JP2004087287A - Battery cooling device - Google Patents

Battery cooling device Download PDF

Info

Publication number
JP2004087287A
JP2004087287A JP2002246481A JP2002246481A JP2004087287A JP 2004087287 A JP2004087287 A JP 2004087287A JP 2002246481 A JP2002246481 A JP 2002246481A JP 2002246481 A JP2002246481 A JP 2002246481A JP 2004087287 A JP2004087287 A JP 2004087287A
Authority
JP
Japan
Prior art keywords
hydrogen
battery
cooling
hydrogen tank
air passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002246481A
Other languages
Japanese (ja)
Other versions
JP4082136B2 (en
Inventor
Tomoyuki Hanada
花田 知之
Ryuichi Idoguchi
井戸口 隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002246481A priority Critical patent/JP4082136B2/en
Publication of JP2004087287A publication Critical patent/JP2004087287A/en
Application granted granted Critical
Publication of JP4082136B2 publication Critical patent/JP4082136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a load of a battery cooling fan and improve hydrogen filling efficiency of a hydrogen tank in an electric motorcar. <P>SOLUTION: The battery cooling device for an electric motor vehicle with hydrogen as an energy source is equipped with a battery (6), a cooling fan (7) and a battery cooling air path (8) communicated with the battery and the cooling fan. The battery cooling device is also equipped with a hydrogen tank (1) supplying hydrogen to a power plant and a hydrogen desorption pipe (3) connected to the hydrogen tank (1) and arranged on an upstream side of the battery (6) in the battery cooling air path (8). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮水素充填時および放出時の熱を利用したバッテリ冷却装置に関する。
【0002】
【従来の技術】
特開2002−151126号公報には水素タンクを備えた燃料電池システムが開示されている。
【0003】
【発明が解決しようとする課題】
しかし、上記従来技術では、水素タンクへの水素充填時のタンク内の水素温度上昇により、圧力上昇し、水素の充填量が減少し、航続距離が低下するという問題がある。また、燃料電池車両用に搭載されたバッテリは、車室内風を利用して冷却するため、バッテリを冷却するために空調負荷増大となり、燃費の悪化という問題もある。また、バッテリへ車室内風を送風するファンの負荷増大により、燃費の悪化、ファンの騒音大という問題がある。
【0004】
したがって、本発明の目的は、燃費の悪化およびファンの騒音を軽減したバッテリ冷却装置を提供することである。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明による電動車両用バッテリ冷却装置は、パワープラントに水素を供給する水素タンクと、前記水素タンクに接続するとともに、前記バッテリ冷却空気通路内で前記バッテリよりも上流側に配置される水素放出管と、を備えることを特徴とする。
【0006】
【発明の効果】
本発明によれば、水素放出管は水素をパワープラントに供給している間、水素の減圧によって温度が低下する。冷却ファンによって水素放出管の周囲に流れ込んだ空気通路内の空気は水素放出管によって冷却され、この冷却された空気によってバッテリが冷却される。そのため、バッテリを冷却するために空調装置の負荷を増大させる必要がなく、燃費の悪化を抑制できる。
【0007】
【実施の形態】
図1を参照すると、本発明による電動車両用バッテリ冷却装置は、車両に電力を供給するバッテリ6、バッテリ6に冷却用の空気を導入する冷却空気通路8、冷却空気の流れを生み出す冷却ファン7、および水素を貯蔵する水素タンク1を備える。
【0008】
冷却空気通路8には、空気の流れの上流側からこの例では3つの水素タンク1、バッテリ6、および冷却ファン7が配置される。水素タンク1はタンク内壁を露出させて放熱フィン2を取り付けた第1のネック部20を有し、この第1のネック部20が冷却空気通路内8に挿入される。第1のネック部20からは、水素を水素タンク1に導入する水素吸入管5と、水素を水素タンク1から燃料電池パワープラントに送り出す水素放出管3が伸び、これらの管を通して水素タンク1内水素の充填および放出が行われる。
第1のネック部20から伸びる水素放出管3は、所定の距離を冷却空気通路8内を冷却空気通路8と概略平行に伸びた後、冷却空気通路8から外へ出る。車両運転時に水素タンク1より放出される水素は、水素タンク1内で高圧に貯蔵された水素が膨張して低温になった水素である。したがって、水素放出管3が冷却空気通路8の内部を平行に伸びる間、水素タンク1から放出された水素は冷却空気通路8を流れる冷却空気と平行に流れ、冷却空気を冷却する。
【0009】
水素と冷却空気管の熱交換をより促進するため、放熱フィン21が放出水素管3の周囲に設けられる。これにより、冷却空気が一層低温に冷やされ、バッテリ6に供給する送風量を低減でき、冷却ファン7の消費電力を低減できる。
【0010】
図2は、水素放出管3と第1のネック部20の構造を示す。水素放出時には、水素放出管3と水素吸入管5が連結する側の第1のネック部20が主に低温となるため、第1のネック部20の周辺に放熱フィン2を、または水素放出管3の周囲に放熱フィン21を設け、低温の水素と冷却空気との間の熱交換を促進する。
【0011】
バッテリ冷却装置は、冷却ファン7とバッテリ6の間で冷却空気通路8と接続する水素タンク冷却空気通路23を備える。この水素タンク冷却空気通路23の空気の流れの上流側には、水素タンク1の第1のネック部20と反対側に設けられた第1のネック部20と類似の構造を有する第2のネック部22が挿入される。
【0012】
水素タンク1に水素が加圧注入される充填時、水素タンク1内の水素は圧縮されるため、水素タンク1は高温となる。図3の矢印に示す通り、注入された高温の加圧水素は水素タンク1内を、水素吸入管5の接続側と反対側にある第2のネック部22に向かって流れ、衝突する。このため、第2のネック部22は高温に熱せられる。
【0013】
ここで、水素タンク1は、水素が高温よりも低温のときにより大きな質量の水素を貯蔵することができる。したがって、水素充填時に、水素タンク冷却空気通路23に空気を流すことにより、第2のネック部22を冷却し、水素タンク1内の水素を所定の温度に冷却する。第2のネック部22の周囲に設けた放熱フィン4は、このとき放熱を促進する。これにより、水素タンク1の水素充填率を向上させることができる。
【0014】
冷却制御装置100は、上述の水素放出時と水素充填時の冷却空気を制御するために、バッテリ冷却空気通路8と水素タンク冷却空気通路との間で空気の流れを切り替える切り替え弁25および冷却ファン7の動作を制御する。このため、冷却制御装置100には、水素タンク1内の水素温度を検出する水素温度センサ9、およびバッテリの温度を検出するバッテリ温度センサ10からの各検出信号が入力する。
【0015】
切り替え弁25は水素タンク冷却通路23がバッテリ冷却空気通路8とが接続する部位に設けられる。水素充填時、切り替え弁25は水素タンク冷却空気通路23を開口して空気を流す。一方、水素放出時には、切り替え弁25は、水素タンク冷却空気通路23を閉じて空気の流れを遮断する。水素温度センサ9は水素タンク1の第2のネック部22の付け根付近に設けられる。バッテリ温度センサ10はバッテリ6に設けられる。
【0016】
次に、図4を参照して、水素タンク1に水素を充填する場合のバッテリ冷却装置の制御を説明する。水素注入とともに、水素タンク1内の水素温度が上昇し始める。水素温度センサ9で検出した水素温度が所定の温度である80℃を超えた場合、冷却制御装置100は、切り替え弁25を開位置にし、バッテリ冷却ファン7の作動を開始する。これにより、水素タンク冷却空気通路23にも空気が流れ、水素タンク1の第2のネック部22を冷却する。この結果、水素タンク1の水素圧力の上昇を防ぎ、水素タンク1のフェールセーフとしてリリーフバルブが開く所定の温度である105℃に達することを防ぎ、水素の充填率を向上する。各所定の温度は他の温度に設定することもできる。また、この場合、水素タンク冷却空気通路23を通る暖められた空気は、バッテリ6をバイパスするのでバッテリ6の温度が上昇することもない。
一方、車両の運転に伴う水素放出時には、切り替え弁25を閉位置にし、バッテリ冷却ファン7を作動する。これにより、バッテリ冷却空気通路8にのみ空気の流れができ、冷却空気と低温の水素が水素放出管3の放熱ファン21を通して熱交換し、バッテリ6の冷却空気の温度を低下させる。
次に、図5を参照して、水素の膨張による温度減少とバッテリ6を所定の温度に維持するために必要な冷却ファン7の所要電力との相関関係を説明する。この図によると、水素温度が低いほど冷却ファン7の所要電力が小さくて済むことがわかる。水素の放出開始とともに、水素温度が低下し始め、これに伴う冷却空気の温度低下により、バッテリの冷却がより促進される。したがって、冷却制御装置100はバッテリ温度に応じて冷却ファン7の駆動電力を制御することで、冷却ファン7の負荷を低減することができる。
また、冷却ファン7は、バッテリ冷却空気通路8と水素タンク冷却空気通路23がバッテリ6の下流で合流する位置よりも下流側に設けられているため、水素充填時も放出時も同じ冷却ファン7を使用することができるので、部品数増加によるコスト増加を抑制することができる。
【0017】
なお、水素充填時と水素放出時の両方の冷却空気通路内に水素放出管側のネック部を配置する構造としても良い。
【0018】
ここで、第1の実施形態の効果をまとめて列挙する。
【0019】
本発明によれば、水素放出管3は水素をパワープラントに供給している間、水素の減圧によって温度が低下する。冷却ファン7によって水素放出管3の周囲に流れ込んだバッテリ冷却空気通路8内の空気は水素放出管3によって冷却され、この冷却された空気によってバッテリ6が冷却される。そのため、バッテリ6を冷却するために空調装置の負荷を増大させる必要がなく、燃費の悪化を抑制できる。
水素充填時に空気が流れる水素タンク冷却空気通路23上に、水素タンク1の第2のネック部22を配置することにより、水素充填時に高温化する水素タンク1を冷却できるので、水素の充填効率を向上させることができる。また、第2のネック部22は、水素が注入される部位である第1のネック部20から対向した位置にあり、水素充填時に最も高温化する部位であるため、ここを冷却すると水素タンク1の冷却効率が良好となる。さらに、第2のネック部22が配置された水素タンク冷却空気通路23はバッテリ6をバイパスして流れるため、バッテリ6の冷却性能を阻害しない。
【0020】
第1のネック部20と水素放出管3は水素を放出する際には低温になるが、水素を充填する際には水素の加圧により温度が上昇する。そのため、水素充填時に水素放出部分と熱交換した空気がバッテリ6に流れ込むと、バッテリ6を加熱するおそれがある。本発明では、空気は水素充填時にバッテリ6と水素放出部分をバイパスして流れるため、高温化した空気がバッテリ6と熱交換する恐れが小さくなり、バッテリ6の冷却性能が向上する。
【0021】
水素タンク1の水素充填時に温度上昇する部位に放熱フィン2を設けたため、水素充填時の水素タンク1から効果的に放熱することができる。
【0022】
水素放出部分に放熱フィン2、21を設けることにより、水素タンク1の水素放出時に温度低下した部位とバッテリ冷却空気通路23内の空気とを効率的に熱交換可能であり、下流に位置するバッテリ6の冷却性が向上する。
【0023】
水素タンク1が水素を吸入する際に冷却ファン7を作動させ、水素タンク1の高温化した部位の冷却性を向上させる。
【0024】
水素タンク1内の水素温度を検知して、バッテリ冷却用の冷却ファン7を作動させることで、必要に応じてファンを作動させ、水素温度を低下させることができる。
【0025】
また、水素放出管3に放熱フィン21を設けることにより、水素と冷却空気管の熱交換をさらに促進する。
次に、図6を参照して、本発明の第2の実施形態を説明する。この実施形態によると、水素タンク1のネック部20だけではなく、水素タンク1全体がバッテリ冷却空気通路8に挿入される。他の構成要素は第1の実施形態と同じであり、同一の構成要素には同一の参照番号を付す。
これにより、水素充填時には水素タンク1全体が空気により冷却され、水素放出時には水素タンク1全体で空気を冷却することができる。
なお、水素放出時には、充填時のように水素タンク1の温度が上昇しないのでバッテリ冷却空気通路8を通過する空気は水素放出管3の放熱フィン21において十分に冷却される。したがって、第2の実施形態では第1の実施形態とほぼ同様の効果が得られる。
【0026】
次に、図7を参照して、本発明の第3の実施形態を説明する。この実施形態によると、バッテリ冷却装置は、水素タンク冷却空気通路23の上流端に設けられた車室内空調装置50と、空気通路切り替え弁13とをさらに備える。他の構成要素は第1の実施形態と同じであり、同一の構成要素には同一の参照番号を付す。車室内空調装置50は公知の車両用空調装置と同様の構造を有し、ここでは詳細には説明しない。空気通路切り替え弁13は車室内空調装置50の冷却用の送風通路51に対する水素タンク冷却空気通路23の接続部に設けられる。
【0027】
水素タンク1への水素充填時に、空気通路切り替え弁13を開口し、送風通路51から水素タンク冷却空気通路23に空気を導入する。水素温度が所定の温度を超えた場合、車室内空調装置50を作動させることにより、水素タンク冷却空気通路23に低温の冷却空気を導入する。これにより、第2のネック部22に設けられた放熱フィン4において注入水素の冷却を促進する。
この場合、再度図4を参照すると、水素温度センサ9で検出した水素温度が所定の温度である約80度℃を超えた場合、冷却制御装置100は、冷却ファン7の作動を開始する。さらに水素温度が上昇し、所定の温度である約90℃を越えた場合に、車両の空調装置50を作動させ、低温の冷却空気により水素温度を低下させる。これにより、水素圧力の上昇を防ぎ、水素タンク1のフェールセーフとしてリリーフバルブが開く所定の温度である105℃に達することを防ぎ、水素の充填率を上げる。
第3の実施形態の効果を列挙する。冷却風を車室内から供給することで、冷却空気温度をさらに低下させることができる。
【0028】
また、バッテリ冷却用の冷却ファン7を作動させた後、さらに水素温度が上昇し、所定値を越えた場合は、車両用の空調装置50を作動させることにより、冷却空気の温度をさらに低下させ、水素温度を低下させることができる。
【図面の簡単な説明】
【0030】
【図1】本発明によるバッテリ冷却装置の概略構成図である。
【0031】
【図2】水素タンク内の注入水素の流れを説明する図である。
【0032】
【図3】水素タンクの第1のネック部を示す図である。
【0033】
【図4】水素タンクへの水素充填時の水素温度推移を説明する図である。
【0034】
【図5】水素放出時の水素温度推移を説明する図である。
【0035】
【図6】本発明の第2の実施形態の概略構成図である。
【0036】
【図7】本発明の第3の実施形態の概略構成図である。
【0037】
【符号の説明】
1   水素タンク
2、  4、21 放熱フィン
3   水素放出管
5   水素吸入管
6   バッテリ
7   冷却ファン
8   バッテリ冷却空気通路
9   水素温度センサ
10  バッテリ温度センサ
13  空気通路切り替え弁
20  第1のネック部
22  第2のネック部
23  水素タンク冷却空気通路
25  切り替え弁
35  上流端
50  車室空調装置
100 冷却制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery cooling device that utilizes heat during charging and discharging of compressed hydrogen.
[0002]
[Prior art]
JP-A-2002-151126 discloses a fuel cell system including a hydrogen tank.
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional technology, there is a problem that the pressure rises due to an increase in the hydrogen temperature in the hydrogen tank when the hydrogen tank is filled with hydrogen, the amount of hydrogen charged decreases, and the cruising distance decreases. Further, a battery mounted in a fuel cell vehicle is cooled by utilizing the air in the passenger compartment, so that an air conditioning load increases to cool the battery, and there is a problem that fuel efficiency is deteriorated. Further, there is a problem that fuel consumption is deteriorated and noise of the fan is increased due to an increase in load of the fan that blows the vehicle interior air to the battery.
[0004]
Accordingly, it is an object of the present invention to provide a battery cooling device in which fuel consumption is deteriorated and fan noise is reduced.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a battery cooling device for an electric vehicle according to the present invention includes a hydrogen tank that supplies hydrogen to a power plant, and a hydrogen tank connected to the hydrogen tank and upstream of the battery in the battery cooling air passage. And a hydrogen release tube disposed at the first position.
[0006]
【The invention's effect】
According to the present invention, while supplying hydrogen to the power plant, the temperature of the hydrogen discharge tube decreases due to the reduced pressure of hydrogen. The air in the air passage that has flowed around the hydrogen discharge tube by the cooling fan is cooled by the hydrogen discharge tube, and the battery is cooled by the cooled air. Therefore, it is not necessary to increase the load on the air conditioner in order to cool the battery, and it is possible to suppress deterioration in fuel efficiency.
[0007]
Embodiment
Referring to FIG. 1, a battery cooling device for an electric vehicle according to the present invention includes a battery 6 for supplying power to a vehicle, a cooling air passage 8 for introducing cooling air to the battery 6, and a cooling fan 7 for generating a flow of cooling air. , And a hydrogen tank 1 for storing hydrogen.
[0008]
In this example, three hydrogen tanks 1, a battery 6, and a cooling fan 7 are arranged in the cooling air passage 8 from the upstream side of the air flow. The hydrogen tank 1 has a first neck portion 20 to which a heat radiation fin 2 is attached by exposing the inner wall of the tank, and the first neck portion 20 is inserted into the cooling air passage 8. From the first neck part 20, a hydrogen suction pipe 5 for introducing hydrogen into the hydrogen tank 1 and a hydrogen discharge pipe 3 for sending hydrogen from the hydrogen tank 1 to the fuel cell power plant extend, and through these pipes, the inside of the hydrogen tank 1 is formed. The filling and release of hydrogen takes place.
The hydrogen discharge pipe 3 extending from the first neck portion 20 extends a predetermined distance in the cooling air passage 8 substantially in parallel with the cooling air passage 8, and then goes out of the cooling air passage 8. The hydrogen released from the hydrogen tank 1 during operation of the vehicle is hydrogen that has been stored at a high pressure in the hydrogen tank 1 and expanded to a low temperature. Therefore, while the hydrogen discharge pipe 3 extends in the cooling air passage 8 in parallel, the hydrogen discharged from the hydrogen tank 1 flows in parallel with the cooling air flowing through the cooling air passage 8 and cools the cooling air.
[0009]
Radiation fins 21 are provided around the discharge hydrogen tube 3 to further promote heat exchange between hydrogen and the cooling air tube. As a result, the cooling air is further cooled to a lower temperature, the amount of air supplied to the battery 6 can be reduced, and the power consumption of the cooling fan 7 can be reduced.
[0010]
FIG. 2 shows the structure of the hydrogen discharge tube 3 and the first neck portion 20. At the time of releasing hydrogen, the temperature of the first neck portion 20 on the side where the hydrogen release tube 3 and the hydrogen suction tube 5 are connected is mainly low temperature. Therefore, the radiation fins 2 around the first neck portion 20 or the hydrogen release tube Radiation fins 21 are provided around 3 to promote heat exchange between low-temperature hydrogen and cooling air.
[0011]
The battery cooling device includes a hydrogen tank cooling air passage 23 connected to the cooling air passage 8 between the cooling fan 7 and the battery 6. On the upstream side of the flow of air in the hydrogen tank cooling air passage 23, a second neck having a structure similar to the first neck portion 20 provided on the opposite side of the first neck portion 20 of the hydrogen tank 1 is provided. The part 22 is inserted.
[0012]
When filling the hydrogen tank 1 with pressurized injection of hydrogen, the hydrogen in the hydrogen tank 1 is compressed, so that the temperature of the hydrogen tank 1 becomes high. As shown by the arrow in FIG. 3, the injected high-temperature pressurized hydrogen flows in the hydrogen tank 1 toward the second neck portion 22 on the opposite side to the connection side of the hydrogen suction pipe 5 and collides. Therefore, the second neck portion 22 is heated to a high temperature.
[0013]
Here, the hydrogen tank 1 can store a larger mass of hydrogen when the temperature of the hydrogen is lower than the temperature. Therefore, at the time of filling with hydrogen, the second neck portion 22 is cooled by flowing air through the hydrogen tank cooling air passage 23, and the hydrogen in the hydrogen tank 1 is cooled to a predetermined temperature. At this time, the heat radiation fins 4 provided around the second neck portion 22 promote heat radiation at this time. Thereby, the hydrogen filling rate of the hydrogen tank 1 can be improved.
[0014]
The cooling control device 100 includes a switching valve 25 and a cooling fan for switching the air flow between the battery cooling air passage 8 and the hydrogen tank cooling air passage in order to control the cooling air during the above-described hydrogen release and hydrogen filling. 7 is controlled. Therefore, the cooling control device 100 receives detection signals from the hydrogen temperature sensor 9 that detects the temperature of hydrogen in the hydrogen tank 1 and the battery temperature sensor 10 that detects the temperature of the battery.
[0015]
The switching valve 25 is provided at a portion where the hydrogen tank cooling passage 23 is connected to the battery cooling air passage 8. When filling with hydrogen, the switching valve 25 opens the hydrogen tank cooling air passage 23 to flow air. On the other hand, at the time of releasing hydrogen, the switching valve 25 closes the hydrogen tank cooling air passage 23 to shut off the flow of air. The hydrogen temperature sensor 9 is provided near the base of the second neck 22 of the hydrogen tank 1. The battery temperature sensor 10 is provided on the battery 6.
[0016]
Next, control of the battery cooling device when filling the hydrogen tank 1 with hydrogen will be described with reference to FIG. With the hydrogen injection, the hydrogen temperature in the hydrogen tank 1 starts to rise. When the hydrogen temperature detected by the hydrogen temperature sensor 9 exceeds a predetermined temperature of 80 ° C., the cooling control device 100 sets the switching valve 25 to the open position and starts the operation of the battery cooling fan 7. As a result, air also flows through the hydrogen tank cooling air passage 23 to cool the second neck portion 22 of the hydrogen tank 1. As a result, the hydrogen pressure in the hydrogen tank 1 is prevented from rising, and the temperature of the hydrogen tank 1 is prevented from reaching 105 ° C., which is a fail-safe predetermined temperature at which the relief valve is opened, and the hydrogen filling rate is improved. Each predetermined temperature can be set to another temperature. Further, in this case, the warmed air passing through the hydrogen tank cooling air passage 23 bypasses the battery 6, so that the temperature of the battery 6 does not increase.
On the other hand, at the time of hydrogen release accompanying the operation of the vehicle, the switching valve 25 is closed and the battery cooling fan 7 is operated. As a result, air flows only in the battery cooling air passage 8, and the cooling air and low-temperature hydrogen exchange heat through the radiating fan 21 of the hydrogen discharge pipe 3 to lower the temperature of the cooling air of the battery 6.
Next, with reference to FIG. 5, the correlation between the temperature decrease due to the expansion of hydrogen and the required power of the cooling fan 7 required to maintain the battery 6 at a predetermined temperature will be described. According to this figure, the lower the hydrogen temperature, the lower the required power of the cooling fan 7 is. With the start of the release of hydrogen, the hydrogen temperature starts to decrease, and the temperature of the cooling air is reduced accordingly, whereby the cooling of the battery is further promoted. Therefore, the cooling control device 100 can reduce the load on the cooling fan 7 by controlling the driving power of the cooling fan 7 according to the battery temperature.
Further, since the cooling fan 7 is provided on the downstream side of the position where the battery cooling air passage 8 and the hydrogen tank cooling air passage 23 merge downstream of the battery 6, the same cooling fan 7 is used both when charging and discharging hydrogen. Can be used, so that an increase in cost due to an increase in the number of parts can be suppressed.
[0017]
It should be noted that the neck portion on the hydrogen discharge tube side may be arranged in the cooling air passage both when hydrogen is charged and when hydrogen is released.
[0018]
Here, the effects of the first embodiment will be listed together.
[0019]
According to the present invention, while supplying hydrogen to the power plant, the temperature of the hydrogen discharge pipe 3 decreases due to the reduced pressure of the hydrogen. The air in the battery cooling air passage 8 flowing around the hydrogen discharge pipe 3 by the cooling fan 7 is cooled by the hydrogen discharge pipe 3, and the battery 6 is cooled by the cooled air. Therefore, it is not necessary to increase the load on the air conditioner in order to cool the battery 6, and it is possible to suppress deterioration in fuel efficiency.
By arranging the second neck portion 22 of the hydrogen tank 1 on the hydrogen tank cooling air passage 23 through which air flows during filling with hydrogen, the hydrogen tank 1 that is heated to a high temperature during filling with hydrogen can be cooled. Can be improved. Further, the second neck portion 22 is located at a position facing the first neck portion 20 where hydrogen is injected, and is a portion where the temperature becomes the highest when filling with hydrogen. Cooling efficiency is improved. Furthermore, since the hydrogen tank cooling air passage 23 in which the second neck portion 22 is arranged flows by bypassing the battery 6, the cooling performance of the battery 6 is not hindered.
[0020]
The temperature of the first neck portion 20 and the hydrogen discharge tube 3 becomes low when releasing hydrogen, but the temperature rises due to the pressurization of hydrogen when filling with hydrogen. Therefore, when air that has exchanged heat with the hydrogen releasing portion flows into the battery 6 during hydrogen filling, the battery 6 may be heated. In the present invention, since the air flows by bypassing the battery 6 and the hydrogen releasing portion at the time of filling with hydrogen, the possibility that the heated air exchanges heat with the battery 6 is reduced, and the cooling performance of the battery 6 is improved.
[0021]
Since the radiating fins 2 are provided at the portions of the hydrogen tank 1 where the temperature rises when filling with hydrogen, heat can be effectively radiated from the hydrogen tank 1 when filling with hydrogen.
[0022]
By providing the radiating fins 2 and 21 in the hydrogen releasing portion, heat can be efficiently exchanged between the portion of the hydrogen tank 1 where the temperature has dropped during hydrogen release and the air in the battery cooling air passage 23, and the battery located downstream 6 is improved in cooling performance.
[0023]
When the hydrogen tank 1 sucks the hydrogen, the cooling fan 7 is operated to improve the cooling performance of the heated portion of the hydrogen tank 1.
[0024]
By detecting the temperature of hydrogen in the hydrogen tank 1 and operating the cooling fan 7 for cooling the battery, the fan can be operated as necessary to lower the hydrogen temperature.
[0025]
Further, by providing the radiation fins 21 in the hydrogen discharge tube 3, heat exchange between hydrogen and the cooling air tube is further promoted.
Next, a second embodiment of the present invention will be described with reference to FIG. According to this embodiment, not only the neck portion 20 of the hydrogen tank 1 but the entire hydrogen tank 1 is inserted into the battery cooling air passage 8. Other components are the same as those of the first embodiment, and the same components are denoted by the same reference numerals.
This allows the entire hydrogen tank 1 to be cooled by air when filling with hydrogen, and allows the entire hydrogen tank 1 to cool air when releasing hydrogen.
At the time of hydrogen release, the temperature of the hydrogen tank 1 does not rise as at the time of filling, so that the air passing through the battery cooling air passage 8 is sufficiently cooled by the radiation fins 21 of the hydrogen release tube 3. Therefore, in the second embodiment, substantially the same effects as in the first embodiment can be obtained.
[0026]
Next, a third embodiment of the present invention will be described with reference to FIG. According to this embodiment, the battery cooling device further includes the vehicle interior air conditioner 50 provided at the upstream end of the hydrogen tank cooling air passage 23 and the air passage switching valve 13. Other components are the same as those of the first embodiment, and the same components are denoted by the same reference numerals. The vehicle interior air conditioner 50 has the same structure as a known vehicle air conditioner, and will not be described in detail here. The air passage switching valve 13 is provided at a connection portion of the hydrogen tank cooling air passage 23 to the cooling air passage 51 of the vehicle interior air conditioner 50.
[0027]
When filling the hydrogen tank 1 with hydrogen, the air passage switching valve 13 is opened, and air is introduced from the blower passage 51 into the hydrogen tank cooling air passage 23. When the hydrogen temperature exceeds a predetermined temperature, low-temperature cooling air is introduced into the hydrogen tank cooling air passage 23 by operating the vehicle cabin air conditioner 50. This promotes cooling of the injected hydrogen in the radiation fins 4 provided on the second neck portion 22.
In this case, referring to FIG. 4 again, when the hydrogen temperature detected by the hydrogen temperature sensor 9 exceeds a predetermined temperature of about 80 ° C., the cooling control device 100 starts operating the cooling fan 7. When the hydrogen temperature further rises and exceeds a predetermined temperature of about 90 ° C., the air conditioner 50 of the vehicle is operated, and the hydrogen temperature is lowered by low-temperature cooling air. This prevents an increase in hydrogen pressure, prevents the hydrogen tank 1 from reaching 105 ° C., which is a predetermined temperature at which the relief valve opens as a fail safe, and increases the hydrogen filling rate.
The effects of the third embodiment will be listed. By supplying the cooling air from the vehicle interior, the cooling air temperature can be further reduced.
[0028]
Further, after the cooling fan 7 for cooling the battery is operated, if the hydrogen temperature further rises and exceeds a predetermined value, the temperature of the cooling air is further reduced by operating the air conditioner 50 for the vehicle. , The hydrogen temperature can be lowered.
[Brief description of the drawings]
[0030]
FIG. 1 is a schematic configuration diagram of a battery cooling device according to the present invention.
[0031]
FIG. 2 is a diagram illustrating a flow of injected hydrogen in a hydrogen tank.
[0032]
FIG. 3 is a view showing a first neck portion of the hydrogen tank.
[0033]
FIG. 4 is a diagram illustrating a change in hydrogen temperature when hydrogen is charged into a hydrogen tank.
[0034]
FIG. 5 is a diagram for explaining transition of hydrogen temperature when releasing hydrogen.
[0035]
FIG. 6 is a schematic configuration diagram of a second embodiment of the present invention.
[0036]
FIG. 7 is a schematic configuration diagram of a third embodiment of the present invention.
[0037]
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hydrogen tank 2, 4, 21 Radiation fin 3 Hydrogen discharge pipe 5 Hydrogen suction pipe 6 Battery 7 Cooling fan 8 Battery cooling air passage 9 Hydrogen temperature sensor 10 Battery temperature sensor 13 Air passage switching valve 20 First neck portion 22 Second Neck portion 23 Hydrogen tank cooling air passage 25 Switching valve 35 Upstream end 50 Cabin air conditioner 100 Cooling control device

Claims (9)

バッテリと、冷却ファンと、前記バッテリと前記冷却ファンを連通するバッテリ冷却空気通路と、を備える水素をエネルギ源とする電動車両用バッテリ冷却装置において、
パワープラントに水素を供給する水素タンクと、
前記水素タンクに接続するとともに、前記バッテリ冷却空気通路内で前記バッテリよりも上流側にその一部が配置される水素放出管と、
を備えることを特徴とする電動車両用バッテリ冷却装置。
A battery cooling device for an electric vehicle using hydrogen as an energy source, comprising a battery, a cooling fan, and a battery cooling air passage communicating the battery and the cooling fan,
A hydrogen tank that supplies hydrogen to the power plant,
A hydrogen discharge pipe connected to the hydrogen tank and a part of which is disposed upstream of the battery in the battery cooling air passage,
A battery cooling device for an electric vehicle, comprising:
バッテリ冷却空気の冷却を促進する放熱フィンを前記水素放出管と前記水素タンクの前記水素放出管の接続部に設けたことを特徴とする請求項1に記載の電動車両用バッテリ冷却装置。2. The battery cooling device for an electric vehicle according to claim 1, wherein radiation fins for promoting cooling of battery cooling air are provided at a connection portion between the hydrogen discharge pipe and the hydrogen discharge pipe of the hydrogen tank. 3. バッテリの温度を検出するバッテリ温度センサを備え、検出したバッテリ温度に応じて冷却ファンを作動させることを特徴とした請求項1または2に記載の電動車両用バッテリ冷却装置。The battery cooling device for an electric vehicle according to claim 1 or 2, further comprising a battery temperature sensor for detecting a temperature of the battery, wherein the cooling fan is operated according to the detected battery temperature. 前記バッテリとその下流の前記冷却ファンの間で前記バッテリ冷却空気通路と接続する水素タンク冷却空気通路を備え、前記水素タンクに水素を充填するときに高温となる前記水素タンクの一部を前記水素タンク冷却空気通路に配置することを特徴とする請求項1に記載の電動車両用バッテリ冷却装置。A hydrogen tank cooling air passage connected to the battery cooling air passage between the battery and the cooling fan downstream of the battery, wherein a part of the hydrogen tank, which becomes hot when the hydrogen tank is filled with hydrogen, The battery cooling device for an electric vehicle according to claim 1, wherein the battery cooling device is disposed in a tank cooling air passage. 前記バッテリ冷却空気通路と前記水素タンク冷却空気通路の連結部に、前記バッテリ冷却空気通路と前記水素タンク冷却空気通路との間で空気を流す通路を選択的に切り替えるための切り替え弁を備え、水素充填時には、前記切り替え弁を開位置にして前記水素タンク冷却空気通路に空気を流し、前記水素タンクの高温部を冷却することを特徴とした請求項4に記載の電動車両用バッテリ冷却装置。A connecting portion for connecting the battery cooling air passage and the hydrogen tank cooling air passage with a switching valve for selectively switching a passage for flowing air between the battery cooling air passage and the hydrogen tank cooling air passage; 5. The battery cooling device for an electric vehicle according to claim 4, wherein, at the time of charging, the switching valve is set to the open position to flow air into the hydrogen tank cooling air passage to cool a high temperature portion of the hydrogen tank. 水素充填時に水素タンクの冷却を促進する放熱フィンを前記水素タンクの高温部に設けたことを特徴とする請求項4または5に記載の電動車両用バッテリ冷却装置。The battery cooling device for an electric vehicle according to claim 4 or 5, wherein radiation fins for promoting cooling of the hydrogen tank at the time of filling with hydrogen are provided in a high-temperature portion of the hydrogen tank. 前記水素タンク内の水素温度を検知する水素温度センサを水素タンクに備え、前記水素温度が所定値を越えた場合に前記冷却ファンを作動させることを特徴とした請求項5の電動車両用バッテリ冷却装置。6. The battery cooling for an electric vehicle according to claim 5, wherein a hydrogen temperature sensor for detecting a hydrogen temperature in the hydrogen tank is provided in the hydrogen tank, and the cooling fan is operated when the hydrogen temperature exceeds a predetermined value. apparatus. 前記冷却空気を車室内から取り入れることを特徴とした請求項7に記載の電動車両用バッテリ冷却装置。The battery cooling device for an electric vehicle according to claim 7, wherein the cooling air is taken in from a vehicle interior. 前記車室内空調装置を前記水素タンク冷却空気通路の上流端に設け、前記冷却ファン作動後に前記水素タンク内の水素温度が所定値を越えた場合、前記車室内空調装置を作動させて空気を冷却することを特徴とする請求項8に記載の電動車両用バッテリ冷却装置。The vehicle interior air conditioner is provided at an upstream end of the hydrogen tank cooling air passage, and when the hydrogen temperature in the hydrogen tank exceeds a predetermined value after the operation of the cooling fan, the vehicle interior air conditioner is operated to cool the air. The battery cooling device for an electric vehicle according to claim 8, wherein:
JP2002246481A 2002-08-27 2002-08-27 Battery cooling system Expired - Fee Related JP4082136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002246481A JP4082136B2 (en) 2002-08-27 2002-08-27 Battery cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246481A JP4082136B2 (en) 2002-08-27 2002-08-27 Battery cooling system

Publications (2)

Publication Number Publication Date
JP2004087287A true JP2004087287A (en) 2004-03-18
JP4082136B2 JP4082136B2 (en) 2008-04-30

Family

ID=32054371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246481A Expired - Fee Related JP4082136B2 (en) 2002-08-27 2002-08-27 Battery cooling system

Country Status (1)

Country Link
JP (1) JP4082136B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295828A (en) * 2022-07-26 2022-11-04 上海杰宁新能源科技发展有限公司 Fuel cell cooling control method and system, storage medium and intelligent terminal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295828A (en) * 2022-07-26 2022-11-04 上海杰宁新能源科技发展有限公司 Fuel cell cooling control method and system, storage medium and intelligent terminal

Also Published As

Publication number Publication date
JP4082136B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
EP1803620B1 (en) Hydrogen station, hydrogen filling method, and vehicle
US11097596B2 (en) Vehicle equipped with electric motor
CN106864284B (en) A kind of electric automobile power battery distribution unsymmetrical excavation device and cooling means
JP3801887B2 (en) Heat treatment system for electrochemical engines
JP4542414B2 (en) Hydrogen tank cooling system for hydrogen fuel vehicle
US7757727B2 (en) High pressure gas tank heat management by circulation of the refueling gas
US8215432B2 (en) Battery thermal system for vehicle
EP2502767B1 (en) Air conditioning system for vehicle
US7891386B2 (en) Thermal management for high pressure storage tanks
CN101628545B (en) Coolant systems for electric and hybrid-electric vehicles
US9490509B2 (en) Motor vehicle with battery cooling system
CN109941117B (en) Electric vehicle
US11850915B2 (en) Method for the thermal conditioning of an internal combustion engine and/or of a passenger compartment of a vehicle, and vehicle
KR20140033223A (en) Air conditioning system for controlling the temperature of components and of an interior of a motor vehicle
CN115117512A (en) Battery pack temperature adjusting system and vehicle
JP2010023547A (en) Ventilation load reducing device, and air-conditioner for automobile using the same
JP6180185B2 (en) Vehicle battery heating device
JP2004087287A (en) Battery cooling device
JP2005063715A (en) Apparatus of storing and supplying hydrogen for fuel cell
JP3702750B2 (en) Fuel cell system
JP2005069326A (en) In-vehicle hydrogen filling tank
CN216467255U (en) Circulating water circuit system for hybrid vehicle and hybrid vehicle with circulating water circuit system
JP2005096706A (en) Cooling system of vehicle
JP2005044520A (en) Fuel cell system
JP2024001400A (en) Heat management system for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees