JP2004087126A - Optical disk - Google Patents

Optical disk Download PDF

Info

Publication number
JP2004087126A
JP2004087126A JP2003405423A JP2003405423A JP2004087126A JP 2004087126 A JP2004087126 A JP 2004087126A JP 2003405423 A JP2003405423 A JP 2003405423A JP 2003405423 A JP2003405423 A JP 2003405423A JP 2004087126 A JP2004087126 A JP 2004087126A
Authority
JP
Japan
Prior art keywords
layer
recording
transparent body
layers
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003405423A
Other languages
Japanese (ja)
Inventor
Noboru Ito
伊藤 昇
Shinichi Tanaka
田中 伸一
Sadao Mizuno
水野 定夫
Kenichi Nishiuchi
西内 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003405423A priority Critical patent/JP2004087126A/en
Publication of JP2004087126A publication Critical patent/JP2004087126A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize recording, reproduction, and erasing with respect to a focusing recording layer by generating no diffracted light except the zero-order diffracted light and by reducing crosstalk generated from another recording layer from which reproduction is not performed. <P>SOLUTION: Recording layers 19 each constituted by arranging two layers, a first layer 17 and a second layer 18 adjacently, each of which has transmissivity changed by a difference in irradiated light intensity are held by transparent bodies 1. The plurality of recording layers 19 are layered by interposing the transparent bodies 11 while satisfying a condition: T1AxT2A=T1BxT2B wherein T1A is the transmissivity of the first layer 17 and T2A is the transmissivity of the second layer 18 with respect to the irradiated light intensity A, and T1B is the transmissivity of the first layer 17 and T2B is the transmissivity of the second layer 18 with respect to another irradiated light intensity B. Thus, the generation of the diffracted light except the zero-order diffracted light is eliminated, the crosstalk generated from the other recording layer from which reproduction is not performed is reduced and recording, reproduction, and erasing with respect to the focusing recording layer is realized. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、記録媒体の光ディスクに光学的に情報を記録または再生する光ディスクに関する。 The present invention relates to an optical disc for optically recording or reproducing information on an optical disc as a recording medium.

 以下に従来の光ディスクと光ディスク装置について説明する。 The following describes the conventional optical disk and optical disk device.

 図17に示すように、半導体レーザ1の放射光は、回折格子2によって0次と±1次の回折光に変換された後、ビームスプリッター3で反射され、対物レンズ4により、光ディスク5の記録層6上に絞り込まれ、光スポット7を形成する。 As shown in FIG. 17, the radiated light of the semiconductor laser 1 is converted into 0-order and ± 1st-order diffracted light by the diffraction grating 2, reflected by the beam splitter 3, and recorded on the optical disk 5 by the objective lens 4. The light spot 7 is formed by being narrowed down on the layer 6.

 次に光ディスク5で反射した光ビーム8は、対物レンズ4を透過し、ビームスプリッター3に到り、これを透過した光ビーム8が光検出器9に入る。4分割された光検出器9aからは、再生信号とともに非点収差法でフォーカスエラー信号が検出される。トラッキングエラー信号は、光検出器9b、9cに入射する先の±1次回折戻り光の光量差を検出する3ビーム法によって得られる。再生信号は4分割された光検出器9aの受光量の総和として得られる。このような従来の光ディスク装置では、光ディスクの1面につき記録層6は1層のみである。 Next, the light beam 8 reflected by the optical disk 5 passes through the objective lens 4 and reaches the beam splitter 3, and the transmitted light beam 8 enters the photodetector 9. From the photodetector 9a divided into four parts, a focus error signal is detected together with the reproduced signal by the astigmatism method. The tracking error signal is obtained by a three-beam method for detecting the difference in the amount of light of the ± first-order diffraction return light incident on the photodetectors 9b and 9c. The reproduced signal is obtained as the sum of the amounts of light received by the photodetector 9a divided into four parts. In such a conventional optical disk device, there is only one recording layer 6 per surface of the optical disk.

 近年、光ディスク装置では短波長化、狭トラック化など、高密度化の試みが盛んである。このような記録面内の密度向上に加えて、記録面の垂直方向の密度向上、すなわち、記録層を厚み方向に積層して面数を増加することにより、記録密度の向上ができる。しかしながら、このような積層構造にすると、再生記録層以外の記録層の反射光および透過光の影響があり、この欠点のため、積層構造は採用されていない。従来の光ディスク装置の構成をみても、光ディスク5に設けられる記録面数は各々表裏1面のみであり、光ディスク5の1枚に対して設けられる記録面数は2面までである。 In recent years, attempts have been made to increase the density of optical disk devices, such as shortening the wavelength and narrowing the track. In addition to the improvement of the density in the recording surface, the recording density can be improved by increasing the density in the vertical direction of the recording surface, that is, by increasing the number of surfaces by stacking the recording layers in the thickness direction. However, such a laminated structure has an effect of reflected light and transmitted light of recording layers other than the reproduction recording layer, and due to this drawback, the laminated structure is not employed. Looking at the configuration of the conventional optical disk device, the number of recording surfaces provided on the optical disk 5 is only one on each side, and the number of recording surfaces provided on one optical disk 5 is up to two.

 上述のように記録密度を増大させるように、記録層を光ディスクの厚み方向に積層すれば、記録再生しない記録層からの干渉光の影響を受けるという問題点を有していた。 (4) If the recording layers are stacked in the thickness direction of the optical disc so as to increase the recording density as described above, there is a problem that the recording layers are affected by the interference light from the recording layers that are not recorded or reproduced.

 本発明は上記従来の問題点を解決するもので、0次以外の回折光の発生をなくし記録再生の対象とならない記録層からの干渉光の影響による信号混入を抑止して、良好な再生信号を得ることができ、しかも大幅な記録密度を向上した光ディスクを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and eliminates the generation of diffracted light other than the 0th order, suppresses signal mixing due to the influence of interference light from a recording layer that is not a target of recording and reproduction, and provides a good reproduced signal. It is an object of the present invention to provide an optical disk which can obtain a high recording density and further has a greatly improved recording density.

 本発明の第1の発明は、照射光強度Aに対しては第1、第2の層の透過率がT1A、T2Aになり、照射光強度Bに対しては第1、第2の層の透過率がT1B、T2Bになる第1の層と第2の層より各々構成される記録層が
 T1A×T2A=T1B×T2B
となる条件を満たし、透明体を挟んで複数積層された光ディスクである。
According to the first invention of the present invention, the transmittance of the first and second layers is T1A and T2A for the irradiation light intensity A, and the transmittance of the first and second layers is for the irradiation light intensity B. The recording layer composed of the first layer and the second layer having transmittances of T1B and T2B is T1A × T2A = T1B × T2B.
This is an optical disc that satisfies the following condition and is stacked in plural with a transparent body interposed.

 これにより、0次以外の回折光の発生をなくし再生しない他の記録層からのクロストークはほとんどなく、合焦点記録層の記録再生消去が可能となる。 {Circle around (4)} This eliminates the generation of diffracted light other than the 0th order, so that there is almost no crosstalk from other recording layers that do not reproduce, and recording / reproduction / erasing of the focused recording layer becomes possible.

 また、本発明の第2の発明は、第1、第2の層および第1、第2の層に挟まれた中間透明体により構成される記録層と透明体とを交互に積層し、照射光強度Aに対しては第1、第2の層の透過率がT1A、T2Aになり、照射光強度Bに対しては第1、第2の層の透過率がT1B、T2Bになるとき、
 T1A×T2A=T1B×T2B
となる条件を満たし、かつ、前記中間透明体と前記透明体の屈折率がほぼ等しく、記録層と記録層の間隔を使用波長の10倍以上とした光ディスクである。
Further, a second invention of the present invention is directed to a recording medium comprising a recording layer and a transparent body, which are composed of first and second layers and an intermediate transparent body sandwiched between the first and second layers, which are alternately laminated and irradiated. When the transmittance of the first and second layers becomes T1A and T2A for the light intensity A, and the transmittance of the first and second layers becomes T1B and T2B for the irradiation light intensity B,
T1A × T2A = T1B × T2B
An optical disc which satisfies the following condition, has a substantially equal refractive index between the intermediate transparent body and the transparent body, and sets the distance between the recording layers at least 10 times the wavelength used.

 これにより、記録再生の対象とならない記録層からの干渉光の影響による信号混入を抑止して良好な再生信号を得ることができる。 {Circle over (2)} This makes it possible to suppress signal mixing due to the influence of interference light from a recording layer that is not a target of recording and reproduction, and obtain a good reproduced signal.

 また、本発明の第3の発明は、第1、第2の層の厚みがH1、H2で照射光強度Aに対しては第1、第2の層の屈折率がN1A、N2Aになり、照射光強度Bに対しては第1、第2の層の屈折率がN1B、N2Bになる第1の層と第2の層より構成される記録層が
 N1A×H1+N2A×H2=N1B×H1+N2B×H2
となる条件を満たし、透明体を挟んで複数積層された光ディスクである。
Further, according to a third aspect of the present invention, the first and second layers have thicknesses of H1 and H2, and the refractive indexes of the first and second layers are N1A and N2A with respect to the irradiation light intensity A, For the irradiation light intensity B, the first and second layers have a refractive index of N1B and N2B, and the recording layer composed of the first layer and the second layer has N1A × H1 + N2A × H2 = N1B × H1 + N2B × H2
This is an optical disc that satisfies the following condition and is stacked in plural with a transparent body interposed.

 これにより、良好な再生信号を得ることができる。 Thereby, a good reproduced signal can be obtained.

 また、本発明の第4の発明は、照射光強度Aに対して、第1の層と透明体の界面の反射率と、第1の層と第2の層の界面の反射率とを比較して、前者が小さいときは照射光強度Aに対する第1の層の屈折率と照射光強度Bに対する第2の層の屈折率とをほぼ透明体の屈折率に等しくし、後者が小さいときはそれぞれ反対の層の屈折率を透明体の屈折率に等しくした第3の発明の光ディスクである。 The fourth invention of the present invention compares the reflectance at the interface between the first layer and the transparent body and the reflectance at the interface between the first layer and the second layer with respect to the irradiation light intensity A. Then, when the former is small, the refractive index of the first layer with respect to the irradiation light intensity A and the refractive index of the second layer with respect to the irradiation light intensity B are made substantially equal to the refractive index of the transparent body, and when the latter is small, An optical disc according to a third aspect of the present invention, wherein the refractive indexes of the opposite layers are made equal to the refractive index of the transparent body.

 これにより、反射率を異にした記録層を有する光ディスクにおいても反射光量の減少を防止して良好な再生信号を得ることができる。 (4) As a result, even in an optical disk having recording layers with different reflectivities, it is possible to prevent a decrease in the amount of reflected light and obtain a good reproduction signal.

 また、本発明の第5の発明は、第1、第2の層および第1、第2の層に挟まれた中間透明体により構成される記録層と透明体とを交互に積層し、第1、第2の層の厚みがH1、H2で、照射光強度Aに対しては第1、第2の層の屈折率がN1A、N2Aであり照射光強度Bに対しては第1、第2の層の屈折率がN1B、N2Bであるとき
 N1A×H1+N2A×H2=N1B×H1+N2B×H2
となる条件を満たし、前記中間透明体と前記透明体の屈折率がほぼ等しく、記録層と記録層の間隔を使用波長の10倍以上とした光ディスクである。
In a fifth aspect of the present invention, a recording layer and a transparent body composed of a first and a second layer and an intermediate transparent body sandwiched between the first and the second layers are alternately laminated. 1, the thickness of the second layer is H1 and H2, the first and second layers have a refractive index of N1A and N2A for the irradiation light intensity A, and the first and second refractive indexes of the second layer have the irradiation light intensity B. When the refractive index of the second layer is N1B and N2B, N1A × H1 + N2A × H2 = N1B × H1 + N2B × H2
An optical disc which satisfies the following condition, the refractive index of the intermediate transparent body and the refractive index of the transparent body are substantially equal, and the interval between the recording layers is 10 times or more of the used wavelength.

 これにより、記録再生の対象とならない記録層からの干渉光の影響による信号混入を抑止して良好な再生信号を得ることができる。 {Circle over (2)} This makes it possible to suppress signal mixing due to the influence of interference light from a recording layer that is not a target of recording and reproduction, and obtain a good reproduced signal.

 また、本発明の第6の発明は、照射光強度Aに対して、第1の層と透明体の界面の反射率と、第2の層と中間透明体の界面の反射率とを比較して、前者が小さいときは照射光強度Aに対する第1の層の屈折率と照射光強度Bに対する第2の層の屈折率とをほぼ前記透明体および前記中間透明体の屈折率に等しくし、後者が小さいときはそれぞれ反対の層の屈折率を前記透明体および前記中間透明体の屈折率に等しくした第5の発明の光ディスクである。 Further, the sixth invention of the present invention compares the reflectance at the interface between the first layer and the transparent body and the reflectance at the interface between the second layer and the intermediate transparent body with respect to the irradiation light intensity A. When the former is small, the refractive index of the first layer with respect to the irradiation light intensity A and the refractive index of the second layer with respect to the irradiation light intensity B are made substantially equal to the refractive indices of the transparent body and the intermediate transparent body, The optical disk according to the fifth invention, wherein when the latter is small, the refractive indexes of the opposite layers are made equal to the refractive indexes of the transparent body and the intermediate transparent body.

 これにより、一層良好な再生信号を得ることができる。 Thereby, a better reproduction signal can be obtained.

 本発明の光ディスクは、記録再生の対象とならない記録層からの干渉光の影響による信号混入を抑えることができて、良好な再生信号を得ることができ、しかも記録層の積層が可能となり、飛躍的に記録密度が向上する光ディスクを実現し得るものである。 The optical disk of the present invention can suppress signal mixing due to the influence of interference light from a recording layer that is not a target of recording and reproduction, can obtain a good reproduction signal, and can stack recording layers, and It is possible to realize an optical disk having an improved recording density.

 以下に図面を参照しながら、本発明を実施するための最良の形態の説明をする。なお本発明は、本実施の形態により限定されるものではない。また、本実施の形態の説明において、同一構成並びに作用効果を奏するところには同一符号を付して重複した説明を行わないものとする。 The best mode for carrying out the present invention will be described below with reference to the drawings. Note that the present invention is not limited by the present embodiment. Further, in the description of the present embodiment, portions having the same configuration and operation and effect will be denoted by the same reference numerals, without redundant description.

 (参考例1)
 図1および図2に示すように、本参考例は、従来例で説明した光ディスク5を複数の記録層10を透明体11ではさんで積層した光ディスク12としている。すなわち、光ディスク12は、複数の記録層10が光ビーム8の波長に対しては充分長い積層間隔Lだけ相互に離れて積層配置されている。光ビーム8は記録層10のうちの幾つかの非合焦記録層10bを透過した後、記録再生すべき合焦記録層10aに絞り込まれ、ここで反射された光ビーム8が、往路とは逆の光路をたどり、ビームスプリッター3を透過して光検出器9に入る構成とされている。なお、図中の13は記録ピット、dは対物レンズ4側からみた光ディスク12の表面から合焦記録層10aまでの深さを示す。
(Reference Example 1)
As shown in FIGS. 1 and 2, in this embodiment, the optical disk 5 described in the conventional example is an optical disk 12 in which a plurality of recording layers 10 are stacked with a transparent body 11 interposed therebetween. That is, the optical disk 12 has a plurality of recording layers 10 stacked and separated from each other by a sufficiently long stacking interval L with respect to the wavelength of the light beam 8. After the light beam 8 has passed through some of the non-focused recording layers 10b of the recording layer 10, the light beam 8 is narrowed down to the focused recording layer 10a to be recorded / reproduced. It is configured to follow the reverse optical path, pass through the beam splitter 3 and enter the photodetector 9. In the drawing, reference numeral 13 denotes a recording pit, and d denotes a depth from the surface of the optical disc 12 to the focused recording layer 10a as viewed from the objective lens 4 side.

 以上のように構成された光ディスク装置について、以下その動作を説明する。 The operation of the optical disk device configured as described above will be described below.

 本参考例の光ディスク12では、記録層10を透過するとき、記録ピット13による1次以上の回折光は発生しない構成となっており、透過する光ビーム8はほぼ0次回折光のみとなる。なお、ここで言う0次回折光とは、透過時に回折によって進行方向の変化を受けない透過光を意味している。こうすることにより、記録再生の対象とならない記録層10b、10cなどからの信号混入を抑えることが可能となるが、この点について以下に説明する。まず、透過光に1次以上の回折光がある場合の弊害について述べる。問題となるのは光ビーム8が光ディスク12に向かって進む往路の場合において、図3に示す焦点前にある非合焦記録層10bを透過したときの回折光の影響である。記録ピットはトラック上にあるので、トラック間隔をピッチとする回折格子の作用を持つ。そのため、図3に示すように、回折光はすべて合焦記録層10aに合焦状態で0次回折光による光スポット0s、1次回折光による光スポット1s、−1次回折光による光スポット−1s等を形成し、光スポット0s以外の1次以上の光スポット1s、−1s等は記録再生しようとする記録ピットと関係ない位置にある記録ピットを照射する。この反射光の一部が光検出器9に入って信号に混じるが、この信号には記録再生すべきでない記録ピットの再生信号が含まれ、しかも本来の再生信号に比べて、その出力は合焦状態で再生したものであるために無視できないほど大きくなる。これは、0s,1s,−1s等のマルチ光スポットで同時再生した状態であり、本来必要とする信号はマルチスポット再生信号の中に埋もれてしまい問題である。このように、透過光に高次の回折光がある場合は正常な再生が不可能であり、正常な再生を行うためには、厳密には透過光に高次の回折光がないと言うことが必要条件となる。実際には高次の回折光を完全になくすことは困難であるが、0次回折光に対して1次以上の高次回折光は少なくとも10%以下であることが望ましく、1%以下であれば実際上ほぼ問題ないと言える。また、1%以下の光ディスクの作成も可能である。 In the optical disc 12 of the present embodiment, when transmitted through the recording layer 10, the first or higher order diffracted light by the recording pits 13 is not generated, and the transmitted light beam 8 is substantially only the 0th order diffracted light. Here, the 0th-order diffracted light means transmitted light that does not change its traveling direction due to diffraction during transmission. By doing so, it is possible to suppress signal mixing from the recording layers 10b, 10c, etc., which are not to be recorded / reproduced. This will be described below. First, an adverse effect when the transmitted light includes first-order or higher diffraction light will be described. The problem is the effect of the diffracted light when the light beam 8 passes through the out-of-focus recording layer 10b before the focal point shown in FIG. Since the recording pit is on the track, the recording pit acts as a diffraction grating having a pitch between tracks. Therefore, as shown in FIG. 3, all the diffracted lights are focused on the focus recording layer 10a, and the light spot 0s by the 0th-order diffracted light, the light spot 1s by the 1st-order diffracted light, the light spot -1s by the -1st-order diffracted light, etc. The light spots 1s, -1s, etc., of the first order or higher other than the light spot 0s, irradiate recording pits at positions not related to recording pits to be recorded / reproduced. Part of this reflected light enters the photodetector 9 and mixes with the signal. This signal contains a reproduced signal of a recording pit that should not be recorded and reproduced, and its output is more than that of the original reproduced signal. Since the image is reproduced in the in-focus state, it becomes so large that it cannot be ignored. This is a state where simultaneous reproduction is performed with multiple light spots such as 0 s, 1 s, and -1 s, and a signal originally required is buried in a multi-spot reproduction signal, which is a problem. As described above, when the transmitted light has high-order diffracted light, normal reproduction is impossible, and in order to perform normal reproduction, strictly speaking, there is no higher-order diffracted light in transmitted light. Is a necessary condition. In practice, it is difficult to completely eliminate high-order diffracted light. However, it is desirable that at least 10% or more of first-order or higher-order diffracted light is 0% or less of 0th-order diffracted light, and if 1% or less, it is practical It can be said that there is almost no problem. It is also possible to produce an optical disk of 1% or less.

 そこで、次に、透過光に高次回折光がないと言う条件において、他の弊害の有無に関して述べる。 Therefore, the following describes the existence of other adverse effects under the condition that there is no higher-order diffracted light in the transmitted light.

 まず、記録層10を透過する場合については、往路における透過光も復路における透過光も、1次以上の回折光の発生がないことから、記録層10の記録ピット13の情報は乗らず、記録ピット13がないと同様であるので、何等影響はなく問題はない。 First, in the case of transmission through the recording layer 10, neither the transmitted light on the outward path nor the transmitted light on the return path generates first-order or higher diffracted light. Since there is no pit 13, there is no problem and there is no problem.

 次に記録層10の反射光について説明する。光ディスク12における再生信号は光検出器9の受光量の変化として検知される。光スポット0sが合焦記録層10a上の記録ピット13を照射したとき、反射する光ビーム8は記録ピット13によって回折を受け、高次回折光の一部が対物レンズ4に入らないため、対物レンズ4への総入射光量が減少し、この光量減少が検知されて再生信号が得られる。したがって、上記に説明した光量変動の他に何等かの原因によって光量変動が起きればこれが妨害信号となる。まず、図2(a)に示す焦点ずれ状態にある非合焦記録層10bによって反射されて対物レンズ4に向かう反射光brによる妨害信号について考える。 Next, the reflected light from the recording layer 10 will be described. The reproduction signal on the optical disk 12 is detected as a change in the amount of light received by the photodetector 9. When the light spot 0s irradiates the recording pit 13 on the focusing recording layer 10a, the reflected light beam 8 is diffracted by the recording pit 13 and a part of the high-order diffracted light does not enter the objective lens 4, so that the objective lens 4 4, the total amount of incident light decreases, and the decrease in the amount of light is detected, and a reproduction signal is obtained. Therefore, if a light amount fluctuation occurs for some reason other than the light amount fluctuation described above, this becomes an interference signal. First, consider an interference signal caused by reflected light br reflected by the out-of-focus recording layer 10b in the defocused state shown in FIG.

 非合焦記録層10b上の記録ピット13による反射回折が発生し、これが対物レンズ4の入射光量に変動をもたらして妨害信号となる。しかし、図2(b)に模式的に示したように、光ビーム8の波長や記録ピット13の寸法に対して記録層10の積層間隔Lを十分大きくした条件にしておけば、光ビーム8が非合焦記録層10bを照射するときに、光ビーム8の大きさが記録ピット13の大きさに比べて十分大きくなり、非合焦記録層10b上の広い範囲の多数の記録ピット13を照射するようになる。このため、照射される記録ピット13の数が多少変動しても、照射される数に比べれば微々たるものとなるので、照射される記録ピット13の数は常にほぼ一定とみなせる。したがって、非合焦記録層10bによる反射光brの対物レンズ4に入る光量も通常ほぼ均一となるので、実質的には検出信号への影響はさほど大きくはならない。 (4) Reflection diffraction occurs due to the recording pits 13 on the out-of-focus recording layer 10b, and this causes fluctuations in the amount of incident light on the objective lens 4 and becomes an interference signal. However, as schematically shown in FIG. 2B, if the lamination interval L of the recording layer 10 is set to be sufficiently large with respect to the wavelength of the light beam 8 and the size of the recording pit 13, the light beam 8 When irradiating the out-of-focus recording layer 10b, the size of the light beam 8 becomes sufficiently larger than the size of the recording pits 13, so that a large number of recording pits 13 in a wide range on the out-of-focus recording layer 10b are formed. It will be irradiated. For this reason, even if the number of irradiated recording pits 13 fluctuates somewhat, the number of irradiated recording pits 13 can be considered to be almost always constant, because the number of irradiated recording pits 13 is small compared to the number of irradiated recording pits. Therefore, the amount of light br reflected by the out-of-focus recording layer 10b and entering the objective lens 4 is usually almost uniform, so that the effect on the detection signal is not substantially large.

 たとえば、対物レンズNAを0.5、トラックピッチとピットピッチを標準的な値の1.6μmとし、記録層10の積層間隔Lを10μmとすれば、非合焦記録層10bを照射する光ビーム8の直径Gは(数1)となり、この直径Gの円の中には記録ピット13は、おおよそ44個入る。 For example, if the objective lens NA is 0.5, the track pitch and the pit pitch are standard values of 1.6 μm, and the lamination interval L of the recording layers 10 is 10 μm, the light beam irradiating the non-focused recording layer 10 b The diameter G of 8 becomes (Equation 1), and approximately 44 recording pits 13 are included in the circle of the diameter G.

Figure 2004087126
Figure 2004087126

 ここで、たとえば、記録ピット1個分の変化があったとすると、全体に対しては1/44=2.3%の変動となり、実用上大きな問題とならない。記録層10の積層間隔Lをこれ以上にすると、さらにこの値は小さくなり、積層間隔Lを30μmとすれば、
 2.3×(10/30)2=2.3×0.11=0.25%
となり、ほとんど問題は生じない。
Here, for example, if there is a change corresponding to one recording pit, the change is 1/44 = 2.3% with respect to the whole, which is not a serious problem in practical use. When the lamination interval L of the recording layer 10 is longer than this value, the value further decreases. When the lamination interval L is 30 μm,
2.3 × (10/30) 2 = 2.3 × 0.11 = 0.25%
And there is almost no problem.

 記録層10の積層間隔Lの上限は、これを大きくし過ぎると積層する効果が薄れるので0.8mm程度が限界である。 上限 The upper limit of the stacking interval L of the recording layer 10 is limited to about 0.8 mm because if the stacking interval L is too large, the effect of stacking is reduced.

 次に、本来の信号となるべき合焦記録層10aによる反射光arの多重反射光の影響について説明する。一例として、非合焦記録層10bと合焦記録層10aの間で反射した後、対物レンズ4に向かう光ビームamについてみる。非合焦記録層10bを光ビームarは広がった状態で照射し、その後さらに広がった状態で合焦記録層10aを照射するので、先に説明したと同様な平均化により、実質的な影響はでない。他の多重反射についても同様である。また、合焦記録層10aを透過した後で非合焦記録層10cで反射し、対物レンズ4に向かう光ビームcrについても同様である。 Next, the effect of the multiple reflected light of the reflected light ar by the focused recording layer 10a, which should become the original signal, will be described. As an example, a light beam am traveling toward the objective lens 4 after being reflected between the unfocused recording layer 10b and the focused recording layer 10a will be described. Since the light beam ar irradiates the out-of-focus recording layer 10b in a spread state, and then irradiates the in-focus recording layer 10a in a further spread state, the averaging similar to that described above has a substantial effect. Not. The same applies to other multiple reflections. The same applies to the light beam cr that passes through the focused recording layer 10a, is reflected by the unfocused recording layer 10c, and travels toward the objective lens 4.

 以上のように、透過光を0次のみにすることができれば、光ビーム8が記録再生の対象とならない非合焦記録層10b上の記録ピット13の影響を実質的になくすことが可能となり、所定の記録層10に焦点を合わせることにより、他の記録層10の影響を受けずして記録再生が可能となる。 As described above, if the transmitted light can be made only the 0th order, it is possible to substantially eliminate the influence of the recording pits 13 on the non-focused recording layer 10b where the light beam 8 is not recorded or reproduced. By focusing on a predetermined recording layer 10, recording and reproduction can be performed without being affected by other recording layers 10.

 次に対物レンズ4の性能との関連に関して説明する。本参考例の光ディスク12は、記録層10の積層間隔Lは広いほど、他の記録層10からの信号混入が少なくなって有利であるが、その反面、光ディスク12の表面から合焦記録層10aまでの深さdが合焦する記録層10の違いによって変化する。対物レンズ4は光ディスク12の所定の厚み(約1.2mm)に合わせて設計されており、この厚みのときは十分満足すべき性能を発揮するが、厚みが変化すると、光ビーム8を十分絞り込めないと言う問題が生じる。これは球面収差が大きくなることに起因し、球面収差を抑制できれば、絞り込み性能の劣化を防ぐことができる。球面収差は主に光ビーム8の光軸中心部と周辺部とを通る光ビームの光路長の差に起因するので、例えば、図4に示すように、プリズムを用いたビーム変換手段14を設けて、光ビーム8を例えばリング状にして、周辺部のみに光ビーム8を通す、あるいは周辺部の光量を多くすれば、このリング領域内での対物レンズ4と光ディスク12で構成される光学系の光路長差は著しく小さくなり、絞り込み性能の改善ができる。なお、この方法は超解像法になっているので、収束スポットの短径化も同時に図れる。 Next, the relationship with the performance of the objective lens 4 will be described. In the optical disc 12 of the present embodiment, as the lamination interval L of the recording layers 10 is wider, the signal mixing from the other recording layers 10 is reduced, which is advantageous. The depth d changes depending on the difference of the recording layer 10 to be focused. The objective lens 4 is designed to have a predetermined thickness (about 1.2 mm) of the optical disk 12 and exhibits satisfactory performance when the thickness is changed. The problem of not being able to do it arises. This is because the spherical aberration increases, and if the spherical aberration can be suppressed, it is possible to prevent the aperture stop performance from deteriorating. Since the spherical aberration is mainly caused by the difference in the optical path length of the light beam passing through the central part and the peripheral part of the optical axis of the light beam 8, for example, as shown in FIG. If the light beam 8 is formed into a ring shape, for example, and the light beam 8 is passed only to the peripheral portion, or if the light amount in the peripheral portion is increased, the optical system composed of the objective lens 4 and the optical disk 12 in this ring region The difference in the optical path length is significantly reduced, and the aperture performance can be improved. Since this method is a super-resolution method, the diameter of the convergent spot can be shortened at the same time.

 また、他の方法として図5に示すように、光路長変更手段15を用いることもできる。光路長変更手段15はたとえば、対物レンズ4と光ディスク12の間に配設され、等しい屈折率のくさび状の2枚のガラスの斜面側を対向させた構成とし、一方のガラスをその斜面に沿って移動させれば、光路長変更手段15の厚みwを変えることができるので、合焦記録層10aの変更に伴う深さdの変化を補正することが可能となり、対物レンズ4の絞り込み性能の劣化を防止することができる。また、光路長変更手段15は光ビーム8が非平行な部分であれば、どこに配設してもよくて、対物レンズ4と光ディスク12の間に限られたものでなく、例えば、図6に示すように、半導体レーザ1の放射光をコリメータレンズ16を使用して、平行またはほぼ平行な光ビーム8にする光学系については、半導体レーザ1とコリメータレンズ16の間に光路長変更手段15を配設しても同様の効果が得られる。 と し て Also, as another method, as shown in FIG. 5, an optical path length changing means 15 can be used. The optical path length changing means 15 is, for example, disposed between the objective lens 4 and the optical disk 12 and has two wedge-shaped glasses having the same refractive index, with the slopes facing each other. If the focus lens is moved, the thickness w of the optical path length changing means 15 can be changed, so that the change in the depth d due to the change in the focus recording layer 10a can be corrected. Deterioration can be prevented. The optical path length changing means 15 may be provided anywhere as long as the light beam 8 is non-parallel, and is not limited to the space between the objective lens 4 and the optical disk 12. For example, FIG. As shown in the figure, in an optical system in which the emitted light of the semiconductor laser 1 is converted into a parallel or almost parallel light beam 8 using a collimator lens 16, an optical path length changing means 15 is provided between the semiconductor laser 1 and the collimator lens 16. The same effect can be obtained by disposing.

 上述のように本参考例は、記録ピット13による透過光に対して1次以上の回折光がない構成としていることにより、再生層以外の記録層10からの影響を低減することが可能となり、積層構造の問題点が解決できる。本参考例と似た概念で記録密度の向上を図る方法として、波長多重法がある。波長多重法は一層のみで形成される記録材に、多数の異なる波長で重ねて記録し、これを異なる波長で再生すれば、それぞれの波長に対して、再生信号が独立に得られるというものであり、使用波長数分の高密度化が可能となり、記録材として、有機色素を使う方法、ケミカルホールバーニング法などが研究されている。その他、多重記録方法として光の偏向方向を変えて記録再生する方法が提案されている。これらの方法に対して、本参考例は、多層の記録層10を用いるもので、光ビーム8の波長が一定であっても、また光偏向方向が一定であっても可能であり、簡易な構成で記録密度の向上ができる。 As described above, in the present embodiment, since there is no first-order or higher-order diffracted light with respect to the light transmitted by the recording pit 13, it is possible to reduce the influence from the recording layer 10 other than the reproducing layer. The problem of the laminated structure can be solved. As a method for improving the recording density based on a concept similar to that of this embodiment, there is a wavelength multiplexing method. The wavelength division multiplexing method is to superimpose and record a large number of different wavelengths on a recording material formed of only one layer, and reproduce the same at different wavelengths, whereby a reproduced signal can be obtained independently for each wavelength. There is a possibility that the density can be increased by the number of wavelengths used, and a method using an organic dye as a recording material, a chemical hole burning method, and the like have been studied. In addition, as a multiplex recording method, a method has been proposed in which recording and reproduction are performed by changing the direction of deflection of light. In contrast to these methods, the present embodiment uses a multi-layer recording layer 10 and can be used even if the wavelength of the light beam 8 is constant or the light deflection direction is constant. With this configuration, the recording density can be improved.

 上記参考例1の光ディスク12は光ビーム8のピット回折光のうち0次回折光のみ透過することに特徴があるが、次に、これを実現する光ディスク12について説明する。 The optical disk 12 of the first embodiment is characterized in that only the 0th-order diffracted light of the pit diffracted light of the light beam 8 is transmitted. Next, the optical disk 12 that realizes this will be described.

 (参考例2)
 以下に記録層として光吸収体を用いた再生専用型の光ディスクについて説明する。
(Reference Example 2)
Hereinafter, a read-only optical disk using a light absorber as a recording layer will be described.

 図7に示すように、記録層10の厚みを一定にして記録層10の透過率が全面にわたって一定となるようにし、さらに、記録層10の両側の透明体11の屈折率をほぼ等しくなるよう設定する。記録ピット13は記録層10に凹凸を与えることによって作製する。こうして、記録層10の記録ピット13の部分の透過光TPと記録ピット13のない部分の透過光TLの位相の違いをみると、平面U1から平面U2までの光路長比較では両者が等しくなるので、位相の違いは発生しないことになる。また、透過率も一定であるから、透過光の振幅も一定となる。透過光の回折は光の振幅、位相のいずれかが透過によって変化すれば生ずるが、本参考例では、透過光TP、TLの両者に変化がないので光の回折は生じず、透過光は0次回折光のみとなる。したがって、透過光は記録ピット13の有無を感知せず、記録ピット13がないのと同様である。一方、反射光の光路長は記録ピット13の部分の反射光RPと記録ピット13のない部分の反射光RLでは記録ピット13の深さVの2倍分異なるので位相が変化し、1次以上の回折光が発生し、この回折光の記録ピット情報が含まれ、ピット情報を得ることができる。記録層10の作製方法としては、光吸収体としてアルミニウム等の金属を適度な透過率の得られる膜厚にして蒸着、スパッタ等によって形成することができる。 As shown in FIG. 7, the thickness of the recording layer 10 is made constant so that the transmittance of the recording layer 10 becomes constant over the entire surface, and further, the refractive indexes of the transparent bodies 11 on both sides of the recording layer 10 are made substantially equal. Set. The recording pits 13 are produced by providing the recording layer 10 with irregularities. Thus, looking at the phase difference between the transmitted light TP in the portion of the recording layer 10 where the recording pits 13 are located and the transmitted light TL in the portion where the recording pit 13 is not located, the two are equal in the optical path length comparison from the plane U1 to the plane U2. No phase difference occurs. Further, since the transmittance is constant, the amplitude of the transmitted light is also constant. Diffraction of the transmitted light occurs when either the amplitude or phase of the light changes due to transmission, but in this reference example, since there is no change in both the transmitted light TP and TL, no light diffraction occurs, and the transmitted light is zero. Only the second-order diffracted light is obtained. Therefore, the transmitted light does not sense the presence or absence of the recording pit 13, which is similar to the absence of the recording pit 13. On the other hand, the optical path length of the reflected light differs by twice the depth V of the recording pit 13 between the reflected light RP at the portion of the recording pit 13 and the reflected light RL at the portion without the recording pit 13, so that the phase changes, and the primary or higher order. Is generated, and the recorded pit information of the diffracted light is included, and pit information can be obtained. The recording layer 10 can be formed by vapor deposition, sputtering, or the like, using a metal such as aluminum as the light absorber so as to have a film thickness with an appropriate transmittance.

 (参考例3)
 以下に記録層として誘電体を用いた再生専用型の光ディスクについて説明する。
(Reference Example 3)
Hereinafter, a read-only optical disk using a dielectric as a recording layer will be described.

 図7に示すように、記録層10と透明体11の界面S1、S2では屈折率の違いに起因する光の反射が生じる。記録層10の厚みaが光の波長程度に薄くなると界面s1、s2の反射光の多重干渉効果を生かして、よく知られている反射防止膜、多層膜フィルター等と同等の原理により比較的大きな反射率を得ることができる。ここで、記録層10の厚みaと記録層10を挟む透明体11の屈折率をどの部分においても一定となる条件にする。誘電体を用いた記録層10の反射率、透過率は界面S1、S2の両側の屈折率が関係し、本参考例の場合、記録ピット13の部分と記録ピット13がない部分の屈折率は同じであるので、透過光TPと透過光TLはその振幅、位相共に同じになるため、記録ピット13による回折は発生せず、前述の参考例2と同様に透過光は0次回折光のみとすることができ、参考例2と同様な効果が得られる。また、反射光については、参考例2と同様に記録ピット13の深さvによる光路長差ができ、記録ピット情報を得ることができる。反射率、透過率は記録層10と透明体11の屈折率、厚みで決定されるので、記録層10の両側の媒質すなわち透明体11の屈折率が等しいときは、記録層10と透明体11の屈折率が異なれば、反射が生じる。記録層10と透明体11の屈折率が異なるほど反射率が大きくなり、本参考例では5%程度以上が望ましいが、こうするためには、記録層10の屈折率は透明体11の屈折率の1.1倍以上または0.9倍以下が望ましい。これを満たす誘電体としては、たとえばTiO2、ZnS、CeO2、ZrO2等がある。以上の説明では記録層10は誘電体を1層としたが複数層にしても同様の効果が得られ、設計の自由度がさらに大きくなる。 As shown in FIG. 7, light is reflected at interfaces S1 and S2 between the recording layer 10 and the transparent body 11 due to a difference in refractive index. When the thickness a of the recording layer 10 is reduced to about the wavelength of light, it takes advantage of the multiple interference effect of reflected light at the interfaces s1 and s2, and is relatively large by the same principle as a well-known antireflection film, multilayer filter, or the like. The reflectance can be obtained. Here, the conditions are such that the thickness a of the recording layer 10 and the refractive index of the transparent body 11 sandwiching the recording layer 10 are constant in any portion. The reflectance and the transmittance of the recording layer 10 using the dielectric are related to the refractive indexes on both sides of the interfaces S1 and S2. In the case of this reference example, the refractive index of the portion of the recording pit 13 and the portion without the recording pit 13 is Since the transmitted light TP and the transmitted light TL have the same amplitude and phase, the diffraction by the recording pits 13 does not occur, and the transmitted light is only the 0th-order diffracted light as in the above-described reference example 2. Thus, the same effect as in Reference Example 2 can be obtained. Further, as for the reflected light, there is a difference in optical path length depending on the depth v of the recording pit 13 as in the case of the reference example 2, and recording pit information can be obtained. Since the reflectance and the transmittance are determined by the refractive index and the thickness of the recording layer 10 and the transparent body 11, when the medium on both sides of the recording layer 10, that is, the transparent body 11 has the same refractive index, the recording layer 10 and the transparent body 11 are different. If the refractive indices are different, reflection occurs. The more the refractive index of the recording layer 10 is different from the refractive index of the transparent body 11, the greater the reflectance. In this embodiment, it is desirable that the refractive index is about 5% or more. Is 1.1 times or more or 0.9 times or less. As a dielectric material satisfying this, for example, there are TiO 2 , ZnS, CeO 2 , ZrO 2 and the like. In the above description, the recording layer 10 has a single dielectric, but the same effect can be obtained with a plurality of layers, and the degree of freedom in design is further increased.

 (実施の形態1)
 記録消去型の光ディスクについて説明する。
(Embodiment 1)
The recording / erasing type optical disk will be described.

 図8(a)に示すように、照射光強度の違いによって透過率の変わる第1の層17と第2の層18の2層を近接させて配設した記録層19を透明体11で挟持した構成である。照射光強度Aに対しては、第1の層17の透過率がT1A、第2の層18の透過率がT2Aとなり、他の照射光強度Bに対しては、第1の層17の透過率がT1B、第2の層18の透過率がT2Bとなる構成の光ディスクは、Pで示した部分を照射光強度Aで、Qで示した部分を照射光強度Bで照射すると、Pの部分の第1、第2の層17、18の透過率はT1A、T2Aとなり、Qの部分の第1、第2の層17、18の透過率はT1B、T2Bとなる。ここで、界面S1、S2での光照射光強度A、Bに対する反射率をR1a、R2a、R1b、R2bとし、例えばR1a>R2a、R1b<R2bとすれば、Pの部分での反射は透明体11と第1の層17との界面S1で大きく、Qの部分では第1の層17と第2の層18との界面S2で大きくなる(なお、図中では第1の層17と第2の層18を比べて反射率の大きい方に斜線を付している。)。反射光R1a、R2bについてみると、Pの部分とQの部分では第1の層17の厚み分の反射面の段差H1が生じており、これが記録ピットが形成されたと同等な効果を持つことになる。また、照射光強度BでPの部分を照射すると、先に形成された段差H1が消失するので、照射強度を変えることにより、記録消去が可能となる。 As shown in FIG. 8A, a recording layer 19 in which a first layer 17 and a second layer 18 whose transmittance changes depending on a difference in irradiation light intensity is disposed close to each other is sandwiched by a transparent body 11. This is the configuration. For the irradiation light intensity A, the transmittance of the first layer 17 is T1A, the transmittance of the second layer 18 is T2A, and for the other irradiation light intensity B, the transmission of the first layer 17 is T1A. An optical disc having a configuration in which the transmittance is T1B and the transmittance of the second layer 18 is T2B is such that when the portion indicated by P is irradiated with the irradiation light intensity A and the portion indicated by Q is irradiated with the irradiation light intensity B, the portion of P The transmittances of the first and second layers 17 and 18 are T1A and T2A, and the transmittances of the first and second layers 17 and 18 of the portion Q are T1B and T2B. Here, the reflectance for the light irradiation light intensities A and B at the interfaces S1 and S2 is R1a, R2a, R1b, and R2b. For example, if R1a> R2a and R1b <R2b, the reflection at the portion P is transparent 11 At the interface S1 between the first layer 17 and the second layer 18 and at the interface Q between the first layer 17 and the second layer 18 (in the figure, the first layer 17 and the second The hatched portion has a higher reflectance than that of the layer 18). Regarding the reflected lights R1a and R2b, a step H1 of the reflection surface corresponding to the thickness of the first layer 17 is generated between the portion P and the portion Q, which has the same effect as the formation of the recording pit. Become. When the portion P is irradiated with the irradiation light intensity B, the previously formed step H1 disappears. Therefore, by changing the irradiation intensity, recording and erasing can be performed.

 一方、これに対する透過光については、Pの部分とQの部分の記録層19の全体の透過率をTP、TLとすると、
 TP=T1A×T2A
 TL=T1B×T2B
であるから
 T1A×T2A=T1B×T2B
という条件にすると、0次以外の回折光の発生はなく、透過光は段差H1を感知しないので、再生しない他の記録層からのクロストークはほとんどなく、合焦点記録層の記録再生消去が可能となる。
On the other hand, with respect to the transmitted light, assuming that the entire transmittance of the recording layer 19 in the P portion and the Q portion is TP, TL
TP = T1A × T2A
TL = T1B × T2B
T1A × T2A = T1B × T2B
In this condition, no diffracted light other than the 0th order is generated, and the transmitted light does not detect the step H1, so that there is almost no crosstalk from other recording layers that are not reproduced, and recording / reproduction / erasing of the focused recording layer is possible. It becomes.

 (実施の形態2)
 以下に記録層として誘電体を用いた記録消去型の光ディスクについて説明する。
(Embodiment 2)
A recording / erasing type optical disk using a dielectric as a recording layer will be described below.

 本実施の形態2の構成は図8(a)で説明した実施の形態1と同様であり、記録層に誘電体を用いて、照射光強度の違いによって屈折率の変わる第1の層17と第2の層18の2層を近接させて配設した記録層19を透明体11で挟持した構成である。照射光強度Aに対しては、第1の層17の屈折率がN1A、第2の層18の屈折率がN2Aとなり、他の照射光強度Bに対しては、第1の層17、第2の層18の屈折率がN1B、N2Bとなる構成の光ディスクでは、Pの部分を照射光強度Aで、Qの部分を照射光強度Bで照射すると、Pの部分の第1、第2の層17、18の屈折率はN1A、N2Aとなり、Qの部分の第1、第2の層17、18の屈折率はN1B、N2Bとなる。ここで、界面S1、S2の光照射強度A、Bに対する反射率をR1a、R2a、R1b、R2bとすれば、これらは界面S1、S2、S3の両側の屈折率と厚みとで決まることになる。R1a、R2a、R1b、R2bの関係を実施の形態1と同様にR1a>R2a、R1b<R2bとすればR1aとR2bのペアで記録ピットの形成、記録消去ができる。 The configuration of the second embodiment is the same as that of the first embodiment described with reference to FIG. 8A, and uses a dielectric material for the recording layer and a first layer 17 whose refractive index changes depending on the difference in irradiation light intensity. The recording layer 19 in which two layers of the second layer 18 are arranged close to each other is sandwiched by the transparent body 11. For the irradiation light intensity A, the refractive index of the first layer 17 is N1A, the refractive index of the second layer 18 is N2A, and for the other irradiation light intensity B, the first layer 17 In an optical disc having a configuration in which the refractive index of the second layer 18 is N1B and N2B, when the P portion is irradiated with the irradiation light intensity A and the Q portion is irradiated with the irradiation light intensity B, the first and second portions of the P portion are irradiated. The refractive indices of the layers 17 and 18 are N1A and N2A, and the refractive indices of the first and second layers 17 and 18 in the portion Q are N1B and N2B. Here, assuming that the reflectances of the interfaces S1, S2 with respect to the light irradiation intensities A, B are R1a, R2a, R1b, R2b, these are determined by the refractive index and the thickness on both sides of the interfaces S1, S2, S3. . If the relationship among R1a, R2a, R1b, and R2b is R1a> R2a, R1b <R2b as in the first embodiment, recording pit formation and recording erasure can be performed with a pair of R1a and R2b.

 透過光については、Pの部分、Qの部分のその透過光路長OPP、OPQは
 OPP=N1A×H1+N2A×H2
 OPQ=N1B×H1+N2B×H2
となるので、
 OPP=OPQ
すなわち、
 N1A×H1+N2A×H2=N1B×H1+N2B×H2
に示す条件にしておけば記録層19のPの部分とQの部分での透過光の光路長は同等となるので、両者の位相の変化の違いは発生しない。このため、実施の形態1と同様に、透過光は界面S1と界面S2の段差を感知しないので、ここに形成される記録ピットによって生ずる±1次以上の回折光の発生もない。
As for the transmitted light, the transmitted optical path lengths OPP and OPQ of the P portion and the Q portion are as follows: OPP = N1A × H1 + N2A × H2
OPQ = N1B × H1 + N2B × H2
So
OPP = OPQ
That is,
N1A × H1 + N2A × H2 = N1B × H1 + N2B × H2
Under the conditions shown in (1) and (2), the optical path lengths of the transmitted light in the P portion and the Q portion of the recording layer 19 become equal, so that there is no difference in the phase change between the two. For this reason, as in the first embodiment, the transmitted light does not sense the step between the interface S1 and the interface S2, so that there is no generation of ± 1 or more order diffracted light caused by the recording pits formed here.

 また、Pの部分の第2の層18の照射光強度Aのときの屈折率N2AとQの部分の第1の層17の照射光強度Bのときの屈折率N1Bを透明体11の屈折率に等しくすれば、図8(b)に示すように、Pの部分の第2の層18と透明体11の界面S3とQの部分の第1の層17と透明体11の界面S1が光学的にはなくなるので、Pの部分の透過光TPの界面S3による反射光とQの部分の界面S1による反射光R1bが消失することにより、これによるノイズ成分が消え、より良好な再生信号を得ることができる。 Further, the refractive index N2A when the irradiation light intensity A of the second layer 18 in the P portion is equal to the refractive index N1B when the irradiation light intensity B in the first layer 17 in the Q portion is the refractive index of the transparent body 11. 8B, the interface S3 between the second layer 18 in the P portion and the transparent body 11 and the interface S1 between the first layer 17 in the Q portion and the transparent body 11 Since the light reflected by the interface S3 of the transmitted light TP at the portion P and the light R1b reflected by the interface S1 at the portion Q disappear, the noise component disappears and a better reproduction signal is obtained. be able to.

 (実施の形態3)
 以下に記録層の間に中間透明体を配設した記録消去型の光ディスクについて説明する。
(Embodiment 3)
Hereinafter, a recording / erasing type optical disk in which an intermediate transparent body is provided between recording layers will be described.

 図9(a)に示すように本実施の形態3は、前述実施の形態2の構成の第1の層17と第2の層18の間に透明物質製の中間透明体20を配設した記録層21とした構成である。 As shown in FIG. 9A, in the third embodiment, an intermediate transparent body 20 made of a transparent substance is disposed between the first layer 17 and the second layer 18 in the configuration of the second embodiment. The configuration is a recording layer 21.

 照射光強度の違いによって実施の形態2と同様に第1、第2の層17、18の透過率が変化するとし、中間透明体20の光学特性の変化はないとする。本実施の形態3では、たとえば、Pの部分での反射は透明体11と第1の層17との界面S1で大きく、Qの部分では中間透明体20と第2の層18との界面S3で大きくする。こうして、段差H3の記録ピットを形成することができる。本実施の形態3では、中間透明体20を設けることによって、記録ピットの深さと第1、第2の記録層17、18の厚みとの相互依存性を除くことができ、記録ピットの深さと第1、第2の記録層17、18の厚みの設定の自由度が増すことができる。透過率の差を用いて記録ピットを形成するときは、第1、第2の層17、18の透過率の条件は前述の
 N1A×H1+N2A×H2=N1B×H1+N2B×H2
となる。誘電体を用いて第1、第2の層17、18を構成する場合の条件は前述の
 OPP=OPQ
となる。また、図8(b)で説明した実施の形態2と同様に、Pの部分の第2の層18の屈折率N2AとQの部分の第1の層17の屈折率N1Bを透明体11および中間透明体20の屈折率に等しくすれば、図9(b)に示すように、Pの部分の第2の層18と透明体11および中間透明体20との界面、Qの部分の第1の層17と透明体11および中間透明体20との界面が光学的にはなくなるので、この部分による反射光が消失し、より良好な再生信号を得ることができる。
It is assumed that the transmittance of the first and second layers 17 and 18 changes as in the second embodiment due to the difference in irradiation light intensity, and that the optical characteristics of the intermediate transparent body 20 do not change. In the third embodiment, for example, the reflection at the portion P is large at the interface S1 between the transparent body 11 and the first layer 17, and at the portion Q, the interface S3 between the intermediate transparent body 20 and the second layer 18 is large. To increase. Thus, the recording pit of the step H3 can be formed. In the third embodiment, by providing the intermediate transparent body 20, the interdependence between the depth of the recording pit and the thicknesses of the first and second recording layers 17 and 18 can be eliminated. The degree of freedom in setting the thicknesses of the first and second recording layers 17 and 18 can be increased. When recording pits are formed by using the difference in transmittance, the condition of the transmittance of the first and second layers 17 and 18 is N1A × H1 + N2A × H2 = N1B × H1 + N2B × H2.
It becomes. The conditions for forming the first and second layers 17 and 18 using a dielectric are as described above in OPP = OPQ.
It becomes. 8B, the refractive index N2A of the second layer 18 in the portion of P and the refractive index N1B of the first layer 17 in the portion of Q are set to If the refractive index of the intermediate transparent body 20 is made equal, as shown in FIG. 9B, the interface between the second layer 18 of the P portion and the transparent body 11 and the intermediate transparent body 20 and the first portion of the Q portion Since the interface between the layer 17 and the transparent body 11 and the intermediate transparent body 20 is not optically present, the reflected light from this portion disappears, and a better reproduction signal can be obtained.

 (実施の形態4)
 以下に反射率を異にした記録層を有する光ディスクについて説明する。
(Embodiment 4)
Hereinafter, an optical disc having a recording layer with different reflectivity will be described.

 図10に示すように、光ビーム8が光ディスク22に対して下方から入射するとして記録層23に光ビーム8の入射側から順番に1番目を記録層23a、2番目を記録層23b、3番目を記録層23cとすると、2番目の記録層23bへの照射光量t1が1番目の記録層23aでの反射光量R1と吸収光量だけ減ってしまうので、記録層23bでの反射光量R2もこの分が減り、光検出器に戻る光量も減ってしまう。同様に、3番目の記録層23cへの照射光量t2と反射光量R3も減り、記録層23の層数が増すにつれて、この減少量が大きくなる。また、記録層23を反射した後、光検出器に戻る過程での他の記録層23の透過によっても光量の減少が生じるので、半導体レーザから遠い記録層23ほど光検出器への戻り光量がさらに減少することになる。したがって、半導体レーザから遠い位置の記録層23ほどその反射率を大きくした構成とすることにより、光検出器への戻り光量の減少を防止できる。 As shown in FIG. 10, assuming that the light beam 8 is incident on the optical disk 22 from below, the first to the recording layer 23a, the second to the recording layer 23b, and the third to the recording layer 23 in order from the incident side of the light beam 8. Is the recording layer 23c, the irradiation light amount t1 to the second recording layer 23b is reduced by the reflection light amount R1 and the absorption light amount at the first recording layer 23a, so that the reflection light amount R2 at the recording layer 23b is correspondingly reduced. And the amount of light returning to the photodetector also decreases. Similarly, the irradiation light amount t2 and the reflection light amount R3 to the third recording layer 23c decrease, and the decrease amount increases as the number of recording layers 23 increases. Further, after the light is reflected from the recording layer 23 and returns to the photodetector, the amount of light also decreases due to transmission through another recording layer 23. Therefore, the farther the recording layer 23 is from the semiconductor laser, the smaller the amount of light returned to the photodetector becomes. It will further decrease. Therefore, by adopting a configuration in which the reflectance is increased as the recording layer 23 is located farther from the semiconductor laser, a decrease in the amount of light returning to the photodetector can be prevented.

 (参考例4)
 以下に記録層として磁気光学効果を利用する光磁気材料を用いた光ディスクについて説明する。
(Reference Example 4)
An optical disk using a magneto-optical material utilizing a magneto-optical effect as a recording layer will be described below.

 図11に示すように、光ビーム8が非合焦記録層10bを照射するときについてみると、非合焦記録層10bに入射する光ビーム8が矢印Aで示した方向に偏光しているとすると、未記録部24の透過光の偏光方向は変化せず、矢印Aで示した方向そのままであるが、記録ピット13の部分では偏光方向が矢印Bで示した方向に回転変化する。記録ピット13の部分と未記録部24での違いはこの偏光方向のみであり、光ビーム8の振幅、位相の違いは両者にないので、光の回折は生じない。また、反射光についても、前述透過光と同様に記録ピット13の部分の偏光方向の変化のみであり、光の回折は生じない。透過光と反射光の全体としては偏光方向が変化し、これは、記録ピット13の部分と未記録部24の面積比と照射光の強度分布で決まる。ここで記録層10間の積層間隔を大きくとって光ビーム8で照射される非合焦記録層10b上の記録ピット13の数を十分多くすると、すでに説明したように、その数が多数であるので、記録ピット13による光ビーム8全体の偏光方向に対する影響は平均化されて、実際上この偏光方向は常に一定とみなして差し支えない。こうして、光ビーム8全体の偏光方向は記録部分の偏光方向と未記録部24の偏光方向の間のある特定の方向を向くことになる。再生信号は光ビーム8全体の変化で決定されるので、光ビーム8全体の偏光方向の一定なる変化は再生信号にDC成分が乗るのみとなるので、再生信号には影響を及ぼさず問題とならない。このように、光磁気材料の記録層の場合は、記録層10の積層間隔を波長あるいは記録ピット寸法に対して十分大きくすれば、非合焦記録層10bの透過、反射での回折はないので、再生信号への非記録再生層の影響を抑止できて記録再生密度の向上ができる。 As shown in FIG. 11, when the light beam 8 irradiates the out-of-focus recording layer 10b, the light beam 8 incident on the out-of-focus recording layer 10b is polarized in the direction indicated by the arrow A. Then, the polarization direction of the transmitted light in the unrecorded portion 24 does not change and remains in the direction indicated by the arrow A, but the polarization direction rotates and changes in the direction indicated by the arrow B in the portion of the recording pit 13. The difference between the recording pit 13 and the unrecorded portion 24 is only this polarization direction, and since there is no difference between the amplitude and the phase of the light beam 8, no light diffraction occurs. Also, as for the reflected light, similarly to the above-mentioned transmitted light, only the change in the polarization direction of the recording pit 13 occurs, and no light diffraction occurs. The polarization directions of the transmitted light and the reflected light as a whole change, and this is determined by the area ratio between the recording pit 13 and the unrecorded portion 24 and the intensity distribution of the irradiation light. If the number of recording pits 13 on the out-of-focus recording layer 10b irradiated with the light beam 8 is sufficiently increased by increasing the stacking interval between the recording layers 10, the number is large as described above. Therefore, the influence of the recording pits 13 on the polarization direction of the entire light beam 8 is averaged, and in practice, this polarization direction may always be regarded as constant. Thus, the polarization direction of the entire light beam 8 is directed to a specific direction between the polarization direction of the recorded portion and the polarization direction of the unrecorded portion 24. Since the reproduction signal is determined by the change of the entire light beam 8, a constant change in the polarization direction of the entire light beam 8 only involves a DC component on the reproduction signal, and does not affect the reproduction signal. . As described above, in the case of the recording layer of the magneto-optical material, if the lamination interval of the recording layer 10 is made sufficiently large with respect to the wavelength or the recording pit size, there is no diffraction by transmission and reflection of the out-of-focus recording layer 10b. In addition, the influence of the non-recording / reproducing layer on the reproduction signal can be suppressed, and the recording / reproducing density can be improved.

 (参考例5)
 以下に多層の記録層と従来の記録層を混在積層した構成の光ディスクについて説明する。
(Reference Example 5)
Hereinafter, an optical disc having a configuration in which a multilayer recording layer and a conventional recording layer are mixed and laminated will be described.

 図12に示すように、記録層10に高次透過光を発生する従来の記録層25を付加した光ディスク26としたとき、従来の構成の記録層25では通常、高次透過光が発生し、これが再生信号に対して妨害信号となる。そこで、光ビーム8の入射側には多層の記録層10を配設し、光ビーム8の透過側には従来の記録層25を配設すれば従来の記録層25の透過光が悪影響を及ぼすことがないので、両者を共存して使用することが可能となる。ただし、従来の記録層25は1層のみ使用し、アモルファス−結晶間の状態変化を利用した相変化記録層などを用いる。 As shown in FIG. 12, when the optical disc 26 is formed by adding a conventional recording layer 25 that generates higher-order transmitted light to the recording layer 10, higher-order transmitted light is usually generated in the recording layer 25 having the conventional configuration. This becomes an interference signal for the reproduced signal. Therefore, if the multi-layered recording layer 10 is provided on the light beam 8 incident side and the conventional recording layer 25 is provided on the light beam 8 transmitting side, the transmitted light of the conventional recording layer 25 has an adverse effect. Therefore, both can be used together. However, only one conventional recording layer 25 is used, and a phase-change recording layer utilizing a state change between amorphous and crystal is used.

 (参考例6)
 以下に光ディスクの製造方法について説明する。前述参考例1の図1および図2に説明したように、光ディスク12は記録層10と透明体11を交互に積層した構成で、記録層10の相互間の積層間隔Lは10μm程度から数百μm程度と比較的薄いものであり、また、積層間隔Lはできる限り一定となることが望ましいので、透明体11の厚みを均一に作成することが重要となる。そこで、図13に示すように、記録層27の相互間に厚みを厳密に規定したスペーサ28をはさみこみ、スペーサ28の厚みで記録層27の積層間隔Lを規定する。その後、透明体29を流し込んで固める等の方法で光ディスク30を作成する。なお、図14に示すように、スペーサ28は同心円状または放射状に配置する方法もある。
(Reference Example 6)
Hereinafter, a method for manufacturing an optical disk will be described. As described with reference to FIGS. 1 and 2 of Reference Example 1, the optical disc 12 has a configuration in which the recording layers 10 and the transparent bodies 11 are alternately laminated, and the lamination interval L between the recording layers 10 is about 10 μm to several hundreds. It is desirable that the thickness of the transparent body 11 be made uniform since the thickness is relatively thin, such as about μm, and the lamination interval L is preferably as constant as possible. Therefore, as shown in FIG. 13, a spacer 28 whose thickness is strictly defined is inserted between the recording layers 27, and the thickness L of the spacer 28 defines the lamination interval L of the recording layer 27. After that, the optical disk 30 is prepared by a method of pouring and solidifying the transparent body 29. As shown in FIG. 14, the spacers 28 may be arranged concentrically or radially.

 また、記録層27の相互間の積層間隔Lを規定するのに、記録層27上に液状の樹脂を滴下した後に、光ディスク30を回転させて、樹脂を均一に薄く塗布する、いわゆるスピンコートによって透明体29を形成する方法もある。 Further, in order to define the lamination interval L between the recording layers 27, after the liquid resin is dropped on the recording layer 27, the optical disk 30 is rotated to apply the resin uniformly and thinly, that is, by so-called spin coating. There is also a method of forming the transparent body 29.

 (参考例7)
 以下に両面貼合せ型の光ディスクの再生について説明する。
(Reference Example 7)
Hereinafter, reproduction of a double-sided bonded optical disk will be described.

 図18に示すように、従来の両面貼合せ型の光ディスク31は、2個の片面ディスク31A、31Bの片面に記録層を各々形成し、両記録層を向い合わせて貼合せた2面の記録層を有する構成で、光ディスク31の再生において、片面ディスク31Aの記録層を再生するときは光ビームを片面ディスク31A側より照射し、片面ディスク31Bの記録層を再生するときは光ビームを片面ディスク31B側より照射しなければならないので、一方の記録層を再生した後、もう一方の記録層を再生するのに光ディスク31を反転する作業が必要であった。したがって、両面記録層を人手を介さずに連続再生するためには、ガイド33を設けて光ディスク31の両面に光ヘッド32を移送するヘッド移動手段を用いていた。また、図19に示すように、光ディスク31の両側にそれぞれ光ヘッド34を設けた両面配置ヘッド手段を用いていた。 As shown in FIG. 18, a conventional double-sided lamination type optical disk 31 has two single-sided disks 31A and 31B, each having a recording layer formed on one side thereof, and having both recording layers facing each other. When reproducing the recording layer of the single-sided disk 31A, a light beam is irradiated from the single-sided disk 31A side when reproducing the recording layer of the single-sided disk 31A, and when reproducing the recording layer of the single-sided disk 31B, the light beam is reproduced when reproducing the recording layer of the single-sided disk 31B. Since it is necessary to irradiate from the 31B side, it is necessary to reverse the optical disc 31 after reproducing one recording layer and then reproducing the other recording layer. Therefore, in order to continuously reproduce the two-sided recording layer without manual intervention, a head moving means for providing the guide 33 and transferring the optical head 32 to both sides of the optical disk 31 has been used. Further, as shown in FIG. 19, a double-sided head unit having optical heads 34 provided on both sides of the optical disk 31 is used.

 本参考例7の光ディスク、例えば図15に示すように、記録層35A、35Bに凹凸を与えて記録ピットを形成し、接合材36で貼合せ、透明体11で挟持した光ディスク37では、光ビーム8が途中の記録層35Aを透過しても再生できるので、上方より光ビーム8を照射しても記録層35Aおよび記録層35Bを再生することができる。したがって、従来の光ディスクでは、必要であった光ディスクの反転なしで両面の記録層35A、35Bを再生することが可能となり、従来例のように両面配置ヘッド手段やヘッド移動手段が不要となる。 In the optical disk of the present embodiment 7, for example, as shown in FIG. 15, the recording layers 35A and 35B are provided with irregularities to form recording pits, bonded by the bonding material 36, and sandwiched by the transparent body 11, Since the recording layer 8A can be reproduced even if it passes through the recording layer 35A in the middle, the recording layer 35A and the recording layer 35B can be reproduced even if the light beam 8 is irradiated from above. Therefore, in the conventional optical disk, it is possible to reproduce the recording layers 35A and 35B on both sides without the necessary reversal of the optical disk, and the double-sided arrangement head means and the head moving means are unnecessary as in the conventional example.

 また、図16(a)や図16(b)に示したように、2層構造にした記録層38や光磁気材料を用いた記録層39をそれぞれ接合材36で貼合せ、透明体11で挟持した光ディスク40や光ディスク41についても、上述の光ディスク37と同様に再生でき、同様な効果が得られる。なお、透明体11と接合材36の屈折率は高次の透過光を防止するためにほぼ等しい構成としている。 Further, as shown in FIGS. 16A and 16B, a recording layer 38 having a two-layer structure and a recording layer 39 using a magneto-optical material are bonded with a bonding material 36, respectively. The sandwiched optical disk 40 and optical disk 41 can be played back in the same manner as the above-described optical disk 37, and the same effect can be obtained. Note that the refractive index of the transparent body 11 and the refractive index of the bonding material 36 are substantially equal to each other in order to prevent higher-order transmitted light.

 以上の説明からも明らかなように本発明は、ある照射光強度に対する第1の層の透過率と第2の層の透過率の積を、他の照射光強度に対する第1の層の透過率と第2の層の透過率の積に等しくして、透明体を挟んで複数積層された光ディスクとすることにより、0次以外の回折光の発生をなくし、再生しない他の記録層からのクロストークが少なく合焦点記録層の記録再生消去を可能として記録再生の対象とならない記録層からの干渉光の影響による信号混入を抑止して、良好な再生信号を得ることができる大幅な記録密度を向上した優れた光ディスクが実現できるものである。 As is apparent from the above description, the present invention calculates the product of the transmittance of the first layer and the transmittance of the second layer for a certain irradiation light intensity, and the transmittance of the first layer for another irradiation light intensity. And the transmittance of the second layer are made equal to each other, so that an optical disc having a plurality of stacked layers sandwiching a transparent body eliminates the generation of diffracted light other than the 0th order, and prevents the cross from other recording layers that are not reproduced from crossing. With a small amount of talk, it is possible to record / reproduce / delete the focused recording layer, suppress signal mixing due to the influence of interference light from the recording layer that is not the target of recording / reproduction, and achieve a large recording density that can provide a good reproduced signal. An improved and superior optical disk can be realized.

参考例1の光ディスク装置の概略構成図Schematic configuration diagram of the optical disc device of Reference Example 1. 同光ディスク装置の記録層における光の透過、反射の説明図Explanatory diagram of light transmission and reflection in the recording layer of the optical disc device 同記録層上の記録ピットによる回折の説明図Illustration of diffraction by recording pits on the recording layer 同参考例のビーム変換手段を設けた光ディスク装置の概略構成図Schematic configuration diagram of an optical disc device provided with a beam conversion unit of the reference example 同参考例の光路長変更手段を設けた光ディスク装置の概略構成図Schematic configuration diagram of an optical disc device provided with an optical path length changing unit of the reference example 同光路長変更手段を設けた光ディスク装置の他の参考例の要部構成図Configuration diagram of main parts of another reference example of an optical disc device provided with the same optical path length changing means 参考例2の光ディスクの構成断面略図Schematic cross section of the configuration of the optical disc of Reference Example 2. 本発明の実施の形態1の光ディスクの構成断面略図1 is a schematic cross-sectional view of a configuration of an optical disc according to a first embodiment of the present invention. 本発明の実施の形態3の光ディスクの構成断面略図3 is a schematic sectional view of a configuration of an optical disc according to a third embodiment of the present invention. 本発明の実施の形態4の光ディスクの記録層における光の透過、反射の説明図Explanatory drawing of light transmission and reflection in the recording layer of the optical disc according to the fourth embodiment of the present invention. 参考例4の光ディスクの記録ピットの偏光の説明図Explanatory drawing of the polarization of the recording pit of the optical disk of Reference Example 4. 参考例5の光ディスクの構成断面略図Schematic cross-sectional view of the configuration of the optical disc of Reference Example 5 参考例6の光ディスクの製造方法におけるスペーサの配置状態を示した断面略図Sectional schematic view showing the arrangement state of the spacers in the method of manufacturing the optical disc of Reference Example 6. 同スペーサの他の配置状態を示した要部断面図Sectional view of main part showing another arrangement state of the spacer 参考例7の光ディスクの構成断面略図Configuration schematic diagram of optical disk of Reference Example 7 参考例7の他の光ディスクの断面略図Sectional schematic view of another optical disc of Reference Example 7 従来の光ディスク装置の概略構成図Schematic configuration diagram of a conventional optical disk device 従来の両面貼合せ型の光ディスクに用いる光ディスク装置の要部構成図Configuration diagram of main parts of optical disk device used for conventional double-sided bonded optical disk 同光ディスクに用いる他の光ディスク装置の要部構成図Configuration diagram of main parts of another optical disk device used for the same optical disk

符号の説明Explanation of reference numerals

 1  半導体レーザ(光源)
 4  対物レンズ
 9  光検出器(検出手段)
 10,19  記録層
 11  透明体
 12  光ディスク
 14  ビーム変換手段
 15  光路長変更手段
 17  第1の層
 18  第2の層
 20  中間透明体
 28  スペーサ
1 semiconductor laser (light source)
4 Objective lens 9 Photodetector (detection means)
DESCRIPTION OF SYMBOLS 10, 19 Recording layer 11 Transparent body 12 Optical disk 14 Beam conversion means 15 Optical path length changing means 17 First layer 18 Second layer 20 Intermediate transparent body 28 Spacer

Claims (6)

照射光強度Aに対しては第1、第2の層の透過率がT1A、T2Aになり、照射光強度Bに対しては第1、第2の層の透過率がT1B、T2Bになる第1の層と第2の層より各々構成される記録層が
 T1A×T2A=T1B×T2B
となる条件を満たし、透明体を挟んで複数積層されたことを特徴とする光ディスク。
For the irradiation light intensity A, the transmittance of the first and second layers becomes T1A and T2A, and for the irradiation light intensity B, the transmittance of the first and second layers becomes T1B and T2B. The recording layer composed of the first layer and the second layer is T1A × T2A = T1B × T2B
An optical disc characterized by satisfying the following conditions and being stacked in plural with a transparent body interposed therebetween.
第1、第2の層および第1、第2の層に挟まれた中間透明体により構成される記録層と透明体とを交互に積層し、照射光強度Aに対しては第1、第2の層の透過率がT1A、T2Aになり、照射光強度Bに対しては第1、第2の層の透過率がT1B、T2Bになるとき、
 T1A×T2A=T1B×T2B
となる条件を満たし、かつ、前記中間透明体と前記透明体の屈折率がほぼ等しく、記録層と記録層の間隔を使用波長の10倍以上としたことを特徴とする光ディスク。
A recording layer composed of a first and second layer and an intermediate transparent body sandwiched between the first and second layers and a transparent body are alternately laminated. When the transmittance of the second layer becomes T1A and T2A and the transmittance of the first and second layers becomes T1B and T2B with respect to the irradiation light intensity B,
T1A × T2A = T1B × T2B
An optical disk characterized by satisfying the following conditions, wherein the intermediate transparent body and the transparent body have substantially the same refractive index, and the interval between the recording layers is at least 10 times the wavelength used.
第1、第2の層の厚みがH1、H2で照射光強度Aに対しては第1、第2の層の屈折率がN1A、N2Aになり、照射光強度Bに対しては第1、第2の層の屈折率がN1B、N2Bになる第1の層と第2の層より構成される記録層が
 N1A×H1+N2A×H2=N1B×H1+N2B×H2
となる条件を満たし、透明体を挟んで複数積層されたことを特徴とする光ディスク。
When the thicknesses of the first and second layers are H1 and H2, the first and second layers have a refractive index of N1A and N2A for the irradiation light intensity A, and the first and second layers have the first and second refractive indexes for the irradiation light intensity B. The recording layer composed of the first layer and the second layer in which the refractive index of the second layer is N1B and N2B is N1A × H1 + N2A × H2 = N1B × H1 + N2B × H2
An optical disc characterized by satisfying the following conditions and being stacked in plural with a transparent body interposed therebetween.
照射光強度Aに対して、第1の層と透明体の界面の反射率と、第1の層と第2の層の界面の反射率とを比較して、前者が小さいときは照射光強度Aに対する第1の層の屈折率と照射光強度Bに対する第2の層の屈折率とをほぼ透明体の屈折率に等しくし、後者が小さいときはそれぞれ反対の層の屈折率を透明体の屈折率に等しくした請求項3記載の光ディスク。 With respect to the irradiation light intensity A, the reflectance at the interface between the first layer and the transparent body and the reflectance at the interface between the first layer and the second layer are compared. The refractive index of the first layer with respect to A and the refractive index of the second layer with respect to the irradiation light intensity B are substantially equal to the refractive index of the transparent body. 4. The optical disc according to claim 3, wherein the refractive index is equal to the refractive index. 第1、第2の層および第1、第2の層に挟まれた中間透明体により構成される記録層と透明体とを交互に積層し、第1、第2の層の厚みがH1、H2で、照射光強度Aに対しては第1、第2の層の屈折率がN1A、N2Aであり照射光強度Bに対しては第1、第2の層の屈折率がN1B、N2Bであるとき
 N1A×H1+N2A×H2=N1B×H1+N2B×H2
となる条件を満たし、前記中間透明体と前記透明体の屈折率がほぼ等しく、記録層と記録層の間隔を使用波長の10倍以上としたことを特徴とする光ディスク。
A recording layer composed of a first and second layer and an intermediate transparent body sandwiched between the first and second layers and a transparent body are alternately laminated, and the thickness of the first and second layers is H1, At H2, the refractive indices of the first and second layers are N1A and N2A for the irradiation light intensity A, and the refractive indices of the first and second layers are N1B and N2B for the irradiation light intensity B. When there is N1A × H1 + N2A × H2 = N1B × H1 + N2B × H2
An optical disc characterized by satisfying the following conditions, wherein the intermediate transparent body and the transparent body have substantially the same refractive index, and the interval between the recording layers is at least 10 times the used wavelength.
照射光強度Aに対して、第1の層と透明体の界面の反射率と、第2の層と中間透明体の界面の反射率とを比較して、前者が小さいときは照射光強度Aに対する第1の層の屈折率と照射光強度Bに対する第2の層の屈折率とをほぼ前記透明体および前記中間透明体の屈折率に等しくし、後者が小さいときはそれぞれ反対の層の屈折率を前記透明体および前記中間透明体の屈折率に等しくした請求項5記載の光ディスク。 Compare the reflectance at the interface between the first layer and the transparent body and the reflectance at the interface between the second layer and the intermediate transparent body with respect to the irradiation light intensity A. And the refractive index of the second layer with respect to the irradiation light intensity B is substantially equal to the refractive index of the transparent body and the intermediate transparent body, and when the latter is small, the refractive indices of the opposite layers are respectively set. 6. The optical disk according to claim 5, wherein a refractive index is equal to a refractive index of the transparent body and the intermediate transparent body.
JP2003405423A 1992-11-26 2003-12-04 Optical disk Pending JP2004087126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003405423A JP2004087126A (en) 1992-11-26 2003-12-04 Optical disk

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31683192 1992-11-26
JP15470193 1993-06-25
JP2003405423A JP2004087126A (en) 1992-11-26 2003-12-04 Optical disk

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001165955A Division JP2002015458A (en) 1992-11-26 2001-06-01 Optical disk and optical disk device

Publications (1)

Publication Number Publication Date
JP2004087126A true JP2004087126A (en) 2004-03-18

Family

ID=32073987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003405423A Pending JP2004087126A (en) 1992-11-26 2003-12-04 Optical disk

Country Status (1)

Country Link
JP (1) JP2004087126A (en)

Similar Documents

Publication Publication Date Title
US5563873A (en) Multilayer optical disk and apparatus
US5485452A (en) Optical information recording medium
US5696750A (en) Optical head apparatus for different types of disks
JP3638194B2 (en) Optical pickup device
US20100165825A1 (en) Optical recording/reproducing device
US7848205B2 (en) Information-recording medium and optical information-recording/reproducing device
KR19980087503A (en) Optical head unit
JPWO2006093054A1 (en) Hologram recording medium and hologram recording / reproducing apparatus
JPWO2008020591A1 (en) Wavelength selective light shielding element and optical head device using the same
JP5100010B2 (en) Optical information reproducing device
JP2007018603A (en) Optical head device
JPH0778353A (en) Optical disk and optical disk device
EP2149139B1 (en) Hologram optical device, and compatible optical pickup having the hologram optical device and optical information storage system employing the compatible optical pickup
JP2008171544A (en) Unit to remove crosstalk in multi-layered disk, optical pickup adopting unit, and optical recording/reproducing apparatus
JPH10283663A (en) Cd-r/dvd optical recording/pickup head using hologram type variable diaphragm
WO2004008448A1 (en) Multilayer optical recording medium and storage
KR100985422B1 (en) Double-wavelength light source unit and optical head device
US7406023B2 (en) Optical reproduction method, optical pickup device, optical reproduction device, and optical recording medium
JP2004087126A (en) Optical disk
JP2002015458A (en) Optical disk and optical disk device
WO2011114674A1 (en) Multi-layer optical recording medium
JP4743129B2 (en) Hologram recording medium, hologram recording method and apparatus, hologram reproducing method and apparatus
JP4503525B2 (en) Multilayer optical information recording medium
JPH06333259A (en) Optical recording information reproducing device and optical multilayered recording medium
KR100838144B1 (en) Medium for recording optically readable data, method for making same and optical system reproducing said data

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111