithium ion secondary battery from a cross section.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 lithium ion secondary battery, 2 battery element, 3 outer can, 4 nonaqueous electrolyte, 5 positive electrode, 6 negative electrode, 7 separator, 8 positive electrode current collector, 9 positive electrode mixture layer, 10 positive electrode terminal, 11 positive electrode current collector Body exposed portion, 12 negative electrode current collector, 13 negative electrode mixture layer, 14 negative electrode terminal, 15 negative electrode current collector exposed portion, 16 negative electrode single-sided mixture portion

Claims (4)

帯状の正極集電体上に正極活物質層が形成され、上記正極集電体に正極端子が上記正極集電体の短手方向と略平行に接続された正極と、帯状の負極集電体上に負極活物質層が形成され、上記負極集電体に負極端子が上記負極集電体の短手方向と略平行に接続された負極とが、セパレータを介して長手方向に捲回された電池素子を有し、
上記正極及び上記負極は、上記電池素子内周側の端部において、それぞれ長手方向に10mm以上、100mm以下の範囲で上記正極集電体及び上記負極集電体が露出する正極集電体露出部及び負極集電体露出部を有しており、
上記正極端子及び上記負極端子は、上記電池素子の捲回中心に対して互いになす中心角が略120°又は略240°となる位置から上記電池素子の捲回軸方向に引き出されていることを特徴とする非水電解質電池。
A positive electrode in which a positive electrode active material layer is formed on a band-shaped positive electrode current collector, a positive electrode terminal of which is connected to the positive electrode current collector substantially in parallel with a lateral direction of the positive electrode current collector, and a band-shaped negative electrode current collector A negative electrode active material layer was formed thereon, and a negative electrode in which the negative electrode terminal was connected to the negative electrode current collector in a direction substantially parallel to the short direction of the negative electrode current collector was wound in the longitudinal direction via a separator. Having a battery element,
The positive electrode and the negative electrode are exposed at the ends on the inner peripheral side of the battery element, where the positive electrode current collector and the negative electrode current collector are exposed in a range of 10 mm or more and 100 mm or less in the longitudinal direction, respectively. And a negative electrode current collector exposed portion,
The positive electrode terminal and the negative electrode terminal are drawn out in a winding axis direction of the battery element from a position at which a center angle with respect to a winding center of the battery element is about 120 ° or about 240 °. Characteristic non-aqueous electrolyte battery.
上記正極活物質及び上記負極活物質は、リチウムイオンをドープ/脱ドープすることが可能であることを特徴とする請求項1記載の非水電解質電池。The nonaqueous electrolyte battery according to claim 1, wherein the positive electrode active material and the negative electrode active material can be doped / dedoped with lithium ions. 帯状の正極集電体上に正極活物質を含有した正極合剤層が形成された正極と、帯状の負極集電体上に負極活物質を含有した負極合剤層が形成された負極とを作製する電極作製工程と、
正極端子を上記正極集電体に、上記正極集電体の短手方向と略平行に接続させることで上記正極に取り付け、負極端子を上記負極集電体に、上記負極集電体の短手方向と略平行に接続させることで上記負極に取り付ける端子取付工程と、
上記正極と、上記負極とを、セパレータを介して長手方向に捲回させることで電池素子を作製する素子作製工程とを有し、
上記電極作製工程において、上記電池素子内周側の端部でそれぞれ長手方向に10mm以上、100mm以下の範囲で上記正極集電体及び上記負極集電体が露出された正極集電体露出部及び負極集電体露出部を有する上記正極及び上記負極を作製し、
上記端子取付工程において、上記正極端子及び上記負極端子を、上記電池素子の捲回中心に対して互いになす中心角が略120°又は略240°となる位置から上記電池素子の軸方向に引き出されるように、上記正極及び上記負極にそれぞれ取り付けることを特徴とする非水電解質電池の製造方法。
A positive electrode in which a positive electrode mixture layer containing a positive electrode active material is formed on a belt-shaped positive electrode current collector, and a negative electrode in which a negative electrode mixture layer containing a negative electrode active material is formed on a band-shaped negative electrode current collector An electrode manufacturing process to be manufactured;
A positive electrode terminal is attached to the positive electrode by connecting the positive electrode terminal to the positive electrode current collector substantially in parallel with a short direction of the positive electrode current collector, and a negative electrode terminal is connected to the negative electrode current collector by a short side of the negative electrode current collector. A terminal mounting step of connecting to the negative electrode by connecting substantially parallel to the direction,
The positive electrode, the negative electrode, an element manufacturing step of manufacturing a battery element by winding in the longitudinal direction via a separator,
In the electrode preparation step, the positive electrode current collector and the negative electrode current collector are exposed in a range of 10 mm or more and 100 mm or less in the longitudinal direction at the end on the inner peripheral side of the battery element. Producing the positive electrode and the negative electrode having a negative electrode current collector exposed portion,
In the terminal mounting step, the positive electrode terminal and the negative electrode terminal are pulled out from the position where the center angle between the winding center of the battery element and each other is about 120 ° or about 240 ° in the axial direction of the battery element. A method for manufacturing a non-aqueous electrolyte battery, wherein the method is attached to each of the positive electrode and the negative electrode.
上記電極作製工程において、リチウムイオンをドープ/脱ドープすることが可能な正極活物質及び上記負極活物質を用いることを特徴とする請求項3記載の非水電解質電池の製造方法。4. The method for producing a nonaqueous electrolyte battery according to claim 3, wherein in the electrode forming step, a positive electrode active material capable of doping / dedoping lithium ions and the negative electrode active material are used.
JP2002247435A 2002-08-27 2002-08-27 Non-aqueous electrolyte battery and manufacturing method thereof Expired - Lifetime JP4333103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247435A JP4333103B2 (en) 2002-08-27 2002-08-27 Non-aqueous electrolyte battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247435A JP4333103B2 (en) 2002-08-27 2002-08-27 Non-aqueous electrolyte battery and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2004087324A true JP2004087324A (en) 2004-03-18
JP2004087324A5 JP2004087324A5 (en) 2005-10-20
JP4333103B2 JP4333103B2 (en) 2009-09-16

Family

ID=32055083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247435A Expired - Lifetime JP4333103B2 (en) 2002-08-27 2002-08-27 Non-aqueous electrolyte battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4333103B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091076A (en) * 2006-09-29 2008-04-17 Sony Corp Nonaqueous electrolyte secondary battery
US8003243B2 (en) 2004-11-08 2011-08-23 Sony Corporation Spirally wound secondary battery with uneven termination end portions
JP2013025912A (en) * 2011-07-19 2013-02-04 Hitachi Ltd Wound secondary battery and manufacturing method therefor
CN110100349A (en) * 2016-12-22 2019-08-06 三洋电机株式会社 Columnar non-aqueous electrolyte secondary battery
WO2021153231A1 (en) * 2020-01-30 2021-08-05 株式会社村田製作所 Secondary battery, electronic apparatus, and power tool

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003243B2 (en) 2004-11-08 2011-08-23 Sony Corporation Spirally wound secondary battery with uneven termination end portions
KR101270858B1 (en) * 2004-11-08 2013-06-05 소니 주식회사 Secondary Battery
JP2008091076A (en) * 2006-09-29 2008-04-17 Sony Corp Nonaqueous electrolyte secondary battery
JP2013025912A (en) * 2011-07-19 2013-02-04 Hitachi Ltd Wound secondary battery and manufacturing method therefor
CN110100349A (en) * 2016-12-22 2019-08-06 三洋电机株式会社 Columnar non-aqueous electrolyte secondary battery
CN110100349B (en) * 2016-12-22 2022-12-23 三洋电机株式会社 Cylindrical nonaqueous electrolyte secondary battery
WO2021153231A1 (en) * 2020-01-30 2021-08-05 株式会社村田製作所 Secondary battery, electronic apparatus, and power tool
JPWO2021153231A1 (en) * 2020-01-30 2021-08-05
JP7416095B2 (en) 2020-01-30 2024-01-17 株式会社村田製作所 Secondary batteries, electronic equipment and power tools

Also Published As

Publication number Publication date
JP4333103B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
KR101568418B1 (en) Anode and secondary battery
KR102209830B1 (en) Lithium secondary battery
US20060115736A1 (en) Secondary battery
JPH11260415A (en) Nonaqueous electrolyte secondary battery
JP5412843B2 (en) battery
US20100196755A1 (en) Electrode assembly and secondary battery having the same
JP4678235B2 (en) Nonaqueous electrolyte secondary battery
JP2004031165A (en) Nonaqueous electrolyte battery
JP2022189954A (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP4281329B2 (en) Non-aqueous electrolyte battery
JP2001338639A (en) Non-aqueous electrolyte battery
JP2005166290A (en) Electrolyte and battery using it
JP5141940B2 (en) Secondary battery
JP4591674B2 (en) Lithium ion secondary battery
JP4333103B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP3988384B2 (en) Non-aqueous electrolyte secondary battery
JP4224987B2 (en) Non-aqueous electrolyte battery
JP2004342459A (en) Nonaqueous electrolyte battery
JPH08180878A (en) Lithium secondary battery
JP3501365B2 (en) Non-aqueous electrolyte secondary battery
JP2004335379A (en) Negative electrode for battery and nonaqueous electrolyte battery
JP2001189167A (en) Non-aqueous electrolyte secondary cell
JP4221932B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4333103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term